51
|
Lee CC, Southgate R, Jiao C, Gersz E, Owen JR, Kates SL, Beck CA, Xie C, Daiss JL, Post V, Moriarty TF, Zeiter S, Schwarz EM, Muthukrishnan G. Deriving a dose and regimen for anti-glucosaminidase antibody passive-immunisation for patients with Staphylococcus aureus osteomyelitis. Eur Cell Mater 2020; 39:96-107. [PMID: 32003439 PMCID: PMC7236896 DOI: 10.22203/ecm.v039a06] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Staphylococcus aureus (S. aureus) osteomyelitis remains a major clinical problem. Anti-glucosaminidase (Gmd) antibodies (1C11) are efficacious in prophylactic and therapeutic murine models. Feasibility, safety and pharmacokinetics of 1C11 passive immunisation in sheep and endogenous anti-Gmd levels were quantified in osteomyelitis patients. 3 sheep received a 500 mg intravenous (i.v.) bolus of 1C11 and its levels in sera were determined by enzyme-linked immunosorbent assay (ELISA) over 52 d. A humanised anti-Gmd monoclonal antibody, made by grafting the antigen-binding fragment (Fab) portion of 1C11 onto the fragment crystallisable region (Fc) of human IgG1, was used to make a standard curve of mean fluorescent intensity versus concentration of anti-Gmd. Anti-Gmd serum levels were determined in 297 patients with culture-confirmed S. aureus osteomyelitis and 40 healthy controls. No complications or adverse events were associated with the sheep 1C11 i.v. infusion and the estimated circulating half-life of 1C11 was 23.7 d. Endogenous anti-Gmd antibody levels in sera of osteomyelitis patients ranged from < 1 ng/mL to 300 µg/mL, with a mean concentration of 21.7 µg/mL. The estimated circulating half-life of endogenous anti-Gmd antibodies in sera of 12 patients with cured osteomyelitis was 120.4 d. A clinically relevant administration of anti-Gmd (500 mg i.v. = 7 mg/kg/70 kg human) was safe in sheep. This dose was 8 times more than the endogenous anti-Gmd levels observed in osteomyelitis patients and was predicted to have a half-life of > 3 weeks. Anti-Gmd passive immunisation has potential to prevent and treat S. aureus osteomyelitis. Further clinical development is warranted.
Collapse
Affiliation(s)
- Charles C. Lee
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard Southgate
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Cindy Jiao
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Elaine Gersz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher A. Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA,Corresponding Author: Edward M. Schwarz, Ph.D., Burton Professor of Orthopaedics, Director of Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, Phone: (585) 275-3063, FAX: (585) 276-2177,
| | | |
Collapse
|
52
|
Witsø E, Hoang L, Løseth K, Bergh K. Establishment of an in vivo rat model for chronic musculoskeletal implant infection. J Orthop Surg Res 2020; 15:23. [PMID: 31964416 PMCID: PMC6975053 DOI: 10.1186/s13018-020-1546-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/05/2020] [Indexed: 01/22/2023] Open
Abstract
Background The aim of the study was to establish an experimental chronic musculoskeletal infection model in vivo characterized by (a) a small bacterial inoculum, (b) no general or local signs of infection, (c) several parallels (implants) in each animal and finally (d) a model that is technically easy to perform. Methods Bone xenografts with steel plates were implanted intramuscularly in rats. To the xenografts, different inocula of Staphylococcus aureus and two strains of Staphylococcus epidermidis were added. The animals were observed for different time periods before the removal of the xenografts. The xenografts and steel plates were subjected to quantitative bacterial culture after sonication. Additional steel plates were subjected to scanning electron microscopy (SEM) for visualization of biofilm formation. Results Inoculation of bone grafts with S. aureus did produce a pyogenic infection in all animals. A chronic infection was established in rats where the bone grafts were inoculated with S. epidermidis. A bacterial inoculum of 100 colony-forming units (CFU) of S. epidermidis was adequate as a minimum infective dose. During a period of up until 42 days, the animals infected with S. epidermidis had no general or local signs of infection. According to the results of the quantitative bacterial culture of sonicate fluid and SEM, a biofilm was developed on all implants. Conclusion In the present in vivo model, a very small bacterial inoculum succeeded in establishing a chronic musculoskeletal implant infection where a biofilm was formed on the implants. The experimental model is easy to perform and allows several implants in each animal. The model could be useful for the study of biofilm formation in vivo on different implants and different surfaces.
Collapse
Affiliation(s)
- Eivind Witsø
- Department of Orthopaedic Surgery, St Olav's University Hospital, Trondheim, Norway.
| | - Linh Hoang
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kirsti Løseth
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kåre Bergh
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Medical Microbiology, St Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
53
|
Krishnan AG, Biswas R, Menon D, Nair MB. Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis. Biomater Sci 2020; 8:2653-2665. [DOI: 10.1039/d0bm00140f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study shows the development of a biodegradable bi-functional composite scaffold that can reduce bacterial infection, while promotes bone regeneration in osteomyelitis, without the need for revision surgery.
Collapse
Affiliation(s)
- Amit G. Krishnan
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- India
| | - Raja Biswas
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- India
| | - Manitha B. Nair
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- India
| |
Collapse
|
54
|
Wu S, Liu Y, Lei L, Zhang H. Virulence of methicillin-resistant Staphylococcus aureus modulated by the YycFG two-component pathway in a rat model of osteomyelitis. J Orthop Surg Res 2019; 14:433. [PMID: 31831035 PMCID: PMC6909630 DOI: 10.1186/s13018-019-1508-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Objectives Methicillin-resistant Staphylococcus aureus (MRSA) strains present an urgent medical problem in osteomyelitis cases. Our previous study indicated that the YycFG two-component regulatory pathway is associated with the bacterial biofilm organization of MRSA strains. The aim of this study was to investigate the regulatory roles of ASyycG in the bacterial biofilm formation and the pathogenicity of MRSA strains using an antisense RNA strategy. Methods An ASyycG-overexpressing MRSA clinical isolate was constructed. The bacterial growth was monitored, and the biofilm biomass on bone specimens was examined using scanning electron microscopy and confocal laser scanning microscopy. Furthermore, quantitative RT-PCR (QRT-PCR) analysis was used to measure the expression of yycF/G/H and icaA/D in the MRSA and ASyycG strains. The expression of the YycG protein was quantified by Western blot assays. We validated the role of ASyycG in the invasive ability and pathogenicity of the strains in vivo using histology and peptide nucleic acid fluorescent in situ hybridization. Results The results showed that overexpression of ASyycG lead to a reduction in biofilm formation and exopolysaccharide (EPS) synthesis compared to the control MRSA strains. The ASyycG strains exhibited decreased expression of the yycF/G/H and icaA/D genes. Furthermore, Western blot data showed that the production of the YycG protein was inhibited in the ASyycG strains. In addition, we demonstrated that ASyycG suppressed the invasive ability and pathogenicity of the strain in vivo using an SPF (specific pathogen free) rat model. Conclusion In summary, the overexpression of ASyycG leads to a reduction in biofilm formation and bacterial pathogenicity in vivo, which provides a potential target for the management of MRSA-induced osteomyelitis.
Collapse
Affiliation(s)
- Shizhou Wu
- Department of Orthopedics, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu City, 610041, Sichuan, China
| | - Yunjie Liu
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, NO.14 Renmin South Road, Chengdu City, 610041, Sichuan, China.
| | - Hui Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu City, 610041, Sichuan, China.
| |
Collapse
|
55
|
Muthukrishnan G, Masters EA, Daiss JL, Schwarz EM. Mechanisms of Immune Evasion and Bone Tissue Colonization That Make Staphylococcus aureus the Primary Pathogen in Osteomyelitis. Curr Osteoporos Rep 2019; 17:395-404. [PMID: 31721069 PMCID: PMC7344867 DOI: 10.1007/s11914-019-00548-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Staphylococcus aureus is the primary pathogen responsible for osteomyelitis, which remains a major healthcare burden. To understand its dominance, here we review the unique pathogenic mechanisms utilized by S. aureus that enable it to cause incurable osteomyelitis. RECENT FINDINGS Using an arsenal of toxins and virulence proteins, S. aureus kills and usurps immune cells during infection, to produce non-neutralizing pathogenic antibodies that thwart adaptive immunity. S. aureus also has specific mechanisms for distinct biofilm formation on implants, necrotic bone tissue, bone marrow, and within the osteocyte lacuno-canicular networks (OLCN) of live bone. In vitro studies have also demonstrated potential for intracellular colonization of osteocytes, osteoblasts, and osteoclasts. S. aureus has evolved a multitude of virulence mechanisms to achieve life-long infection of the bone, most notably colonization of OLCN. Targeting S. aureus proteins involved in these pathways could provide new targets for antibiotics and immunotherapies.
Collapse
Affiliation(s)
- Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - John L Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
56
|
Thompson JM, Miller LS. Preclinical Optical Imaging to Study Pathogenesis, Novel Therapeutics and Diagnostics Against Orthopaedic Infection. J Orthop Res 2019; 37:2269-2277. [PMID: 31342546 DOI: 10.1002/jor.24428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/15/2019] [Indexed: 02/04/2023]
Abstract
Preclinical in vivo optical imaging includes bioluminescence imaging (BLI) and fluorescence imaging (FLI), which provide noninvasive and longitudinal monitoring of biological processes in an in vivo context. In vivo BLI involves the detection of photons of light from bioluminescent bacteria engineered to naturally emit light in preclinical animal models of infection. Meanwhile, in vivo FLI involves the detection of photons of a longer emission wavelength of light after exposure of a fluorophore to a shorter excitation wavelength of light. In vivo FLI has been used in preclinical animal models to detect fluorescent-labeled host proteins or cells (often in engineered fluorescent reporter mice) to understand host-related processes, or to detect injectable near-infrared fluorescent probes as a novel approach for diagnosing infection. This review describes the use of in vivo optical imaging in preclinical models of orthopaedic implant-associated infection (OIAI), including (i) pathogenesis of the infectious course, (ii) monitoring efficacy of antimicrobial prophylaxis and therapy and (iii) evaluating novel near-infrared fluorescent probes for diagnosing infection. Finally, we describe optoacoustic imaging and fluorescence image-guided surgery, which are recent technologies that have the potential to translate to diagnosing and treating OIAI in humans. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2269-2277, 2019.
Collapse
Affiliation(s)
- John M Thompson
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287
| | - Lloyd S Miller
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, 21218
| |
Collapse
|
57
|
Joeris A, Höglinger M, Meier F, Knöfler F, Scholz S, Brügger U, Denk E, Gutzwiller F, Prein J, Renner N, Eichler K. The impact of the AO Foundation on fracture care: An evaluation of 60 years AO Foundation. Injury 2019; 50:1868-1875. [PMID: 31521377 DOI: 10.1016/j.injury.2019.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Sixty years ago, the Association of Osteosynthesis (AO) was founded with the aim to improve fracture treatment and has since grown into one of the largest medical associations worldwide. Aim of this study was to evaluate AO's impact on science, education, patient care and the MedTech business. DESIGN/METHODS Impact evaluations were conducted as appropriate for the individual domains: Impact on science was measured by analyzing citation frequencies of publications promoted by AO. Impact on education was evaluated by analyzing the evolution of number and location of AO courses. Impact on patient care was evaluated with a health economic model analyzing cost changes and years of life gained through the introduction of osteosynthesis in 17 high-income countries (HICs). Impact on MedTech business was evaluated by analyzing sales data of AO-associated products. RESULTS Thirty-five AO papers and 2 major AO textbooks are cited at remarkable frequencies in high ranking journals with up to 2000 citations/year. The number of AO courses steadily increased with a total of 645'000 participants, 20'000 teaching days and 2'500 volunteer faculty members so far. The introduction of osteosynthesis saved at least 925 billion Swiss Francs [CHF] in the 17 HICs analyzed and had an impact on avoiding premature deaths comparable to the use of antihypertensive drugs. AO-associated products generated sales of 55 billion CHF. CONCLUSION AO's impact on science, education, patient care, and the MedTech business was significant because AO addressed hitherto unmet needs by combining activities that mutually enriched and reinforced each other.
