51
|
Husseiny MI, Du W, Mbongue J, Lenz A, Rawson J, Kandeel F, Ferreri K. Factors affecting Salmonella-based combination immunotherapy for prevention of type 1 diabetes in non-obese diabetic mice. Vaccine 2018; 36:8008-8018. [PMID: 30416020 DOI: 10.1016/j.vaccine.2018.10.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/08/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
We previously reported the development of an oral vaccine for diabetes based on live attenuated Salmonella-expressing preproinsulin (PPI) as the autoantigen. When combined with host cell-expressed TGFβ, the vaccine prevented the onset of diabetes in non-obese diabetic (NOD) mice. Herein, we investigated factors that could affect vaccine efficacy including vaccination number, optimization of the autoantigen codon sequence, Salmonella SPI2-TTSS promoter/effector combinations, concurrent short-course low-dose anti-CD3. We also evaluated autoantigen GAD65 and cytokine IL10 treatment upon vaccine efficacy. T-cells we employed to elucidate the mechanism of the vaccine action. Our results showed that GAD65+TGFβ or PPI+TGFβ+IL10 prevented the onset of diabetes in the NOD mice and maintained glucose tolerance. However, increasing the number of vaccine doses, codon-optimization of the autoantigen(s) or use of other Salmonella promoter/effector combinations had no in vivo effect. Interestingly, two doses of vaccine (PPI+TGFβ+IL10) combined with a sub-therapeutic dose of anti-CD3 prevented diabetes and decreased hyperglycemia in mice. The combined therapy also increased splenic Tregs and local Tregs in pancreatic lymph nodes (PLN) and increased regulatory (IL10 and IL2) but reduced inflammatory (IFNγ and TNFα) cytokines. Together, these results indicate that the combination of low vaccine dose number, less vaccine autoantigen expression and short-course low-dose anti-CD3 can increase regulatory mechanisms and suppress autoimmunity.
Collapse
Affiliation(s)
- Mohamed I Husseiny
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute. Beckman Research Institute of City of Hope, Duarte, California, USA; Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Weiting Du
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute. Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jacques Mbongue
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute. Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ayelet Lenz
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute. Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jeffrey Rawson
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute. Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute. Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Kevin Ferreri
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute. Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
52
|
Cabrera SM, Engle S, Kaldunski M, Jia S, Geoffrey R, Simpson P, Szabo A, Speake C, Greenbaum CJ, Chen YG, Hessner MJ. Innate immune activity as a predictor of persistent insulin secretion and association with responsiveness to CTLA4-Ig treatment in recent-onset type 1 diabetes. Diabetologia 2018; 61:2356-2370. [PMID: 30167736 PMCID: PMC6182660 DOI: 10.1007/s00125-018-4708-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS The study aimed to determine whether discrete subtypes of type 1 diabetes exist, based on immunoregulatory profiles at clinical onset, as this has significant implications for disease treatment and prevention as well as the design and analysis of clinical trials. METHODS Using a plasma-based transcriptional bioassay and a gene-ontology-based scoring algorithm, we examined local participants from the Children's Hospital of Wisconsin and conducted an ancillary analysis of TrialNet CTLA4-Ig trial (TN-09) participants. RESULTS The inflammatory/regulatory balance measured during the post-onset period was highly variable. Notably, a significant inverse relationship was identified between baseline innate inflammatory activity and stimulated C-peptide AUC measured at 3, 6, 12, 18 and 24 months post onset among placebo-treated individuals (p ≤ 0.015). Further, duration of persistent insulin secretion was negatively related to baseline inflammation (p ≤ 0.012) and positively associated with baseline abundance of circulating activated regulatory T cells (CD4+/CD45RA-/FOXP3high; p = 0.016). Based on these findings, data from participants treated with CTLA4-Ig were stratified by inflammatory activity at onset; in this way, we identified pathways and transcripts consistent with inhibition of T cell activation and enhanced immunoregulation. Variance among baseline plasma-induced signatures of TN-09 participants was further examined with weighted gene co-expression network analysis and related to clinical metrics. Four age-independent subgroups were identified that differed in terms of baseline innate inflammatory/regulatory bias, rate of C-peptide decline and response to CTLA4-Ig treatment. CONCLUSIONS/INTERPRETATION These data support the existence of multiple type 1 diabetes subtypes characterised by varying levels of baseline innate inflammation that are associated with the rate of C-peptide decline. DATA AVAILABILITY Gene expression data files are publicly available through the National Center for Biotechnology Information Gene Expression Omnibus (accession number GSE102234).
Collapse
Affiliation(s)
- Susanne M Cabrera
- Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Section of Endocrinology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Samuel Engle
- Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Section of Endocrinology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Mary Kaldunski
- Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Section of Endocrinology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Shuang Jia
- Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Section of Endocrinology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Rhonda Geoffrey
- Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Section of Endocrinology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Pippa Simpson
- Department of Pediatrics, Division of Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aniko Szabo
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - Carla J Greenbaum
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA, USA
| | | | - Yi-Guang Chen
- Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Section of Endocrinology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Martin J Hessner
- Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Section of Endocrinology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
53
|
Paul M, Dayal D, Bhansali A, Dhaliwal L, Sachdeva N. In vitro assessment of cord blood-derived proinsulin-specific regulatory T cells for cellular therapy in type 1 diabetes. Cytotherapy 2018; 20:1355-1370. [PMID: 30340983 DOI: 10.1016/j.jcyt.2018.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/20/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Antigen-specific regulatory T cells (Tregs) have proven to be effective in reversing established autoimmunity in type 1 diabetes (T1D). Cord blood (CB) can serve as an efficient and safe source for Tregs for antigen-specific immunomodulation in T1D, a strategy that is yet to be explored. Therefore, we assessed the potential of CB in generation of proinsulin (PI)-specific Tregs by using HLA class II tetramers. METHODS We analyzed the frequency of PI-specific natural Tregs (nTregs) and induced Tregs (iTregs) derived from the CB as well as peripheral blood (PB) of patients with T1D and healthy control subjects. For this, CD4+CD25+CD127low and CD4+CD25-T cells were cultured in the presence of PI-derived peptides, transforming growth factor (TGF)-β and rapamycin. PI-specific Tregs were then selected using allele-specific HLA II tetramers loaded with PI-derived peptides, followed by suppression assays. RESULTS Following stimulation, we observed that CB harbors a significantly higher frequency of PI-specific Tregs than PB of subjects with T1D (P = 0.0003). Further, the proportion of PI-specific Tregs was significantly higher in both the nTreg (P = 0.01) and iTreg (P = 0.0003) compartments of CB as compared with PB of subjects with T1D. In co-culture experiments, the PI-specific Tregs suppressed the proliferation of effector T cells significantly (P = 0.0006). The expanded nTregs were able to retain hypomethylation status at their Tregs-specific demethylated region (TSDR), whereas iTregs were unable to acquire the characteristic demethylation pattern. CONCLUSION Our study demonstrates that CB can serve as an excellent source for generation of functional antigen-specific Tregs for immunotherapeutic approaches in subjects with T1D.
Collapse
Affiliation(s)
- Mahinder Paul
- Departments of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Devi Dayal
- Departments of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anil Bhansali
- Departments of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Lakhbir Dhaliwal
- Departments of Obstetrics and Gynecology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Departments of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
54
|
Ogura H, Preston-Hurlburt P, Perdigoto AL, Amodio M, Krishnaswamy S, Clark P, Yu H, Egli D, Fouts A, Steck AK, Herold KC. Identification and Analysis of Islet Antigen-Specific CD8 + T Cells with T Cell Libraries. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1662-1670. [PMID: 30082321 PMCID: PMC6449153 DOI: 10.4049/jimmunol.1800267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/06/2018] [Indexed: 11/19/2022]
Abstract
Type 1 diabetes (T1D) is most likely caused by killing of β cells by autoreactive CD8+ T cells. Methods to isolate and identify these cells are limited by their low frequency in the peripheral blood. We analyzed CD8+ T cells, reactive with diabetes Ags, with T cell libraries and further characterized their phenotype by CyTOF using class I MHC tetramers. In the libraries, the frequency of islet Ag-specific CD45RO+IFN-γ+CD8+ T cells was higher in patients with T1D compared with healthy control subjects. Ag-specific cells from the libraries of patients with T1D were reactive with ZnT8186-194, whereas those from healthy control recognized ZnT8186-194 and other Ags. ZnT8186-194-reactive CD8+ cells expressed an activation phenotype in T1D patients. We found TCR sequences that were used in multiple library wells from patients with T1D, but these sequences were private and not shared between individuals. These sequences could identify the Ag-specific T cells on a repeated draw, ex vivo in the IFN-γ+ CD8+ T cell subset. We conclude that CD8+ T cell libraries can identify Ag-specific T cells in patients with T1D. The T cell clonotypes can be tracked in vivo with identification of the TCR gene sequences.
Collapse
Affiliation(s)
- Hideki Ogura
- Department of Immunobiology, Yale University, New Haven, CT 06520
| | | | | | - Matthew Amodio
- Department of Genetics and of Computer Science, Yale University, New Haven, CT 06520
| | - Smita Krishnaswamy
- Department of Genetics and of Computer Science, Yale University, New Haven, CT 06520
| | - Pamela Clark
- Department of Immunobiology, Yale University, New Haven, CT 06520
| | - Hua Yu
- Department of Immunobiology, Yale University, New Haven, CT 06520
| | - Dieter Egli
- Naomi Berrie Diabetes Center, Division of Molecular Genetics, Columbia University, New York, NY 10032
| | - Alexandra Fouts
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045
| | - Andrea K Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT 06520;
- Department of Internal Medicine, Yale University, New Haven, CT 06520
| |
Collapse
|
55
|
The role of polymorphic ERAP1 in autoinflammatory disease. Biosci Rep 2018; 38:BSR20171503. [PMID: 30054427 PMCID: PMC6131210 DOI: 10.1042/bsr20171503] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 01/29/2023] Open
Abstract
Autoimmune and autoinflammatory conditions represent a group of disorders characterized by self-directed tissue damage due to aberrant changes in innate and adaptive immune responses. These disorders possess widely varying clinical phenotypes and etiology; however, they share a number of similarities in genetic associations and environmental influences. Whilst the pathogenic mechanisms of disease remain poorly understood, genome wide association studies (GWAS) have implicated a number of genetic loci that are shared between several autoimmune and autoinflammatory conditions. Association of particular HLA alleles with disease susceptibility represents one of the strongest genetic associations. Furthermore, recent GWAS findings reveal strong associations with single nucleotide polymorphisms in the endoplasmic reticulum aminopeptidase 1 (ERAP1) gene and susceptibility to a number of these HLA-associated conditions. ERAP1 plays a major role in regulating the repertoire of peptides presented on HLA class I alleles at the cell surface, with the presence of single nucleotide polymorphisms in ERAP1 having a significant impact on peptide processing function and the repertoire of peptides presented. The impact of this dysfunctional peptide generation on CD8+ T-cell responses has been proposed as a mechanism of pathogenesis diseases where HLA and ERAP1 are associated. More recently, studies have highlighted a role for ERAP1 in innate immune-mediated pathways involved in inflammatory responses. Here, we discuss the role of polymorphic ERAP1 in various immune cell functions, and in the context of autoimmune and autoinflammatory disease pathogenesis.
