51
|
Dehmel S, Weiss KJ, El-Merhie N, Callegari J, Konrad B, Mutze K, Eickelberg O, Königshoff M, Krauss-Etschmann S. microRNA Expression Profile of Purified Alveolar Epithelial Type II Cells. Genes (Basel) 2022; 13:1420. [PMID: 36011331 PMCID: PMC9407429 DOI: 10.3390/genes13081420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Alveolar type II (ATII) cells are essential for the maintenance of the alveolar homeostasis. However, knowledge of the expression of the miRNAs and miRNA-regulated networks which control homeostasis and coordinate diverse functions of murine ATII cells is limited. Therefore, we asked how miRNAs expressed in ATII cells might contribute to the regulation of signaling pathways. We purified "untouched by antibodies" ATII cells using a flow cytometric sorting method with a highly autofluorescent population of lung cells. TaqMan® miRNA low-density arrays were performed on sorted cells and intersected with miRNA profiles of ATII cells isolated according to a previously published protocol. Of 293 miRNAs expressed in both ATII preparations, 111 showed equal abundances. The target mRNAs of bona fide ATII miRNAs were used for pathway enrichment analysis. This analysis identified nine signaling pathways with known functions in fibrosis and/or epithelial-to-mesenchymal transition (EMT). In particular, a subset of 19 miRNAs was found to target 21 components of the TGF-β signaling pathway. Three of these miRNAs (miR-16-5p, -17-5p and -30c-5p) were down-modulated by TGF-β1 stimulation in human A549 cells, and concomitant up-regulation of associated mRNA targets (BMPR2, JUN, RUNX2) was observed. These results suggest an important role for miRNAs in maintaining the homeostasis of the TGF-β signaling pathway in ATII cells under physiological conditions.
Collapse
Affiliation(s)
- Stefan Dehmel
- Institute for Lung Biology and Disease, Ludwig-Maximilians University Hospital Munich, Asklepios Clinic Gauting and Helmholtz Zentrum München, Comprehensive Pneumology Center Munich, Max-Lebsche-Platz 31, 81377 Munich, Germany
- Helmholtz Zentrum München, Department Strategy, Programs, Resources, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Katharina J. Weiss
- Institute for Lung Biology and Disease, Ludwig-Maximilians University Hospital Munich, Asklepios Clinic Gauting and Helmholtz Zentrum München, Comprehensive Pneumology Center Munich, Max-Lebsche-Platz 31, 81377 Munich, Germany
- Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Natalia El-Merhie
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Member of the German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), 23845 Borstel, Germany
| | - Jens Callegari
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, 81377 Munich, Germany
- Evangelisches Krankenhaus Bergisch Gladbach, Ferrenbergstraße, 51465 Bergisch Gladbach, Germany
| | - Birte Konrad
- Institute for Lung Biology and Disease, Ludwig-Maximilians University Hospital Munich, Asklepios Clinic Gauting and Helmholtz Zentrum München, Comprehensive Pneumology Center Munich, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Kathrin Mutze
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, 81377 Munich, Germany
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Melanie Königshoff
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, 81377 Munich, Germany
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Member of the German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), 23845 Borstel, Germany
- Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| |
Collapse
|
52
|