Collapse
Affiliation(s)
| | - Marc Höglinger
- Winterthur Institute of Health Economics, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Flurina Meier
- Winterthur Institute of Health Economics, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Fabio Knöfler
- Winterthur Institute of Health Economics, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Stefan Scholz
- Central Office for Statistics in Accident Insurance (SSUV), Lucerne, Switzerland
| | - Urs Brügger
- Winterthur Institute of Health Economics, Zurich University of Applied Sciences, Winterthur, Switzerland
| | | | - Felix Gutzwiller
- Professor Emeritus Institute for Social and Preventive Medicine, University of Zurich, Switzerland
| | - Joachim Prein
- Professor Emeritus University Hospital Basel, CMF Surgery, Basel, Switzerland
| | - Nikolaus Renner
- Head of Traumatology Department, Cantonal Hospital Aarau, Switzerland
| | - Klaus Eichler
- Winterthur Institute of Health Economics, Zurich University of Applied Sciences, Winterthur, Switzerland
| |
Collapse
|
58
|
Brunotte M, Rupp M, Stötzel S, Sommer U, Mohammed W, Thormann U, Heiss C, Lips KS, Domann E, Alt V. A new small animal model for simulating a two-stage-revision procedure in implant-related methicillin-resistant Staphylococcus aureus bone infection. Injury 2019; 50:1921-1928. [PMID: 31451184 DOI: 10.1016/j.injury.2019.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/14/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Implant-related bone infections with methicillin-resistant Staphylococcus aureus (MRSA) remain a challenge for orthopedic surgeons. This devasting complication may lead to functional impairment and loss of the affected limbs. High failure rates in treatment make improvement of surgical treatment necessary. Beside an already established demanding and costly large animal model, a small animal model of a two-stage revision does not exist, yet. Thus, the purpose of this study was to establish a preclinical small animal model to simulate a two-stage revision in implant-related MRSA infection. MATERIALS AND METHODS In twelve rabbits Steel K-wires were implanted into the intramedullary canal of the left tibia, followed by inoculation with MRSA. Two different clinical isolates of MRSA-strains were used in two different concentrations (CFUs; 105 and 107 colony forming units (CFUs). This led to four groups of three rabbits each. Eleven rabbits survived the whole study period. After four weeks the inoculated K-wires were removed and replaced with vancomycin loaded PMMA-spacers (stage 1). Twenty-eight days later new K-wire implants were placed intramedullary (stage 2). After 84 days all animals were sacrificed. Tibiae were analyzed microbiologically, radiologically and histologically. RESULTS In every rabbit K-wire associated infection could be established within the first four weeks. After irrigation and debridement at revision one (stage 1), infection could be eradicated in 67% of group I, in 50% of group II and in 33% of group III and IV. Recurrence of the infection could be determined in all animals of group I and IV at day 84. X-ray analysis and histology both demonstrated clear signs of osteomyelitis after twelve weeks. Survival, clinical observations and weight assessment confirmed the ethical justifiable stress of the animals during the experiment. CONCLUSION The presented small animal model of a two-stage revision in implant-related infection is a promising preclinical set-up for assessment of new treatment strategies of implant-related infections. Both high survival as well as reinfection rates were possible by simulating the clinical gold standard of two-stage revision surgery in an MRSA implant-related infection model. Therefore, the model can be deemed suitable for further preclinical in vivo testing.
Collapse
Affiliation(s)
- Maximilian Brunotte
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University Giessen, 35392 Giessen, Germany; Department of Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Markus Rupp
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University Giessen, 35392 Giessen, Germany; Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385 Giessen, Germany
| | - Sabine Stötzel
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Ursula Sommer
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Walid Mohammed
- Institute of Medical Microbiology, University Hospital of Giessen-Marburg GmbH, Campus Giessen, 35392 Giessen, Germany
| | - Ulrich Thormann
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University Giessen, 35392 Giessen, Germany; Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385 Giessen, Germany
| | - Christian Heiss
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University Giessen, 35392 Giessen, Germany; Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385 Giessen, Germany
| | - Katrin S Lips
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Eugen Domann
- Institute of Medical Microbiology, University Hospital of Giessen-Marburg GmbH, Campus Giessen, 35392 Giessen, Germany
| | - Volker Alt
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University Giessen, 35392 Giessen, Germany; Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385 Giessen, Germany; Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
59
|
Tschon M, Sartori M, Contartese D, Giavaresi G, Aldini NN, Fini M. Use of Antibiotic Loaded Biomaterials for the Management of Bone Prosthesis Infections: Rationale and Limits. Curr Med Chem 2019; 26:3150-3174. [PMID: 29189125 DOI: 10.2174/0929867325666171129220031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 11/24/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Periprosthetic joint infection still represents a challenging issue for the orthopedic community. In the United States approximately a million joint arthroplasties are performed each year, with infection rates ranging from 1 to 2%: revisions has significant implications on health care costs and appropriate resource management. The use of locally applied antibiotics as a prophylaxis measure or as a component of the therapeutic approach in primary or revision surgery is finalized at eliminating any microorganism and strengthening the effectiveness of systemic therapy. OBJECTIVE The present review of clinical and preclinical in vivo studies tried to identify advantages and limitations of the materials used in the clinical orthopedic practice and discuss developed biomaterials, innovative therapeutic approaches or strategies to release antibiotics in the infected environment. METHODS A systematic search was carried out by two independent observers in two databases (www.pubmed.com and www.scopus.com) in order to identify pre-clinical and clinical reports in the last 10 years. RESULTS 71 papers were recognized eligible: 15 articles were clinical studies and 56 in vivo studies. CONCLUSION Polymethylmethacrylate was the pioneer biomaterial used to manage infections after total joint replacement. Despite its widespread use, several issues still remain debated: the methods to combine materials and antibiotics, the choice of antibiotics, releasing kinetics and antibiotics efficacy. In the last years, the interest was directed towards the selection of different antibiotics, loaded in association with more than only one class and biomaterials with special focus on delivery systems as implant surface coatings, hydrogels, ceramics, micro-carriers, microspheres or nanoparticles.
Collapse
Affiliation(s)
- M Tschon
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - M Sartori
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Istituto Ortopedico Rizzoli - RIT Department, via di Barbiano 1/10, 40136, Bologna, Italy
| | - D Contartese
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - G Giavaresi
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - N Nicoli Aldini
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - M Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| |
Collapse
|
60
|
Morris JL, Letson HL, Grant A, Wilkinson M, Hazratwala K, McEwen P. Experimental model of peri-prosthetic infection of the knee caused by Staphylococcus aureus using biomaterials representative of modern TKA. Biol Open 2019; 8:8/9/bio045203. [PMID: 31533935 PMCID: PMC6777360 DOI: 10.1242/bio.045203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Prosthetic joint infection (PJI) following total knee arthroplasty (TKA) remains the leading cause for revision surgery, with Staphylococcus aureus the bacterium most frequently responsible. We describe a novel rat model of implant-associated S. aureus infection of the knee using orthopaedic materials relevant to modern TKA. Male Sprague-Dawley rats underwent unilateral knee implant surgery, which involved placement of a cementless, porous titanium implant into the femur, and an ultra-highly cross-linked polyethyelene (UHXLPE) implant into the proximal tibia within a mantle of gentamicin-laden bone cement. S. aureus biofilms were established on the surface of titanium implants prior to implantation into the femur of infected animals, whilst control animals received sterile implants. Compared to controls, the time taken to full weight-bear and recover pre-surgical body weight was greater in the infected group. Neutrophils and C-reactive protein levels were significantly higher in infected compared to control animals at day 5 post surgery, returning to baseline levels for the remainder of the 28-day experimental period. Blood cultures remained negative and additional plasma inflammatory markers were comparable for control and infected animals, consistent with the clinical presentation of delayed-onset PJI. S. aureus was recovered from joint tissue and implants at day 28 post surgery from all animals that received pre-seeded titanium implants, despite the use of antibiotic-laden cement. Persistent localised infection was associated with increased inflammatory responses and radiological changes in peri-implant tissue. The availability of a preclinical model that is reproducible based on the use of current TKA materials and consistent with clinical features of delayed-onset PJI will be valuable for evaluation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Jodie L Morris
- Orthopaedic Research Institute of Queensland, Townsville 4812, Australia .,College of Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia
| | - Hayley L Letson
- College of Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia
| | - Andrea Grant
- Orthopaedic Research Institute of Queensland, Townsville 4812, Australia
| | - Matthew Wilkinson
- Orthopaedic Research Institute of Queensland, Townsville 4812, Australia
| | - Kaushik Hazratwala
- Orthopaedic Research Institute of Queensland, Townsville 4812, Australia
| | - Peter McEwen
- Orthopaedic Research Institute of Queensland, Townsville 4812, Australia
| |
Collapse
|
61
|
Masters EA, Trombetta RP, de Mesy Bentley KL, Boyce BF, Gill AL, Gill SR, Nishitani K, Ishikawa M, Morita Y, Ito H, Bello-Irizarry SN, Ninomiya M, Brodell JD, Lee CC, Hao SP, Oh I, Xie C, Awad HA, Daiss JL, Owen JR, Kates SL, Schwarz EM, Muthukrishnan G. Evolving concepts in bone infection: redefining "biofilm", "acute vs. chronic osteomyelitis", "the immune proteome" and "local antibiotic therapy". Bone Res 2019; 7:20. [PMID: 31646012 PMCID: PMC6804538 DOI: 10.1038/s41413-019-0061-z] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023] Open
Abstract
Osteomyelitis is a devastating disease caused by microbial infection of bone. While the frequency of infection following elective orthopedic surgery is low, rates of reinfection are disturbingly high. Staphylococcus aureus is responsible for the majority of chronic osteomyelitis cases and is often considered to be incurable due to bacterial persistence deep within bone. Unfortunately, there is no consensus on clinical classifications of osteomyelitis and the ensuing treatment algorithm. Given the high patient morbidity, mortality, and economic burden caused by osteomyelitis, it is important to elucidate mechanisms of bone infection to inform novel strategies for prevention and curative treatment. Recent discoveries in this field have identified three distinct reservoirs of bacterial biofilm including: Staphylococcal abscess communities in the local soft tissue and bone marrow, glycocalyx formation on implant hardware and necrotic tissue, and colonization of the osteocyte-lacuno canalicular network (OLCN) of cortical bone. In contrast, S. aureus intracellular persistence in bone cells has not been substantiated in vivo, which challenges this mode of chronic osteomyelitis. There have also been major advances in our understanding of the immune proteome against S. aureus, from clinical studies of serum antibodies and media enriched for newly synthesized antibodies (MENSA), which may provide new opportunities for osteomyelitis diagnosis, prognosis, and vaccine development. Finally, novel therapies such as antimicrobial implant coatings and antibiotic impregnated 3D-printed scaffolds represent promising strategies for preventing and managing this devastating disease. Here, we review these recent advances and highlight translational opportunities towards a cure.