Collapse
|
56
|
Yeo L, Woodwyk A, Sood S, Lorenc A, Eichmann M, Pujol-Autonell I, Melchiotti R, Skowera A, Fidanis E, Dolton GM, Tungatt K, Sewell AK, Heck S, Saxena A, Beam CA, Peakman M. Autoreactive T effector memory differentiation mirrors β cell function in type 1 diabetes. J Clin Invest 2018; 128:3460-3474. [PMID: 29851415 DOI: 10.1172/jci120555] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/23/2018] [Indexed: 12/26/2022] Open
Abstract
In type 1 diabetes, cytotoxic CD8+ T cells with specificity for β cell autoantigens are found in the pancreatic islets, where they are implicated in the destruction of insulin-secreting β cells. In contrast, the disease relevance of β cell-reactive CD8+ T cells that are detectable in the circulation, and their relationship to β cell function, are not known. Here, we tracked multiple, circulating β cell-reactive CD8+ T cell subsets and measured β cell function longitudinally for 2 years, starting immediately after diagnosis of type 1 diabetes. We found that change in β cell-specific effector memory CD8+ T cells expressing CD57 was positively correlated with C-peptide change in subjects below 12 years of age. Autoreactive CD57+ effector memory CD8+ T cells bore the signature of enhanced effector function (higher expression of granzyme B, killer-specific protein of 37 kDa, and CD16, and reduced expression of CD28) compared with their CD57- counterparts, and network association modeling indicated that the dynamics of β cell-reactive CD57+ effector memory CD8+ T cell subsets were strongly linked. Thus, coordinated changes in circulating β cell-specific CD8+ T cells within the CD57+ effector memory subset calibrate to functional insulin reserve in type 1 diabetes, providing a tool for immune monitoring and a mechanism-based target for immunotherapy.
Collapse
Affiliation(s)
- Lorraine Yeo
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.,National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, United Kingdom
| | - Alyssa Woodwyk
- Division of Epidemiology and Biostatistics, Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan, USA
| | - Sanjana Sood
- National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, United Kingdom
| | - Anna Lorenc
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Martin Eichmann
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Irma Pujol-Autonell
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Rosella Melchiotti
- National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, United Kingdom
| | - Ania Skowera
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Efthymios Fidanis
- National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, United Kingdom
| | - Garry M Dolton
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Katie Tungatt
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Andrew K Sewell
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Susanne Heck
- National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, United Kingdom
| | - Alka Saxena
- National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, United Kingdom
| | - Craig A Beam
- Division of Epidemiology and Biostatistics, Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan, USA
| | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.,National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, United Kingdom.,King's Health Partners Institute of Diabetes, Endocrinology and Obesity, London, United Kingdom
| |
Collapse
|
57
|
Dolton G, Zervoudi E, Rius C, Wall A, Thomas HL, Fuller A, Yeo L, Legut M, Wheeler S, Attaf M, Chudakov DM, Choy E, Peakman M, Sewell AK. Optimized Peptide-MHC Multimer Protocols for Detection and Isolation of Autoimmune T-Cells. Front Immunol 2018; 9:1378. [PMID: 30008714 PMCID: PMC6034003 DOI: 10.3389/fimmu.2018.01378] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Peptide–MHC (pMHC) multimers have become the “gold standard” for the detection and isolation of antigen-specific T-cells but recent evidence shows that normal use of these reagents can miss fully functional T-cells that bear T-cell receptors (TCRs) with low affinity for cognate antigen. This issue is particularly pronounced for anticancer and autoimmune T-cells as self-reactive T-cell populations are enriched for low-affinity TCRs due to the removal of cells with higher affinity receptors by immune tolerance mechanisms. Here, we stained a wide variety of self-reactive human T-cells using regular pMHC staining and an optimized technique that included: (i) protein kinase inhibitor (PKI), to prevent TCR triggering and internalization, and (ii) anti-fluorochrome antibody, to reduce reagent dissociation during washing steps. Lymphocytes derived from the peripheral blood of type 1 diabetes patients were stained with pMHC multimers made with epitopes from preproinsulin (PPI), insulin-β chain, glutamic acid decarboxylase 65 (GAD65), or glucose-6-phospate catalytic subunit-related protein (IGRP) presented by disease-risk allelles HLA A*02:01 or HLA*24:02. Samples from ankylosing spondylitis patients were stained with a multimerized epitope from vasoactive intestinal polypeptide receptor 1 (VIPR1) presented by HLA B*27:05. Optimized procedures stained an average of 40.5-fold (p = 0.01, range between 1.4 and 198) more cells than could be detected without the inclusion of PKI and cross-linking anti-fluorochrome antibody. Higher order pMHC dextramers recovered more cells than pMHC tetramers in parallel assays, and standard staining protocols with pMHC tetramers routinely recovered less cells than functional assays. HLA A*02:01-restricted PPI-specific and HLA B*27:05-restricted VIPR1-specific T-cell clones generated using the optimized procedure could not be stained by standard pMHC tetramer staining. However, these clones responded well to exogenously supplied peptide and endogenously processed and presented epitopes. We also showed that anti-fluorochrome antibody-conjugated magnetic beads enhanced staining of self-reactive T-cells that could not be stained using standard protocols, thus enabling rapid ex vivo isolation of autoimmune T-cells. We, therefore, conclude that regular pMHC tetramer staining is generally unsuitable for recovering self-reactive T-cells from clinical samples and recommend the use of the optimized protocols described herein.
Collapse
Affiliation(s)
- Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Efthalia Zervoudi
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Cristina Rius
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Aaron Wall
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Hannah L Thomas
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Lorraine Yeo
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Mateusz Legut
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sophie Wheeler
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Meriem Attaf
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Dmitriy M Chudakov
- Pirogov Russian National Research Medical University, Moscow, Russia.,Centre for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ernest Choy
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
58
|
Kronenberg-Versteeg D, Eichmann M, Russell MA, de Ru A, Hehn B, Yusuf N, van Veelen PA, Richardson SJ, Morgan NG, Lemberg MK, Peakman M. Molecular Pathways for Immune Recognition of Preproinsulin Signal Peptide in Type 1 Diabetes. Diabetes 2018; 67:687-696. [PMID: 29343547 DOI: 10.2337/db17-0021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/10/2018] [Indexed: 11/13/2022]
Abstract
The signal peptide region of preproinsulin (PPI) contains epitopes targeted by HLA-A-restricted (HLA-A0201, A2402) cytotoxic T cells as part of the pathogenesis of β-cell destruction in type 1 diabetes. We extended the discovery of the PPI epitope to disease-associated HLA-B*1801 and HLA-B*3906 (risk) and HLA-A*1101 and HLA-B*3801 (protective) alleles, revealing that four of six alleles present epitopes derived from the signal peptide region. During cotranslational translocation of PPI, its signal peptide is cleaved and retained within the endoplasmic reticulum (ER) membrane, implying it is processed for immune recognition outside of the canonical proteasome-directed pathway. Using in vitro translocation assays with specific inhibitors and gene knockout in PPI-expressing target cells, we show that PPI signal peptide antigen processing requires signal peptide peptidase (SPP). The intramembrane protease SPP generates cytoplasm-proximal epitopes, which are transporter associated with antigen processing (TAP), ER-luminal epitopes, which are TAP independent, each presented by different HLA class I molecules and N-terminal trimmed by ER aminopeptidase 1 for optimal presentation. In vivo, TAP expression is significantly upregulated and correlated with HLA class I hyperexpression in insulin-containing islets of patients with type 1 diabetes. Thus, PPI signal peptide epitopes are processed by SPP and loaded for HLA-guided immune recognition via pathways that are enhanced during disease pathogenesis.
Collapse
Affiliation(s)
- Deborah Kronenberg-Versteeg
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, U.K.
- National Institute for Health Research, Biomedical Research Centre at Guy's and St. Thomas' Hospital Foundation Trust and King's College London, London, U.K
| | - Martin Eichmann
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, U.K
| | - Mark A Russell
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Arnoud de Ru
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Beate Hehn
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Norkhairin Yusuf
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, U.K
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, U.K
- National Institute for Health Research, Biomedical Research Centre at Guy's and St. Thomas' Hospital Foundation Trust and King's College London, London, U.K
| |
Collapse
|
59
|
Paul M, Badal D, Jacob N, Dayal D, Kumar R, Bhansali A, Bhadada SK, Sachdeva N. Pathophysiological characteristics of preproinsulin-specific CD8+ T cells in subjects with juvenile-onset and adult-onset type 1 diabetes: A 1-year follow-up study. Pediatr Diabetes 2018; 19:68-79. [PMID: 28488272 DOI: 10.1111/pedi.12536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/02/2017] [Accepted: 04/05/2017] [Indexed: 12/30/2022] Open
Abstract
AIMS/HYPOTHESIS Among the beta-cell associated antigens, preproinsulin (PPI) has been shown to play a key role in the pathogenesis of type 1 diabetes (T1D). PPI-specific autoreactive CD8+ T cells emerge early during beta-cell destruction and persist in peripheral circulation during diabetes progression. However, the influence of insulin therapy on phenotype of autoreactive CD8+ T cells in T1D including, juvenile-onset T1D (JOT1D), and adult-onset T1D (AOT1D) is not yet known. METHODS We followed the time course of PPI-specific CD8+ T cells in JOT1D and AOT1D subjects that achieved glycemic control after 1 year of insulin therapy, using major histocompatibility complex-I (MHC-I) dextramers by flow cytometry. RESULTS AND DISCUSSION At follow-up, PPI-specific CD8+ T cells could be detected consistently in peripheral blood of all T1D subjects. Proportion of PPI-specific effector memory (TEM ) subsets decreased, while central memory T (TCM ) cells remained unchanged in both groups. Expression of granzyme-B and perforin in PPI-specific CD8+ T cells also remained unchanged. Further, on analysis of B-chain and signal peptide (SP) specific CD8+ T cell responses separately, we again observed decrease in TEM subset in both the groups, while increase in naive (TN ) subset was observed in B-chain specific CD8+ T cells only. CONCLUSION Our study shows that PPI-specific CD8+ T cells can be detected in both JOT1D and AOT1D subjects over a period of time with reliable consistency in frequency but variable pathophysiological characteristics. Insulin therapy seems to reduce the PPI-specific TEM subsets; however, the PPI-specific TCM cells continue to persist as attractive targets for immunotherapy.