Identification of Malignant Cell Populations Associated with Poor Prognosis in High-Grade Serous Ovarian Cancer Using Single-Cell RNA Sequencing. Cancers (Basel) 2022; 14:cancers14153580. [PMID: 35892844 PMCID: PMC9331511 DOI: 10.3390/cancers14153580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Ovarian cancer has a high recurrence rate (~75%), and tumor heterogeneity is associated with such tumor recurrence. However, it is still poorly understood in ovarian cancer. To reveal tumor heterogeneity, we performed single-cell RNA sequencing (RNA-seq) of serous ovarian cancer cells from four different patients: two with primary carcinoma, one with recurrent carcinoma, and one with carcinoma treated with interval debulking surgery. As a result, we found two malignant tumor cell subtypes associated with poor prognosis. One malignant population included the earliest cancer cells and cancer stem-like cells. SLC3A1 and PEG10 were identified as the marker genes of cancer-initiating cells. The other malignant population expressing CA125 (MUC16), the most common biomarker for ovarian cancer, is associated with a decrease in the number of tumor-infiltrating cytotoxic T lymphocytes (CTLs). Our findings will offer new markers for diagnosis and choosing treatments targeting the malignant populations in ovarian cancer. Abstract To reveal tumor heterogeneity in ovarian cancer, we performed single-cell RNA sequencing (RNA-seq). We obtained The Cancer Genome Atlas (TCGA) survival data and TCGA gene expression data for a Kaplan–Meier plot showing the association of each tumor population with poor prognosis. As a result, we found two malignant tumor cell subtypes associated with poor prognosis. Next, we performed trajectory analysis using scVelo and Monocle3 and cell–cell interaction analysis using CellphoneDB. We found that one malignant population included the earliest cancer cells and cancer stem-like cells. Furthermore, we identified SLC3A1 and PEG10 as the marker genes of cancer-initiating cells. The other malignant population expressing CA125 (MUC16) is associated with a decrease in the number of tumor-infiltrating cytotoxic T lymphocytes (CTLs). Moreover, cell–cell interaction analysis implied that interactions mediated by LGALS9 and GAS6, expressed by this malignant population, caused the CTL suppression. The results of this study suggest that two tumor cell populations, including a cancer-initiating cell population and a population expressing CA125, survive the initial treatment and suppress antitumor immunity, respectively, and are associated with poor prognosis. Our findings offer a new understanding of ovarian cancer heterogeneity and will aid in the development of diagnostic tools and treatments.
Collapse
|
53
|
Du J, Guo W, Häckel S, Hoppe S, Garcia JP, Alini M, Tryfonidou MA, Creemers LB, Grad S, Li Z. The function of CD146 in human annulus fibrosus cells and mechanism of the regulation by TGF-β. J Orthop Res 2022; 40:1661-1671. [PMID: 34662464 DOI: 10.1002/jor.25190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/30/2021] [Accepted: 09/30/2021] [Indexed: 02/04/2023]
Abstract
The mouse outer annulus fibrosus (AF) was previously shown to contain CD146+ AF cells, while in vitro culture and exposure to transforming growth factor-beta (TGF-β) further increased the expression of CD146. However, neither the specific function of CD146 nor the underlying mechanism of TGF-β upregulation of CD146+ AF cells have been elucidated yet. In the current study, CD146 expression and its role in cultured human AF cells was investigated studying the cells' capacity for matrix contraction and gene expression of functional AF markers. In addition, TGF-β pathways were blocked by several pathway inhibitors and short hairpin RNAs (shRNAs) targeting SMAD and non-SMAD pathways to investigate their involvement in TGF-β-induced CD146 upregulation. Results showed that knockdown of CD146 led to reduction in AF cell-mediated collagen gel contraction, downregulation of versican and smooth muscle protein 22α (SM22α), and upregulation of scleraxis. TGF-β-induced CD146 upregulation was significantly blocked by inhibition of TGF-β receptor ALK5, and partially inhibited by shRNA against SMAD2 and SMAD4 and by an Protein Kinase B (AKT) inhibitor. Interestingly, the inhibition of extracellular signal-regulated kinases (ERK) pathway induced CD146 upregulation. In conclusion, CD146 was shown to be crucial to maintain the cell contractility of human AF cells in vitro. Furthermore, TGF-β upregulated CD146 via ALK5 signaling cascade, partially through SMAD2, SMAD4, and AKT pathway, whereas, ERK was shown to be a potential negative modulator. Our findings suggest that CD146 can potentially be used as a functional marker in AF repair strategies.