Collapse
Affiliation(s)
- Elysia A. Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
| | - Ryan P. Trombetta
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
| | - Karen L. de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Brendan F Boyce
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Ann Lindley Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Steven R. Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Kohei Nishitani
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Masahiro Ishikawa
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Yugo Morita
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | | | - Mark Ninomiya
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - James D. Brodell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Charles C. Lee
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Stephanie P. Hao
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Irvin Oh
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Hani A. Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
62
|
Hwang SC, Hwang DS, Kim HY, Kim MJ, Kang YH, Byun SH, Rho GJ, Lee HJ, Lee HC, Kim SH, Baik SC, Park JS, Oh SH, Byun JH. Development of bone regeneration strategies using human periosteum-derived osteoblasts and oxygen-releasing microparticles in mandibular osteomyelitis model of miniature pig. J Biomed Mater Res A 2019; 107:2183-2194. [PMID: 31116505 DOI: 10.1002/jbm.a.36728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/29/2022]
Abstract
Hypoxia and limited vascularization inhibit bone growth and recovery after surgical debridement to treat osteomyelitis. Similarly, despite significant efforts to create functional tissue-engineered organs, clinical success is often hindered by insufficient oxygen diffusion and poor vascularization. To overcome these shortcomings, we previously used the oxygen carrier perfluorooctane (PFO) to develop PFO emulsion-loaded hollow microparticles (PFO-HPs). PFO-HPs act as a local oxygen source that increase cell viability and maintains the osteogenic differentiation potency of human periosteum-derived cells (hPDCs) under hypoxic conditions. In the present study, we used a miniature pig model of mandibular osteomyelitis to investigate bone regeneration using hPDCs seeded on PFO-HPs (hPDCs/PFO-HP) or hPDCs seeded on phosphate-buffered saline (PBS)-HPs (hPDCs/PBS-HP). Osteomyelitis is characterized by a series of microbial invasion, vascular disruption, bony necrosis, and sequestrum formation due to impaired host defense response. Sequential plain radiography, computed tomography (CT), and 3D reconstructed CT images revealed new bone formation was more advanced in defects that had been implanted with the hPDCs/PFO-HPs than in defects implanted with the hPDCs/PBS-HP. Thus, PFO-HPs are a promising tissue engineering approach to repair challenging bone defects and regenerate structurally organized bone tissue with 3D architecture.
Collapse
Affiliation(s)
- Sun-Chul Hwang
- Department of Orthopaedic Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Dae Seok Hwang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University and Pusan National University Dental Hospital, Yangsan, Republic of Korea
| | - Ho Yong Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| | - Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| | - Young-Hoon Kang
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea.,The Korean Society of Maxillofacial Aesthetic Surgery, Seoul, Republic of Korea
| | - Sung-Hoon Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeon-Jeong Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hee-Chun Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang-Hyun Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Seung Chul Baik
- Department of Microbiology, Gyeongsang National University School of Medicine, Institute of Health Sciences, Jinju, Republic of Korea
| | - Jin-Sik Park
- Department of Microbiology, Gyeongsang National University School of Medicine, Institute of Health Sciences, Jinju, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea.,The Korean Society of Maxillofacial Aesthetic Surgery, Seoul, Republic of Korea
| |
Collapse
|
63
|
Zhang P, Qin J, Zhang B, Zheng Y, Yang L, Shen Y, Zuo B, Zhang F. Gentamicin-loaded silk/nanosilver composite scaffolds for MRSA-induced chronic osteomyelitis. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182102. [PMID: 31218036 PMCID: PMC6549986 DOI: 10.1098/rsos.182102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/02/2019] [Indexed: 05/24/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) often induces chronic osteomyelitis and then bone defects. Here, gentamicin-loaded silk/nanosilver composite scaffolds were developed to treat MRSA-induced chronic osteomyelitis. AgNO3 was reduced with silk as a reducing agent in formic acid, forming silver nanoparticles in situ that were distributed uniformly in the composite scaffolds. Superior antibacterial properties against MRSA were achieved for the composite scaffolds, without the compromise of osteogenesis capacity. Then gentamicin was loaded on the scaffolds for better treatment of osteomyelitis. In vivo results showed effective inhibition of the growth of MRSA bacteria, confirming the promising future in the treatment of chronic osteomyelitis.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Jianzhong Qin
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Bo Zhang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Yi Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Lingyan Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Yixin Shen
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Baoqi Zuo
- College of Textile and Clothing Engineering, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, People's Republic of China
| | - Feng Zhang
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, People's Republic of China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
64
|
Wu S, Liu Y, Lei L, Zhang H. Antisense yycG Regulation of Antibiotic Sensitivity of Methicillin-Resistant Staphylococcus aureus in Chronic Osteomyelitis. Surg Infect (Larchmt) 2019; 20:472-479. [PMID: 31038392 DOI: 10.1089/sur.2019.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) is an urgent medical problem in osteomyelitis. The YycFG two-component regulatory system (TCS) allows bacteria to adapt rapidly to physical, chemical, and biological stresses. The recombinant plasmid shuttle vector was used to overexpress an antisense RNA (asRNA) to inhibit target gene expression by sequence-specific double-stranded RNA complex degradation. In the current study, antisense yycG RNA (ASyycG)-overexpression MRSA clinical isolates were constructed. Methods: Bacterial growth was monitored, and biofilm biomass was determined by crystal violet microtiter assay. Quantitative reverse transcription polymerase chain reaction analysis was used to identify expression of yycF/G/H and icaA/D in MRSA and ASyycG strains. The expression of YycG protein was quantified by Western blot assays. The antibiotic resistance of ASyycG strains was compared with that of the MRSA strains. Results: The ASyycG strains showed a decrease in growth rate compared with the MRSA strains. Of note, overexpression of ASyycG led to a reduction in biofilm formation and adhesion force. ASyycG strains had decreased expressions of the yycF/G/H and icaA/D. Furthermore, Western blot data showed that expression of the YycG protein decreased by 40% in ASyycG strains compared with MRSA strains. In addition, the effect of yycG asRNA improved the susceptibility of ASyycG strains to cefoxitin. Conclusions: The ASyycG strains inhibited biofilm organization and increased antibiotic sensitivity, which may be attributed to altered intracellular polysaccharide construction.
Collapse
Affiliation(s)
- Shizhou Wu
- 1Department of Orthopedics, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.,2State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunjie Liu
- 3West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Lei Lei
- 2State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hui Zhang
- 1Department of Orthopedics, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
65
|
Azuara G, García-García J, Ibarra B, Parra-Ruiz F, Asúnsolo A, Ortega M, Vázquez-Lasa B, Buján J, San Román J, de la Torre B. Experimental study of the application of a new bone cement loaded with broad spectrum antibiotics for the treatment of bone infection. Rev Esp Cir Ortop Traumatol (Engl Ed) 2019. [DOI: 10.1016/j.recote.2018.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
66
|
Ibarra B, García-García J, Azuara G, Vázquez-Lasa B, Ortega MA, Asúnsolo Á, San Román J, Buján J, García-Honduvilla N, De la Torre B. Polylactic-co-glycolic acid microspheres added to fixative cements and its role on bone infected architecture. J Biomed Mater Res B Appl Biomater 2019; 107:2517-2526. [PMID: 30784189 PMCID: PMC6790951 DOI: 10.1002/jbm.b.34342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 09/24/2018] [Accepted: 01/26/2019] [Indexed: 12/19/2022]
Abstract
Joint prostheses are an essential element to improve quality of life. However, prostheses may fail due to several factors, including the most frequent cause, Staphylococcus aureus infection. The identification of new fixing bone cements with less reactivity on bone tissue and an adequate response to infection remains a primary challenge. The aim of this study is to evaluate the response of bone tissue in rabbits after introduction of a hydroxyapatite‐coated titanium rod with a commercial fixative cement (Palacos®) compared to a modified experimental cement (EC) containing polylactic‐co‐glycolic acid (PLGA) microspheres in the presence or absence of contaminating germs. This study used 20 New Zealand rabbits which were divided into four groups (n = 5) depending on the presence or absence of S. aureus and the use of commercial (Palacos®) or EC. A histological method, based on bone architecture damage, was proposed to evaluate from 1 to 9 the histological results and the response of the infected tissue. The macrophage response was also evaluated using monoclonal antibody RAM‐11. The study showed better bone conservation with the use of EC with PLGA microspheres against the Palacos® commercial cement, including the noncontaminated and contaminated groups. © 2019 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2517–2526, 2019.
Collapse
Affiliation(s)
- Blanca Ibarra
- Departments of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Polymer Science and Technology (ICTP-CSIC), Madrid, Spain
| | - Joaquin García-García
- Service of Orthopedic Surgery of University Hospital Principe de Asturias, Madrid, Spain
| | - Galo Azuara
- Service of Traumatology of University Hospital of Guadalajara, Madrid, Spain
| | - Blanca Vázquez-Lasa
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Polymer Science and Technology (ICTP-CSIC), Madrid, Spain
| | - Miguel A Ortega
- Departments of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Polymer Science and Technology (ICTP-CSIC), Madrid, Spain
| | - Ángel Asúnsolo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain.,Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Julio San Román
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Polymer Science and Technology (ICTP-CSIC), Madrid, Spain
| | - Julia Buján
- Departments of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Polymer Science and Technology (ICTP-CSIC), Madrid, Spain.,Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Natalio García-Honduvilla
- Departments of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Polymer Science and Technology (ICTP-CSIC), Madrid, Spain.,Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Basilio De la Torre
- Service of Traumatology of University Hospital Ramón y Cajal, Madrid, Spain.,Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| |
Collapse
|
67
|
Bargon R, Bruenke J, Carli A, Fabritius M, Goel R, Goswami K, Graf P, Groff H, Grupp T, Malchau H, Mohaddes M, Novaes de Santana C, Phillips KS, Rohde H, Rolfson O, Rondon A, Schaer T, Sculco P, Svensson K. General Assembly, Research Caveats: Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019; 34:S245-S253.e1. [PMID: 30348560 DOI: 10.1016/j.arth.2018.09.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
68
|
Moriarty TF, Harris LG, Mooney RA, Wenke JC, Riool M, Zaat SAJ, Moter A, Schaer TP, Khanna N, Kuehl R, Alt V, Montali A, Liu J, Zeiter S, Busscher HJ, Grainger DW, Richards RG. Recommendations for design and conduct of preclinical in vivo studies of orthopedic device-related infection. J Orthop Res 2019; 37:271-287. [PMID: 30667561 DOI: 10.1002/jor.24230] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/06/2018] [Indexed: 02/04/2023]
Abstract
Orthopedic device-related infection (ODRI), including both fracture-related infection (FRI) and periprosthetic joint infection (PJI), remain among the most challenging complications in orthopedic and musculoskeletal trauma surgery. ODRI has been convincingly shown to delay healing, worsen functional outcome and incur significant socio-economic costs. To address this clinical problem, ever more sophisticated technologies targeting the prevention and/or treatment of ODRI are being developed and tested in vitro and in vivo. Among the most commonly described innovations are antimicrobial-coated orthopedic devices, antimicrobial-loaded bone cements and void fillers, and dual osteo-inductive/antimicrobial biomaterials. Unfortunately, translation of these technologies to the clinic has been limited, at least partially due to the challenging and still evolving regulatory environment for antimicrobial drug-device combination products, and a lack of clarity in the burden of proof required in preclinical studies. Preclinical in vivo testing (i.e. animal studies) represents a critical phase of the multidisciplinary effort to design, produce and reliably test both safety and efficacy of any new antimicrobial device. Nonetheless, current in vivo testing protocols, procedures, models, and assessments are highly disparate, irregularly conducted and reported, and without standardization and validation. The purpose of the present opinion piece is to discuss best practices in preclinical in vivo testing of antimicrobial interventions targeting ODRI. By sharing these experience-driven views, we aim to aid others in conducting such studies both for fundamental biomedical research, but also for regulatory and clinical evaluation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:271-287, 2019.