Collapse
Affiliation(s)
- Mahinder Paul
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Darshan Badal
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Neenu Jacob
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Devi Dayal
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rakesh Kumar
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anil Bhansali
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
60
|
Suwandi JS, Nikolic T, Roep BO. Translating Mechanism of Regulatory Action of Tolerogenic Dendritic Cells to Monitoring Endpoints in Clinical Trials. Front Immunol 2017; 8:1598. [PMID: 29250062 PMCID: PMC5715363 DOI: 10.3389/fimmu.2017.01598] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) have reached patients with autoimmune and inflammatory disease, at least in clinical trials. The safety of tolDCs as intervention therapy has been established, but the capacity to modulate autoimmune response in vivo remains to be demonstrated. Studies have revealed a diversity of regulatory mechanisms that tolDCs may employ in vivo. These mechanisms differ between various types of modulated tolDC. The most often foreseen action of tolDCs is through regulatory polarization of naïve T cells or activation of existing regulatory T cells, which should ultimately diminish autoimmune inflammation. Yet, selection of a target autoantigen remains critical to expedite tissue specific tolerance induction, while measuring immune modulation incited by tolDCs in vivo provides a great challenge. We will discuss the regulatory action of different types of tolDCs and the possible methods to monitor immunological efficacy endpoints for the next generation clinical trials.
Collapse
Affiliation(s)
- Jessica S Suwandi
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Tatjana Nikolic
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Bart O Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands.,Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, United States
| |
Collapse
|
61
|
Harbige J, Eichmann M, Peakman M. New insights into non-conventional epitopes as T cell targets: The missing link for breaking immune tolerance in autoimmune disease? J Autoimmun 2017; 84:12-20. [PMID: 28803690 DOI: 10.1016/j.jaut.2017.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022]
Abstract
The mechanism by which immune tolerance is breached in autoimmune disease is poorly understood. One possibility is that post-translational modification of self-antigens leads to peripheral recognition of neo-epitopes against which central and peripheral tolerance is inadequate. Accumulating evidence points to multiple mechanisms through which non-germline encoded sequences can give rise to these non-conventional epitopes which in turn engage the immune system as T cell targets. In particular, where these modifications alter the rules of epitope engagement with MHC molecules, such non-conventional epitopes offer a persuasive explanation for associations between specific HLA alleles and autoimmune diseases. In this review article, we discuss current understanding of mechanisms through which non-conventional epitopes may be generated, focusing on several recently described pathways that can transpose germline-encoded sequences. We contextualise these discoveries around type 1 diabetes, the prototypic organ-specific autoimmune disease in which specific HLA-DQ molecules confer high risk. Non-conventional epitopes have the potential to act as tolerance breakers or disease drivers in type 1 diabetes, prompting a timely re-evaluation of models of a etiopathogenesis. Future studies are required to elucidate the disease-relevance of a range of potential non-germline epitopes and their relationship to the natural peptide repertoire.
Collapse
Affiliation(s)
- James Harbige
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, UK.
| | - Martin Eichmann
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, UK
| | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, UK; Division of Diabetes and Nutritional Sciences, King's College London, UK; Institute of Diabetes, Endocrinology and Obesity, King's Health Partners, London, UK.
| |
Collapse
|
62
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that causes severe loss of pancreatic β cells. Autoreactive T cells are key mediators of β cell destruction. Studies of organ donors with T1D that have examined T cells in pancreas, the diabetogenic insulitis lesion, and lymphoid tissues have revealed a broad repertoire of target antigens and T cell receptor (TCR) usage, with initial evidence of public TCR sequences that are shared by individuals with T1D. Neoepitopes derived from post-translational modifications of native antigens are emerging as novel targets that are more likely to evade self-tolerance. Further studies will determine whether T cell responses to neoepitopes are major disease drivers that could impact prediction, prevention, and therapy. This Review provides an overview of recent progress in our knowledge of autoreactive T cells that has emerged from experimental and clinical research as well as pathology investigations.
Collapse
|
63
|
Unique features in the presentation of insulin epitopes in autoimmune diabetes: an update. Curr Opin Immunol 2017; 46:30-37. [PMID: 28456018 DOI: 10.1016/j.coi.2017.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/18/2017] [Accepted: 04/04/2017] [Indexed: 01/12/2023]
Abstract
Although an autoimmune disease involves diverse self-antigens, the initiation stage may require recognition of a limited number. This concept is verified in the non-obese diabetic (NOD) mouse model of autoimmune diabetes, in which strong evidence points to insulin as the prime antigen. The NOD mouse bears the I-Ag7 class II-MHC molecules (MHCII) that share common biochemical features and peptidome selection with the human diabetes-susceptible HLA-DQ8. Furthermore, both NOD mice and patients with type 1 diabetes (T1D) display an early appearance of insulin autoantibodies (IAAs) and subsequent insulin-reactive T cell infiltration into the islets. Therefore, a better understanding of insulin presentation is crucial for assessing disease pathogenesis and therapeutic intervention. Here, we summarize recent advances in insulin presentation events that underlie the essential role of this autoantigen in driving autoimmune diabetes.
Collapse
|
64
|
Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nat Med 2017; 23:501-507. [PMID: 28263308 DOI: 10.1038/nm.4289] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/23/2017] [Indexed: 02/08/2023]
Abstract
Identification of epitopes that are recognized by diabetogenic T cells and cause selective beta cell destruction in type 1 diabetes (T1D) has focused on peptides originating from native beta cell proteins. Translational errors represent a major potential source of antigenic peptides to which central immune tolerance is lacking. Here, we describe an alternative open reading frame within human insulin mRNA encoding a highly immunogenic polypeptide that is targeted by T cells in T1D patients. We show that cytotoxic T cells directed against the N-terminal peptide of this nonconventional product are present in the circulation of individuals diagnosed with T1D, and we provide direct evidence that such CD8+ T cells are capable of killing human beta cells and thereby may be diabetogenic. This study reveals a new source of nonconventional polypeptides that act as self-epitopes in clinical autoimmune disease.
Collapse
|
65
|
Clement M, Pearson JA, Gras S, van den Berg HA, Lissina A, Llewellyn-Lacey S, Willis MD, Dockree T, McLaren JE, Ekeruche-Makinde J, Gostick E, Robertson NP, Rossjohn J, Burrows SR, Price DA, Wong FS, Peakman M, Skowera A, Wooldridge L. Targeted suppression of autoreactive CD8 + T-cell activation using blocking anti-CD8 antibodies. Sci Rep 2016; 6:35332. [PMID: 27748447 PMCID: PMC5066216 DOI: 10.1038/srep35332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/09/2016] [Indexed: 01/12/2023] Open
Abstract
CD8+ T-cells play a role in the pathogenesis of autoimmune diseases such as multiple sclerosis and type 1 diabetes. However, drugs that target the entire CD8+ T-cell population are not desirable because the associated lack of specificity can lead to unwanted consequences, most notably an enhanced susceptibility to infection. Here, we show that autoreactive CD8+ T-cells are highly dependent on CD8 for ligand-induced activation via the T-cell receptor (TCR). In contrast, pathogen-specific CD8+ T-cells are relatively CD8-independent. These generic differences relate to an intrinsic dichotomy that segregates self-derived and exogenous antigen-specific TCRs according to the monomeric interaction affinity with cognate peptide-major histocompatibility complex class I (pMHCI). As a consequence, “blocking” anti-CD8 antibodies can suppress autoreactive CD8+ T-cell activation in a relatively selective manner. These findings provide a rational basis for the development and in vivo assessment of novel therapeutic strategies that preferentially target disease-relevant autoimmune responses within the CD8+ T-cell compartment.
Collapse
Affiliation(s)
- Mathew Clement
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - James A Pearson
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | | | - Anya Lissina
- Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | - Mark D Willis
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff CF14 4XN, UK
| | - Tamsin Dockree
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Julia Ekeruche-Makinde
- Mucosal Infection and Immunity Group, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff CF14 4XN, UK
| | - Jamie Rossjohn
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK.,Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Scott R Burrows
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - David A Price
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Mark Peakman
- Department of Immunobiology, King's College London, London SE1 9RT, UK
| | - Ania Skowera
- Department of Immunobiology, King's College London, London SE1 9RT, UK
| | - Linda Wooldridge
- Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
66
|
Demeester S, Balke EM, Van der Auwera BJ, Gillard P, Hilbrands R, Lee D, Van de Velde U, Ling Z, Roep BO, Pipeleers DG, Gorus FK, Keymeulen B. HLA-A*24 Carrier Status and Autoantibody Surges Posttransplantation Associate With Poor Functional Outcome in Recipients of an Islet Allograft. Diabetes Care 2016; 39:1060-4. [PMID: 27208324 DOI: 10.2337/dc15-2768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/28/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We investigated whether changes in islet autoantibody profile and presence of HLA risk markers, reported to predict rapid β-cell loss in pre-type 1 diabetes, associate with poor functional outcome in islet allograft recipients. RESEARCH DESIGN AND METHODS Forty-one patients received ≥2.3 million β-cells/kg body wt in one to two intraportal implantations. Outcome after 6-18 months was assessed by C-peptide (random and stimulated), insulin dose, and HbA1c. RESULTS Patients carrying HLA-A*24-positive or experiencing a significant autoantibody surge within 6 months after the first transplantation (n = 19) had lower C-peptide levels (P ≤ 0.003) and higher insulin needs (P < 0.001) despite higher HbA1c levels (P ≤ 0.018). They became less often insulin independent (16% vs. 68%, P = 0.002) and remained less often C-peptide positive (47% vs. 100%, P < 0.001) than recipients lacking both risk factors. HLA-A*24 positivity or an autoantibody surge predicted insulin dependence (P = 0.007). CONCLUSIONS HLA-A*24 and early autoantibody surge after islet implantation associate with poor functional graft outcome.
Collapse
Affiliation(s)
- Simke Demeester
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| | - Else M Balke
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| | | | - Pieter Gillard
- Diabetes Research Center, Brussels Free University, Brussels, Belgium Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Robert Hilbrands
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| | - DaHae Lee
- Diabetes Research Center, Brussels Free University, Brussels, Belgium Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | | | - Zhidong Ling
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| | - Bart O Roep
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Frans K Gorus
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| | - Bart Keymeulen
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| |
Collapse
|
67
|
Zhang J, Zhao L, Wang B, Gao J, Wang L, Li L, Cui B, Hu M, Hong J, Gu W, Wang W, Ning G. HLA-A*33-DR3 and A*33-DR9 haplotypes enhance the risk of type 1 diabetes in Han Chinese. J Diabetes Investig 2016; 7:514-21. [PMID: 27181214 PMCID: PMC4931201 DOI: 10.1111/jdi.12462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 12/13/2015] [Accepted: 12/16/2015] [Indexed: 01/13/2023] Open
Abstract
Aims/Introduction To investigate the typing for human leukocyte antigen (HLA) class I in Chinese patients with type 1 diabetes as a complement screening for HLA class II. Materials and Methods A total of 212 type 1 diabetic patients and 200 healthy controls were enrolled. The genetic polymorphisms of HLA class I and II were examined with a high‐resolution polymerase chain reaction sequence‐based typing method. Results The haplotype, A*33:03‐B*58:01‐C*03:02(A33), was associated with type 1 diabetes (P = 1.0 × 10−4, odds ratio 3.2 [1.738–5.843]). The A33‐DR3 and A33‐DR9 haplotypes significantly enhanced the risk of type 1 diabetes (A33‐DR3, odds ratio 5.1 [2.40–10.78], P = 4.0 × 10−6; A33‐DR9, odds ratio 13.0 [1.69–100.32], P = 0.004). In type 1 diabetic patients, compared with A33‐DR3‐negative carriers, A33‐DR3‐positive carriers had significantly lower percentages of CD3+CD4+ T cells (42.5 ± 7.72 vs 37.0 ± 8.35%, P = 0.023), higher percentages of CD3+CD8+ T cells (27.4 ± 7.09 vs 32.8 ± 5.98%, P = 0.005) and T‐cell receptor α/β T cells (70.0 ± 7.00 vs 73.6 ± 6.25%, P = 0.031), and lower CD4/CD8 ratios (1.71 ± 0.75 vs 1.16 ± 0.35, P = 0.003). Conclusions It is the first time that the haplotypes A33‐DR3 and A33‐DR9 were found with an enhanced predisposition to type 1 diabetes in Han Chinese. A33‐DR3 was associated with a reduction in the helper‐to‐cytotoxic cell ratio and preferential increase of T‐cell receptor α/β T cell. The typing for HLA class I and its immunogenetic effects are important for more accurate HLA class II haplotype risk prediction and etiology research in type 1 diabetic patients.