Collapse
Affiliation(s)
- Jie Du
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wei Guo
- AO Research Institute Davos, Davos, Switzerland.,Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Sonja Häckel
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sven Hoppe
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - João P Garcia
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | - Laura B Creemers
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
54
|
Manafi-Farid R, Ataeinia B, Ranjbar S, Jamshidi Araghi Z, Moradi MM, Pirich C, Beheshti M. ImmunoPET: Antibody-Based PET Imaging in Solid Tumors. Front Med (Lausanne) 2022; 9:916693. [PMID: 35836956 PMCID: PMC9273828 DOI: 10.3389/fmed.2022.916693] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a molecular imaging modality combining the high sensitivity of PET with the specific targeting ability of monoclonal antibodies. Various radioimmunotracers have been successfully developed to target a broad spectrum of molecules expressed by malignant cells or tumor microenvironments. Only a few are translated into clinical studies and barely into clinical practices. Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken to overcome the disadvantages, and new tracers are being developed. In this review, we aim to mention the fundamental components of immunoPET imaging, explore the groundbreaking success achieved using this new technique, and review different radioimmunotracers employed in various solid tumors to elaborate on this relatively new imaging modality.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Zahra Jamshidi Araghi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
55
|
Development of a Novel Anti-EpCAM Monoclonal Antibody for Various Applications. Antibodies (Basel) 2022; 11:antib11020041. [PMID: 35735360 PMCID: PMC9220218 DOI: 10.3390/antib11020041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
The epithelial cell adhesion molecule (EpCAM) is a cell surface glycoprotein, which is widely expressed on normal and cancer cells. EpCAM is involved in cell adhesion, proliferation, survival, stemness, and tumorigenesis. Therefore, EpCAM is thought to be a promising target for cancer diagnosis and therapy. In this study, we established anti-EpCAM monoclonal antibodies (mAbs) using the Cell-Based Immunization and Screening (CBIS) method. We characterized them using flow cytometry, Western blotting, and immunohistochemistry. One of the established recombinant anti-EpCAM mAbs, recEpMab-37 (mouse IgG1, kappa), reacted with EpCAM-overexpressed Chinese hamster ovary-K1 cells (CHO/EpCAM) or a colorectal carcinoma cell line (Caco-2). In contrast, recEpMab-37 did not react with EpCAM-knocked out Caco-2 cells. The KD of recEpMab-37 for CHO/EpCAM and Caco-2 was 2.0 × 10−8 M and 3.2 × 10−8 M, respectively. We observed that EpCAM amino acids between 144 to 164 are involved in recEpMab-37 binding. In Western blot analysis, recEpMab-37 detected the EpCAM of CHO/EpCAM and Caco-2 cells. Furthermore, recEpMab-37 could stain formalin-fixed paraffin-embedded colorectal carcinoma tissues by immunohistochemistry. Taken together, recEpMab-37, established by the CBIS method, is useful for detecting EpCAM in various applications.