Collapse
Affiliation(s)
- T Fintan Moriarty
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | - Llinos G Harris
- Microbiology and Infectious Diseases, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Robert A Mooney
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Joseph C Wenke
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, JBSA-Fort Sam Houston, Texas
| | - Martijn Riool
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Sebastian A J Zaat
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Annette Moter
- Institute of Microbiology and Infection Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas P Schaer
- Department of Clinical Studies New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania
| | - Nina Khanna
- Infection Biology Laboratory, Department of Biomedicine, University Hospital of Basel, Basel, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
| | - Richard Kuehl
- Infection Biology Laboratory, Department of Biomedicine, University Hospital of Basel, Basel, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
| | - Volker Alt
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg, GmbH, Campus Giessen, Germany
| | | | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, P.R. China
| | - Stephan Zeiter
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - David W Grainger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - R Geoff Richards
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| |
Collapse
|
69
|
Wu S, Huang F, Zhang H, Lei L. Staphylococcus aureus biofilm organization modulated by YycFG two-component regulatory pathway. J Orthop Surg Res 2019; 14:10. [PMID: 30621792 PMCID: PMC6325680 DOI: 10.1186/s13018-018-1055-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/27/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) infection accounts for more than 50% of the osteomyelitis cases. Currently, methicillin-resistant S. aureus (MRSA) strains present an urgent medical problem. The YycFG two-component regulatory system (TCS) can allow bacteria to rapidly adapt to physical, chemical, and biological stresses. To define the role of YycFG in modulation virulence of S. aureus in osteomyelitis, we isolated clinical MRSA strains and compared these with ATCC29213 methicillin-sensitive S. aureus (MSSA). METHODS In the present study, 13 MRSA strains from chronic osteomyelitis tissues were isolated. The in-depth sequencing of 16S rRNA amplicons of the samples was conducted. Bacterial growth was monitored, and biofilm biomass was determined by crystal violet microtiter assay. Furthermore, quantitative RT-PCR analysis was adopted to identify the expression of yycF/G/H and icaA/D in MRSA and MSSA strains. Analysis of variance with one-way ANOVA was used for statistical analysis. RESULTS The in-depth sequencing of 16S rRNA amplicons of the clinical samples indicated a polymicrobial infection, with the phylum Firmicutes made up 13% of the microbial population. The MRSA strains showed an accelerated growth rate compared to the MSSA strains. Of note, MRSA biofilms showed an accumulation of an intercellular polysaccharides matrix and enhanced biomass upon microscopic examination. Furthermore, MRSA strains had a higher expression of the yycF/G/H and icaA/D genes and adhesion force. CONCLUSIONS These data suggested the roles of intercellular polysaccharide in S. aureus pathogenesis, indicating a possible association between YycFG pathways and MRSA strain virulence.
Collapse
Affiliation(s)
- Shizhou Wu
- Department of Orthopedics, West China Hospital , Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu City, 610041, Sichuan, People's Republic of China.,West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China
| | - Fuguo Huang
- Department of Orthopedics, West China Hospital , Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu City, 610041, Sichuan, People's Republic of China.,West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China
| | - Hui Zhang
- Department of Orthopedics, West China Hospital , Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu City, 610041, Sichuan, People's Republic of China. .,West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China.
| | - Lei Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14 Renmin South Road, Wuhou District, Chengdu City, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
70
|
Azuara G, García-García J, Ibarra B, Parra-Ruiz FJ, Asúnsolo A, Ortega MA, Vázquez-Lasa B, Buján J, San Román J, de la Torre B. Experimental study of the application of a new bone cement loaded with broad spectrum antibiotics for the treatment of bone infection. Rev Esp Cir Ortop Traumatol (Engl Ed) 2019; 63:95-103. [PMID: 30611707 DOI: 10.1016/j.recot.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/16/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES To evaluate the in vivo behaviour of a new bone cement loaded with antibiotics, in a rabbit bone infection model. MATERIAL AND METHODS Sixteen New Zealand rabbits divided into 4 groups were used, depending on the cement (commercial or experimental) and the antibiotic (vancomycin or linezolid) used to control a bone infection caused by Staphylococcus aureus. The commercial cement is Palacos® R and the experimental cement has been achieved by adding PLGA to the solid phase of Palacos® R cement. A novel histological staging method based on bone histoarchitecture has been used. This staging allows us a global vision of bone repair capacity, in the presence of modified cement, and also allows us to correlate the damage generated with the functionality of the tissue. RESULTS The degree of bone destructuration found depended on the type of cement and antibiotic, and was higher in the groups with commercial cement than in the experimental group (P<.01) and in the groups with linezolid with respect to vancomycin (P=.04) The percentage of macrophages varied exclusively depending on the antibiotic used, and was higher in the vancomycin groups (P=.04). DISCUSSION The development of new formulations of bone cement that release more, and more prolonged, new generation antibiotics such as linezolid, present an in vivo behaviour superior to commercial cement, respecting the bone structure. This behaviour would have a clinical implication in fighting infections by increasingly resistant germs in the treatment of prosthetic infection.
Collapse
Affiliation(s)
- G Azuara
- Departments of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, España; Service of Traumatology and Orthopedic Surgery, University Hospital of Guadalajara, Guadalajara, España
| | - J García-García
- Departments of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, España; Service of Traumatology and Orthopedic Surgery, University Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, España
| | - B Ibarra
- Departments of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, España; Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, España
| | - F J Parra-Ruiz
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, España
| | - A Asúnsolo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, España; Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, España
| | - M A Ortega
- Departments of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, España; Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, España; Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, España
| | - B Vázquez-Lasa
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, España
| | - J Buján
- Departments of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, España; Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, España; Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, España
| | - J San Román
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, España
| | - B de la Torre
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, España; Service of Traumatology and Orthopedic Surgery, University Hospital Ramón y Cajal, Madrid, España.
| |
Collapse
|
71
|
Zingarelli B, Coopersmith CM, Drechsler S, Efron P, Marshall JC, Moldawer L, Wiersinga WJ, Xiao X, Osuchowski MF, Thiemermann C. Part I: Minimum Quality Threshold in Preclinical Sepsis Studies (MQTiPSS) for Study Design and Humane Modeling Endpoints. Shock 2019; 51:10-22. [PMID: 30106874 PMCID: PMC6296871 DOI: 10.1097/shk.0000000000001243] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Preclinical animal studies are mandatory before new treatments can be tested in clinical trials. However, their use in developing new therapies for sepsis has been controversial because of limitations of the models and inconsistencies with the clinical conditions. In consideration of the revised definition for clinical sepsis and septic shock (Sepsis-3), a Wiggers-Bernard Conference was held in Vienna in May 2017 to propose standardized guidelines on preclinical sepsis modeling. The participants conducted a literature review of 260 most highly cited scientific articles on sepsis models published between 2003 and 2012. The review showed, for example, that mice were used in 79% and euthanasia criteria were defined in 9% of the studies. Part I of this report details the recommendations for study design and humane modeling endpoints that should be addressed in sepsis models. The first recommendation is that survival follow-up should reflect the clinical time course of the infectious agent used in the sepsis model. Furthermore, it is recommended that therapeutic interventions should be initiated after the septic insult replicating clinical care. To define an unbiased and reproducible association between a new treatment and outcome, a randomization and blinding of treatments as well as inclusion of all methodological details in scientific publications is essential. In all preclinical sepsis studies, the high standards of animal welfare must be implemented. Therefore, development and validation of specific criteria for monitoring pain and distress, and euthanasia of septic animals, as well as the use of analgesics are recommended. A set of four considerations is also proposed to enhance translation potential of sepsis models. Relevant biological variables and comorbidities should be included in the study design and sepsis modeling should be extended to mammalian species other than rodents. In addition, the need for source control (in case of a defined infection focus) should be considered. These recommendations and considerations are proposed as "best practices" for animal models of sepsis that should be implemented.
Collapse
Affiliation(s)
- Basilia Zingarelli
- Department of Pediatrics, Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | | | - Susanne Drechsler
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Philip Efron
- Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - John C Marshall
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Lyle Moldawer
- Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - W Joost Wiersinga
- Division of Infectious Diseases, Center for Experimental and Molecular Medicine, The Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Xianzhong Xiao
- Xiangya School of Medicine, Central South University, Chagnsha, Hunan, China
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Christoph Thiemermann
- The William Harvey Research Institute, Barts and London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
72
|
Croes M, de Visser H, Meij B, Lietart K, van der Wal B, Vogely H, Fluit A, Boel C, Alblas J, Weinans H, Amin Yavari S. Data on a rat infection model to assess porous titanium implant coatings. Data Brief 2018; 21:1642-1648. [PMID: 30505893 PMCID: PMC6247446 DOI: 10.1016/j.dib.2018.10.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 10/31/2022] Open
Abstract
A model is needed to study the effectiveness of different anti-bacterial coatings on complex metal implants in a bone environment. This article shares data on the design of porous titanium implants for intramedullary implantation in the proximal rat tibia. The implant length, diameter and porosity were optimized after testing on cadaveric specimens. This article shares data on which parameters are critical to establish a chronic implant infection in Sprague Dawley rats when using the new implant design. To this end, different strains of Staphylococcus aureus and inoculation doses were investigated.
Collapse
Affiliation(s)
- M. Croes
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - H. de Visser
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - B.P. Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - K. Lietart
- 3D Systems - LayerWise NV, Leuven, Belgium
- Department of Metallurgy and Materials Engineering, KU Leuven, Leuven, Belgium
| | - B.C.H. van der Wal
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - H.C. Vogely
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - A.C. Fluit
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - C.H.E. Boel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J. Alblas
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - H. Weinans
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
- Department of Rheumatology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - S. Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
73
|
Mestres G, Fernandez-Yague MA, Pastorino D, Montufar EB, Canal C, Manzanares-Céspedes MC, Ginebra MP. In vivo efficiency of antimicrobial inorganic bone grafts in osteomyelitis treatments. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:84-95. [PMID: 30678975 DOI: 10.1016/j.msec.2018.11.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 01/15/2023]
Abstract
The purpose of the present work was to evaluate in vivo different antimicrobial therapies to eradicate osteomyelitis created in the femoral head of New Zealand rabbits. Five phosphate-based cements were evaluated: calcium phosphate cements (CPC) and calcium phosphate foams (CPF), both in their pristine form and loaded with doxycycline hyclate, and an intrinsic antimicrobial magnesium phosphate cement (MPC; not loaded with an antibiotic). The cements were implanted in a bone previously infected with Staphylococcus aureus to discern the effects of the type of antibiotic administration (systemic vs. local), porosity (microporosity, i.e. <5 μm vs. macroporosity, i.e. >5 μm) and type of antimicrobial mechanism (release of antibiotic vs. intrinsic antimicrobial activity) on the improvement of the health state of the infected animals. A new method was developed, with a more comprehensive composite score that integrates 5 parameters of bone infection, 4 parameters of bone structural integrity and 4 parameters of bone regeneration. This method was used to evaluate the health state of the infected animals, both before and after osteomyelitis treatment. The results showed that the composite score allows to discern statistically significant differences between treatments that individual evaluations were not able to identify. Despite none of the therapies completely eradicated the infection, it was observed that macroporous materials (CPF and CPFd, the latter loaded with doxycycline hyclate) and intrinsic antimicrobial MPC allowed a better containment of the osteomyelitis. This study provides novel insights to understand the effect of different antimicrobial therapies in vivo, and a promising comprehensive methodology to evaluate the health state of the animals was developed. We expect that the implementation of such methodology could improve the criteria to select a proper antimicrobial therapy.
