51
|
Addington CP, Roussas A, Dutta D, Stabenfeldt SE. Endogenous repair signaling after brain injury and complementary bioengineering approaches to enhance neural regeneration. Biomark Insights 2015; 10:43-60. [PMID: 25983552 PMCID: PMC4429653 DOI: 10.4137/bmi.s20062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) affects 5.3 million Americans annually. Despite the many long-term deficits associated with TBI, there currently are no clinically available therapies that directly address the underlying pathologies contributing to these deficits. Preclinical studies have investigated various therapeutic approaches for TBI: two such approaches are stem cell transplantation and delivery of bioactive factors to mitigate the biochemical insult affiliated with TBI. However, success with either of these approaches has been limited largely due to the complexity of the injury microenvironment. As such, this review outlines the many factors of the injury microenvironment that mediate endogenous neural regeneration after TBI and the corresponding bioengineering approaches that harness these inherent signaling mechanisms to further amplify regenerative efforts.
Collapse
Affiliation(s)
- Caroline P Addington
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Adam Roussas
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Dipankar Dutta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
52
|
|
53
|
Transforming growth factor-beta in the red nucleus plays antinociceptive effect under physiological and pathological pain conditions. Neuroscience 2015; 291:37-45. [PMID: 25662509 DOI: 10.1016/j.neuroscience.2015.01.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/17/2015] [Accepted: 01/27/2015] [Indexed: 02/07/2023]
Abstract
Previous studies have demonstrated that the red nucleus (RN) participates in the modulation of neuropathic pain and plays both a facilitated role by pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β), and an inhibitory role through the anti-inflammatory cytokine IL-10. In this study, we sought to investigate the expressions and roles of transforming growth factor-beta (TGF-β), a potent anti-inflammatory cytokine, as well as its type 1 receptor (TGF-β-R1) in the RN in normal and neuropathic pain rats. Immunohistochemistry showed that TGF-β and TGF-β-R1 were constitutively expressed in the RN of normal rats, and co-localized with neurons and all three glial cell types, astrocytes, microglia and oligodendrocytes. Following spared nerve injury (SNI), the expression levels of TGF-β and TGF-β-R1 were significantly down-regulated in the RN contralateral (but not ipsilateral) to the nerve injury side of rats at one week and reached the lowest level at two weeks after SNI, and both of them were co-localized with neurons and oligodendrocytes but not with astrocytes and microglia. Microinjection of different doses of anti-TGF-β antibody (250, 125, 50 ng) into the unilateral RN of normal rats dose-dependently decreased the mechanical withdrawal threshold of contralateral (but not ipsilateral) hind paw and induced significant mechanical hypersensitivity, which was similar to mechanical allodynia induced by peripheral nerve injury. In contrast, microinjection of different doses of recombinant rat TGF-β1 (500, 250, 100 ng) into the RN contralateral to the nerve injury side of SNI rats dose-dependently increased the paw withdrawal threshold and significantly alleviated mechanical allodynia induced by SNI. These results suggest that TGF-β in the RN participates in nociceptive processing and plays antinociceptive effects under normal physiological condition and in the development of neuropathic pain induced by SNI.
Collapse
|
54
|
Aimone JB, Li Y, Lee SW, Clemenson GD, Deng W, Gage FH. Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 2014; 94:991-1026. [PMID: 25287858 DOI: 10.1152/physrev.00004.2014] [Citation(s) in RCA: 443] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. This review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. The increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders.
Collapse
Affiliation(s)
- James B Aimone
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Yan Li
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Star W Lee
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Gregory D Clemenson
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Wei Deng
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Fred H Gage
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
55
|
Kandasamy M, Lehner B, Kraus S, Sander PR, Marschallinger J, Rivera FJ, Trümbach D, Ueberham U, Reitsamer HA, Strauss O, Bogdahn U, Couillard-Despres S, Aigner L. TGF-beta signalling in the adult neurogenic niche promotes stem cell quiescence as well as generation of new neurons. J Cell Mol Med 2014; 18:1444-1459. [PMID: 24779367 PMCID: PMC4124027 DOI: 10.1111/jcmm.12298] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/10/2014] [Indexed: 12/16/2022] Open
Abstract
Members of the transforming growth factor (TGF)-β family govern a wide range of mechanisms in brain development and in the adult, in particular neuronal/glial differentiation and survival, but also cell cycle regulation and neural stem cell maintenance. This clearly created some discrepancies in the field with some studies favouring neuronal differentiation/survival of progenitors and others favouring cell cycle exit and neural stem cell quiescence/maintenance. Here, we provide a unifying hypothesis claiming that through its regulation of neural progenitor cell (NPC) proliferation, TGF-β signalling might be responsible for (i) maintaining stem cells in a quiescent stage, and (ii) promoting survival of newly generated neurons and their functional differentiation. Therefore, we performed a detailed histological analysis of TGF-β1 signalling in the hippocampal neural stem cell niche of a transgenic mouse that was previously generated to express TGF-β1 under a tetracycline regulatable Ca-Calmodulin kinase promoter. We also analysed NPC proliferation, quiescence, neuronal survival and differentiation in relation to elevated levels of TGF-β1 in vitro and in vivo conditions. Finally, we performed a gene expression profiling to identify the targets of TGF-β1 signalling in adult NPCs. The results demonstrate that TGF-β1 promotes stem cell quiescence on one side, but also neuronal survival on the other side. Thus, considering the elevated levels of TGF-β1 in ageing and neurodegenerative diseases, TGF-β1 signalling presents a molecular target for future interventions in such conditions.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Institute of Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria
| | - Bernadette Lehner
- Department of Neurology, University Hospital RegensburgRegensburg, Germany
| | - Sabrina Kraus
- Department of Experimental Ophthalmology, University of RegensburgRegensburg, Germany
| | - Paul Ramm Sander
- Department of Neurology, University Hospital RegensburgRegensburg, Germany
- Institute of Biophysics and Physical Biochemistry, University of RegensburgRegensburg, Germany
| | - Julia Marschallinger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria
| | - Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health (GmbH), Technical University MunichNeuherberg, Germany
| | - Uwe Ueberham
- Paul Flechsig Institute for Brain Research, Department of Neuroanatomy, University of LeipzigLeipzig, Germany
| | - Herbert A Reitsamer
- Department of Ophthalmology, SALK, Paracelsus Medical UniversitySalzburg, Austria
| | - Olaf Strauss
- Department of Experimental Ophthalmology, University of RegensburgRegensburg, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital RegensburgRegensburg, Germany
| | - Sebastien Couillard-Despres
- Institute of Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria
- Institute of Experimental Neuroregeneration, Paracelsus Medical UniversitySalzburg, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria
| |
Collapse
|
56
|
He Y, Zhang H, Yung A, Villeda SA, Jaeger PA, Olayiwola O, Fainberg N, Wyss-Coray T. ALK5-dependent TGF-β signaling is a major determinant of late-stage adult neurogenesis. Nat Neurosci 2014; 17:943-52. [PMID: 24859199 PMCID: PMC4096284 DOI: 10.1038/nn.3732] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/30/2014] [Indexed: 01/19/2023]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway serves critical functions in CNS development, but, apart from its proposed neuroprotective actions, its physiological role in the adult brain is unclear. We observed a prominent activation of TGF-β signaling in the adult dentate gyrus and expression of downstream Smad proteins in this neurogenic zone. Consistent with a function of TGF-β signaling in adult neurogenesis, genetic deletion of the TGF-β receptor ALK5 reduced the number, migration and dendritic arborization of newborn neurons. Conversely, constitutive activation of neuronal ALK5 in forebrain caused a marked increase in these aspects of neurogenesis and was associated with higher expression of c-Fos in newborn neurons and with stronger memory function. Our findings describe an unexpected role for ALK5-dependent TGF-β signaling as a regulator of the late stages of adult hippocampal neurogenesis, which may have implications for changes in neurogenesis during aging and disease.
Collapse
Affiliation(s)
- Yingbo He
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Hui Zhang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Andrea Yung
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Saul A Villeda
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Philipp A Jaeger
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Oluwatobi Olayiwola
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nina Fainberg
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
- Center for Tissue Regeneration, Repair and Rehabilitation, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| |
Collapse
|
57
|
Klincumhom N, Tharasanit T, Thongkittidilok C, Tiptanavattana N, Rungarunlert S, Dinnyés A, Techakumphu M. Selective TGF-β1/ALK inhibitor improves neuronal differentiation of mouse embryonic stem cells. Neurosci Lett 2014; 578:1-6. [PMID: 24923762 DOI: 10.1016/j.neulet.2014.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/30/2022]
Abstract
The transforming growth factor-β1 (TGF-β1), a polypeptide member of the TGF-β superfamily, has myriad cellular functions, including cell fate differentiation. We hypothesized that suppression of TGF-β1 signaling would improve the efficacy of neuronal differentiation during embryoid body (EB) development. In this study, mouse embryonic stem cells (ESCs) were allowed to differentiate into their neuronal lineage, both with, and without the TGF-β1 inhibitor (A83-01). After 8 days of EB suspension culture, the samples were examined by morphological analysis, immunocytochemistry and immunohistochemistry with pluripotent (Oct4, Sox2) and neuronal specific markers (Pax6, NeuN). The alteration of gene expressions during EB development was determined by quantitative RT-PCR. Our results revealed that the TGF-β1/ALK inhibitor potentially suppressed pluripotent gene (Oct4) during a rapidly up-regulation of neuronal associated genes including Sox1 and MAP2. Strikingly, during EB development, the expression of GFAP, the astrocyte specific gene, remarkably decreased compared to the non-treated control. This strategy demonstrated the beneficial function of TGF-β1/ALK inhibitor that rapidly and uniformly drives cell fate alteration from pluripotent state toward neuronal lineages.