Collapse
|
56
|
Nong C, Guan P, Li L, Zhang H, Hu H. Tumor immunotherapy: Mechanisms and clinical applications. MEDCOMM – ONCOLOGY 2022. [DOI: 10.1002/mog2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cheng Nong
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Pengbo Guan
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Li
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Hongbo Hu
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- Chongqing International Institution for Immunology Chongqing China
| |
Collapse
|
57
|
Chabaud S, Pellerin È, Caneparo C, Ringuette‑goulet C, Pouliot F, Bolduc S. Bladder cancer cell lines adapt their aggressiveness profile to oxygen tension. Oncol Lett 2022; 24:220. [PMID: 35720486 PMCID: PMC9178683 DOI: 10.3892/ol.2022.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
During the process of tumor growth, cancer cells will be subjected to intermittent hypoxia. This results from the delay in the development of the vascular network in relation to the proliferation of cancer cells. The hypoxic nature of a tumor has been demonstrated as a negative factor for patient survival. To evaluate the impact of hypoxia on the survival and migration properties of low and high-grade bladder cancer cell lines, two low-grade (MGHU-3 and SW-780) and two high-grade (SW-1710 and T24) bladder cancer cell lines were cultured in normoxic (20% O2) or hypoxic atmospheric conditions (2% O2). The response of bladder cancer cell lines to hypoxic atmospheric cell culture conditions was examined under several parameters, including epithelial-mesenchymal transition, doubling time and metabolic activities, thrombospondin-1 expression, whole Matrix Metallo-Proteinase activity, migration and resistance to oxidative stress. The low-grade cell line response to hypoxia was heterogeneous even if it tended to adopt a more aggressive profile. Hypoxia enhanced migration and pro-survival properties of MGHU-3 cells, whereas these features were reduced for the SW-780 cell line cultured under low oxygen tension. The responses of tested high-grade cell lines were more homogeneous and tended to adopt a less aggressive profile. Hypoxia drastically changed some of the bladder cancer cell line properties, for example matrix metalloproteinases expression for all cancer cells but also switch in glycolytic metabolism of low grade cancer cells. Overall, studying bladder cancer cells in hypoxic environments are relevant for the translation from in vitro findings to in vivo context.
Collapse
Affiliation(s)
- Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale (Experimental Organogenesis Research Center)/LOEX, Regenerative Medicine Division, CHU de Québec‑Laval University Research Center, Enfant‑Jésus Hospital, Quebec, QC G1J 1Z4, Canada
| | - Ève Pellerin
- Centre de Recherche en Organogénèse Expérimentale (Experimental Organogenesis Research Center)/LOEX, Regenerative Medicine Division, CHU de Québec‑Laval University Research Center, Enfant‑Jésus Hospital, Quebec, QC G1J 1Z4, Canada
| | - Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale (Experimental Organogenesis Research Center)/LOEX, Regenerative Medicine Division, CHU de Québec‑Laval University Research Center, Enfant‑Jésus Hospital, Quebec, QC G1J 1Z4, Canada
| | - Cassandra Ringuette‑goulet
- Centre de Recherche en Organogénèse Expérimentale (Experimental Organogenesis Research Center)/LOEX, Regenerative Medicine Division, CHU de Québec‑Laval University Research Center, Enfant‑Jésus Hospital, Quebec, QC G1J 1Z4, Canada
| | - Frédéric Pouliot
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 4G2, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale (Experimental Organogenesis Research Center)/LOEX, Regenerative Medicine Division, CHU de Québec‑Laval University Research Center, Enfant‑Jésus Hospital, Quebec, QC G1J 1Z4, Canada
| |
Collapse
|
58
|
Shin HG, Yang HR, Yoon A, Lee S. Bispecific Antibody-Based Immune-Cell Engagers and Their Emerging Therapeutic Targets in Cancer Immunotherapy. Int J Mol Sci 2022; 23:5686. [PMID: 35628495 PMCID: PMC9146966 DOI: 10.3390/ijms23105686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second leading cause of death worldwide after cardiovascular diseases. Harnessing the power of immune cells is a promising strategy to improve the antitumor effect of cancer immunotherapy. Recent progress in recombinant DNA technology and antibody engineering has ushered in a new era of bispecific antibody (bsAb)-based immune-cell engagers (ICEs), including T- and natural-killer-cell engagers. Since the first approval of blinatumomab by the United States Food and Drug Administration (US FDA), various bsAb-based ICEs have been developed for the effective treatment of patients with cancer. Simultaneously, several potential therapeutic targets of bsAb-based ICEs have been identified in various cancers. Therefore, this review focused on not only highlighting the action mechanism, design and structure, and status of bsAb-based ICEs in clinical development and their approval by the US FDA for human malignancy treatment, but also on summarizing the currently known and emerging therapeutic targets in cancer. This review provides insights into practical considerations for developing next-generation ICEs.