Collapse
Affiliation(s)
- Juanjuan Zhang
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China
| | - Liebin Zhao
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China
| | - Bokai Wang
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China
| | - Jie Gao
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China
| | - Li Wang
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China
| | - Li Li
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China
| | - Bin Cui
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China
| | - Min Hu
- Center for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Jie Hong
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China
| | - Weiqiong Gu
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China.,Laboratory for Endocrine & Metabolic Diseases, Institute of Health Science, Shanghai JiaoTong University, School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
68
|
Mauvais FX, Diana J, van Endert P. Beta cell antigens in type 1 diabetes: triggers in pathogenesis and therapeutic targets. F1000Res 2016; 5. [PMID: 27158463 PMCID: PMC4847563 DOI: 10.12688/f1000research.7411.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 01/12/2023] Open
Abstract
Research focusing on type 1 diabetes (T1D) autoantigens aims to explore our understanding of these beta cell proteins in order to design assays for monitoring the pathogenic autoimmune response, as well as safe and efficient therapies preventing or stopping it. In this review, we will discuss progress made in the last 5 years with respect to mechanistic understanding, diagnostic monitoring, and therapeutic modulation of the autoantigen-specific cellular immune response in T1D. Some technical progress in monitoring tools has been made; however, the potential of recent technologies for highly multiplexed exploration of human cellular immune responses remains to be exploited in T1D research, as it may be the key to the identification of surrogate markers of disease progression that are still wanting. Detailed analysis of autoantigen recognition by T cells suggests an important role of non-conventional antigen presentation and processing in beta cell-directed autoimmunity, but the impact of this in human T1D has been little explored. Finally, therapeutic administration of autoantigens to T1D patients has produced disappointing results. The application of novel modes of autoantigen administration, careful translation of mechanistic understanding obtained in preclinical studies and
in vitro with human cells, and combination therapies including CD3 antibodies may help to make autoantigen-based immunotherapy for T1D a success story in the future.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Institut National de la Santé et de la Recherche Médical, Unité 1151, Paris, 75015, France; Centre National de la Recherche Scientifique, UMR8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
| | - Julien Diana
- Institut National de la Santé et de la Recherche Médical, Unité 1151, Paris, 75015, France; Centre National de la Recherche Scientifique, UMR8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médical, Unité 1151, Paris, 75015, France; Centre National de la Recherche Scientifique, UMR8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
| |
Collapse
|
69
|
Kim JH, Furrow E, Ritt MG, Utz PJ, Robinson WH, Yu L, Eckert A, Stuebner K, O’Brien TD, Steinman L, Modiano JF. Anti-Insulin Immune Responses Are Detectable in Dogs with Spontaneous Diabetes. PLoS One 2016; 11:e0152397. [PMID: 27031512 PMCID: PMC4816536 DOI: 10.1371/journal.pone.0152397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus occurs spontaneously in dogs. Although canine diabetes shares many features with human type-1 diabetes, there are differences that have cast doubt on the immunologic origin of the canine disease. In this study, we examined whether peripheral immune responses directed against islet antigens were present in dogs with diabetes. Routine diagnostics were used to confirm diabetic status, and serum samples from dogs with (N = 15) and without (N = 15) diabetes were analyzed for the presence of antibodies against islet antigens (insulin, glutamic acid decarboxylase, insulinoma-associated protein tyrosine phosphatase, and islet beta-cell zinc cation efflux transporter) using standard radioassays. Interferon-γ production from peripheral blood T cells stimulated by porcine insulin and by human insulin was tested using Elispot assays. Anti-insulin antibodies were detectable in a subset of diabetic dogs receiving insulin therapy. Pre-activated T cells and incipient insulin-reactive T cells in response to porcine or human insulin were identified in non-diabetic dogs and in dogs with diabetes. The data show that humoral and cellular anti-insulin immune responses are detectable in dogs with diabetes. This in turn provides support for the potential to ethically use dogs with diabetes to study the therapeutic potential of antigen-specific tolerance.
Collapse
Affiliation(s)
- Jong-Hyuk Kim
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States of America
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
| | - Eva Furrow
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States of America
| | - Michelle G. Ritt
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States of America
| | - Paul J. Utz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, United States of America
| | - William H. Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Andrea Eckert
- Clinical Investigation Center, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States of America
| | - Kathleen Stuebner
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States of America
- Clinical Investigation Center, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States of America
| | - Timothy D. O’Brien
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
- Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Lawrence Steinman
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Jaime F. Modiano
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States of America
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States of America
- * E-mail:
| |
Collapse
|
70
|
Identification of human viral protein-derived ligands recognized by individual MHCI-restricted T-cell receptors. Immunol Cell Biol 2016; 94:573-82. [PMID: 26846725 PMCID: PMC4943067 DOI: 10.1038/icb.2016.12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/23/2015] [Accepted: 01/18/2016] [Indexed: 12/12/2022]
Abstract
Evidence indicates that autoimmunity can be triggered by virus-specific CD8+ T cells that crossreact with self-derived peptide epitopes presented on the cell surface by major histocompatibility complex class I (MHCI) molecules. Identification of the associated viral pathogens is challenging because individual T-cell receptors can potentially recognize up to a million different peptides. Here, we generate peptide length-matched combinatorial peptide library (CPL) scan data for a panel of virus-specific CD8+ T-cell clones spanning different restriction elements and a range of epitope lengths. CPL scan data drove a protein database search limited to viruses that infect humans. Peptide sequences were ranked in order of likelihood of recognition. For all anti-viral CD8+ T-cell clones examined in this study, the index peptide was either the top-ranked sequence or ranked as one of the most likely sequences to be recognized. Thus, we demonstrate that anti-viral CD8+ T-cell clones are highly focused on their index peptide sequence and that ‘CPL-driven database searching' can be used to identify the inciting virus-derived epitope for a given CD8+ T-cell clone. Moreover, to augment access to CPL-driven database searching, we have created a publicly accessible webtool. Application of these methodologies in the clinical setting may clarify the role of viral pathogens in the etiology of autoimmune diseases.
Collapse
|
71
|
Gomez-Tourino I, Arif S, Eichmann M, Peakman M. T cells in type 1 diabetes: Instructors, regulators and effectors: A comprehensive review. J Autoimmun 2016; 66:7-16. [DOI: 10.1016/j.jaut.2015.08.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022]
|
72
|
Babad J, Ali R, Schloss J, DiLorenzo TP. An HLA-Transgenic Mouse Model of Type 1 Diabetes That Incorporates the Reduced but Not Abolished Thymic Insulin Expression Seen in Patients. J Diabetes Res 2016; 2016:7959060. [PMID: 26824049 PMCID: PMC4707332 DOI: 10.1155/2016/7959060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/04/2015] [Indexed: 01/12/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by T cell-mediated destruction of the pancreatic islet beta cells. Multiple genetic loci contribute to disease susceptibility in humans, with the most responsible locus being the major histocompatibility complex (MHC). Certain MHC alleles are predisposing, including the common HLA-A(∗)02:01. After the MHC, the locus conferring the strongest susceptibility to T1D is the regulatory region of the insulin gene, and alleles associated with reduced thymic insulin expression are predisposing. Mice express two insulin genes, Ins1 and Ins2. While both are expressed in beta cells, only Ins2 is expressed in the thymus. We have developed an HLA-A(∗)02:01-transgenic NOD-based T1D model that is heterozygous for a functional Ins2 gene. These mice exhibit reduced thymic insulin expression and accelerated disease in both genders. Immune cell populations are not grossly altered, and the mice exhibit typical signs of islet autoimmunity, including CD8 T cell responses to beta cell peptides also targeted in HLA-A(∗)02:01-positive type 1 diabetes patients. This model should find utility as a tool to uncover the mechanisms underlying the association between reduced thymic insulin expression and T1D in humans and aid in preclinical studies to evaluate insulin-targeted immunotherapies for the disease.
Collapse
Affiliation(s)
- Jeffrey Babad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Riyasat Ali
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jennifer Schloss
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Teresa P. DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- *Teresa P. DiLorenzo:
| |
Collapse
|
73
|
Duan Z, Li D, Jia Q, Xu J, Chen X, Xu Z, Liu H, Chen B, Wen J. The diagnostic potential of MPT63-derived HLA-A*0201-restricted CD8+ T-cell epitopes for active pulmonary tuberculosis. Microbiol Immunol 2015; 59:705-15. [PMID: 26577013 DOI: 10.1111/1348-0421.12339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/23/2022]
Abstract
MPT63 protein is found only in Mycobacterium tuberculosis complex, including M. tuberculosis and M. bovis. Detection of MPT63-specific IFN-γ-secreting T cells could be useful for the diagnosis of tuberculosis (TB) diseases. In the present study, the HLA-A*0201 restriction of ten predicted MPT63-derived CD8(+) T-cell epitopes was assessed on the basis of T2 cell line and HLA-A*0201 transgenic mice. The diagnostic potential of immunogenic peptides in active pulmonary TB patients was evaluated using an IFN-γ enzyme-linked immunospot assay. It was found that five peptides bound to HLA-A*0201 with high affinity, whereas the remaining peptides exhibited low affinity for HLA-A*0201. Five immunogenic peptides (MPT6318-26 , MPT6329-37 , MPT6320-28 , MPT635-14 and MPT6310-19 ) elicited large numbers of cytotoxic IFN-γ-secreting T cells in HLA-A*0201 transgenic mice. Each of the five immunogenic peptides was recognized by peripheral blood mononuclear cells from 45% to 73% of 40 HLA-A*0201 positive TB patients. The total diagnostic sensitivity of the five immunogenic peptides was higher than that of a T-SPOT.TB assay (based on ESAT-6 and CFP-10) (93% versus 90%). It is noticeable that the diagnostic sensitivity of the combination of five immunogenic peptides and T-SPOT.TB assay reached 100%. These MPT63-derived HLA-A*0201-restricted CD8(+) T-cell epitopes would likely contribute to the immunological diagnosis of M. tuberculosis infection and may provide the components for designing an effective TB vaccine.