Collapse
Affiliation(s)
- Nuttha Klincumhom
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Chommanart Thongkittidilok
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Narong Tiptanavattana
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Sasitorn Rungarunlert
- Department of Preclinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand.
| | - András Dinnyés
- Biotalentum Ltd., Aulich Lajos u. 26, 2100 Gödöllő, Hungary; Molecular Animal Biotechnology Laboratory, Szent Istvan University, 2100 Gödöllő, Hungary; Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands.
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
58
|
Modulating the delicate glial-neuronal interactions in neuropathic pain: promises and potential caveats. Neurosci Biobehav Rev 2014; 45:19-27. [PMID: 24820245 DOI: 10.1016/j.neubiorev.2014.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/22/2014] [Accepted: 05/02/2014] [Indexed: 12/27/2022]
Abstract
During neuropathic pain, glial cells (mainly astrocytes and microglia) become activated and initiate a series of signaling cascades that modulate pain processing at both spinal and supraspinal levels. It has been generally accepted that glial cell activation contributes to neuropathic pain because glia release proinflammatory cytokines, chemokines, and factors such as calcitonin gene-related peptide, substance P, and glutamate, which are known to facilitate pain signaling. However, recent research has shown that activation of glia also leads to some beneficial outcomes. Glia release anti-inflammatory factors that protect against neurotoxicity and restore normal pain. Accordingly, use of glial inhibitors might compromise the protective functions of glia in addition to suppressing their detrimental effects. With a better understanding of how different conditions affect glial cell activation, we may be able to promote the protective function of glia and pave the way for future development of novel, safe, and effective treatments of neuropathic pain.
Collapse
|
59
|
Martínez-Canabal A. Potential neuroprotective role of transforming growth factor β1 (TGFβ1) in the brain. Int J Neurosci 2014; 125:1-9. [PMID: 24628581 DOI: 10.3109/00207454.2014.903947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
TGFβ1 is a growth factor that is known to be expressed in most neurodegenerative diseases and after vascular accidents in the brain. TGFβ1 downregulates the activity of activated microglia and promotes astrogliosis. It also prevents cell death by a known mechanism dependant on astrocytes and the secretion of the plasminogen activator inhibitor 1 (PAI-1). This mechanism can provide light on what is the mechanism of action of TGFβ1 as a protective factor and it can provide the pharmacological principles in which this pathway could be used with therapeutic purposes. TGFβ1 is upregulated in most neurodegenerative diseases, however, its expression appears dramatically blocked in Huntington's disease, the fastest of those diseases in progress after the onset. This fact suggests that TGFβ1 slows down the neurodegenerative process, preventing tissue damage and neural apoptotic death. However, the exact details of TGFβ1 action are still unknown and the physiological roles on the diseases are still mysterious. Interestingly, all the data regarding the roles of TGFβ1 in health and disease have been also confirmed with the use of transgenic knockouts and TGFβ1 overexpressing mice. What possibly came as a surprise from the study of TGFβ1 overexpressing models is that combining its neuroprotective and antiproliferative effects, this cytokine generates a significant disruption in the hippocampal circuitry with its consequent learning and memory deficit.
Collapse
Affiliation(s)
- Alonso Martínez-Canabal
- Department of Molecular Neuropathology, Cell Physiology Institute (IFC), Department of Cell Biology, Faculty of Sciences, National Autonomous University of Mexico (UNAM). Ciudad Universitaria, Circuito exterior S/N, Coyoacan, 04510 Mexico D.F. Mexico
| |
Collapse
|
60
|
Sierra A, Beccari S, Diaz-Aparicio I, Encinas JM, Comeau S, Tremblay MÈ. Surveillance, phagocytosis, and inflammation: how never-resting microglia influence adult hippocampal neurogenesis. Neural Plast 2014; 2014:610343. [PMID: 24772353 PMCID: PMC3977558 DOI: 10.1155/2014/610343] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/11/2014] [Indexed: 12/27/2022] Open
Abstract
Microglia cells are the major orchestrator of the brain inflammatory response. As such, they are traditionally studied in various contexts of trauma, injury, and disease, where they are well-known for regulating a wide range of physiological processes by their release of proinflammatory cytokines, reactive oxygen species, and trophic factors, among other crucial mediators. In the last few years, however, this classical view of microglia was challenged by a series of discoveries showing their active and positive contribution to normal brain functions. In light of these discoveries, surveillant microglia are now emerging as an important effector of cellular plasticity in the healthy brain, alongside astrocytes and other types of inflammatory cells. Here, we will review the roles of microglia in adult hippocampal neurogenesis and their regulation by inflammation during chronic stress, aging, and neurodegenerative diseases, with a particular emphasis on their underlying molecular mechanisms and their functional consequences for learning and memory.
Collapse
Affiliation(s)
- Amanda Sierra
- Ikerbasque Foundation, 48011 Bilbao, Spain
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170 Zamudio, Spain
- Department of Neurosciences, University of the Basque Country, 48940 Leioa, Spain
| | - Sol Beccari
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170 Zamudio, Spain
- Department of Neurosciences, University of the Basque Country, 48940 Leioa, Spain
| | - Irune Diaz-Aparicio
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170 Zamudio, Spain
- Department of Neurosciences, University of the Basque Country, 48940 Leioa, Spain
| | - Juan M. Encinas
- Ikerbasque Foundation, 48011 Bilbao, Spain
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170 Zamudio, Spain
- Department of Neurosciences, University of the Basque Country, 48940 Leioa, Spain
| | - Samuel Comeau
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Canada G1P 4C7
- Département de Médecine Moléculaire, Université Laval, Canada G1V 4G2
| | - Marie-Ève Tremblay
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Canada G1P 4C7
- Département de Médecine Moléculaire, Université Laval, Canada G1V 4G2
| |
Collapse
|
61
|
Papadopoulos P, Tong XK, Hamel E. Selective benefits of simvastatin in bitransgenic APPSwe,Ind/TGF-β1 mice. Neurobiol Aging 2014; 35:203-12. [DOI: 10.1016/j.neurobiolaging.2013.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 06/13/2013] [Accepted: 07/15/2013] [Indexed: 01/19/2023]
|
62
|
Tapia-González S, Muñoz MD, Cuartero MI, Sánchez-Capelo A. Smad3 is required for the survival of proliferative intermediate progenitor cells in the dentate gyrus of adult mice. Cell Commun Signal 2013; 11:93. [PMID: 24330661 PMCID: PMC4029396 DOI: 10.1186/1478-811x-11-93] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/06/2013] [Indexed: 12/16/2022] Open
Abstract
Background New neurons are continuously being generated in the adult hippocampus, a phenomenon that is regulated by external stimuli, such as learning, memory, exercise, environment or stress. However, the molecular mechanisms underlying neuron production and how they are integrated into existing circuits under such physiological conditions remain unclear. Indeed, the intracellular modulators that transduce the extracellular signals are not yet fully understood. Results We show that Smad3, an intracellular molecule involved in the transforming growth factor (TGF)-β signaling cascade, is strongly expressed by granule cells in the dentate gyrus (DG) of adult mice, although the loss of Smad3 in null mutant mice does not affect their survival. Smad3 is also expressed by adult progenitor cells in the subgranular zone (SGZ) and more specifically, it is first expressed by Type 2 cells (intermediate progenitor cells). Its expression persists through the distinct cell stages towards that of the mature neuron. Interestingly, proliferative intermediate progenitor cells die in Smad3 deficiency, which is associated with a large decrease in the production of newborn neurons in Smad3 deficient mice. Smad3 signaling appears to influence adult neurogenesis fulfilling distinct roles in the rostral and mid-caudal regions of the DG. In rostral areas, Smad3 deficiency increases proliferation and promotes the cell cycle exit of undifferentiated progenitor cells. By contrast, Smad3 deficiency impairs the survival of newborn neurons in the mid-caudal region of the DG at early proliferative stages, activating apoptosis of intermediate progenitor cells. Furthermore, long-term potentiation (LTP) after high frequency stimulation (HFS) to the medial perforant path (MPP) was abolished in the DG of Smad3-deficient mice. Conclusions These data show that endogenous Smad3 signaling is central to neurogenesis and LTP induction in the adult DG, these being two forms of hippocampal brain plasticity related to learning and memory that decline with aging and as a result of neurological disorders.