Collapse
Affiliation(s)
- Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
| | - Aerin Yoon
- R&D Division, GC Biopharma, Yongin 16924, Korea
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
59
|
Ovarian Cancer: Treatment and Resistance to Pharmacotherapy. REPRODUCTIVE MEDICINE 2022. [DOI: 10.3390/reprodmed3020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Despite advances in surgical techniques and chemotherapy, ovarian cancer is still a leading cause of death among gynecological cancers. In addition to the late detection of the disease, the main reason for poor prognosis is resistance to pharmacotherapy, mostly platinum compounds. About a third of patients do not respond to primary platinum-based chemotherapy treatment, and over time, eventually, 80% of other patients develop chemoresistance, which makes the recurrence of disease incurable. In this review, we describe a difficult clinical hurdle faced in ovarian cancer therapy as a result of platinum resistance, as well as resistance to newer targeted therapy with PARP inhibitors and bevacizumab. We, furthermore, give attention also to the role of the tumor microenvironment as it is less well understood than the tumor cell-intrinsic mechanism. Because a central goal in ovarian cancer research is the development of novel strategies to overcome chemoresistance, treatment for cancer is moving toward personalized therapy.
Collapse
|
60
|
Nano-Drug Delivery Systems Based on Different Targeting Mechanisms in the Targeted Therapy of Colorectal Cancer. Molecules 2022; 27:molecules27092981. [PMID: 35566331 PMCID: PMC9099628 DOI: 10.3390/molecules27092981] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a usual digestive tract malignancy and the third main cause of cancer death around the world, with a high occurrence rate and mortality rate. Conventional therapies for CRC have certain side effects and restrictions. However, the exciting thing is that with the rapid development of nanotechnology, nanoparticles have gradually become more valuable drug delivery systems than traditional therapies because of their capacity to control drug release and target CRC. This also promotes the application of nano-drug targeted delivery systems in the therapy of CRC. Moreover, to make nanoparticles have a better colon targeting effect, many approaches have been used, including nanoparticles targeting CRC and in response to environmental signals. In this review, we focus on various targeting mechanisms of CRC-targeted nanoparticles and their latest research progress in the last three years, hoping to give researchers some inspiration on the design of CRC-targeted nanoparticles.
Collapse
|
61
|
Zon G. Recent advances in aptamer applications for analytical biochemistry. Anal Biochem 2022; 644:113894. [PMID: 32763306 PMCID: PMC7403853 DOI: 10.1016/j.ab.2020.113894] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Aptamers are typically defined as relatively short (20-60 nucleotides) single-stranded DNA or RNA molecules that bind with high affinity and specificity to various types of targets. Aptamers are frequently referred to as "synthetic antibodies" but are easier to obtain, less expensive to produce, and in several ways more versatile than antibodies. The beginnings of aptamers date back to 1990, and since then there has been a continual increase in aptamer publications. The intent of the present account was to focus on recent original research publications, i.e., those appearing in 2019 through April 2020, when this account was written. A Google Scholar search of this recent literature was performed for relevance-ranking of articles. New methods for selection of aptamers were not included. Nine categories of applications were organized and representative examples of each are given. Finally, an outlook is offered focusing on "faster, better, cheaper" application performance factors as key drivers for future innovations in aptamer applications.
Collapse
|
62
|
Eroglu E, Yen CYT, Tsoi YL, Witman N, Elewa A, Joven Araus A, Wang H, Szattler T, Umeano CH, Sohlmér J, Goedel A, Simon A, Chien KR. Epicardium-derived cells organize through tight junctions to replenish cardiac muscle in salamanders. Nat Cell Biol 2022; 24:645-658. [PMID: 35550612 PMCID: PMC9106584 DOI: 10.1038/s41556-022-00902-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
The contribution of the epicardium, the outermost layer of the heart, to cardiac regeneration has remained controversial due to a lack of suitable analytical tools. By combining genetic marker-independent lineage-tracing strategies with transcriptional profiling and loss-of-function methods, we report here that the epicardium of the highly regenerative salamander species Pleurodeles waltl has an intrinsic capacity to differentiate into cardiomyocytes. Following cryoinjury, CLDN6+ epicardium-derived cells appear at the lesion site, organize into honeycomb-like structures connected via focal tight junctions and undergo transcriptional reprogramming that results in concomitant differentiation into de novo cardiomyocytes. Ablation of CLDN6+ differentiation intermediates as well as disruption of their tight junctions impairs cardiac regeneration. Salamanders constitute the evolutionarily closest species to mammals with an extensive ability to regenerate heart muscle and our results highlight the epicardium and tight junctions as key targets in efforts to promote cardiac regeneration.