Collapse
Affiliation(s)
- G Mestres
- Department of Engineering Sciences, Science for Life Laboratory, Uppsala University, Box 534, 751 21 Uppsala, Sweden
| | - M A Fernandez-Yague
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - D Pastorino
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - E B Montufar
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - C Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - M C Manzanares-Céspedes
- Human Anatomy and Embryology Unit, University of Barcelona, Faculty of Medicine and Health Sciences, Barcelona, Spain; Growth factors and cellular differenciation (Bellvitge Biomedical Research Institute, IDIBELL) L'Hospitalet de Llobregat, Barcelona, Spain
| | - M P Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain; Institute of Bioengineering of Catalonia (IBEC), Baldiri i Reixach 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
74
|
Antibacterial and immunogenic behavior of silver coatings on additively manufactured porous titanium. Acta Biomater 2018; 81:315-327. [PMID: 30268917 DOI: 10.1016/j.actbio.2018.09.051] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/30/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023]
Abstract
Implant-associated infections (IAI) are often recurrent, expensive to treat, and associated with high rates of morbidity, if not mortality. We biofunctionalized the surface of additively manufactured volume-porous titanium implants using electrophoretic deposition (EPD) as a way to eliminate the peri-operative bacterial load and prevent IAI. Chitosan-based (Ch) coatings were incorporated with different concentrations of silver (Ag) nanoparticles or vancomycin. A full-scale in vitro and in vivo study was then performed to evaluate the antibacterial, immunogenic, and osteogenic activity of the developed implants. In vitro, Ch + vancomycin or Ch + Ag coatings completely eliminated, or reduced the number of planktonic and adherent Staphylococcus aureus by up to 4 orders of magnitude, respectively. In an in vivo tibia intramedullary implant model, Ch + Ag coatings caused no adverse immune or bone response under aseptic conditions. Following Staphylococcus aureus inoculation, Ch + vancomycin coatings reduced the implant infection rate as compared to chitosan-only coatings. Ch + Ag implants did not demonstrate antibacterial effects in vivo and even aggravated infection-mediated bone remodeling including increased osteoclast formation and inflammation-induced new bone formation. As an explanation for the poor antibacterial activity of Ch + Ag implants, it was found that antibacterial Ag concentrations were cytotoxic for neutrophils, and that non-toxic Ag concentrations diminished their phagocytic activity. This study shows the potential of EPD coating to biofunctionalize porous titanium implants with different antibacterial agents. Using this method, Ag-based coatings seem inferior to antibiotic coatings, as their adverse effects on the normal immune response could cancel the direct antibacterial effects of Ag nanoparticles. STATEMENT OF SIGNIFICANCE: Implant-associated infections (IAI) are a clinical, societal, and economical burden. Surface biofunctionalization approaches can render complex metal implants with strong local antibacterial action. The antibacterial effects of inorganic materials such as silver nanoparticles (Ag NPs) are often highlighted under very confined conditions in vitro. As a novelty, this study also reports the antibacterial, immunogenic, and osteogenic activity of Ag NP-coated additively-manufactured titanium in vivo. Importantly, it was found that the developed coatings could impair the normal function of neutrophils, the most important phagocytic cells protecting us from IAI. Not surprisingly, the Ag NP-based coatings were outperformed by an antibiotic-based coating. This emphasizes the importance of also targeting implant immune-modulatory functions in future coating strategies against IAI.
Collapse
|
75
|
Meesters DM, Wijnands KAP, Brink PRG, Poeze M. Malnutrition and Fracture Healing: Are Specific Deficiencies in Amino Acids Important in Nonunion Development? Nutrients 2018; 10:E1597. [PMID: 30384490 PMCID: PMC6266771 DOI: 10.3390/nu10111597] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023] Open
Abstract
With the increasing incidence of fractures now, and in the future, the absolute number of bone-healing complications such as nonunion development will also increase. Next to fracture-dependent factors such as large bone loss volumes and inadequate stabilization, the nutritional state of these patients is a major influential factor for the fracture repair process. In this review, we will focus on the influence of protein/amino acid malnutrition and its influence on fracture healing. Mainly, the arginine-citrulline-nitric oxide metabolism is of importance since it can affect fracture healing via several precursors of collagen formation, and through nitric oxide synthases it has influences on the bio-molecular inflammatory responses and the local capillary growth and circulation.
Collapse
Affiliation(s)
- Dennis M Meesters
- Department of Surgery, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
- NUTRIM School for Nutrition and Translational Research in Metabolism, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Karolina A P Wijnands
- Department of Surgery, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
- NUTRIM School for Nutrition and Translational Research in Metabolism, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Peter R G Brink
- Department of Surgery, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Martijn Poeze
- Department of Surgery, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
- NUTRIM School for Nutrition and Translational Research in Metabolism, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
76
|
Rohde C, Wittmann J, Kutter E. Bacteriophages: A Therapy Concept against Multi-Drug-Resistant Bacteria. Surg Infect (Larchmt) 2018; 19:737-744. [PMID: 30256176 PMCID: PMC6302670 DOI: 10.1089/sur.2018.184] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages (phages) are viruses that kill bacteria specifically but cannot infect other kinds of organisms. They have attracted new attention since the increasing antibiotic resistance developed into a global crisis. Phage therapy, a 100-year-old form of antibacterial treatment in medicine, is gaining momentum because phages represent a therapy concept without such negative side effects as toxicity; phages are the only therapeutic agent that regulates itself at the sites of infection and decays when the infectious bacteria have been killed. Nature is an almost infinite phage resource: New ones can be isolated for most kinds of problem bacteria as needed; bacteria and their phages constantly co-evolve. This is important as new pathogenic bacterial variants evolve and new challenging situations arise. In human therapy, "cocktails" of multiple phages may reduce the probability of selecting bacteria that developed resistance to a certain phage. Antibiotic agents can be applied together with phages in many circumstances; the two often function synergistically. Phages cannot be expected to replace antibiotic agents in our medical arsenal, but can be used where antibiotic agents fail. The selected phages, however, must be obligately virulent, well-characterized, and highly purified before application. Countless patients and their physicians are waiting for re-establishing phage therapy as a flexible, tailored medicine; infrastructures should be built in all countries urgently: The 2015 World Health Organization assembly resolution 68.7.3. called for national action plans by May 2017 to combat the antimicrobial drug resistance crisis. This article discusses the therapeutic potential of phages and describes challenges and recent developments.
Collapse
Affiliation(s)
- Christine Rohde
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | |
Collapse
|
77
|
Kavanagh N, O’Brien FJ, Kerrigan SW. Staphylococcus aureus protein A causes osteoblasts to hyper-mineralise in a 3D extra-cellular matrix environment. PLoS One 2018; 13:e0198837. [PMID: 29927956 PMCID: PMC6013232 DOI: 10.1371/journal.pone.0198837] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/25/2018] [Indexed: 01/18/2023] Open
Abstract
Osteomyelitis is an inflammatory bone infection that is caused most commonly by the opportunistic pathogen Staphylococcus aureus. Research into staphylococcal induced bone infection is typically conducted using traditional 2D in vitro culture settings, which is not fully representative of the dynamic in vivo environment. In this study we utilised a collagen glycosaminoglycan scaffold, previously developed for bone tissue engineering, as a representative 3D model of infection. The scaffold resisted degradation and retained its pore structure, which is important for cellular function and survival, when seeded with both cells and bacteria. Using this model, we showed that in the presence of S. aureus, osteoblast proliferation was reduced over 21 days. Interestingly however these cells were more metabolically active compared to the uninfected cells and demonstrated increased mineralisation. Protein A (SpA) is a virulence factor found on the surface of S. aureus and has been shown to interact with osteoblasts. When SpA was removed from the surface of S. aureus, the osteoblasts show comparable activity with the uninfected cells-demonstrating the importance of SpA in the interaction between bone cells and S. aureus. Our results suggest that infected osteoblasts are capable of over-compensating for bone loss and bone destruction by increasing mineralisation in a 3D environment, key elements required for ensuring bone strength. It also reinforces our previously established result that S. aureus SpA is a critical mediator in osteomyelitis and might be a potential novel drug target to treat osteomyelitis by preventing the interaction between S. aureus and osteoblasts.
Collapse
Affiliation(s)
- Nicola Kavanagh
- Cardiovascular Infection Research Group, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Steve W. Kerrigan
- Cardiovascular Infection Research Group, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
78
|
Raic A, Riedel S, Kemmling E, Bieback K, Overhage J, Lee-Thedieck C. Biomimetic 3D in vitro model of biofilm triggered osteomyelitis for investigating hematopoiesis during bone marrow infections. Acta Biomater 2018; 73:250-262. [PMID: 29679779 DOI: 10.1016/j.actbio.2018.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022]
Abstract
In this work, we define the requirements for a human cell-based osteomyelitis model which overcomes the limitations of state of the art animal models. Osteomyelitis is a severe and difficult to treat infection of the bone that develops rapidly, making it difficult to study in humans. We have developed a 3D in vitro model of the bone marrow, comprising a macroporous material, human hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs). Inclusion of biofilms grown on an implant into the model system allowed us to study the effects of postoperative osteomyelitis-inducing bacteria on the bone marrow. The bacteria influenced the myeloid differentiation of HSPCs as well as MSC cytokine expression and the MSC ability to support HSPC maintenance. In conclusion, we provide a new 3D in vitro model which meets all the requirements for investigating the impact of osteomyelitis. STATEMENT OF SIGNIFICANCE Implant-associated osteomyelitis is a persistent bacterial infection of the bone which occurs in many implant patients and can result in functional impairments or even entire loss of the extremity. Nevertheless, surprisingly little is known on the triangle interaction between implant material, bacterial biofilm and affected bone tissue. Closing this gap of knowledge would be crucial for the fundamental understanding of the disease and the development of novel treatment strategies. For this purpose, we developed the first biomaterial-based system that is able to mimic implant-associated osteomyelitis outside of the body, thus, opening the avenue to study this fatal disease in the laboratory.
Collapse
Affiliation(s)
- Annamarija Raic
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sophie Riedel
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| | - Elena Kemmling
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167 Mannheim, Germany
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, 1125 Colonel by Drive, Ottawa ON, K1S 5B6, Canada
| | - Cornelia Lee-Thedieck
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
79
|
Schindeler A, Mills RJ, Bobyn JD, Little DG. Preclinical models for orthopedic research and bone tissue engineering. J Orthop Res 2018; 36:832-840. [PMID: 29205478 DOI: 10.1002/jor.23824] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/27/2017] [Indexed: 02/04/2023]
Abstract
In this review, we broadly define and discuss the preclinical rodent models that are used for orthopedics and bone tissue engineering. These range from implantation models typically used for biocompatibility testing and high-throughput drug screening, through to fracture and critical defect models used to model bone healing and severe orthopedic injuries. As well as highlighting the key methods papers describing these techniques, we provide additional commentary based on our substantive practical experience with animal surgery and in vivo experimental design. This review also briefly touches upon the descriptive and functional outcome measures and power calculations that are necessary for an informative study. Obtaining informative and relevant research outcomes can be very dependent on the model used, and we hope this evaluation of common models will serve as a primer for new researchers looking to undertake preclinical bone studies. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:832-840, 2018.
Collapse
Affiliation(s)
- Aaron Schindeler
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.,Discipline of Pediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Rebecca J Mills
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia
| | - Justin D Bobyn
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.,Discipline of Pediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - David G Little
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.,Discipline of Pediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|
80
|
Hibbitts A, O'Leary C. Emerging Nanomedicine Therapies to Counter the Rise of Methicillin-Resistant Staphylococcus aureus. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E321. [PMID: 29473883 PMCID: PMC5849018 DOI: 10.3390/ma11020321] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 12/25/2022]
Abstract
In a recent report, the World Health Organisation (WHO) classified antibiotic resistance as one of the greatest threats to global health, food security, and development. Methicillin-resistant Staphylococcus aureus (MRSA) remains at the core of this threat, with persistent and resilient strains detectable in up to 90% of S. aureus infections. Unfortunately, there is a lack of novel antibiotics reaching the clinic to address the significant morbidity and mortality that MRSA is responsible for. Recently, nanomedicine strategies have emerged as a promising therapy to combat the rise of MRSA. However, these approaches have been wide-ranging in design, with few attempts to compare studies across scientific and clinical disciplines. This review seeks to reconcile this discrepancy in the literature, with specific focus on the mechanisms of MRSA infection and how they can be exploited by bioactive molecules that are delivered by nanomedicines, in addition to utilisation of the nanomaterials themselves as antibacterial agents. Finally, we discuss targeting MRSA biofilms using nano-patterning technologies and comment on future opportunities and challenges for MRSA treatment using nanomedicine.