Collapse
Affiliation(s)
| | | | | | - Amelia Sánchez-Capelo
- CIBERNED - Ser, Neurobiología-Investigación, Hospital Universitario Ramón y Cajal-IRYCIS, Ctra, Colmenar Viejo Km 9, 28034 Madrid, Spain.
| |
Collapse
|
63
|
Abstract
Hippocampus-dependent learning and memory relies on synaptic plasticity as well as network adaptations provided by the addition of adult-born neurons. We have previously shown that activity-induced intracellular signaling through the Rho family small GTPase Rac1 is necessary in forebrain projection neurons for normal synaptic plasticity in vivo, and here we show that selective loss of neuronal Rac1 also impairs the learning-evoked increase in neurogenesis in the adult mouse hippocampus. Earlier work has indicated that experience elevates the abundance of adult-born neurons in the hippocampus primarily by enhancing the survival of neurons produced just before the learning event. Loss of Rac1 in mature projection neurons did reduce learning-evoked neurogenesis but, contrary to our expectations, these effects were not mediated by altering the survival of young neurons in the hippocampus. Instead, loss of neuronal Rac1 activation selectively impaired a learning-evoked increase in the proliferation and accumulation of neural precursors generated during the learning event itself. This indicates that experience-induced alterations in neurogenesis can be mechanistically resolved into two effects: (1) the well documented but Rac1-independent signaling cascade that enhances the survival of young postmitotic neurons; and (2) a previously unrecognized Rac1-dependent signaling cascade that stimulates the proliferative production and retention of new neurons generated during learning itself.
Collapse
|
64
|
Villapol S, Wang Y, Adams M, Symes AJ. Smad3 deficiency increases cortical and hippocampal neuronal loss following traumatic brain injury. Exp Neurol 2013; 250:353-65. [PMID: 24120438 DOI: 10.1016/j.expneurol.2013.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 09/11/2013] [Accepted: 10/03/2013] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β (TGF-β) signaling is involved in pathological processes following brain injury. TGF-β signaling through Smad3 contributes significantly to the immune response and glial scar formation after brain injury. However, TGF-β is also neuroprotective, suggesting that Smad3 signaling may also be involved in neuroprotection after injury. We found expression of the TGF-β type II receptor (TβRII) and Smad3 protein to be strongly and rapidly induced in neurons in the ipsilateral cortex and CA1 region of the hippocampus after stab wound injury. In contrast, astrocytic expression of TβRII and Smad3 was induced more slowly. Comparison of the response of wild-type and Smad3 null mice to cortical stab wound injury showed a more pronounced loss of neuronal viability in Smad3 null mice. Neuronal density was more strongly reduced in Smad3 null mice than in wild-type mice at 1 and 3days post lesion in both the ipsilateral cortex and hippocampal CA1 region. Fluoro-Jade B, TUNEL staining, and cleaved caspase-3 staining also demonstrated increased neuronal degeneration at early time points after injury in the ipsilateral hemisphere in Smad3 null mice. Taken together, our results suggest that TGF-β cytokine family signaling through Smad3 protects neurons in the damaged cortex and hippocampus at early time points after injury.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
65
|
Stoll EA, Horner PJ, Rostomily RC. The impact of age on oncogenic potential: tumor-initiating cells and the brain microenvironment. Aging Cell 2013; 12:733-41. [PMID: 23711239 DOI: 10.1111/acel.12104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2013] [Indexed: 12/22/2022] Open
Abstract
Paradoxically, aging leads to both decreased regenerative capacity in the brain and an increased risk of tumorigenesis, particularly the most common adult-onset brain tumor, glioma. A shared factor contributing to both phenomena is thought to be age-related alterations in neural progenitor cells (NPCs), which function normally to produce new neurons and glia, but are also considered likely cells of origin for malignant glioma. Upon oncogenic transformation, cells acquire characteristics known as the hallmarks of cancer, including unlimited replication, altered responses to growth and anti-growth factors, increased capacity for angiogenesis, potential for invasion, genetic instability, apoptotic evasion, escape from immune surveillance, and an adaptive metabolic phenotype. The precise molecular pathogenesis and temporal acquisition of these malignant characteristics is largely a mystery. Recent studies characterizing NPCs during normal aging, however, have begun to elucidate mechanisms underlying the age-associated increase in their malignant potential. Aging cells are dependent upon multiple compensatory pathways to maintain cell cycle control, normal niche interactions, genetic stability, programmed cell death, and oxidative metabolism. A few multi-functional proteins act as 'critical nodes' in the coordination of these various cellular activities, although both intracellular signaling and elements within the brain environment are critical to maintaining a balance between senescence and tumorigenesis. Here, we provide an overview of recent progress in our understanding of how mechanisms underlying cellular aging inform on glioma pathogenesis and malignancy.
Collapse
Affiliation(s)
- Elizabeth A. Stoll
- Institute for Aging and Health; Newcastle University; Newcastle upon Tyne; UK
| | | | | |
Collapse
|
66
|
Kraus S, Lehner B, Reichhart N, Couillard-Despres S, Wagner K, Bogdahn U, Aigner L, Strauß O. Transforming growth factor-β1 primes proliferating adult neural progenitor cells to electrophysiological functionality. Glia 2013; 61:1767-83. [DOI: 10.1002/glia.22551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 06/19/2013] [Accepted: 06/27/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Sabrina Kraus
- Department of Experimental Ophthalmology, Eye Clinic; University Medical Center Regensburg; Regensburg Germany
| | - Bernadette Lehner
- Department of Neurology; University Medical Center Regensburg; Regensburg Germany
| | - Nadine Reichhart
- Department of Experimental Ophthalmology, Eye Clinic; University Medical Center Regensburg; Regensburg Germany
- Department of Experimental Ophthalmology, Ophthalmology; Charite Universitaetsmedizin Berlin; Berlin Germany
| | - Sebastien Couillard-Despres
- Institute of Molecular Regenerative Medicine; Paracelsus Medical University; Salzburg Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg; Paracelsus Medical University; Salzburg Austria
| | - Katrin Wagner
- Institute of Molecular Regenerative Medicine; Paracelsus Medical University; Salzburg Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg; Paracelsus Medical University; Salzburg Austria
| | - Ulrich Bogdahn
- Department of Neurology; University Medical Center Regensburg; Regensburg Germany
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine; Paracelsus Medical University; Salzburg Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg; Paracelsus Medical University; Salzburg Austria
| | - Olaf Strauß
- Department of Experimental Ophthalmology, Eye Clinic; University Medical Center Regensburg; Regensburg Germany
- Department of Experimental Ophthalmology, Ophthalmology; Charite Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
67
|
Martinez-Canabal A, Wheeler AL, Sarkis D, Lerch JP, Lu WY, Buckwalter MS, Wyss-Coray T, Josselyn SA, Frankland PW. Chronic over-expression of TGFβ1 alters hippocampal structure and causes learning deficits. Hippocampus 2013; 23:1198-211. [PMID: 23804429 DOI: 10.1002/hipo.22159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2013] [Indexed: 12/22/2022]
Abstract
The cytokine transforming growth factor β1 (TGFβ1) is chronically upregulated in several neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jacob disease, amyotrophic lateral sclerosis and multiple sclerosis, and following stroke. Although previous studies have shown that TGFβ1 may be neuroprotective, chronic exposure to elevated levels of this cytokine may contribute to disease pathology on its own. In order to study the effects of chronic exposure to TGFβ1 in isolation, we used transgenic mice that over-express a constitutively active porcine TGFβ1 in astrocytes. We found that TGFβ1 over-expression altered brain structure, with the most pronounced volumetric increases localized to the hippocampus. Within the dentate gyrus (DG) of the hippocampus, increases in granule cell number and astrocyte size were responsible for volumetric expansion, with the increased granule cell number primarily related to a marked reduction in death of new granule cells generated in adulthood. Finally, these cumulative changes in DG microstructure and macrostructure were associated with the age-dependent emergence of spatial learning deficits in TGFβ1 over-expressing mice. Together, our data indicate that chronic upregulation of TGFβ1 negatively impacts hippocampal structure and, even in the absence of disease, impairs hippocampus-dependent learning.
Collapse
Affiliation(s)
- Alonso Martinez-Canabal
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
To understand life-long neurogenesis in the dentate gyrus (DG), characterizing dentate neural stem cells and the signals controlling their development are crucial. In the present study, we show that bone morphogenic protein (Bmp) signaling is a critical regulator of embryonic dentate development, required for initiating neurogenesis in embryonic DG progenitors and required for the establishment of dentate neural stem cells postnatally. We tested the hypothesis that Bmp signaling regulates dentate development in part by controlling the expression of Lef1, a Wnt responsive transcription factor expressed in dentate stem cells and absolutely required for dentate granule cell production. Bmp activation through the Acvr1 receptor induced Lef1 expression and neurogenesis in the embryonic DG. Ectopic expression of Bmp7 in the embryonic midline increased DG neurogenesis and inhibition of local Bmp signaling decreased embryonic DG neurogenesis. Mice with selective loss of Bmp expression due to defective meningeal development or with selective conditional deletion of meningeal Bmp7 also have dentate developmental defects. Conditional deletion of Activin receptor type I (Acvr1) or Smad4 (a downstream target nuclear effector of Bmp signaling) in DG neural stem cells resulted in defects in the postnatal subgranular zone and reduced neurogenesis. These results suggest that Acvr1-mediated meningeal Bmp signaling regulates Lef1 expression in the dentate, regulating embryonic DG neurogenesis, DG neural stem cell niche formation, and maintenance.