Collapse
Affiliation(s)
- Elif Eroglu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Christopher Y T Yen
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yat-Long Tsoi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed Elewa
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Heng Wang
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tamara Szattler
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chimezie H Umeano
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Gene Therapy, Lunds Universitet, Lund, Sweden
| | - Jesper Sohlmér
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Goedel
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
63
|
Dum D, Taherpour N, Menz A, Höflmayer D, Völkel C, Hinsch A, Gorbokon N, Lennartz M, Hube-Magg C, Fraune C, Bernreuther C, Lebok P, Clauditz TS, Jacobsen F, Sauter G, Uhlig R, Wilczak W, Steurer S, Minner S, Marx AH, Simon R, Burandt E, Krech T, Luebke AM. Trophoblast Cell Surface Antigen 2 Expression in Human Tumors: A Tissue Microarray Study on 18,563 Tumors. Pathobiology 2022; 89:245-258. [PMID: 35477165 PMCID: PMC9393818 DOI: 10.1159/000522206] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Trophoblast cell surface antigen 2 (TROP2) is the target of sacituzumab govitecan, an antibody-drug conjugate approved for treatment of triple negative breast cancer and urothelial carcinoma. Methods A tissue microarray containing 18,563 samples from 150 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by TROP2 immunohistochemistry. Results TROP2 positivity was found in 109 tumor categories, including squamous cell carcinomas of various origins, urothelial, breast, prostate, pancreatic, and ovarian cancers (>95% positive). High TROP2 expression was linked to advanced stage (p = 0.0069) and nodal metastasis (p < 0.0001) in colorectal cancer as well as to nodal metastasis in gastric adenocarcinoma (p = 0.0246) and papillary thyroid cancer (p = 0.0013). Low TROP2 expression was linked to advanced stage in urothelial carcinoma (p < 0.0001), high pT (p = 0.0024), and high grade (p < 0.0001) in breast cancer, as well as with high Fuhrmann grade (p < 0.0001) and pT stage (p = 0.0009) in papillary renal cell carcinomas. Conclusion TROP2 is expressed in many epithelial neoplasms. TROP2 deregulation can be associated with cancer progression in a tumor-type dependent manner. Since anti-TROP2 cancer drugs have demonstrated efficiency, they may be applicable to a broad range of tumor entities in the future.
Collapse
Affiliation(s)
- David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Noushin Taherpour
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cosima Völkel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
64
|
Brás MM, Sousa SR, Carneiro F, Radmacher M, Granja PL. Mechanobiology of Colorectal Cancer. Cancers (Basel) 2022; 14:1945. [PMID: 35454852 PMCID: PMC9028036 DOI: 10.3390/cancers14081945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, the mechanobiology of colorectal cancer (CRC) are discussed. Mechanotransduction of CRC is addressed considering the relationship of several biophysical cues and biochemical pathways. Mechanobiology is focused on considering how it may influence epithelial cells in terms of motility, morphometric changes, intravasation, circulation, extravasation, and metastization in CRC development. The roles of the tumor microenvironment, ECM, and stroma are also discussed, taking into account the influence of alterations and surface modifications on mechanical properties and their impact on epithelial cells and CRC progression. The role of cancer-associated fibroblasts and the impact of flow shear stress is addressed in terms of how it affects CRC metastization. Finally, some insights concerning how the knowledge of biophysical mechanisms may contribute to the development of new therapeutic strategies and targeting molecules and how mechanical changes of the microenvironment play a role in CRC disease are presented.