Collapse
Affiliation(s)
- Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
| | - Cian O'Leary
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
81
|
Dorati R, DeTrizio A, Modena T, Conti B, Benazzo F, Gastaldi G, Genta I. Biodegradable Scaffolds for Bone Regeneration Combined with Drug-Delivery Systems in Osteomyelitis Therapy. Pharmaceuticals (Basel) 2017; 10:E96. [PMID: 29231857 PMCID: PMC5748651 DOI: 10.3390/ph10040096] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022] Open
Abstract
A great deal of research is ongoing in the area of tissue engineering (TE) for bone regeneration. A possible improvement in restoring damaged tissues involves the loading of drugs such as proteins, genes, growth factors, antibiotics, and anti-inflammatory drugs into scaffolds for tissue regeneration. This mini-review is focused on the combination of the local delivery of antibiotic agents with bone regenerative therapy for the treatment of a severe bone infection such as osteomyelitis. The review includes a brief explanation of scaffolds for bone regeneration including scaffolds characteristics and types, a focus on severe bone infections (especially osteomyelitis and its treatment), and a literature review of local antibiotic delivery by the combination of scaffolds and drug-delivery systems. Some examples related to published studies on gentamicin sulfate-loaded drug-delivery systems combined with scaffolds are discussed, and future perspectives are highlighted.
Collapse
Affiliation(s)
- Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
- Center of Health Technology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| | - Antonella DeTrizio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
- Center of Health Technology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
- Center of Health Technology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| | - Francesco Benazzo
- Center of Health Technology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
- Centre oh Health Technology (CHT), Via Ferrata 1, University of Pavia, 27100 Pavia, Italy.
| | - Giulia Gastaldi
- Centre oh Health Technology (CHT), Via Ferrata 1, University of Pavia, 27100 Pavia, Italy.
- Department of Molecular Medicine, University of Pavia, Viale Taramelli 2, 27100 Pavia, Italy.
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
- Center of Health Technology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| |
Collapse
|
82
|
Jensen LK, Johansen ASB, Jensen HE. Porcine Models of Biofilm Infections with Focus on Pathomorphology. Front Microbiol 2017; 8:1961. [PMID: 29067019 PMCID: PMC5641329 DOI: 10.3389/fmicb.2017.01961] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Bacterial biofilm formation is one of the main reasons for a negative treatment outcome and a high recurrence rate for many chronic infections in humans. The optimal way to study both the biofilm forming bacteria and the host response simultaneously is by using discriminative, reliable, and reproducible animal models of the infections. In this review, the advantages of in vivo studies are compared to in vitro studies of biofilm formation in infectious diseases. The pig is the animal of choice when developing and applying large animal models of infectious diseases due to its similarity of anatomy, physiology, and immune system to humans. Furthermore, conventional pigs spontaneously develop many of the same chronic bacterial infections as seen in humans. Therefore, in this review porcine models of five different infectious diseases all associated with biofilm formation and chronicity in humans are described. The infectious diseases are: chronic wounds, endocarditis, pyelonephritis, hematogenous osteomyelitis, and implant-associated osteomyelitis (IAO).
Collapse
Affiliation(s)
- Louise K Jensen
- Section for Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| | - Anne S B Johansen
- Section for Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik E Jensen
- Section for Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
83
|
Zhang X, Ma YF, Wang L, Jiang N, Qin CH, Hu YJ, Yu B. A rabbit model of implant-related osteomyelitis inoculated with biofilm after open femoral fracture. Exp Ther Med 2017; 14:4995-5001. [PMID: 29201204 PMCID: PMC5704256 DOI: 10.3892/etm.2017.5138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/30/2017] [Indexed: 12/17/2022] Open
Abstract
Currently, animal models used in research on implant-associated osteomyelitis primarily use intramedullary fixation and initial inoculum of planktonic bacterial cells. However, these techniques have certain limitations, including lack of rotational stability and instable inoculation. To improve these models, the present study aimed to establish a novel rabbit model of implant-associated osteomyelitis using biofilm as the initial inoculum following plate fixation of the femoral fracture. A total of 24 New Zealand White rabbits were randomly divided into two equal groups. Osteotomy was performed at the right femoral shaft using a wire saw following fixation with a 5-hole stainless steel plate. The plates were not colonized with bacteria in group 1, but colonized with a biofilm of Staphylococcus aureus (American Type Culture Collection, 25923) in group 2. All the rabbits were sacrificed after 21 days for clinical, X-ray, micro-computed tomography and histological assessments of the severity of osteomyelitis. Scanning electron microscopy and confocal laser scanning microscopy were used for biofilm assessment. In group 2, pus formation, periosteal reaction, cortical destruction and absorption were observed in all the rabbits and biofilm formation was observed on all the plates. However, no pus formation was observed except for a slight inflammatory response and all the plates appeared clean without infection in group 1. The differences between the two groups were statistically significant regarding histologic scores and semi-quantification of the bacteria on the plates (P<0.001). In the present study, a novel rabbit model of infection following internal plate fixation of open fracture was successfully established, providing a novel tool for the study of implant-associated osteomyelitis.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yun-Fei Ma
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lei Wang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Nan Jiang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Cheng-He Qin
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yan-Jun Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
84
|
Melicherčík P, Čeřovský V, Nešuta O, Jahoda D, Landor I, Ballay R, Fulín P. Testing the efficacy of antimicrobial peptides in the topical treatment of induced osteomyelitis in rats. Folia Microbiol (Praha) 2017; 63:97-104. [PMID: 28770427 DOI: 10.1007/s12223-017-0540-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Joint replacement infections and osteomyelitis are among the most serious complications in orthopaedics and traumatology. The risk factors for these infections are often bacterial resistance to antimicrobials. One of the few solutions available to control bacterial resistance involves antimicrobials, which have a different mechanism of action from traditional antibiotics. Antimicrobial peptides (AMP) appear to be highly promising candidates in the treatment of resistant infections. We have identified several AMP in the venom of various wild bees and designed analogues that show potent antimicrobial activity and low toxicity against eukaryotic cells. The aim of the present study was to test the efficacy of one of those synthetic peptide analogues for the treatment of acute osteomyelitis invoked in laboratory rats. Femoral cavities of 20 laboratory Wistar rats were infected with Staphylococcus aureus. After 1 week, eight rats received an injectable calcium phosphate carrier alone, another eight rats were treated with a calcium phosphate mixed with AMP, and four rats were left without any further treatment. After another week, all rats were euthanized and radiographs were made of both the operated and healthy limbs. The animals with the carrier alone exhibited more severe acute osteomyelitis on radiographs in comparison to the recipients of the calcium phosphate carrier loaded AMP and untreated infected individuals. Based on the results of the above mentioned experiment, it was concluded that when injected directly into the site of femoral acute osteomyelitis, the calcium phosphate carrier mixed with AMP reduced osteomyelitis signs visible on radiographs.
Collapse
Affiliation(s)
- Pavel Melicherčík
- Department of Orthopaedics, First Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, 150 06, Prague 5, Czech Republic.
| | - Václav Čeřovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Ondřej Nešuta
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - David Jahoda
- Department of Orthopaedics, First Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, 150 06, Prague 5, Czech Republic
| | - Ivan Landor
- Department of Orthopaedics, First Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, 150 06, Prague 5, Czech Republic
| | - Rastislav Ballay
- Department of Orthopaedics, First Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, 150 06, Prague 5, Czech Republic
| | - Petr Fulín
- Department of Orthopaedics, First Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, 150 06, Prague 5, Czech Republic
| |
Collapse
|
85
|
Guerra FE, Borgogna TR, Patel DM, Sward EW, Voyich JM. Epic Immune Battles of History: Neutrophils vs. Staphylococcus aureus. Front Cell Infect Microbiol 2017; 7:286. [PMID: 28713774 PMCID: PMC5491559 DOI: 10.3389/fcimb.2017.00286] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/12/2017] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in human blood and the first line of defense after bacteria have breached the epithelial barriers. After migration to a site of infection, neutrophils engage and expose invading microorganisms to antimicrobial peptides and proteins, as well as reactive oxygen species, as part of their bactericidal arsenal. Ideally, neutrophils ingest bacteria to prevent damage to surrounding cells and tissues, kill invading microorganisms with antimicrobial mechanisms, undergo programmed cell death to minimize inflammation, and are cleared away by macrophages. Staphylococcus aureus (S. aureus) is a prevalent Gram-positive bacterium that is a common commensal and causes a wide range of diseases from skin infections to endocarditis. Since its discovery, S. aureus has been a formidable neutrophil foe that has challenged the efficacy of this professional assassin. Indeed, proper clearance of S. aureus by neutrophils is essential to positive infection outcome, and S. aureus has developed mechanisms to evade neutrophil killing. Herein, we will review mechanisms used by S. aureus to modulate and evade neutrophil bactericidal mechanisms including priming, activation, chemotaxis, production of reactive oxygen species, and resolution of infection. We will also highlight how S. aureus uses sensory/regulatory systems to tailor production of virulence factors specifically to the triggering signal, e.g., neutrophils and defensins. To conclude, we will provide an overview of therapeutic approaches that may potentially enhance neutrophil antimicrobial functions.
Collapse
Affiliation(s)
- Fermin E Guerra
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Timothy R Borgogna
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Delisha M Patel
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Eli W Sward
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Jovanka M Voyich
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| |
Collapse
|
86
|
Xiao L, Li T, Ding M, Yang J, Rodríguez-Corrales J, LaConte SM, Nacey N, Weiss DB, Jin L, Dorn HC, Li X. Detecting Chronic Post-Traumatic Osteomyelitis of Mouse Tibia via an IL-13Rα2 Targeted Metallofullerene Magnetic Resonance Imaging Probe. Bioconjug Chem 2017; 28:649-658. [PMID: 28061526 PMCID: PMC5317096 DOI: 10.1021/acs.bioconjchem.6b00708] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Differential diagnosis of chronic post-traumatic osteomyelitis (CPO) from aseptic inflammation remains challenging, since both pathological processes share similar clinical symptoms. Here we utilized a novel targeted metallofullerene nanoparticle based magnetic resonance imaging (MRI) probe IL-13-TAMRA-Gd3N@C80(OH)30(CH2CH2COOH)20 to detect CPO in mouse tibia via overexpressed IL-13Rα2 receptors. The functionalized metallofullerene was characterized by X-ray photoelectron spectroscopy. Upon lipopolysaccharide (LPS) stimulation, macrophage Raw 264.7 cells showed elevated IL-13Rα2 expression via immunofluorescence staining and increased MRI probe binding via built-in TAMRA fluorescence imaging. Trauma was induced in both tibia of mice and bacteria soaked suture was inserted into the right tibia to initiate infection. During the acute phase (1.5 weeks), luminol-bioluminescence imaging revealed much higher myeloperoxidase activity in the infected tibia compared to the sham. In the chronic phase (4 weeks), X-ray radiography illustrated bone deformation in the infected tibia compared to the sham. With T1 weighted sequences, the probe clearly exhibited hyperintensity in the infection foci at both acute and chronic phases, which was not observed in the sham tibia. Histological analysis revealed severe bone structural destruction and massive inflammatory cell infiltration in the infected tibia. Immunohistochemistry confirmed abundant expression of IL-13Rα2 in the infection site. In summary, we developed a noninvasive imaging approach to detect and differentiate CPO from aseptic inflammation using a new IL-13Rα2 targeted metallofullerene MRI probe. In addition, for the first time, IL-13Rα2 was investigated as a unique biomarker in the context of osteomyelitis. Our data established a foundation for the translational application of this MRI probe in the clinical differentiation of CPO.