Collapse
|
69
|
Pineda JR, Daynac M, Chicheportiche A, Cebrian-Silla A, Sii Felice K, Garcia-Verdugo JM, Boussin FD, Mouthon MA. Vascular-derived TGF-β increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain. EMBO Mol Med 2013; 5:548-62. [PMID: 23526803 PMCID: PMC3628106 DOI: 10.1002/emmm.201202197] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 01/20/2023] Open
Abstract
Neurogenesis decreases during aging and following cranial radiotherapy, causing a progressive cognitive decline that is currently untreatable. However, functional neural stem cells remained present in the subventricular zone of high dose-irradiated and aged mouse brains. We therefore investigated whether alterations in the neurogenic niches are perhaps responsible for the neurogenesis decline. This hypothesis was supported by the absence of proliferation of neural stem cells that were engrafted into the vascular niches of irradiated host brains. Moreover, we observed a marked increase in TGF-β1 production by endothelial cells in the stem cell niche in both middle-aged and irradiated mice. In co-cultures, irradiated brain endothelial cells induced the apoptosis of neural stem/progenitor cells via TGF-β/Smad3 signalling. Strikingly, the blockade of TGF-β signalling in vivo using a neutralizing antibody or the selective inhibitor SB-505124 significantly improved neurogenesis in aged and irradiated mice, prevented apoptosis and increased the proliferation of neural stem/progenitor cells. These findings suggest that anti-TGF-β-based therapy may be used for future interventions to prevent neurogenic collapse following radiotherapy or during aging.
Collapse
Affiliation(s)
- Jose R Pineda
- CEA DSV iRCM SCSR, Laboratoire de Radiopathologie, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Logan TT, Villapol S, Symes AJ. TGF-β superfamily gene expression and induction of the Runx1 transcription factor in adult neurogenic regions after brain injury. PLoS One 2013; 8:e59250. [PMID: 23555640 PMCID: PMC3605457 DOI: 10.1371/journal.pone.0059250] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 02/13/2013] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) increases neurogenesis in the forebrain subventricular zone (SVZ) and the hippocampal dentate gyrus (DG). Transforming growth factor-β (TGF-β) superfamily cytokines are important regulators of adult neurogenesis, but their involvement in the regulation of this process after brain injury is unclear. We subjected adult mice to controlled cortical impact (CCI) injury, and isolated RNA from the SVZ and DG at different post-injury time points. qPCR array analysis showed that cortical injury caused significant alterations in the mRNA expression of components and targets of the TGF-β, BMP, and activin signaling pathways in the SVZ and DG after injury, suggesting that these pathways could regulate post-injury neurogenesis. In both neurogenic regions, the injury also induced expression of Runt-related transcription factor-1 (Runx1), which can interact with intracellular TGF-β Smad signaling pathways. CCI injury strongly induced Runx1 expression in activated and proliferating microglial cells throughout the neurogenic regions. Runx1 protein was also expressed in a subset of Nestin- and GFAP-expressing putative neural stem or progenitor cells in the DG and SVZ after injury. In the DG only, these Runx1+ progenitors proliferated. Our data suggest potential roles for Runx1 in the processes of microglial cell activation and proliferation and in neural stem cell proliferation after TBI.
Collapse
Affiliation(s)
- Trevor T. Logan
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Sonia Villapol
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Aviva J. Symes
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
71
|
Speisman RB, Kumar A, Rani A, Foster TC, Ormerod BK. Daily exercise improves memory, stimulates hippocampal neurogenesis and modulates immune and neuroimmune cytokines in aging rats. Brain Behav Immun 2013; 28:25-43. [PMID: 23078985 PMCID: PMC3545095 DOI: 10.1016/j.bbi.2012.09.013] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/19/2012] [Accepted: 09/26/2012] [Indexed: 01/02/2023] Open
Abstract
We tested whether daily exercise modulates immune and neuroimmune cytokines, hippocampus-dependent behavior and hippocampal neurogenesis in aging male F344 rats (18mo upon arrival). Twelve weeks after conditioned running or control group assignment, the rats were trained and tested in a rapid water maze followed by an inhibitory avoidance task. The rats were BrdU-injected beginning 12days after behavioral testing and killed 3weeks later to quantify cytokines and neurogenesis. Daily exercise increased neurogenesis and improved immediate and 24h water maze discrimination index (DI) scores and 24h inhibitory avoidance retention latencies. Daily exercise decreased cortical VEGF, hippocampal IL-1β and serum MCP-1, GRO-KC and leptin levels but increased hippocampal GRO-KC and IL-18 concentrations. Serum leptin concentration correlated negatively with new neuron number and both DI scores while hippocampal IL-1β concentration correlated negatively with memory scores in both tasks. Cortical VEGF, serum GRO-KC and serum MCP-1 levels correlated negatively with immediate DI score and we found novel positive correlations between hippocampal IL-18 and GRO-KC levels and new neuron number. Pathway analyses revealed distinct serum, hippocampal and cortical compartment cytokine relationships. Our results suggest that daily exercise potentially improves cognition in aging rats by modulating hippocampal neurogenesis and immune and neuroimmune cytokine signaling. Our correlational data begin to provide a framework for systematically manipulating these immune and neuroimmune signaling molecules to test their effects on cognition and neurogenesis across lifespan in future experiments.
Collapse
Affiliation(s)
- Rachel. B. Speisman
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ashok Kumar
- Department of Neuroscience, University of Florida, Gainesville, FL, USA,McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Asha Rani
- Department of Neuroscience, University of Florida, Gainesville, FL, USA,McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Thomas C. Foster
- Department of Neuroscience, University of Florida, Gainesville, FL, USA,McKnight Brain Institute, University of Florida, Gainesville, FL, USA,Corresponding Author: Brandi K. Ormerod, PhD, Assistant Professor, J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, USA, Phone: 352-273-8125, Fax: 352-273-9221,
| | - Brandi K. Ormerod
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA,Department of Neuroscience, University of Florida, Gainesville, FL, USA,McKnight Brain Institute, University of Florida, Gainesville, FL, USA,Corresponding Author: Brandi K. Ormerod, PhD, Assistant Professor, J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, USA, Phone: 352-273-8125, Fax: 352-273-9221,
| |
Collapse
|
72
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013. [PMID: 23386811 DOI: 10.3389/fncel.2013.00006/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|
73
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013; 7:6. [PMID: 23386811 PMCID: PMC3558702 DOI: 10.3389/fncel.2013.00006] [Citation(s) in RCA: 445] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/09/2013] [Indexed: 02/04/2023] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|
74
|
Effects of minocycline on spatial learning, hippocampal neurogenesis and microglia in aged and adult mice. Behav Brain Res 2012; 242:17-24. [PMID: 23274840 DOI: 10.1016/j.bbr.2012.12.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 11/23/2022]
Abstract
Age-related priming of microglia and release of inflammatory cytokines, such as interleukin-1β (IL-1β) and interleuekin-6 (IL-6) have been associated with deficits in cognitive function. The present study assessed whether treatment with minocycline could improve spatial cognition in aged mice, and whether these improvements in behavior were associated with reduced microglia activation and an enhancement in hippocampal neurogenesis. Adult (3 months) and aged (22 months) male BALB/c mice received minocycline in their drinking water or control mice received distilled water for 20 days. Mice received BrdU to label dividing cells on days 8-17. Spatial learning was measured using the water maze. Immunohistochemistry was conducted to measure number of BrdU positive neurons and number and size of microglia by detection of Iba-1 in the dentate gyrus molecular layer. Further, hippocampal samples were collected to measure changes in IL-1β, IL-6, and CD74 expression. The data show that aged mice have increased hippocampal expression of IL-1β, IL-6, and CD74 relative to adults. Minocycline treatment significantly improved acquisition of the water maze in aged mice but not adults. Minocycline reduced the average size of Iba-1 positive cells and total Iba-1 counts, but did not affect hippocampal cytokine gene expression. Minocycline increased neurogenesis in adults but not aged mice. Collectively, the data indicate that treatment with minocycline may recover some aspects of cognitive decline associated with aging, but the effect appears to be unrelated to adult hippocampal neurogenesis.