Collapse
Affiliation(s)
- Maria Manuela Brás
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Susana R. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
| | - Fátima Carneiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-465 Porto, Portugal
- Serviço de Patologia, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Manfred Radmacher
- Institute for Biophysics, University of Bremen, 28334 Bremen, Germany
| | - Pedro L. Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
65
|
Kim HK, Kim H, Lee MK, Choi WH, Jang Y, Shin JS, Park JY, Bae DH, Hyun SI, Kim KH, Han HW, Lim B, Choi G, Kim M, Chang Lim Y, Yoo J. Generation of human tonsil epithelial organoids as an ex vivo model for SARS-CoV-2 infection. Biomaterials 2022; 283:121460. [PMID: 35286852 PMCID: PMC8901203 DOI: 10.1016/j.biomaterials.2022.121460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022]
Abstract
The palatine tonsils (hereinafter referred to as "tonsils") serve as a reservoir for viral infections and play roles in the immune system's first line of defense. The aims of this study were to establish tonsil epithelial cell-derived organoids and examine their feasibility as an ex vivo model for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The tonsil organoids successfully recapitulated the key characteristics of the tonsil epithelium, including cellular composition, histologic properties, and biomarker distribution. Notably, the basal layer cells of the organoids express molecules essential for SARS-CoV-2 entry, such as angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2) and furin, being susceptible to the viral infection. Changes in the gene expression profile in tonsil organoids revealed that 395 genes associated with oncostatin M signaling and lipid metabolism were highly upregulated within 72 h after SARS-CoV-2 infection. Notably, remdesivir suppressed the viral RNA copy number in organoid culture supernatants and intracellular viral protein levels in a dose-dependent manner. Here, we suggest that tonsil epithelial organoids could provide a preclinical and translational research platform for investigating SARS-CoV-2 infectivity and transmissibility or for evaluating antiviral candidates.
Collapse
Affiliation(s)
- Han Kyung Kim
- Department of Microbiology, CHA University School of Medicine, Seongnam, Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, Republic of Korea; R&D Institute, Organoidsciences Ltd., Seongnam, Republic of Korea
| | - Hyeryeon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, The Research Institute, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Myoung Kyu Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Woo Hee Choi
- Department of Microbiology, CHA University School of Medicine, Seongnam, Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, Republic of Korea
| | - Yejin Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jin Soo Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jun-Yeol Park
- Department of Microbiology, CHA University School of Medicine, Seongnam, Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, Republic of Korea
| | - Dong Hyuck Bae
- Department of Microbiology, CHA University School of Medicine, Seongnam, Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, Republic of Korea
| | - Seong-In Hyun
- Department of Microbiology, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Kang Hyun Kim
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Hyun Wook Han
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Byungho Lim
- Data Convergence Drug Research Center, KRICT, Daejeon, Republic of Korea
| | - Gildon Choi
- Data Convergence Drug Research Center, KRICT, Daejeon, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea.
| | - Young Chang Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, The Research Institute, Konkuk University School of Medicine, Seoul, Republic of Korea.
| | - Jongman Yoo
- Department of Microbiology, CHA University School of Medicine, Seongnam, Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, Republic of Korea; R&D Institute, Organoidsciences Ltd., Seongnam, Republic of Korea.