Collapse
Affiliation(s)
- Zhiliang Duan
- Department of Clinical Laboratory, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Xueyuan West Road
| | - Dezhou Li
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000.,Department of Liver Disease, Second People's Hospital of Ningbo, Ningbo 315010
| | - Qingjun Jia
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000.,Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000, China
| | - Juanjuan Xu
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000.,Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000, China
| | - Xinyu Chen
- Department of Clinical Laboratory, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Xueyuan West Road.,Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000
| | - Zhigang Xu
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000.,Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000, China
| | - Huifang Liu
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000.,Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000, China
| | - Bokun Chen
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000
| | - Jinsheng Wen
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000.,Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000, China
| |
Collapse
|
74
|
Motozono C, Pearson JA, De Leenheer E, Rizkallah PJ, Beck K, Trimby A, Sewell AK, Wong FS, Cole DK. Distortion of the Major Histocompatibility Complex Class I Binding Groove to Accommodate an Insulin-derived 10-Mer Peptide. J Biol Chem 2015; 290:18924-33. [PMID: 26085090 PMCID: PMC4521012 DOI: 10.1074/jbc.m114.622522] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 06/12/2015] [Indexed: 01/23/2023] Open
Abstract
The non-obese diabetic mouse model of type 1 diabetes continues to be an important tool for delineating the role of T-cell-mediated destruction of pancreatic β-cells. However, little is known about the molecular mechanisms that enable this disease pathway. We show that insulin reactivity by a CD8(+) T-cell clone, known to induce type 1 diabetes, is characterized by weak T-cell antigen receptor binding to a relatively unstable peptide-MHC. The structure of the native 9- and 10-mer insulin epitopes demonstrated that peptide residues 7 and 8 form a prominent solvent-exposed bulge that could potentially be the main focus of T-cell receptor binding. The C terminus of the peptide governed peptide-MHC stability. Unexpectedly, we further demonstrate a novel mode of flexible peptide presentation in which the MHC peptide-binding groove is able to "open the back door" to accommodate extra C-terminal peptide residues.
Collapse
Affiliation(s)
- Chihiro Motozono
- From the Division of Infection and Immunity and the Department of Immunology, Kinki University School of Medicine, Osaka 589-8511, Japan, and
| | - James A Pearson
- the Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Evy De Leenheer
- the Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | | | - Konrad Beck
- the Cardiff University School of Dentistry, Heath Park, Cardiff CF14 4XY, United Kingdom
| | | | | | - F Susan Wong
- the Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom,
| | | |
Collapse
|
75
|
Yu W, Jiang N, Ebert PJR, Kidd BA, Müller S, Lund PJ, Juang J, Adachi K, Tse T, Birnbaum ME, Newell EW, Wilson DM, Grotenbreg GM, Valitutti S, Quake SR, Davis MM. Clonal Deletion Prunes but Does Not Eliminate Self-Specific αβ CD8(+) T Lymphocytes. Immunity 2015; 42:929-41. [PMID: 25992863 DOI: 10.1016/j.immuni.2015.05.001] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/27/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
It has long been thought that clonal deletion efficiently removes almost all self-specific T cells from the peripheral repertoire. We found that self-peptide MHC-specific CD8(+) T cells in the blood of healthy humans were present in frequencies similar to those specific for non-self antigens. For the Y chromosome-encoded SMCY antigen, self-specific T cells exhibited only a 3-fold lower average frequency in males versus females and were anergic with respect to peptide activation, although this inhibition could be overcome by a stronger stimulus. We conclude that clonal deletion prunes but does not eliminate self-specific T cells and suggest that to do so would create holes in the repertoire that pathogens could readily exploit. In support of this hypothesis, we detected T cells specific for all 20 amino acid variants at the p5 position of a hepatitis C virus epitope in a random group of blood donors.
Collapse
Affiliation(s)
- Wong Yu
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ning Jiang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter J R Ebert
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brian A Kidd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sabina Müller
- INSERM, UMR1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France and Université Toulouse III Paul-Sabatier, 31024 Toulouse, France
| | - Peder J Lund
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeremy Juang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Keishi Adachi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tiffany Tse
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael E Birnbaum
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Evan W Newell
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Darrell M Wilson
- Department of Pediatric Endocrinology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Salvatore Valitutti
- INSERM, UMR1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France and Université Toulouse III Paul-Sabatier, 31024 Toulouse, France
| | - Stephen R Quake
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
76
|
Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat Genet 2015; 47:898-905. [PMID: 26168013 DOI: 10.1038/ng.3353] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2022]
Abstract
Variation in the human leukocyte antigen (HLA) genes accounts for one-half of the genetic risk in type 1 diabetes (T1D). Amino acid changes in the HLA-DR and HLA-DQ molecules mediate most of the risk, but extensive linkage disequilibrium complicates the localization of independent effects. Using 18,832 case-control samples, we localized the signal to 3 amino acid positions in HLA-DQ and HLA-DR. HLA-DQβ1 position 57 (previously known; P = 1 × 10(-1,355)) by itself explained 15.2% of the total phenotypic variance. Independent effects at HLA-DRβ1 positions 13 (P = 1 × 10(-721)) and 71 (P = 1 × 10(-95)) increased the proportion of variance explained to 26.9%. The three positions together explained 90% of the phenotypic variance in the HLA-DRB1-HLA-DQA1-HLA-DQB1 locus. Additionally, we observed significant interactions for 11 of 21 pairs of common HLA-DRB1-HLA-DQA1-HLA-DQB1 haplotypes (P = 1.6 × 10(-64)). HLA-DRβ1 positions 13 and 71 implicate the P4 pocket in the antigen-binding groove, thus pointing to another critical protein structure for T1D risk, in addition to the HLA-DQ P9 pocket.
Collapse
|
77
|
Onengut-Gumuscu S, Chen WM, Burren O, Cooper NJ, Quinlan AR, Mychaleckyj JC, Farber E, Bonnie JK, Szpak M, Schofield E, Achuthan P, Guo H, Fortune MD, Stevens H, Walker NM, Ward LD, Kundaje A, Kellis M, Daly MJ, Barrett JC, Cooper JD, Deloukas P, Type 1 Diabetes Genetics Consortium, Todd JA, Wallace C, Concannon P, Rich SS. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet 2015; 47:381-6. [PMID: 25751624 PMCID: PMC4380767 DOI: 10.1038/ng.3245] [Citation(s) in RCA: 508] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 02/13/2015] [Indexed: 02/06/2023]
Abstract
Genetic studies of type 1 diabetes (T1D) have identified 50 susceptibility regions, finding major pathways contributing to risk, with some loci shared across immune disorders. To make genetic comparisons across autoimmune disorders as informative as possible, a dense genotyping array, the Immunochip, was developed, from which we identified four new T1D-associated regions (P < 5 × 10(-8)). A comparative analysis with 15 immune diseases showed that T1D is more similar genetically to other autoantibody-positive diseases, significantly most similar to juvenile idiopathic arthritis and significantly least similar to ulcerative colitis, and provided support for three additional new T1D risk loci. Using a Bayesian approach, we defined credible sets for the T1D-associated SNPs. The associated SNPs localized to enhancer sequences active in thymus, T and B cells, and CD34(+) stem cells. Enhancer-promoter interactions can now be analyzed in these cell types to identify which particular genes and regulatory sequences are causal.
Collapse
Affiliation(s)
- Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, Division of Endocrinology, University of Virginia, Charlottesville, VA, USA
| | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, Division of Biostatistics and Epidemiology, University of Virginia, Charlottesville, VA, USA
| | - Oliver Burren
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Nick J. Cooper
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Aaron R. Quinlan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, Division of Biostatistics and Epidemiology, University of Virginia, Charlottesville, VA, USA
| | - Josyf C. Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, Division of Biostatistics and Epidemiology, University of Virginia, Charlottesville, VA, USA
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jessica K. Bonnie
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Michal Szpak
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Ellen Schofield
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Premanand Achuthan
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Hui Guo
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Mary D. Fortune
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Helen Stevens
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Neil M. Walker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Luke D. Ward
- Department of Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anshul Kundaje
- Department of Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA. Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Manolis Kellis
- Department of Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark J. Daly
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Jason D. Cooper
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | | | | | - John A. Todd
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Chris Wallace
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
- MRC Biostatistics Unit, Institute of Public Health, University Forvie Site, Robinson Way, CB2 0SR, Cambridge, United Kingdom
| | - Patrick Concannon
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, Division of Biostatistics and Epidemiology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
78
|
Maurice Morillon Y, Martin A, Gojanovich G, Wang B, Tisch R. Reestablishing T Cell Tolerance by Antibody-Based Therapy in Type 1 Diabetes. Arch Immunol Ther Exp (Warsz) 2015; 63:239-50. [PMID: 25790749 DOI: 10.1007/s00005-015-0336-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/02/2015] [Indexed: 01/06/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which the insulin-producing β cells are selectively destroyed. β cell-specific T cells are considered to be the major mediators of pathology. Accordingly, most immunotherapies tested in the clinic to date have focused on reestablishing self-tolerance within the T cell compartment. Monoclonal antibodies (Ab) targeting a variety of lymphocyte surface proteins have demonstrated benefits in preclinical and clinical settings. Indeed, the use of Ab to target T cells directly or indirectly has proven to be an effective strategy to rapidly suppress β cell autoimmunity and establish tissue-specific, long-term tolerance in rodent T1D models. In this review, we describe a number of these Ab-based immunotherapies, discuss associated immune regulatory mechanisms, and highlight results obtained in T1D clinical trials.
Collapse
Affiliation(s)
- Y Maurice Morillon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | | | | | | | | |
Collapse
|
79
|
Skowera A, Ladell K, McLaren JE, Dolton G, Matthews KK, Gostick E, Kronenberg-Versteeg D, Eichmann M, Knight RR, Heck S, Powrie J, Bingley PJ, Dayan CM, Miles JJ, Sewell AK, Price DA, Peakman M. β-cell-specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure. Diabetes 2015; 64:916-925. [PMID: 25249579 PMCID: PMC4557541 DOI: 10.2337/db14-0332] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autoreactive CD8 T cells play a central role in the destruction of pancreatic islet β-cells that leads to type 1 diabetes, yet the key features of this immune-mediated process remain poorly defined. In this study, we combined high-definition polychromatic flow cytometry with ultrasensitive peptide-human leukocyte antigen class I tetramer staining to quantify and characterize β-cell-specific CD8 T cell populations in patients with recent-onset type 1 diabetes and healthy control subjects. Remarkably, we found that β-cell-specific CD8 T cell frequencies in peripheral blood were similar between subject groups. In contrast to healthy control subjects, however, patients with newly diagnosed type 1 diabetes displayed hallmarks of antigen-driven expansion uniquely within the β-cell-specific CD8 T cell compartment. Molecular analysis of selected β-cell-specific CD8 T cell populations further revealed highly skewed oligoclonal T cell receptor repertoires comprising exclusively private clonotypes. Collectively, these data identify novel and distinctive features of disease-relevant CD8 T cells that inform the immunopathogenesis of type 1 diabetes.