Collapse
|
75
|
Mosher KI, Andres RH, Fukuhara T, Bieri G, Hasegawa-Moriyama M, He Y, Guzman R, Wyss-Coray T. Neural progenitor cells regulate microglia functions and activity. Nat Neurosci 2012; 15:1485-7. [PMID: 23086334 PMCID: PMC3495979 DOI: 10.1038/nn.3233] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/11/2012] [Indexed: 01/14/2023]
Abstract
We found mouse neural progenitor cells (NPCs) to have a secretory protein profile distinct from other brain cells and to modulate microglial activation, proliferation and phagocytosis. NPC-derived vascular endothelial growth factor was necessary and sufficient to exert at least some of these effects in mice. Thus, neural precursor cells may not only be shaped by microglia, but also regulate microglia functions and activity.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Antigens, CD
- Antigens, Differentiation, Myelomonocytic
- Brain/cytology
- Bromodeoxyuridine/metabolism
- Calcium-Binding Proteins/metabolism
- Cell Proliferation/drug effects
- Cell Transplantation/methods
- Cells, Cultured
- Chemotaxis/drug effects
- Culture Media, Conditioned/pharmacology
- Dose-Response Relationship, Drug
- Embryo, Mammalian
- Gene Expression Regulation/drug effects
- Glial Fibrillary Acidic Protein/metabolism
- Green Fluorescent Proteins/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microfilament Proteins/metabolism
- Microglia/drug effects
- Microglia/physiology
- Neural Stem Cells/physiology
- Phagocytosis/drug effects
- Phagocytosis/physiology
- Proteomics/methods
- RNA, Small Interfering/metabolism
- SOXB1 Transcription Factors/metabolism
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor A/pharmacology
Collapse
Affiliation(s)
- Kira I Mosher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Luo XG, Chen SD. The changing phenotype of microglia from homeostasis to disease. Transl Neurodegener 2012; 1:9. [PMID: 23210447 PMCID: PMC3514090 DOI: 10.1186/2047-9158-1-9] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 04/24/2012] [Indexed: 12/20/2022] Open
Abstract
It has been nearly a century since the early description of microglia by Rio-Hortega; since then many more biological and pathological features of microglia have been recognized. Today, microglia are generally considered to be beneficial to homeostasis at the resting state through their abilities to survey the environment and phagocytose debris. However, when activated microglia assume diverse phenotypes ranging from fully inflamed, which involves the release of many pro-inflammatory cytokines, to alternatively activated, releasing anti-inflammatory cytokines or neurotrophins, the consequences to neurons can range from detrimental to supportive. Due to the different experimental sets and conditions, contradictory results have been obtained regarding the controversial question of whether microglia are “good” or “bad.” While it is well understood that the dual roles of activated microglia depend on specific situations, the underlying mechanisms have remained largely unclear, and the interpretation of certain findings related to diverse microglial phenotypes continues to be problematic. In this review we discuss the functions of microglia in neuronal survival and neurogenesis, the crosstalk between microglia and surrounding cells, and the potential factors that could influence the eventual manifestation of microglia.
Collapse
Affiliation(s)
- Xiao-Guang Luo
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University, Shanghai, 200025, China.
| | | |
Collapse
|
77
|
Van Den Bossche MJ, Van Wallendael KL, Strazisar M, Sabbe B, Del-Favero J. Co-occurrence of Marfan syndrome and schizophrenia: What can be learned? Eur J Med Genet 2012; 55:252-5. [DOI: 10.1016/j.ejmg.2012.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
|
78
|
Gonzalez-Castaneda RE, Galvez-Contreras AY, Luquín S, Gonzalez-Perez O. Neurogenesis in Alzheimer´s disease: a realistic alternative to neuronal degeneration? CURRENT SIGNAL TRANSDUCTION THERAPY 2011; 6:314-319. [PMID: 22125505 PMCID: PMC3223938 DOI: 10.2174/157436211797483949] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neural stem cells (NSC) are cells that have the capacity to generate multiple types of differentiated brain cells. In conditions in which there is a loss of key functional cell groups, such as neurons, inducing or introducing neural stem cells to replace the function of those cells that were lost during the disease has the greatest potential therapeutic applications. Indeed, the achievement of one of the main objectives of various investigations is already on the horizon for some conditions, such as Alzheimer's disease. It is not known whether impaired neurogenesis contributes to neuronal depletion and cognitive dysfunction in Alzheimer's disease (AD). The results of the different investigations are controversial; some studies have found that neurogenesis is increased in AD brains, but others have not.
Collapse
Affiliation(s)
- Rocío E Gonzalez-Castaneda
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México 44340
| | | | | | | |
Collapse
|
79
|
Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, Stan TM, Fainberg N, Ding Z, Eggel A, Lucin KM, Czirr E, Park JS, Couillard-Després S, Aigner L, Li G, Peskind ER, Kaye JA, Quinn JF, Galasko DR, Xie XS, Rando TA, Wyss-Coray T. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011; 477:90-4. [PMID: 21886162 PMCID: PMC3170097 DOI: 10.1038/nature10357] [Citation(s) in RCA: 1357] [Impact Index Per Article: 96.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 07/05/2011] [Indexed: 12/23/2022]
Abstract
In the central nervous system (CNS), aging results in a precipitous decline in adult neural stem/progenitor cells (NPCs) and neurogenesis, with concomitant impairments in cognitive functions1. Interestingly, such impairments can be ameliorated through systemic perturbations such as exercise1. Here, using heterochronic parabiosis we show that blood-borne factors present in the systemic milieu can inhibit or promote adult neurogenesis in an age dependent fashion in mice. Accordingly, exposing a young animal to an old systemic environment, or to plasma from old mice, decreased synaptic plasticity and impaired contextual fear conditioning and spatial learning and memory. We identify chemokines - including CCL11/Eotaxin – whose plasma levels correlate with reduced neurogenesis in heterochronic parabionts and aged mice, and whose levels are increased in plasma and cerebral spinal fluid of healthy aging humans. Finally, increasing peripheral CCL11 chemokine levels in vivo in young mice decreased adult neurogenesis and impaired learning and memory. Together our data indicate that the decline in neurogenesis, and cognitive impairments, observed during aging can be in part attributed to changes in blood-borne factors.
Collapse
Affiliation(s)
- Saul A Villeda
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Beck K, Schachtrup C. Vascular damage in the central nervous system: a multifaceted role for vascular-derived TGF-β. Cell Tissue Res 2011; 347:187-201. [PMID: 21850492 DOI: 10.1007/s00441-011-1228-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/22/2011] [Indexed: 01/16/2023]
Abstract
The brain function depends on a continuous supply of blood. The blood-brain barrier (BBB), which is formed by vascular cells and glia, separates components of the circulating blood from neurons and maintains the precisely regulated brain milieu required for proper neuronal function. A compromised BBB alters the transport of molecules between the blood and brain and has been associated with or shown to precede neurodegenerative disease. Blood components immediately leak into the brain after mechanical damage or as a consequence of a compromised BBB in brain disease changing the extracellular environment at sites of vascular damage. It is intriguing how blood-derived components alter the cellular and molecular constituents of the neurovascular interface after BBB opening. We recently identified an unexpected role for the blood protein fibrinogen, which is deposited in the nervous system promptly after vascular damage, as an initial scar inducer by promoting the availability of active TGF-β. Fibrinogen-bound latent TGF-β interacts with astrocytes, leading to active TGF-β formation and activation of the TGF-β/Smad signaling pathway. Here, we discuss the pleiotropic effects of potentially vascular-derived TGF-β on cells at the neurovascular interface and we speculate how these biological effects might contribute to degeneration and regeneration processes. Summarizing the effects of the components derived from the brain vascular system on nervous system regeneration might support the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Kristina Beck
- Centre of Chronic Immunodeficiency, University Medical Centre Freiburg and University of Freiburg, 79106 Freiburg, Germany
| | | |
Collapse
|
81
|
Understanding the role of inflammatory-related pathways in the pathophysiology and treatment of psychiatric disorders: evidence from human peripheral studies and CNS studies. Int J Neuropsychopharmacol 2011; 14:997-1012. [PMID: 21156092 DOI: 10.1017/s1461145710001410] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many lines of evidence now support the hypothesis that inflammation-related pathways are involved in the pathophysiology of psychiatric disorders. Much of the data underpinning this hypothesis has come from the study of inflammation-related proteins in blood of individuals with mood disorders and schizophrenia. Significantly, recent data have emerged to suggest that changes in inflammation-related pathways are present in the CNS of subjects with psychiatric disorders. It is therefore timely to overview how such data, plus data on the role of inflammation-related proteins in CNS function, is contributing to understanding the pathophysiology of mood disorders and schizophrenia. In addition, it has been suggested that antidepressants, mood stabilizers and antipsychotic drugs act on inflammation-related pathways and therefore measuring levels of inflammation-related proteins in blood may be useful in monitoring treatment responsiveness. Despite these important neuropsychopharmacological discoveries, there is no clear understanding as to how inflammatory-related pathways can precipitate the onset of psychiatric symptoms. This review will focus on data suggesting that acute-reactive proteins and cytokines are affected by the pathophysiology of mood disorders and schizophrenia, that levels of blood inflammation-related proteins before and after treatment might be useful in the diagnosis of psychiatric disorders or measuring responsiveness to drug treatment. Finally, it will be postulated how changes in these proteins affect CNS function to cause psychiatric disorders.