Collapse
Affiliation(s)
- Li Xiao
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Tinghui Li
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Mengmeng Ding
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Jiezuan Yang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - José Rodríguez-Corrales
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Stephen M. LaConte
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, United States
| | - Nicholas Nacey
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908, United States
| | - David B. Weiss
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Li Jin
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Harry C. Dorn
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, United States
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
87
|
Rumian Ł, Tiainen H, Cibor U, Krok-Borkowicz M, Brzychczy-Włoch M, Haugen HJ, Pamuła E. Ceramic scaffolds enriched with gentamicin loaded poly(lactide- co -glycolide) microparticles for prevention and treatment of bone tissue infections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:856-64. [DOI: 10.1016/j.msec.2016.07.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/06/2016] [Accepted: 07/22/2016] [Indexed: 02/01/2023]
|
88
|
Carli AV, Ross FP, Bhimani SJ, Nodzo SR, Bostrom MPG. Developing a Clinically Representative Model of Periprosthetic Joint Infection. J Bone Joint Surg Am 2016; 98:1666-1676. [PMID: 27707853 DOI: 10.2106/jbjs.15.01432] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
➤The poor treatment outcomes for periprosthetic joint infection (PJI) reflect the limited understanding that currently exists regarding the pathogenesis of this devastating clinical problem.➤Current animal models of PJI are limited in their translational nature primarily because of their inability to recreate the periprosthetic environment.➤A greater mechanistic understanding of the musculoskeletal and immune systems of small animals, such as mice and rats, provides a more robust platform for modeling and examining the pathogenesis of PJI.➤A clinically representative PJI model must involve an implant that recreates the periprosthetic space and be amenable to methodologies that identify implant biofilm as well as quantify the peri-implant bacterial load.
Collapse
|
89
|
Mendoza Bertelli A, Delpino MV, Lattar S, Giai C, Llana MN, Sanjuan N, Cassat JE, Sordelli D, Gómez MI. Staphylococcus aureus protein A enhances osteoclastogenesis via TNFR1 and EGFR signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1975-1983. [PMID: 27475257 PMCID: PMC6746341 DOI: 10.1016/j.bbadis.2016.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/04/2016] [Accepted: 07/26/2016] [Indexed: 01/18/2023]
Abstract
Staphylococcus aureus is a major causative agent of osteomyelitis in adults and children. The increasing incidence of antimicrobial resistant isolates and the morbidity of this type of infection denote that alternative therapeutic approaches are required. S. aureus protein A interacts with TNFR1 and EGFR expressed at the surface of host cells. Given the importance of TNF-α and EGFR/RANKL crosstalk in enhancing osteoclast differentiation, the aim of this study was to determine the role of protein A in the induction of osteoclastogenesis and bone resorption during staphylococcal osteomyelitis. We determined that protein A plays a critical role in osteoclast differentiation and activation by initiating TNFR1 and EGFR mediated signaling. Moreover, we demonstrated that protein A significantly contributes to increased osteoclast differentiation and activation as well as cortical bone destruction during the course of disease using experimental models of osteomyelitis. Our findings strongly suggest targeting protein A and TNFR1 as an adjunctive strategy to control bone damage during the initial course of S. aureus osteomyelitis.
Collapse
Affiliation(s)
- Andrea Mendoza Bertelli
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Argentina
| | - Santiago Lattar
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Argentina
| | - Constanza Giai
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Mariángeles Noto Llana
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Norberto Sanjuan
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - James E Cassat
- Departments of Pediatrics and Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel Sordelli
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Marisa I Gómez
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Argentina.
| |
Collapse
|
90
|
Surdu-Bob CC, Coman C, Barbuceanu F, Turcu D, Bercaru N, Badulescu M. The influence of foreign body surface area on the outcome of chronic osteomyelitis. Med Eng Phys 2016; 38:870-6. [DOI: 10.1016/j.medengphy.2016.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 03/04/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
|
91
|
Hasche D, Stephan S, Savelyeva L, Westermann F, Rösl F, Vinzón SE. Establishment of an Immortalized Skin Keratinocyte Cell Line Derived from the Animal Model Mastomys coucha. PLoS One 2016; 11:e0161283. [PMID: 27533138 PMCID: PMC4988767 DOI: 10.1371/journal.pone.0161283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/02/2016] [Indexed: 11/18/2022] Open
Abstract
In the present report we describe the establishment of a spontaneous immortalized skin keratinocyte cell line derived from the skin of the multimammate rodent Mastomys coucha. These animals are used in preclinical studies for a variety of human diseases such as infections with nematodes, bacteria and papillomaviruses, especially regarding cutaneous manifestations such as non-melanoma skin cancer. Here we characterize the cells in terms of their origin and cytogenetic features. Searching for genomic signatures, a spontaneous mutation in the splicing donor sequence of Trp53 (G to A transition at the first position of intron 7) could be detected. This point mutation leads to alternative splicing and to a premature stop codon, resulting in a truncated and, in turn, undetectable form of p53, probably contributing to the process of immortalization. Mastomys coucha-derived skin keratinocytes can be used as an in vitro system to investigate molecular and immunological aspects of infectious agent interactions with their host cells.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms (F030), German Cancer Research Center, Heidelberg, Germany
| | - Sonja Stephan
- Division of Viral Transformation Mechanisms (F030), German Cancer Research Center, Heidelberg, Germany
| | - Larissa Savelyeva
- Division of Neuroblastoma Genomics (B087), German Cancer Research Center, Heidelberg, Germany
| | - Frank Westermann
- Division of Neuroblastoma Genomics (B087), German Cancer Research Center, Heidelberg, Germany
| | - Frank Rösl
- Division of Viral Transformation Mechanisms (F030), German Cancer Research Center, Heidelberg, Germany
- * E-mail: ; (SEV); (FR)
| | - Sabrina E. Vinzón
- Division of Viral Transformation Mechanisms (F030), German Cancer Research Center, Heidelberg, Germany
- * E-mail: ; (SEV); (FR)
| |
Collapse
|
92
|
Infectious Dose Dictates the Host Response during Staphylococcus aureus Orthopedic-Implant Biofilm Infection. Infect Immun 2016; 84:1957-1965. [PMID: 27091926 DOI: 10.1128/iai.00117-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/08/2016] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus is a leading cause of prosthetic joint infections (PJIs) that are typified by biofilm formation. Given the diversity of S. aureus strains and their propensity to cause community- or hospital-acquired infections, we investigated whether the immune response and biofilm growth during PJI were conserved among distinct S. aureus clinical isolates. Three S. aureus strains representing USA200 (UAMS-1), USA300 (LAC), and USA400 (MW2) lineages were equally effective at biofilm formation in a mouse model of PJI and elicited similar leukocyte infiltrates and cytokine/chemokine profiles. Another factor that may influence the course of PJI is infectious dose. In particular, higher bacterial inocula could accelerate biofilm formation and alter the immune response, making it difficult to discern underlying pathophysiological mechanisms. To address this issue, we compared the effects of two bacterial doses (10(3) or 10(5) CFU) on inflammatory responses in interleukin-12p40 (IL-12p40) knockout mice that were previously shown to have reduced myeloid-derived suppressor cell recruitment concomitant with bacterial clearance after low-dose challenge (10(3) CFU). Increasing the infectious dose of LAC to 10(5) CFU negated these differences in IL-12p40 knockout animals, demonstrating the importance of bacterial inoculum on infection outcome. Collectively, these observations highlight the importance of considering infectious dose when assessing immune responsiveness, whereas biofilm formation during PJI is conserved among clinical isolates commonly used in mouse S. aureus infection models.
Collapse
|
93
|
Wagner JM, Zöllner H, Wallner C, Ismer B, Schira J, Abraham S, Harati K, Lehnhardt M, Behr B. Surgical Debridement Is Superior to Sole Antibiotic Therapy in a Novel Murine Posttraumatic Osteomyelitis Model. PLoS One 2016; 11:e0149389. [PMID: 26872128 PMCID: PMC4752466 DOI: 10.1371/journal.pone.0149389] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/01/2016] [Indexed: 11/19/2022] Open
Abstract
Introduction Bone infections after trauma, i.e. posttraumatic osteomyelitis, pose one of the biggest problems of orthopedic surgery. Even after sufficient clinical therapy including vast debridement of infected bone and antibiotic treatment, regeneration of postinfectious bone seems to be restricted. One explanation includes the large sized defects resulting from sufficient debridement. Furthermore, it remains unclear if inflammatory processes after bone infection do affect bone regeneration. For continuing studies in this field, an animal model is needed where bone regeneration after sufficient treatment can be studied in detail. Methods For this purpose we created a stable infection in murine tibiae by Staphylococcus aureus inoculation. Thereafter, osteomyelitic bones were debrided thoroughly and animals were subsequently treated with antibiotics. Controls included debrided, non-infected, as well as infected animals exclusively treated with antibiotics. To verify sufficient treatment of infected bone, different assessments detecting S. aureus were utilized: agar plates, histology and RT-qPCR. Results All three detection methods revealed massive reduction or eradication of S. aureus within debrided bones 1 and 2 weeks postoperatively, whereas sole antibiotic therapy could not provide sufficient treatment of osteomyelitic bones. Debrided, previously infected bones showed significantly decreased bone formation, compared to debrided, non-infected controls. Discussion Thus, the animal model presented herein provides a reliable and fascinating tool to study posttraumatic osteomyelitis for clinical therapies.
Collapse
Affiliation(s)
| | - Hannah Zöllner
- Department of Plastic Surgery, BG Bergmannsheil Bochum, Ruhr-University of Bochum, Bochum, Germany
| | - Christoph Wallner
- Department of Plastic Surgery, BG Bergmannsheil Bochum, Ruhr-University of Bochum, Bochum, Germany
| | - Britta Ismer
- Department of Plastic Surgery, BG Bergmannsheil Bochum, Ruhr-University of Bochum, Bochum, Germany
| | - Jessica Schira
- Department of Plastic Surgery, BG Bergmannsheil Bochum, Ruhr-University of Bochum, Bochum, Germany
| | - Stephanie Abraham
- Department of Plastic Surgery, BG Bergmannsheil Bochum, Ruhr-University of Bochum, Bochum, Germany
| | - Kamran Harati
- Department of Plastic Surgery, BG Bergmannsheil Bochum, Ruhr-University of Bochum, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG Bergmannsheil Bochum, Ruhr-University of Bochum, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG Bergmannsheil Bochum, Ruhr-University of Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
94
|
Antebi B, Zhang L, Sheyn D, Pelled G, Zhang X, Gazit Z, Schwarz EM, Gazit D. Controlling Arteriogenesis and Mast Cells Are Central to Bioengineering Solutions for Critical Bone Defect Repair Using Allografts. Bioengineering (Basel) 2016; 3. [PMID: 27141513 PMCID: PMC4851447 DOI: 10.3390/bioengineering3010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although most fractures heal, critical defects in bone fail due to aberrant differentiation of mesenchymal stem cells towards fibrosis rather than osteogenesis. While conventional bioengineering solutions to this problem have focused on enhancing angiogenesis, which is required for bone formation, recent studies have shown that fibrotic non-unions are associated with arteriogenesis in the center of the defect and accumulation of mast cells around large blood vessels. Recently, recombinant parathyroid hormone (rPTH; teriparatide; Forteo) therapy have shown to have anti-fibrotic effects on non-unions and critical bone defects due to inhibition of arteriogenesis and mast cell numbers within the healing bone. As this new direction holds great promise towards a solution for significant clinical hurdles in craniofacial reconstruction and limb salvage procedures, this work reviews the current state of the field, and provides insights as to how teriparatide therapy could be used as an adjuvant for healing critical defects in bone. Finally, as teriparatide therapy is contraindicated in the setting of cancer, which constitutes a large subset of these patients, we describe early findings of adjuvant therapies that may present future promise by directly inhibiting arteriogenesis and mast cell accumulation at the defect site.