Collapse
Affiliation(s)
- Ania Skowera
- Department of Immunobiology, King’s College London School of Medicine, London, UK
| | - Kristin Ladell
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - James E. McLaren
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Garry Dolton
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Katherine K. Matthews
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Emma Gostick
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | - Martin Eichmann
- Department of Immunobiology, King’s College London School of Medicine, London, UK
| | - Robin R. Knight
- Department of Immunobiology, King’s College London School of Medicine, London, UK
| | - Susanne Heck
- National Institute for Health Research Biomedical Research Centre at Guy’s & St Thomas’ National Health Service Foundation Trust and King’s College London, London, UK
| | - Jake Powrie
- Department of Diabetes and Endocrinology, Guy’s & St Thomas’ National Health Service Foundation Trust, London, UK
| | | | - Colin M. Dayan
- Institute of Molecular & Experimental Medicine, Cardiff University School of Medicine, Cardiff, UK
| | - John J. Miles
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew K. Sewell
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - David A. Price
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Mark Peakman
- Department of Immunobiology, King’s College London School of Medicine, London, UK
| |
Collapse
|
80
|
Sachdeva N, Paul M, Badal D, Kumar R, Jacob N, Dayal D, Bhansali A, Arora SK, Bhadada SK. Preproinsulin specific CD8+ T cells in subjects with latent autoimmune diabetes show lower frequency and different pathophysiological characteristics than those with type 1 diabetes. Clin Immunol 2015; 157:78-90. [DOI: 10.1016/j.clim.2015.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/02/2014] [Accepted: 01/10/2015] [Indexed: 01/08/2023]
|
81
|
Knight RR, Dolton G, Kronenberg-Versteeg D, Eichmann M, Zhao M, Huang GC, Beck K, Cole DK, Sewell AK, Skowera A, Peakman M. A distinct immunogenic region of glutamic acid decarboxylase 65 is naturally processed and presented by human islet cells to cytotoxic CD8 T cells. Clin Exp Immunol 2015; 179:100-7. [PMID: 25112375 PMCID: PMC4260902 DOI: 10.1111/cei.12436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2014] [Indexed: 12/20/2022] Open
Abstract
CD8 T cells specific for islet autoantigens are major effectors of β cell damage in type 1 diabetes, and measurement of their number and functional characteristics in blood represent potentially important disease biomarkers. CD8 T cell reactivity against glutamic acid decarboxylase 65 (GAD65) in HLA-A*0201 subjects has been reported to focus on an immunogenic region 114-123 (VMNILLQYVV), with studies demonstrating both 114-123 and 114-122 epitopes being targeted. However, the fine specificity of this response is unclear and the key question as to which epitope(s) β cells naturally process and present and, therefore, the pathogenic potential of CD8 T cells with different specificities within this region has not been addressed. We generated human leucocyte antigen (HLA)-A*0201-restricted CD8 T cell clones recognizing either 114-122 alone or both 114-122 and 114-123. Both clone types show potent and comparable effector functions (cytokine and chemokine secretion) and killing of indicator target cells externally pulsed with cognate peptide. However, only clones recognizing 114-123 kill target cells transfected with HLA-A*0201 and GAD2 and HLA-A*0201(+) human islet cells. We conclude that the endogenous pathway of antigen processing by HLA-A*0201-expressing cells generates GAD65114-123 as the predominant epitope in this region. These studies highlight the importance of understanding β cell epitope presentation in the design of immune monitoring for potentially pathogenic CD8 T cells.
Collapse
Affiliation(s)
- R R Knight
- Department of Immunobiology, King's College London, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
The endoplasmic reticulum aminopeptidase 1 (ERAP1) performs a major role in antigen processing, trimming N-terminally extended peptides to the final epitope for presentation by major histocompatibility complex class I molecules. Recent genome-wide association studies have identified single nucleotide polymorphisms (SNPs) within ERAP1 as being associated with disease, in particular ankylosing spondylitis (AS). AS is a polygenic chronic inflammatory disease with a strong genetic link to HLA-B27 known for over 40 years. The association of ERAP1 SNPs with AS susceptibility is only observed in HLA-B27-positive individuals, which intersect on the antigen processing pathway. Recent evidence examining the trimming activity of polymorphic ERAP1 highlights its role in generating peptides for loading onto and stabilizing HLA-B27, and the consequent alterations in the interaction of specific NK cell receptors, and the activation of the unfolded protein response as important in the mechanism of disease pathogenesis. Here, we discuss the recent genetic association findings linking ERAP1 SNPs with AS disease susceptibility and the effect of these variants on ERAP1 function, highlighting mechanisms by which AS may arise. The identification of these functional variants of ERAP1 may lead to better stratification of AS patients by providing a diagnostic tool and a potential therapeutic target.
Collapse
Affiliation(s)
- Emma Reeves
- Cancer Sciences Unit, Somers Cancer Research Building, Southampton General Hospital, Mailpoint 824, Tremona Road, Southampton, SO16 6YD, UK
| | | | | | | |
Collapse
|
83
|
Arif S, Leete P, Nguyen V, Marks K, Nor NM, Estorninho M, Kronenberg-Versteeg D, Bingley PJ, Todd JA, Guy C, Dunger DB, Powrie J, Willcox A, Foulis AK, Richardson SJ, de Rinaldis E, Morgan NG, Lorenc A, Peakman M. Blood and islet phenotypes indicate immunological heterogeneity in type 1 diabetes. Diabetes 2014; 63:3835-45. [PMID: 24939426 PMCID: PMC4207393 DOI: 10.2337/db14-0365] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/12/2014] [Indexed: 12/16/2022]
Abstract
Studies in type 1 diabetes indicate potential disease heterogeneity, notably in the rate of β-cell loss, responsiveness to immunotherapies, and, in limited studies, islet pathology. We sought evidence for different immunological phenotypes using two approaches. First, we defined blood autoimmune response phenotypes by combinatorial, multiparameter analysis of autoantibodies and autoreactive T-cell responses in 33 children/adolescents with newly diagnosed diabetes. Multidimensional cluster analysis showed two equal-sized patient agglomerations characterized by proinflammatory (interferon-γ-positive, multiautoantibody-positive) and partially regulated (interleukin-10-positive, pauci-autoantibody-positive) responses. Multiautoantibody-positive nondiabetic siblings at high risk of disease progression showed similar clustering. Additionally, pancreas samples obtained post mortem from a separate cohort of 21 children/adolescents with recently diagnosed type 1 diabetes were examined immunohistologically. This revealed two distinct types of insulitic lesions distinguishable by the degree of cellular infiltrate and presence of B cells that we termed "hyper-immune CD20Hi" and "pauci-immune CD20Lo." Of note, subjects had only one infiltration phenotype and were partitioned by this into two equal-sized groups that differed significantly by age at diagnosis, with hyper-immune CD20Hi subjects being 5 years younger. These data indicate potentially related islet and blood autoimmune response phenotypes that coincide with and precede disease. We conclude that different immunopathological processes (endotypes) may underlie type 1 diabetes, carrying important implications for treatment and prevention strategies.
Collapse
Affiliation(s)
- Sefina Arif
- Department of Immunobiology, King's College London School of Medicine, London, U.K
| | - Pia Leete
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, Devon, U.K
| | - Vy Nguyen
- Department of Immunobiology, King's College London School of Medicine, London, U.K
| | - Katherine Marks
- Department of Immunobiology, King's College London School of Medicine, London, U.K
| | | | - Megan Estorninho
- Department of Immunobiology, King's College London School of Medicine, London, U.K
| | | | - Polly J Bingley
- School of Clinical Sciences, University of Bristol, Bristol, U.K
| | - John A Todd
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Addenbrooke's Hospital, University of Cambridge, Cambridge, U.K
| | - Catherine Guy
- University Department of Paediatrics, Addenbrooke's Hospital, Cambridge, U.K
| | - David B Dunger
- University Department of Paediatrics, Addenbrooke's Hospital, Cambridge, U.K
| | - Jake Powrie
- Department of Diabetes and Endocrinology, Guy's & St Thomas' Hospital NHS Foundation Trust, London, U.K
| | - Abby Willcox
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, Devon, U.K
| | - Alan K Foulis
- Greater Glasgow and Clyde Pathology Department, Southern General Hospital, Glasgow, U.K
| | - Sarah J Richardson
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, Devon, U.K
| | - Emanuele de Rinaldis
- National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, London, U.K
| | - Noel G Morgan
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, Devon, U.K
| | - Anna Lorenc
- National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, London, U.K
| | - Mark Peakman
- Department of Immunobiology, King's College London School of Medicine, London, U.K.
| |
Collapse
|
84
|
Autoreactive T cells specific for insulin B:11-23 recognize a low-affinity peptide register in human subjects with autoimmune diabetes. Proc Natl Acad Sci U S A 2014; 111:14840-5. [PMID: 25267644 DOI: 10.1073/pnas.1416864111] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Previous studies in type 1 diabetes (T1D) in the nonobese diabetic mouse demonstrated that a crucial insulin epitope (B:9-23) is presented to diabetogenic CD4 T cells by IA(g7) in a weakly bound register. The importance of antigenic peptides with low-affinity HLA binding in human autoimmune disease remains less clear. The objective of this study was to investigate T-cell responses to a low-affinity self-epitope in subjects with T1D. HLA-DQ8 tetramers loaded with a modified insulin peptide designed to improve binding the low-affinity register were used to visualize T-cell responses following in vitro stimulation. Positive responses were only detectable in T1D patients. Because the immunogenic register of B:9-23 presented by DQ8 has not been conclusively demonstrated, T-cell assays using substituted peptides and DQ8 constructs engineered to express and present B:9-23 in fixed binding registers were used to determine the immunogenic register of this peptide. Tetramer-positive T-cell clones isolated from T1D subjects that responded to stimulation by B:11-23 peptide and denatured insulin protein were conclusively shown to recognize B:11-23 bound to HLA-DQ8 in the low-affinity register 3. These T cells also responded to homologous peptides derived from microbial antigens, suggesting that their initial priming could occur via molecular mimicry. These results are in accord with prior observations from the nonobese diabetic mouse model, suggesting a mechanism shared by mouse and man through which T cells that recognize a weakly bound peptide can circumvent tolerance mechanisms and play a role in the initiation of autoimmune diseases, such as T1D.
Collapse
|
85
|
Abstract
Proteins and peptides are well-documented as useful marker adjuncts to cardiovascular clinical decision-making. Most markers measured derive from a defined, stable proprotein region of their respective gene. However, a neglected portion of preproproteins known as the signal peptide (SP) is also present in the circulation and may also present as a measurable marker. SPs were assumed to be degraded intracellularly after directing secretion, but a small, growing body of evidence is identifying SPs as not being degraded within and without cells. In this article, evidence for the persistence of SPs after translation is presented and their role as potential cardiovascular biomarkers is discussed.