Collapse
|
82
|
Brett JO, Renault VM, Rafalski VA, Webb AE, Brunet A. The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany NY) 2011; 3:108-24. [PMID: 21386132 PMCID: PMC3082007 DOI: 10.18632/aging.100285] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In adult mammals, neural stem cells (NSCs) generate new neurons that are important for specific types of learning and memory. Controlling adult NSC number and function is fundamental for preserving the stem cell pool and ensuring proper levels of neurogenesis throughout life. Here we study the importance of the microRNA gene cluster miR-106b~25 (miR-106b, miR-93, and miR-25) in primary cultures of neural stem/progenitor cells (NSPCs) isolated from adult mice. We find that knocking down miR-25 decreases NSPC proliferation, whereas ectopically expressing miR-25 promotes NSPC proliferation. Expressing the entire miR-106b~25 cluster in NSPCs also increases their ability to generate new neurons. Interestingly, miR-25 has a number of potential target mRNAs involved in insulin/insulin-like growth factor-1 (IGF) signaling, a pathway implicated in aging. Furthermore, the regulatory region of miR-106b~25 is bound by FoxO3, a member of the FoxO family of transcription factors that maintains adult stem cells and extends lifespan downstream of insulin/IGF signaling. These results suggest that miR-106b~25 regulates NSPC function and is part of a network involving the insulin/IGF-FoxO pathway, which may have important implications for the homeostasis of the NSC pool during aging.
Collapse
Affiliation(s)
- Jamie O Brett
- Department of Genetics, Stanford University School of Medicine; Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
83
|
Shetty AK, Hattiangady B, Rao MS, Shuai B. Deafferentation enhances neurogenesis in the young and middle aged hippocampus but not in the aged hippocampus. Hippocampus 2011; 21:631-46. [PMID: 20333732 PMCID: PMC2927723 DOI: 10.1002/hipo.20776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2010] [Indexed: 12/13/2022]
Abstract
Increased neurogenesis in the dentate gyrus (DG) after brain insults such as excitotoxic lesions, seizures, or stroke is a well known phenomenon in the young hippocampus. This plasticity reflects an innate compensatory response of neural stem cells (NSCs) in the young hippocampus to preserve function or minimize damage after injury. However, injuries to the middle-aged and aged hippocampi elicit either no or dampened neurogenesis response, which could be due to an altered plasticity of NSCs and/or the hippocampus with age. We examined whether the plasticity of NSCs to increase neurogenesis in response to a milder injury such as partial deafferentation is preserved during aging. We quantified DG neurogenesis in the hippocampus of young, middle-aged, and aged F344 rats after partial deafferentation. A partial deafferentation of the left hippocampus without any apparent cell loss was induced via administration of Kainic acid (0.5 μg in 1.0 μl) into the right lateral ventricle of the brain. In this model, degeneration of CA3 pyramidal neurons and dentate hilar neurons in the right hippocampus results in loss of commissural axons which leads to partial deafferentation of the dendrites of dentate granule cells and CA1-CA3 pyramidal neurons in the left hippocampus. Quantification of newly born cells that are added to the dentate granule cell layer at postdeafferentation days 4-15 using 5'-bromodeoxyuridine (BrdU) labeling revealed greatly increased addition of newly born cells (∼three fold increase) in the deafferented young and middle-aged hippocampi but not in the deafferented aged hippocampus. Measurement of newly born neurons using doublecortin (DCX) immunostaining also revealed similar findings. Analyses using BrdU-DCX dual immunofluorescence demonstrated no changes in neuronal fate-choice decision of newly born cells after deafferentation, in comparison to the age-matched naive hippocampus in all age groups. Thus, the plasticity of hippocampal NSCs to increase DG neurogenesis in response to a milder injury such as partial hippocampal deafferentation is preserved until middle age but lost at old age.
Collapse
Affiliation(s)
- Ashok K Shetty
- Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, North Carolina, USA.
| | | | | | | |
Collapse
|
84
|
Kandasamy M, Reilmann R, Winkler J, Bogdahn U, Aigner L. Transforming Growth Factor-Beta Signaling in the Neural Stem Cell Niche: A Therapeutic Target for Huntington's Disease. Neurol Res Int 2011; 2011:124256. [PMID: 21766020 PMCID: PMC3134994 DOI: 10.1155/2011/124256] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/19/2011] [Indexed: 12/31/2022] Open
Abstract
The neural stem cell niches possess the regenerative capacity to generate new functional neurons in the adult brain, suggesting the possibility of endogenous neuronal replacement after injury or disease. Huntington disease (HD) is a neurodegenerative disease and characterized by neuronal loss in the basal ganglia, leading to motor, cognitive, and psychological disabilities. Apparently, in order to make use of the neural stem cell niche as a therapeutic concept for repair strategies in HD, it is important to understand the cellular and molecular composition of the neural stem cell niche under such neurodegenerative conditions. This paper mainly discusses the current knowledge on the regulation of the hippocampal neural stem cell niche in the adult brain and by which mechanism it might be compromised in the case of HD.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Ralf Reilmann
- Department of Neurology, University of Münster Medical School, 48129 Münster, Germany
| | - Jürgen Winkler
- Division of Molecular Neurology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University of Regensburg, D-93053 Regensburg, Germany
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| |
Collapse
|
85
|
Gilley JA, Yang CP, Kernie SG. Developmental profiling of postnatal dentate gyrus progenitors provides evidence for dynamic cell-autonomous regulation. Hippocampus 2011; 21:33-47. [PMID: 20014381 DOI: 10.1002/hipo.20719] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The dentate gyrus of the hippocampus is one of the most prominent regions in the postnatal mammalian brain where neurogenesis continues throughout life. There is tremendous speculation regarding the potential implications of adult hippocampal neurogenesis, though it remains unclear to what extent this ability becomes attenuated during normal aging, and what genetic changes in the progenitor population ensue over time. Using defined elements of the nestin promoter, we developed a transgenic mouse that reliably labels neural stem and early progenitors with green fluorescent protein (GFP). Using a combination of immunohistochemical and flow cytometry techniques, we characterized the progenitor cells within the dentate gyrus and created a developmental profile from postnatal day 7 (P7) until 6 months of age. In addition, we demonstrate that the proliferative potential of these progenitors is controlled at least in part by cell-autonomous cues. Finally, to identify what may underlie these differences, we performed stem cell-specific microarrays on GFP-expressing sorted cells from isolated P7 and postnatal day 28 (P28) dentate gyrus. We identified several differentially expressed genes that may underlie the functional differences that we observe in neurosphere assays from sorted cells and differentiation assays at these different ages. These data suggest that neural progenitors from the dentate gyrus are differentially regulated by cell-autonomous factors that change over time.
Collapse
Affiliation(s)
- Jennifer A Gilley
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | | | | |
Collapse
|
86
|
Moriyama M, Fukuhara T, Britschgi M, He Y, Narasimhan R, Villeda S, Molina H, Huber BT, Holers M, Wyss-Coray T. Complement receptor 2 is expressed in neural progenitor cells and regulates adult hippocampal neurogenesis. J Neurosci 2011; 31:3981-9. [PMID: 21411641 PMCID: PMC3071463 DOI: 10.1523/jneurosci.3617-10.2011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 12/27/2010] [Accepted: 01/12/2011] [Indexed: 11/21/2022] Open
Abstract
Injury and inflammation are potent regulators of adult neurogenesis. As the complement system forms a key immune pathway that may also exert critical functions in neural development and neurodegeneration, we asked whether complement receptors regulate neurogenesis. We discovered that complement receptor 2 (CR2), classically known as a coreceptor of the B-lymphocyte antigen receptor, is expressed in adult neural progenitor cells (NPCs) of the dentate gyrus. Two of its ligands, C3d and interferon-α (IFN-α), inhibited proliferation of wild-type NPCs but not NPCs derived from mice lacking Cr2 (Cr2(-/-)), indicating functional Cr2 expression. Young and old Cr2(-/-) mice exhibited prominent increases in basal neurogenesis compared with wild-type littermates, whereas intracerebral injection of C3d resulted in fewer proliferating neuroblasts in wild-type than in Cr2(-/-) mice. We conclude that Cr2 regulates hippocampal neurogenesis and propose that increased C3d and IFN-α production associated with brain injury or viral infections may inhibit neurogenesis.