Collapse
Affiliation(s)
- Ben Antebi
- US Army Institute of Surgical Research, Multi-Organ Support Technology, 3698 Chambers Pass, Fort Sam Houston, TX 78234, USA;
| | - Longze Zhang
- Center for Musculoskeletal Research, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA; (L.Z.); (X.Z.); (E.M.S.)
| | - Dmitriy Sheyn
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.S.); (G.P.); (Z.G.)
| | - Gadi Pelled
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.S.); (G.P.); (Z.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem 91120, Israel
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA; (L.Z.); (X.Z.); (E.M.S.)
| | - Zulma Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.S.); (G.P.); (Z.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem 91120, Israel
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA; (L.Z.); (X.Z.); (E.M.S.)
| | - Dan Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.S.); (G.P.); (Z.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem 91120, Israel
- Correspondence: ; Tel.: +1-310-248-8575
| |
Collapse
|
95
|
Inzana JA, Schwarz EM, Kates SL, Awad HA. Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials 2015; 81:58-71. [PMID: 26724454 DOI: 10.1016/j.biomaterials.2015.12.012] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/06/2015] [Accepted: 12/13/2015] [Indexed: 12/13/2022]
Abstract
Orthopaedic devices are the most common surgical devices associated with implant-related infections and Staphylococcus aureus (S. aureus) is the most common causative pathogen in chronic bone infections (osteomyelitis). Treatment of these chronic bone infections often involves combinations of antibiotics given systemically and locally to the affected site via a biomaterial spacer. The gold standard biomaterial for local antibiotic delivery against osteomyelitis, poly(methyl methacrylate) (PMMA) bone cement, bears many limitations. Such shortcomings include limited antibiotic release, incompatibility with many antimicrobial agents, and the need for follow-up surgeries to remove the non-biodegradable cement before surgical reconstruction of the lost bone. Therefore, extensive research pursuits are targeting alternative, biodegradable materials to replace PMMA in osteomyelitis applications. Herein, we provide an overview of the primary clinical treatment strategies and emerging biodegradable materials that may be employed for management of implant-related osteomyelitis. We performed a systematic review of experimental biomaterials systems that have been evaluated for treating established S. aureus osteomyelitis in an animal model. Many experimental biomaterials were not decisively more efficacious for infection management than PMMA when delivering the same antibiotic. However, alternative biomaterials have reduced the number of follow-up surgeries, enhanced the antimicrobial efficacy by delivering agents that are incompatible with PMMA, and regenerated bone in an infected defect. Understanding the advantages, limitations, and potential for clinical translation of each biomaterial, along with the conditions under which it was evaluated (e.g. animal model), is critical for surgeons and researchers to navigate the plethora of options for local antibiotic delivery.
Collapse
Affiliation(s)
- Jason A Inzana
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland; Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, United States; Department of Biomedical Engineering, University of Rochester, 207 Robert B. Goergen Hall, Rochester, NY 14642, United States.
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, United States; Department of Biomedical Engineering, University of Rochester, 207 Robert B. Goergen Hall, Rochester, NY 14642, United States; Department of Orthopedics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Stephen L Kates
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, United States; Department of Orthopedics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Hani A Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, United States; Department of Biomedical Engineering, University of Rochester, 207 Robert B. Goergen Hall, Rochester, NY 14642, United States; Department of Orthopedics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| |
Collapse
|
96
|
Shiels SM, Bedigrew KM, Wenke JC. Development of a hematogenous implant-related infection in a rat model. BMC Musculoskelet Disord 2015; 16:255. [PMID: 26370721 PMCID: PMC4570216 DOI: 10.1186/s12891-015-0699-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/28/2015] [Indexed: 12/31/2022] Open
Abstract
Background Implant-related osteomyelitis is a major complication that requires immediate treatment, often involving removal of the implant, prolonging patient recovery and inflating expenses. Current research involving interventions to diminish the prevalence of such measures include investigating prophylactic and therapeutic remedies. A proper and accurate animal model is needed to thoroughly investigate such treatments. The scope of this project was to develop an animal model in which a consistent and measurable infection can be formed on an orthopedic implant when bacteria is introduced via a hematogenous source. Methods Titanium Kirschner-wires were implanted into the intramedullary canals of both femurs. Staphylococcus aureus, ranging from104 to 109 colony forming units, was injected into a tail vessel. After a designated time (3, 7, 14, or 42 days) the femurs were harvested and bacterial numbers determined for both the femur and the implanted K-wire. In addition, histology and micro-computed tomography were used as subjective tools to further characterize the infection. Results Consistent infection, that is infection of ≥75 % of the femurs, wasn’t achieved until 107 CFU S. aureus was injected. At 107 CFU, the femurs contained 4.6x106 CFU/g bone tissue at day 3 and 4.8×108 CFU/g bone tissue by day 14. The wire showed comparable contamination with 4.8×104 CFU/mm2 at day 3 and 3.7×105/mm2 by day 14. After 42 days, the bacteria number decreased but was still occupying at 1.9×105 CFU/g bone tissue. There were morphological changes to the bone as well. At day 42, there were signs of osteonecrosis and active bone formation when compared to control animals that received a K-wire but were inoculated with saline. Conclusions A model for hematogenous osteomyelitis, a common complication associated with implants, has been introduced. A reproducible, preclinical model is essential to evaluate future methods used to mitigate blood-borne bacteria hardware and bone infections.
Collapse
Affiliation(s)
- Stefanie M Shiels
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, JBSA-Fort Sam Houston, TX, 78234, USA.
| | - Katherine M Bedigrew
- Department of Orthopaedics, San Antonio Military Medical Center, JBSA-Fort Sam Houston, TX, 78234, USA.
| | - Joseph C Wenke
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, JBSA-Fort Sam Houston, TX, 78234, USA.
| |
Collapse
|
97
|
Oritavancin Pharmacokinetics and Bone Penetration in Rabbits. Antimicrob Agents Chemother 2015; 59:6501-5. [PMID: 26239977 DOI: 10.1128/aac.00981-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/30/2015] [Indexed: 11/20/2022] Open
Abstract
The pharmacokinetics and bone concentrations of oritavancin were investigated after a single intravenous dose was administered to rabbits. The pharmacokinetic profile of oritavancin in rabbits showed that it is rapidly distributed to bone tissues, with concentrations remaining stable for up to 168 h, the last measured time point. Based on these findings, further evaluation of oritavancin for the treatment of infections in bone tissues is warranted.
Collapse
|
98
|
Tatara AM, Shah SR, Livingston CE, Mikos AG. Infected animal models for tissue engineering. Methods 2015; 84:17-24. [PMID: 25843609 PMCID: PMC4526327 DOI: 10.1016/j.ymeth.2015.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/26/2015] [Indexed: 01/15/2023] Open
Abstract
Infection is one of the most common complications associated with medical interventions and implants. As tissue engineering strategies to replace missing or damaged tissue advance, the focus on prevention and treatment of concomitant infection has also begun to emerge as an important area of research. Because the in vivo environment is a complex interaction between host tissue, implanted materials, and native immune system that cannot be replicated in vitro, animal models of infection are integral in evaluating the safety and efficacy of experimental treatments for infection. In this review, considerations for selecting an animal model, established models of infection, and areas that require further model development are discussed with regard to cutaneous, fascial, and orthopedic infections.
Collapse
Affiliation(s)
- Alexander M Tatara
- Department of Bioengineering, Rice University, Houston, TX 77030, United States
| | - Sarita R Shah
- Department of Bioengineering, Rice University, Houston, TX 77030, United States
| | | | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States.
| |
Collapse
|
99
|
Mesenchymal stromal cell implantation for stimulation of long bone healing aggravates Staphylococcus aureus induced osteomyelitis. Acta Biomater 2015; 21:165-77. [PMID: 25805108 DOI: 10.1016/j.actbio.2015.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/05/2015] [Accepted: 03/17/2015] [Indexed: 01/08/2023]
Abstract
Large bone defects requiring long-term osteosynthetic stabilization or repeated surgeries show a considerable rate of infection. Mesenchymal stromal cells (MSCs) have been successfully used to enhance bone regeneration, but their powerful immunomodulatory effects may impose an enhanced risk for osteomyelitis development. In order to unravel whether implantation of MSCs aggravates a simultaneous bone infection, a hydrogel-supported osteomyelitis ostectomy model was developed in which rats received a femoral bone defect with rigid plate-fixation. After fibrin-assisted transfer of Staphylococcus aureus (SA), effects of MSC implantation on osteomyelitis development were quantified over 3-4 weeks. All SA-infected animals developed an acute local osteomyelitis with significantly increased blood neutrophil count, abscess formation and bone destruction. MSC-treatment of infected defects aggravated osteomyelitis according to a significantly elevated osteomyelitis score and enhanced distal bone loss with spongy alteration of cortical bone architecture. Increased attraction of macrophages, osteoclasts and regulation of pro- and anti-inflammatory mediators were potential MSC actions. Overall trophic actions of MSCs implanted into non-sterile bone defects may enhance an infection and/or exacerbate osteomyelitis. Studies on antibiotic carrier augmentation or antibiotic treatment are warranted to decide whether MSC implantation is a safe and promising therapy for orthopedic implant-stabilized bone defects at high risk for development of infection.
Collapse
|
100
|
Inzana JA, Schwarz EM, Kates SL, Awad HA. A novel murine model of established Staphylococcal bone infection in the presence of a fracture fixation plate to study therapies utilizing antibiotic-laden spacers after revision surgery. Bone 2015; 72:128-36. [PMID: 25459073 PMCID: PMC4282971 DOI: 10.1016/j.bone.2014.11.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/30/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
Mice are the small animal model of choice in biomedical research due to the low cost and availability of genetically engineered lines. However, the devices utilized in current mouse models of implant-associated bone infection have been limited to intramedullary or trans-cortical pins, which are not amenable to treatments involving extensive debridement of a full-thickness bone loss and placement of a segmental antibiotic spacer. To overcome these limitations, we developed a clinically faithful model that utilizes a locking fracture fixation plate to enable debridement of an infected segmental bone defect (full-thickness osteotomy) during a revision surgery, and investigated the therapeutic effects of placing an antibiotic-laden spacer in the segmental bone defect. To first determine the ideal time point for revision following infection, a 0.7 mm osteotomy in the femoral mid-shaft was stabilized with a radiolucent PEEK fixation plate. The defect was inoculated with bioluminescent Staphylococcus aureus, and the infection was monitored over 14 days by bioluminescent imaging (BLI). Osteolysis and reactive bone formation were assessed by X-ray and micro-computed tomography (micro-CT). The active bacterial infection peaked by 5 days post-inoculation, however the stability of the implant fixation became compromised by 10-14 days post-inoculation due to osteolysis around the screws. Thus, day 7 was defined as the ideal time point to perform the revision surgery. During the revision surgery, the infected tissue was debrided and the osteotomy was widened to 3mm to place a poly-methyl methacrylate spacer, with or without vancomycin. Half of the groups also received systemic vancomycin for the remaining 21 days of the study. The viable bacteria remaining at the end of the study were measured using colony forming unit assays. Volumetric bone changes (osteolysis and reactive bone formation) were directly measured using micro-CT image analysis. Mice that were treated with local or systemic vancomycin did not display gross pathology at the end of the study. While localized vancomycin delivery alone tended to decrease the bacterial burden and osteolysis, these effects were only significant when combined with systemic antibiotic therapy. This novel mouse model replicates key features of implant-associated osteomyelitis that make treatment extremely difficult, such as biofilm formation and osteolysis, and imitates the clinical practice of placing an antibiotic-laden spacer after infected tissue debridement. In addition, the model demonstrates the limitations of current PMMA spacers and could be an invaluable tool for evaluating alternative antimicrobial treatments for implant-associated bone infection.
Collapse
Affiliation(s)
- Jason A Inzana
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, United States; Department of Biomedical Engineering, University of Rochester, 207 Robert B. Goergen Hall, Rochester, NY 14642, United States.
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, United States; Department of Biomedical Engineering, University of Rochester, 207 Robert B. Goergen Hall, Rochester, NY 14642, United States; Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States.
| | - Stephen L Kates
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, United States; Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States.
| | - Hani A Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, United States; Department of Biomedical Engineering, University of Rochester, 207 Robert B. Goergen Hall, Rochester, NY 14642, United States; Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States.
| |
Collapse
|