Collapse
|
86
|
Dolton G, Lissina A, Skowera A, Ladell K, Tungatt K, Jones E, Kronenberg-Versteeg D, Akpovwa H, Pentier JM, Holland CJ, Godkin AJ, Cole DK, Neller MA, Miles JJ, Price DA, Peakman M, Sewell AK. Comparison of peptide-major histocompatibility complex tetramers and dextramers for the identification of antigen-specific T cells. Clin Exp Immunol 2014; 177:47-63. [PMID: 24673376 PMCID: PMC4089154 DOI: 10.1111/cei.12339] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2014] [Indexed: 02/05/2023] Open
Abstract
Fluorochrome-conjugated peptide-major histocompatibility complex (pMHC) multimers are widely used for flow cytometric visualization of antigen-specific T cells. The most common multimers, streptavidin-biotin-based 'tetramers', can be manufactured readily in the laboratory. Unfortunately, there are large differences between the threshold of T cell receptor (TCR) affinity required to capture pMHC tetramers from solution and that which is required for T cell activation. This disparity means that tetramers sometimes fail to stain antigen-specific T cells within a sample, an issue that is particularly problematic when staining tumour-specific, autoimmune or MHC class II-restricted T cells, which often display TCRs of low affinity for pMHC. Here, we compared optimized staining with tetramers and dextramers (dextran-based multimers), with the latter carrying greater numbers of both pMHC and fluorochrome per molecule. Most notably, we find that: (i) dextramers stain more brightly than tetramers; (ii) dextramers outperform tetramers when TCR-pMHC affinity is low; (iii) dextramers outperform tetramers with pMHC class II reagents where there is an absence of co-receptor stabilization; and (iv) dextramer sensitivity is enhanced further by specific protein kinase inhibition. Dextramers are compatible with current state-of-the-art flow cytometry platforms and will probably find particular utility in the fields of autoimmunity and cancer immunology.
Collapse
Affiliation(s)
- G Dolton
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
|
88
|
Estorninho M, Gibson VB, Kronenberg-Versteeg D, Liu YF, Ni C, Cerosaletti K, Peakman M. A Novel Approach to Tracking Antigen-Experienced CD4 T Cells into Functional Compartments via Tandem Deep and Shallow TCR Clonotyping. THE JOURNAL OF IMMUNOLOGY 2013; 191:5430-40. [DOI: 10.4049/jimmunol.1300622] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
89
|
Mbunwe E, Van der Auwera BJ, Weets I, Van Crombrugge P, Crenier L, Coeckelberghs M, Seret N, Decochez K, Vandemeulebroucke E, Gillard P, Keymeulen B, van Schravendijk C, Wenzlau JM, Hutton JC, Pipeleers DG, Gorus FK. In antibody-positive first-degree relatives of patients with type 1 diabetes, HLA-A*24 and HLA-B*18, but not HLA-B*39, are predictors of impending diabetes with distinct HLA-DQ interactions. Diabetologia 2013; 56:1964-70. [PMID: 23712485 PMCID: PMC3918938 DOI: 10.1007/s00125-013-2951-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/07/2013] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Secondary type 1 diabetes prevention trials require selection of participants with impending diabetes. HLA-A and -B alleles have been reported to promote disease progression. We investigated whether typing for HLA-B*18 and -B*39 may complement screening for HLA-DQ8, -DQ2 and -A*24 and autoantibodies (Abs) against islet antigen-2 (IA-2) and zinc transporter 8 (ZnT8) for predicting rapid progression to hyperglycaemia. METHODS A registry-based group of 288 persistently autoantibody-positive (Ab(+)) offspring/siblings (aged 0-39 years) of known patients (Ab(+) against insulin, GAD, IA-2 and/or ZnT8) were typed for HLA-DQ, -A and -B and monitored from the first Ab(+) sample for development of diabetes within 5 years. RESULTS Unlike HLA-B*39, HLA-B*18 was associated with accelerated disease progression, but only in HLA-DQ2 carriers (p < 0.006). In contrast, HLA-A*24 promoted progression preferentially in the presence of HLA-DQ8 (p < 0.002). In HLA-DQ2- and/or HLA-DQ8-positive relatives (n = 246), HLA-B*18 predicted impending diabetes (p = 0.015) in addition to HLA-A*24, HLA-DQ2/DQ8 and positivity for IA-2A or ZnT8A (p ≤ 0.004). HLA-B*18 interacted significantly with HLA-DQ2/DQ8 and HLA-A*24 in the presence of IA-2 and/or ZnT8 autoantibodies (p ≤ 0.009). Additional testing for HLA-B*18 and -A*24 significantly improved screening sensitivity for rapid progressors, from 38% to 53%, among relatives at high Ab-inferred risk carrying at least one genetic risk factor. Screening for HLA-B*18 increased sensitivity for progressors, from 17% to 28%, among individuals carrying ≥ 3 risk markers conferring >85% 5 year risk. CONCLUSIONS/INTERPRETATION These results reinforce the importance of HLA class I alleles in disease progression and quantify their added value for preparing prevention trials.
Collapse
Affiliation(s)
- E Mbunwe
- Diabetes Research Center, Brussels Free University-VUB, Laarbeeklaan 103, 1090 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
von Herrath M, Peakman M, Roep B. Progress in immune-based therapies for type 1 diabetes. Clin Exp Immunol 2013; 172:186-202. [PMID: 23574316 DOI: 10.1111/cei.12085] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2013] [Indexed: 01/10/2023] Open
Abstract
Immune-based therapies that prevent type 1 diabetes or preserve metabolic function remaining at diagnosis have become a major objective for funding agencies and international trial consortia, and receive backing from notable patient advocate groups. The development of immune-based therapeutic strategies in this arena requires a careful balancing of the risks of the therapy against the potential benefits, because many individuals are diagnosed or identified as being at increased risk of disease in early childhood, a period when manipulation of the developing immune system should be undertaken with caution. In addition, a therapy exists (daily insulin injection) that is life-saving in the acute stages of disease and can be used effectively over a lifetime as maintenance. Conversely, the disease is increasing in incidence; is peaking in ever-younger age groups; carries significant risk of increased morbidity and early mortality; and remains difficult to manage effectively in many settings. With these issues in mind, in this article we review progress towards immune-based strategies for this chronic autoimmune disease.
Collapse
Affiliation(s)
- M von Herrath
- Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | | | |
Collapse
|
91
|
Long AE, Gillespie KM, Aitken RJ, Goode JC, Bingley PJ, Williams AJ. Humoral responses to islet antigen-2 and zinc transporter 8 are attenuated in patients carrying HLA-A*24 alleles at the onset of type 1 diabetes. Diabetes 2013; 62:2067-71. [PMID: 23396399 PMCID: PMC3661608 DOI: 10.2337/db12-1468] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/31/2013] [Indexed: 01/17/2023]
Abstract
The HLA-A*24 allele has shown negative associations with autoantibodies to islet antigen-2 (IA-2) and zinc transporter 8 (ZnT8) in patients with established type 1 diabetes. Understanding how this HLA class I allele affects humoral islet autoimmunity gives new insights into disease pathogenesis. We therefore investigated the epitope specificity of associations between HLA-A*24 and islet autoantibodies at disease onset. HLA-A*24 genotype and autoantibody responses to insulin (IAA), glutamate decarboxylase (GADA), IA-2, IA-2β, and ZnT8 were analyzed in samples collected from patients with recent-onset type 1 diabetes. After correction for age, sex, and HLA class II genotype, HLA-A*24 was shown to be a negative determinant of IA-2A and ZnT8A. These effects were epitope specific. Antibodies targeting the protein tyrosine phosphatase domains of IA-2 and IA-2β, but not the IA-2 juxtamembrane region, were less common in patients carrying HLA-A*24 alleles. The prevalence of ZnT8A specific or cross-reactive with the ZnT8 tryptophan-325 polymorphic residue, but not those specific to arginine-325, was reduced in HLA-A*24-positive patients. No associations were found between HLA-A*24 and IAA or GADA. Association of an HLA class I susceptibility allele with altered islet autoantibody phenotype at diagnosis suggests CD8 T-cell and/or natural killer cell-mediated killing modulates humoral autoimmune responses.
Collapse
Affiliation(s)
- Anna E. Long
- School of Clinical Sciences, University of Bristol, Bristol, U.K
| | | | - Rachel J. Aitken
- School of Clinical Sciences, University of Bristol, Bristol, U.K
| | - Julia C. Goode
- School of Clinical Sciences, University of Bristol, Bristol, U.K
| | - Polly J. Bingley
- School of Clinical Sciences, University of Bristol, Bristol, U.K
| | | |
Collapse
|
92
|
Mbunwe E, Van der Auwera BJ, Vermeulen I, Demeester S, Van Dalem A, Balti EV, Van Aken S, Derdelinckx L, Dorchy H, De Schepper J, van Schravendijk C, Wenzlau JM, Hutton JC, Pipeleers D, Weets I, Gorus FK. HLA-A*24 is an independent predictor of 5-year progression to diabetes in autoantibody-positive first-degree relatives of type 1 diabetic patients. Diabetes 2013; 62:1345-50. [PMID: 23160529 PMCID: PMC3609594 DOI: 10.2337/db12-0747] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We investigated whether HLA-A*24 typing complements screening for HLA-DQ and for antibodies (Abs) against insulin, GAD, IA-2 (IA-2A), and zinc transporter-8 (ZnT8A) for prediction of rapid progression to type 1 diabetes (T1D). Persistently Ab(+) siblings/offspring (n = 288; aged 0-39 years) of T1D patients were genotyped for HLA-DQA1-DQB1 and HLA-A*24 and monitored for development of diabetes within 5 years of first Ab(+). HLA-A*24 (P = 0.009), HLA-DQ2/DQ8 (P = 0.001), and positivity for IA-2A ± ZnT8A (P < 0.001) were associated with development of T1D in multivariate analysis. The 5-year risk increased with the number of the above three markers present (n = 0: 6%; n = 1: 18%; n = 2: 46%; n = 3: 100%). Positivity for one or more markers identified a subgroup of 171 (59%) containing 88% of rapid progressors. The combined presence of HLA-A*24 and IA-2A(+) ± ZnT8A(+) defined a subgroup of 18 (6%) with an 82% diabetes risk. Among IA-2A(+) ± ZnT8A(+) relatives, identification of HLA-A*24 carriers in addition to HLA-DQ2/DQ8 carriers increased screening sensitivity for relatives at high Ab- and HLA-inferred risk (64% progression; P = 0.002). In conclusion, HLA-A*24 independently predicts rapid progression to T1D in Ab(+) relatives and complements IA-2A, ZnT8A, and HLA-DQ2/DQ8 for identifying participants in immunointervention trials.