Collapse
Affiliation(s)
- Maiko Moriyama
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California 94305
| | - Takeshi Fukuhara
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California 94305
| | - Markus Britschgi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California 94305
| | - Yingbo He
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California 94305
| | - Ramya Narasimhan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California 94305
| | - Saul Villeda
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California 94305
| | - Hector Molina
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Brigitte T. Huber
- Department of Pathology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Mike Holers
- Departments of Medicine and Immunology, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, and
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California 94305
- Rehabilitation, Research, and Development, Veterans Administration Palo Alto Health Care System, Palo Alto, California 94305
| |
Collapse
|
87
|
Varela-Nallar L, Aranguiz FC, Abbott AC, Slater PG, Inestrosa NC. Adult hippocampal neurogenesis in aging and Alzheimer's disease. ACTA ACUST UNITED AC 2010; 90:284-96. [DOI: 10.1002/bdrc.20193] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
88
|
Werry EL, Enjeti S, Halliday GM, Sachdev PS, Double KL. Effect of age on proliferation-regulating factors in human adult neurogenic regions. J Neurochem 2010; 115:956-64. [PMID: 20831616 DOI: 10.1111/j.1471-4159.2010.06992.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neurogenesis, the birth of new neurons, continues throughout adulthood in the human subventricular zone (SVZ) and hippocampus. It is not known how levels of putative proliferation-regulating factors change with age in human adult neurogenic areas. The current project employed ELISAs to investigate changes in levels of putative proliferation-regulating factors in the healthy human SVZ and dentate gyrus throughout the adult lifespan (18-104 years). Levels of brain-derived neurotrophic factor, basic fibroblast growth factor and interleukin (IL)-1β were significantly higher in the hippocampus than in the SVZ and levels of glial-derived neurotrophic factor and transforming growth factor-α were significantly higher in the SVZ (p < 0.005), suggesting that factors with predominant influences on neurogenesis differ between the two human adult neurogenic areas. Hippocampal levels of transforming growth factor-β1 strongly increased with age (n = 9, p < 0.01), whereas hippocampal and SVZ levels of brain-derived neurotrophic factor, epidermal growth factor, basic fibroblast growth factor, glial-derived neurotrophic factor, heparin-binding epidermal growth factor, insulin-like growth factor-1, IL-1β, IL-6 and transforming growth factor-α did not change significantly with age in the SVZ or hippocampus. These findings suggest regulation of the adult neurogenic environment in the human brain may differ over time from that in other species.
Collapse
Affiliation(s)
- Eryn L Werry
- Brain Sciences University of New South Wales, Randwick, NSW, Australia
| | | | | | | | | |
Collapse
|
89
|
Kandasamy M, Couillard-Despres S, Raber KA, Stephan M, Lehner B, Winner B, Kohl Z, Rivera FJ, Nguyen HP, Riess O, Bogdahn U, Winkler J, von Hörsten S, Aigner L. Stem cell quiescence in the hippocampal neurogenic niche is associated with elevated transforming growth factor-beta signaling in an animal model of Huntington disease. J Neuropathol Exp Neurol 2010; 69:717-728. [PMID: 20535034 DOI: 10.1097/nen.0b013e3181e4f733] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cellular proliferation, differentiation, integration, and survival within the adult neural stem cell niche are altered under pathological conditions, but the molecular cues regulating the biology of this niche are mostly unknown. We examined the hippocampal neural stem cell niche in a transgenic rat model of Huntington disease. In this model, progressive cognitive deficits develop at the age of 9 months, suggesting possible hippocampal dysfunction. We found a disease-associated progressive decline in hippocampal progenitor cell proliferation accompanied by an expansion of the pool of 5-bromo-2-deoxyuridine label-retaining Sox-2-positive quiescent stem cells in the transgenic animals. Increments in quiescent stem cells occurred at the expense of cAMP-responsive element-binding protein-mediated neuronal differentiation and survival. Because elevated levels of transforming growth factor-beta1 (TGF-beta1) impair neural progenitor proliferation, we investigated hippocampal TGF-beta signaling and determined that TGF-beta1 induces the neural progenitors to exit the cell cycle. Although phospho-Smad2, an effector of TGF-beta signaling, is normally absent in subgranular stem cells, it accumulated progressively in Sox2/glial fibrillary acidic protein-expressing cells of the subgranular zone in the transgenic rats. These results indicate that alterations in neurogenesis in transgenic Huntington disease rats occur in successive phases that are associated with increasing TGF-beta signaling. Thus, TGF-beta1 signaling seems to be a crucial modulator of neurogenesis in Huntington disease and may represent a target for future therapy.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Smad7 regulates the adult neural stem/progenitor cell pool in a transforming growth factor beta- and bone morphogenetic protein-independent manner. Mol Cell Biol 2010; 30:3685-94. [PMID: 20479122 DOI: 10.1128/mcb.00434-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Members of the transforming growth factor beta (TGF-beta) family of proteins modulate the proliferation, differentiation, and survival of many different cell types. Neural stem and progenitor cells (NPCs) in the adult brain are inhibited in their proliferation by TGF-beta and by bone morphogenetic proteins (BMPs). Here, we investigated neurogenesis in a hypomorphic mouse model for the TGF-beta and BMP inhibitor Smad7, with the hypothesis that NPC proliferation might be reduced due to increased TGF-beta and BMP signaling. Unexpectedly, we found enhanced NPC proliferation as well as an increased number of label-retaining cells in vivo. The enhanced proliferation potential of mutant cells was retained in vitro in neurosphere cultures. We observed a higher sphere-forming capacity as well as faster growth and cell cycle progression. Use of specific inhibitors revealed that these effects were independent of TGF-beta and BMP signaling. The enhanced proliferation might be at least partially mediated by elevated signaling via epidermal growth factor (EGF) receptor, as mutant cells showed higher expression and activation levels of the EGF receptor. Conversely, an EGF receptor inhibitor reduced the proliferation of these cells. Our data indicate that endogenous Smad7 regulates neural stem/progenitor cell proliferation in a TGF-beta- and BMP-independent manner.
Collapse
|
91
|
Kinsler R, Taylor MM, Flores NM, Leffert JJ, Beech RD. Altered response to antidepressant treatment in FoxG1 heterozygous knockout mice. Synapse 2010; 64:169-71. [PMID: 19852072 DOI: 10.1002/syn.20737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Evidence from a variety of sources suggests that structural alterations in the brain, including neurogenesis, may play a role in both the pathogenesis of mood disorders and the mechanism of action of antidepressants. Previous studies have implicated both the transforming growth factor-beta (TGF-beta), and the phosphatidyl inositol-3 kinase (PI3K)-Akt pathways in the neurogenesis-promoting and behavioral properties of antidepressants. Forkhead box protein G1 (FoxG1) is a major regulator of both of these pathways, and FoxG1 heterozygous null mice (FoxG1+/-) have previously been reported to have deficits in adult hippocampal neurogenesis and behavioral abnormalities including deficits in contextual fear learning. However the role of FoxG1, if any, in the response to antidepressants has not been previously investigated.To investigate the role of the FoxG1 gene in the behavioral and neurogenic properties of antidepressants, we tested FoxG1+/- mice and littermate controls in two different rodent models of antidepressant action: the tail suspension test and the forced swim test. FoxG1+/- mice showed no response to antidepressants in either of these tests. These results suggest that normal levels of FoxG1 may be required for the behavioral response to antidepressants.
Collapse
Affiliation(s)
- Rebecca Kinsler
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | | | | | | |
Collapse
|
92
|
Smad3 deficiency reduces neurogenesis in adult mice. J Mol Neurosci 2010; 41:383-96. [PMID: 20155334 DOI: 10.1007/s12031-010-9329-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 01/06/2010] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-beta signaling through Smad3 inhibits cell proliferation in many cell types. As cell proliferation in the brain is an integral part of neurogenesis, we sought to determine the role of Smad3 in adult neurogenesis through examining processes and structures important to neurogenesis in adult Smad3 null mice. We find that there are fewer proliferating cells in neurogenic regions of adult Smad3 null mouse brains and reduced migration of neuronal precursor cells from the subventricular zone to the olfactory bulb. Alterations in astrocyte number and distribution within the rostral migratory stream of Smad3 null mice give rise to a smaller and more disorganized structure that may impact on neuronal precursor cell migration. However, the proportion of proliferating cells that become neurons is similar in wild type and Smad3 null mice. Our results suggest that signaling through Smad3 is needed to maintain the rate of cell division of neuronal precursors in the adult brain and hence the amount of neurogenesis, without altering neuronal cell fate.
Collapse
|
93
|
Goldberg JS, Hirschi KK. Diverse roles of the vasculature within the neural stem cell niche. Regen Med 2010; 4:879-97. [PMID: 19903006 DOI: 10.2217/rme.09.61] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An interdependent relationship between the vascular and nervous systems begins during the earliest stages of development and persists through the mammalian lifespan. Accordingly, the process of adult neurogenesis involves the coordinated response of both systems to maintain a specialized microenvironment (niche) that tips the scale towards maintenance or regeneration, as needed. Understanding the nature and regulation of this balance will provide a foundation on which the potential for molecular- and stem cell-based therapies can be developed to treat prevalent CNS diseases and disorders. The vasculature is cited as a prominent feature within the adult subventricular zone and subgranular zone, known adult neural stem cell niches, helping to retain neural stem and progenitor cell potential. The vascular compartment within the neural stem cell niche has the unique opportunity to not only regulate neural stem and progenitor cells through direct contact with, and paracrine signaling from, endothelial and mural cells that make up blood vessels, but also integrates systemic signals into the local microenvironment via distribution of soluble factors from blood circulation to regulate stem cell niche behavior. Understanding the intricate role that the vasculature plays to influence neural stem cells in the context of niche regulation will help to bridge the gap from bench to bedside for the development of regeneration-based therapies for the CNS.
Collapse
Affiliation(s)
- Joshua S Goldberg
- Baylor College of Medicine, Department of Pediatrics & Molecular, Houston, TX 77030, USA
| | | |
Collapse
|
94
|
Mathieu P, Battista D, Depino A, Roca V, Graciarena M, Pitossi F. The more you have, the less you get: the functional role of inflammation on neuronal differentiation of endogenous and transplanted neural stem cells in the adult brain. J Neurochem 2009; 112:1368-85. [PMID: 20028453 DOI: 10.1111/j.1471-4159.2009.06548.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The differentiation of neural stem cells toward a neuronal phenotype is determined by the extracellular and intracellular factors that form the neurogenic niche. In this review, we discuss the available data on the functional role of inflammation and in particular, pro- and anti-inflammatory cytokines, on neuronal differentiation from endogenous and transplanted neural stem/progenitor cells. In addition, we discuss the role of microglial cell activation on these processes and the fact that microglial cell activation is not univocally associated with a pro-inflammatory milieu. We conclude that brain cytokines could be regarded as part of the endogenous neurogenic niche. In addition, we propose that accumulating evidence suggests that pro-inflammatory cytokines have a negative effect on neuronal differentiation, while anti-inflammatory cytokines exert an opposite effect. The clarification of the functional role of cytokines on neuronal differentiation will be relevant not only to better understand adult neurogenesis, but also to envisage complementary treatments to modulate cytokine action that could increase the therapeutic benefit of future progenitor/stem cell-based therapies.
Collapse
Affiliation(s)
- Patricia Mathieu
- Institute Leloir Foundation-IIBBA-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
95
|
Carpentier PA, Palmer TD. Immune influence on adult neural stem cell regulation and function. Neuron 2009; 64:79-92. [PMID: 19840551 PMCID: PMC2789107 DOI: 10.1016/j.neuron.2009.08.038] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2009] [Indexed: 12/21/2022]
Abstract
Neural stem cells (NSCs) lie at the heart of central nervous system development and repair, and deficiency or dysregulation of NSCs or their progeny can have significant consequences at any stage of life. Immune signaling is emerging as one of the influential variables that define resident NSC behavior. Perturbations in local immune signaling accompany virtually every injury or disease state, and signaling cascades that mediate immune activation, resolution, or chronic persistence influence resident stem and progenitor cells. Some aspects of immune signaling are beneficial, promoting intrinsic plasticity and cell replacement, while others appear to inhibit the very type of regenerative response that might restore or replace neural networks lost in injury or disease. Here we review known and speculative roles that immune signaling plays in the postnatal and adult brain, focusing on how environments encountered in disease or injury may influence the activity and fate of endogenous or transplanted NSCs.
Collapse
Affiliation(s)
- Pamela A. Carpentier
- Department of Neurosurgery, Stanford University, 1201 Welch Road MSLS P320, Stanford, CA 94305, 650-736-1482
| | - Theo D. Palmer
- Department of Neurosurgery, Stanford University, 1201 Welch Road MSLS P320, Stanford, CA 94305, 650-736-1482
| |
Collapse
|
96
|
Campbell IL, Hofer MJ, Pagenstecher A. Transgenic models for cytokine-induced neurological disease. Biochim Biophys Acta Mol Basis Dis 2009; 1802:903-17. [PMID: 19835956 DOI: 10.1016/j.bbadis.2009.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/01/2009] [Accepted: 10/02/2009] [Indexed: 12/22/2022]
Abstract
Considerable evidence supports the idea that cytokines are important mediators of pathophysiologic processes within the central nervous system (CNS). Numerous studies have documented the increased production of various cytokines in the human CNS in a variety of neurological and neuropsychiatric disorders. Deciphering cytokine actions in the intact CNS has important implications for our understanding of the pathogenesis and treatment of these disorders. One approach to address this problem that has been used widely employs transgenic mice with CNS-targeted production of different cytokines. Transgenic production of cytokines in the CNS of mice allows not only for the investigation of complex cellular responses at a localized level in the intact brain but also more closely recapitulates the expression of these mediators as found in disease states. As discussed in this review, the findings show that these transgenic animals exhibit wide-ranging structural and functional deficits that are linked to the development of distinct neuroinflammatory responses which are relatively specific for each cytokine. These cytokine-induced alterations often recapitulate those found in various human neurological disorders not only underscoring the relevance of these models but also reinforcing the clinicopathogenetic significance of cytokines in diseases of the CNS.
Collapse
Affiliation(s)
- Iain L Campbell
- School of Molecular and Microbial Biosciences and Bosch Institute, The University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
97
|
Couillard-Despres S, Wuertinger C, Kandasamy M, Caioni M, Stadler K, Aigner R, Bogdahn U, Aigner L. Ageing abolishes the effects of fluoxetine on neurogenesis. Mol Psychiatry 2009; 14:856-864. [PMID: 19139747 DOI: 10.1038/mp.2008.147] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/26/2008] [Accepted: 12/15/2008] [Indexed: 11/09/2022]
Abstract
Depression constitutes a widespread condition observed in elderly patients. Recently, it was found that several drugs employed in therapies against depression stimulate hippocampal neurogenesis in young rodents and nonhuman primates. As the rate of neurogenesis is dramatically reduced during ageing, we examined the influences of ageing on neurogenic actions of antidepressants. We tested the impact of fluoxetine, a broadly used antidepressant, on hippocampal neurogenesis in mice of three different age groups (100, 200 and over 400 days of age). Proliferation and survival rate of newly generated cells, as well as the percentage of cells that acquired a neuronal phenotype were analyzed in the hippocampus of mice that received fluoxetine daily in a chronic manner. Surprisingly, the action of fluoxetine on neurogenesis was decreasing as a function of age and was only significant in young animals. Hence, fluoxetine increased survival and the frequency of neuronal marker expression in newly generated cells of the hippocampus in the young adult group (that is 100 days of age) only. No significant effects on neurogenesis could be detected in fluoxetine-treated adult and elderly mice (200 and over 400 days of age). The data indicate that the action of fluoxetine on neurogenesis is highly dependent on the age of the treated individual. Although the function of neurogenesis in the clinical manifestation of depression is currently a matter of speculation, this study clearly shows that the therapeutic effects of antidepressants in elderly patients are not mediated by neurogenesis modulation.
Collapse
Affiliation(s)
- S Couillard-Despres
- Department of Neurology, University of Regensburg, Regensburg D-93053, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Barcellos-Hoff MH, Newcomb EW, Zagzag D, Narayana A. Therapeutic targets in malignant glioblastoma microenvironment. Semin Radiat Oncol 2009; 19:163-70. [PMID: 19464631 DOI: 10.1016/j.semradonc.2009.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is considerable evidence that the tissue microenvironment can suppress cancer and that microenvironment disruption is required for cancer growth and progression. Distortion of the microenvironment by tumor cells can promote growth, recruit nonmalignant cells that provide physiological resources, and facilitate invasion. Compared with the variable routes taken by cells to become cancers, the response of normal tissue to cancer is relatively consistent such that controlling cancer may be more readily achieved indirectly via the microenvironment. Here, we discuss 3 ideas about how the microenvironment, consisting of a vasculature, inflammatory cells, immune cells, growth factors, and extracellular matrix, might provide therapeutic targets in glioblastoma (GBM) in the context of radiotherapy (RT): (1) viable therapeutic targets exist in the GBM microenvironment, (2) RT alters the microenvironment of tissues and tumors; and (3) a potential benefit may be achieved by targeting the microenvironments induced by RT.
Collapse
Affiliation(s)
- Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, New York University, Langone School of Medicine, New York, NY 10016, USA.
| | | | | | | |
Collapse
|
99
|
Herring A, Ambrée O, Tomm M, Habermann H, Sachser N, Paulus W, Keyvani K. Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology. Exp Neurol 2009; 216:184-92. [DOI: 10.1016/j.expneurol.2008.11.027] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/24/2008] [Accepted: 11/24/2008] [Indexed: 12/15/2022]
|
100
|
Abstract
New neurons continue to be produced in adult mammals, including humans, predominantly in the anterior subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus. This update focuses on the emerging concept that adult CNS neurogenesis can be regulated by targeting neurotransmitter receptors, which, in turn, drive expression of crucial neurotrophic and growth factors. Such an approach might enable the development of pharmacological treatments that harness the endogenous potential of the CNS to replace lost cells in neurological disorders such as stroke and Alzheimer's and Huntington's diseases. This review samples in vivo studies in adult mammals from 2006 to mid-2008. It also provides some considerations for navigating toward translation to human disorders. Among them are the formidable problems of scaling up production of new neurons within the two "niches" of the brain and delivering sufficient numbers to distant degenerating regions for cell replacement. However, an expedition can only succeed if started.
Collapse
Affiliation(s)
- Theo Hagg
- Kentucky Spinal Cord Injury Research Center, Departments of Neurological Surgery and of Pharmacology and Toxicology, University of Louisville, Kentucky, USA.
| |
Collapse
|