Collapse
Affiliation(s)
- Eric Mbunwe
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Mallone R, Roep BO. Biomarkers for immune intervention trials in type 1 diabetes. Clin Immunol 2013; 149:286-96. [PMID: 23510725 DOI: 10.1016/j.clim.2013.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/09/2013] [Indexed: 02/07/2023]
Abstract
After many efforts to improve and standardize assays for detecting immune biomarkers in type 1 diabetes (T1D), methods to identify and monitor such correlates of insulitis are coming of age. The ultimate goal is to use these correlates to predict disease progression before onset and regression following therapeutic intervention, which would allow performing smaller and shorter pilot clinical trials with earlier endpoints than those offered by preserved β-cell function or improved glycemic control. Here, too, progress has been made. With the emerging insight that T1D represents a heterogeneous disease, the next challenge is to define patient subpopulations that qualify for personalized medicine or that should be enrolled for immune intervention, to maximize clinical benefit and decrease collateral damage by ineffective or even adverse immune therapeutics. This review discusses the current state of the art, setting the stage for future efforts to monitor disease heterogeneity, progression and therapeutic intervention in T1D.
Collapse
Affiliation(s)
- Roberto Mallone
- Cochin Institute, INSERM U1016, DeAR Lab Avenir, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; Assistance Publique Hôpitaux de Paris, Hôtel Dieu, Service de Diabétologie, Paris, France.
| | | |
Collapse
|
94
|
Kumar N, Kaur G, Tandon N, Kanga U, Mehra NK. Genomic evaluation of HLA-DR3+ haplotypes associated with type 1 diabetes. Ann N Y Acad Sci 2013; 1283:91-6. [PMID: 23387390 DOI: 10.1111/nyas.12019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have defined three sets of HLA-DR3(+) haplotypes that provide maximum risk of type 1 disease development in Indians: (1) a diverse array of B8-DR3 haplotypes, (2) A33-B58-DR3 haplotype, and (3) A2-B50-DR3 occurring most predominantly in this population. Further analysis has revealed extensive diversity in B8-DR3 haplotypes, particularly at the HLA-A locus, in contrast to the single fixed HLA-A1-B8-DR3 haplotype (generally referred to as AH8.1) reported in Caucasians. However, the classical AH8.1 haplotype was rare and differed from the Caucasian counterpart at multiple loci. In our study, HLA-A26-B8-DR3 (AH8.2) was the most common B8-DR3 haplotype constituting >50% of the total B8-DR3 haplotypes. Further, A2-B8-DR3 contributed the maximum risk (RR = 48.7) of type 1 diabetes, followed by A2-B50-DR3 (RR = 9.4), A33-B58-DR3 (RR = 6.6), A24-B8-DR3 (RR = 4.5), and A26-B8-DR3 (RR = 4.2). Despite several differences, the disease-associated haplotypes in Indian and Caucasian populations share a frozen DR3-DQ2 block, suggesting a common ancestor from which multiple haplotypes evolved independently.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | | | | | |
Collapse
|
95
|
Abstract
Following almost 30 years of intensive research, initiated by the observation that Type 1 diabetes development is associated with a characteristic pancreatic immune cell infiltrate, a picture is emerging of which of the diverse effector arms of the immune system are involved in β-cell destruction. Like any chronic pathology, there is considerable complexity, and our ability to model the disease is hampered by a lack of ready access to the target organ and limited longitudinal analyses. However, it seems that putative pathways can start to be ruled in and out, in part as a result of focused mechanistic studies that make use of new technologies, and in part through analysis of the outcomes of clinical trials of new agents aimed at halting the disease process. The picture that emerges suggests a pathway to prevention that may require combinations of therapeutic agents that target different aspects of the immune system and will need to be used with due attention to their risk-benefit profiles.
Collapse
Affiliation(s)
- M Peakman
- Department of Immunobiology, King's College London, School of Medicine and National Institute of Health Research Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College, London, UK.
| |
Collapse
|
96
|
Mesenchymal stromal cells as a means of controlling pathological T-cell responses in allogeneic islet transplantation. Curr Opin Organ Transplant 2013; 18:59-64. [DOI: 10.1097/mot.0b013e32835c2adf] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
97
|
Abstract
Insulin is the hormone produced by pancreatic β-cells, with a central role in carbohydrate and fat metabolism. Together with its precursors preproinsulin and proinsulin, insulin is also a key target antigen (Ag) of the autoimmune islet destruction leading to type 1 diabetes. Being recognized by both autoantibodies (aAbs) and autoreactive T cells, insulin plays a triggering role, at least in rodent models, in diabetes pathogenesis. It is expressed not only by β-cells but also in the thymus, where it plays a major role in central tolerance mechanisms. We will summarize current knowledge concerning insulin, its role in β-cell autoimmunity as initial target Ag, its recognition by aAbs and autoreactive T cells, and the detection of these immune responses to provide biomarkers for clinical trials employing insulin as an immune modulatory agent.
Collapse
Affiliation(s)
- Sloboda Culina
- INSERM, U986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, 82 Avenue Denfert Rochereau, 75674 Paris Cedex 14, France
| | | | | |
Collapse
|
98
|
Abstract
It is widely accepted that Type 1 diabetes is a complex disease. Genetic predisposition and environmental factors favour the triggering of autoimmune responses against pancreatic β-cells, eventually leading to β-cell destruction. Over 40 susceptibility loci have been identified, many now mapped to known genes, largely supporting a dominant role for an immune-mediated pathogenesis. This role is also supported by the identification of several islet autoantigens and antigen-specific responses in patients with recent onset diabetes and subjects with pre-diabetes. Increasing evidence suggests certain viruses as a common environmental factor, together with diet and the gut microbiome. Inflammation and insulin resistance are emerging as additional cofactors, which might be interrelated with environmental factors. The heterogeneity of disease progression and clinical manifestations is likely a reflection of this multifactorial pathogenesis. So far, clinical trials have been mostly ineffective in delaying progression to overt diabetes in relatives at increased risk, or in reducing further loss of insulin secretion in patients with new-onset diabetes. This limited success may reflect, in part, our incomplete understanding of key pathogenic mechanisms, the lack of truly robust biomarkers of both disease activity and β-cell destruction, and the inability to assess the relative contributions of various pathogenic mechanisms at various time points during the course of the natural history of Type 1 diabetes. Emerging data and a re-evaluation of histopathological, immunological and metabolic findings suggest the hypothesis that unknown mechanisms of β-cell dysfunction may be present at diagnosis, and may contribute to the development of hyperglycaemia and clinical symptoms.
Collapse
Affiliation(s)
- A Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
99
|
Knight RR, Kronenberg D, Zhao M, Huang GC, Eichmann M, Bulek A, Wooldridge L, Cole DK, Sewell AK, Peakman M, Skowera A. Human β-cell killing by autoreactive preproinsulin-specific CD8 T cells is predominantly granule-mediated with the potency dependent upon T-cell receptor avidity. Diabetes 2013; 62:205-13. [PMID: 22936177 PMCID: PMC3526019 DOI: 10.2337/db12-0315] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 07/07/2012] [Indexed: 01/16/2023]
Abstract
The end-stage immunopathology of type 1 diabetes resulting in β-cell destruction appears to be strongly dominated by cytotoxic CD8 T lymphocytes (CD8 T cells). However, the mechanism of cytotoxicity used by autoreactive CD8 T cells in the human setting remains unknown. Using type 1 diabetes patient-derived preproinsulin-specific CD8 T-cell clones recognizing either an HLA-A2 (A*0201) or HLA-A24 (A*2402)-restricted epitope (peptide of preproinsulin [PPI](15-24), ALWGPDPAAA; or PPI(3-11), LWMRLLPLL), we assessed the use of conventional mediators of cytotoxicity in the destruction of human β-cells in vitro compared with virus-specific cytotoxic CD8 T-cell clones. We show that PPI-specific CD8 T-cell clones are mainly reliant upon cytotoxic degranulation for inducing β-cell death. Furthermore, we find that in comparison with virus-specific CD8 T cells, there are differences in the killing potency of PPI-specific CD8 T cells that are not due to cell-intrinsic differences, but rather are mediated by differences in strength of signaling by peptide-HLA ligands. The study highlights the regulation of β-cell killing as a potential point for therapeutic control, including the possibility of blocking autoreactive CD8 T-cell function without impacting upon general immune competence.
Collapse
Affiliation(s)
- Robin R. Knight
- Department of Immunobiology, King’s College London, London, United Kingdom
| | - Deborah Kronenberg
- Department of Immunobiology, King’s College London, London, United Kingdom
- National Institute for Health Research comprehensive Biomedical Research Centre, Guy’s and St. Thomas’ National Health Service Foundation Trust and King’s College London, London, United Kingdom
| | - Min Zhao
- Diabetes and Nutritional Science, King’s College London, London, United Kingdom
| | - Guo Cai Huang
- Diabetes and Nutritional Science, King’s College London, London, United Kingdom
| | - Martin Eichmann
- Department of Immunobiology, King’s College London, London, United Kingdom
| | - Anna Bulek
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Linda Wooldridge
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David K. Cole
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Andrew K. Sewell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Mark Peakman
- Department of Immunobiology, King’s College London, London, United Kingdom
- National Institute for Health Research comprehensive Biomedical Research Centre, Guy’s and St. Thomas’ National Health Service Foundation Trust and King’s College London, London, United Kingdom
| | - Ania Skowera
- Department of Immunobiology, King’s College London, London, United Kingdom
- National Institute for Health Research comprehensive Biomedical Research Centre, Guy’s and St. Thomas’ National Health Service Foundation Trust and King’s College London, London, United Kingdom
| |
Collapse
|
100
|
Graham KL, Sutherland RM, Mannering SI, Zhao Y, Chee J, Krishnamurthy B, Thomas HE, Lew AM, Kay TWH. Pathogenic mechanisms in type 1 diabetes: the islet is both target and driver of disease. Rev Diabet Stud 2012; 9:148-68. [PMID: 23804258 DOI: 10.1900/rds.2012.9.148] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent advances in our understanding of the pathogenesis of type 1 diabetes have occurred in all steps of the disease. This review outlines the pathogenic mechanisms utilized by the immune system to mediate destruction of the pancreatic beta-cells. The autoimmune response against beta-cells appears to begin in the pancreatic lymph node where T cells, which have escaped negative selection in the thymus, first meet beta-cell antigens presented by dendritic cells. Proinsulin is an important antigen in early diabetes. T cells migrate to the islets via the circulation and establish insulitis initially around the islets. T cells within insulitis are specific for islet antigens rather than bystanders. Pathogenic CD4⁺ T cells may recognize peptides from proinsulin which are produced locally within the islet. CD8⁺ T cells differentiate into effector T cells in islets and then kill beta-cells, primarily via the perforin-granzyme pathway. Cytokines do not appear to be important cytotoxic molecules in vivo. Maturation of the immune response within the islet is now understood to contribute to diabetes, and highlights the islet as both driver and target of the disease. The majority of our knowledge of these pathogenic processes is derived from the NOD mouse model, although some processes are mirrored in the human disease. However, more work is required to translate the data from the NOD mouse to our understanding of human diabetes pathogenesis. New technology, especially MHC tetramers and modern imaging, will enhance our understanding of the pathogenic mechanisms.
Collapse
Affiliation(s)
- Kate L Graham
- St. Vincent´s Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|