| |
Collapse
|
66
|
Shoari A, Tahmasebi M, Khodabakhsh F, Cohan RA, Oghalaie A, Behdani M. Angiogenic biomolecules specific nanobodies application in cancer imaging and therapy; review and updates. Int Immunopharmacol 2022; 105:108585. [DOI: 10.1016/j.intimp.2022.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/05/2022]
|
67
|
Chemerin Effect on the Endometrial Proteome of the Domestic Pig during Implantation Obtained by LC-MS/MS Analysis. Cells 2022; 11:cells11071161. [PMID: 35406725 PMCID: PMC8997736 DOI: 10.3390/cells11071161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Chemerin (CHEM) is a hormone mainly expressed in adipocytes involved in the regulation of energy homeostasis and inflammatory response. CHEM expression has been demonstrated in the structures of the porcine hypothalamic-pituitary-gonadal axis, as well as in the uterus, trophoblasts and conceptuses of pigs. In this study, we performed high-throughput proteomic analyses (liquid chromatography with tandem mass spectrometry, LC-MS/MS) to examine the influence of CHEM (400 ng/mL) on differentially regulated proteins (DRPs) in the porcine endometrial tissue explants during implantation (15 to 16 days of gestation). Among all 352 DRPs, 164 were up-regulated and 188 were down-regulated in CHEM-treated group. DRPs were assigned to 47 gene ontology (GO) terms (p-adjusted < 0.05). Validation of four DRPs (IFIT5, TGFβ1, ACO1 and PGRMC1) by Western blot analysis confirmed the veracity and accuracy of the LC-MS/MS method used in the present study. We suggest that CHEM, by modulating various protein expressions, takes part in the endometrial cell proliferation, migration and invasion at the time of implantation. It also regulates the endometrial immune response, sensitivity to P4 and the formation of new blood vessels. Additionally, CHEM appears to be an important factor involved in endothelial cell dysfunction during the pathogenesis of preeclampsia. The identification of a large number of DRPs under the influence of CHEM provides a valuable resource for understanding the molecular mechanisms of this hormone action during implantation, which is a prerequisite for better control of pig reproduction.
Collapse
|
68
|
Oliveira MC, Correia JDG. Clinical application of radioiodinated antibodies: where are we? Clin Transl Imaging 2022. [DOI: 10.1007/s40336-021-00477-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
69
|
Afify SM, Hassan G, Ishii H, Monzur S, Nawara HM, Osman A, Abu Quora HA, Sheta M, Zahra MH, Seno A, Seno M. Functional and Molecular Characters of Cancer Stem Cells Through Development to Establishment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:83-101. [PMID: 36587303 DOI: 10.1007/978-3-031-12974-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cancer stem cells (CSCs) are small subpopulation sharing similar properties like normal stem such as self-renewal and differentiation potential to direct tumor growth. Last few years, scientists considered CSCs as the cause of phenotypic heterogeneity in diverse cancer types. Also, CSCs contribute to cancer metastasis and recurrence. The cellular and molecular regulators influence on the CSCs' phenotype changing their behaviors in different stages of cancer progression. CSC markers play significance roles in cancer diagnosis and characterization. We delineate the cross-talks between CSCs and the tumor microenvironment that supports their intrinsic properties including survival, stemness, quiescence and their cellular and molecular adaptation. An insight into the markers of CSCs specific to organs is described.
Collapse
Affiliation(s)
- Said M Afify
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Faculty of Science, Division of Biochemistry, Chemistry Department, Menoufia University, Shebin El Koum, 32511, Egypt
| | - Ghmkin Hassan
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Faculty of Pharmacy, Department of Microbiology and Biochemistry, Damascus University, Damascus, 10769, Syria
| | - Hiroko Ishii
- GSP Enterprise, Inc, 1-4-38 12F Minato-Machi, Naniwaku, Osaka, 556-0017, Japan
| | - Sadia Monzur
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Hend M Nawara
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Amira Osman
- Faculty of Medicine, Department of Histology, Kafr Elsheikh University, Kafr Elsheikh, 33511, Egypt
| | - Hagar A Abu Quora
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Faculty of Science, Cytology, Histology and Histochemistry, Zoology Department, Menoufia University, Menoufia, 32511, Egypt
| | - Mona Sheta
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Department of Cancer Biology, National Cancer Institute, Cairo University, Giza, Egypt
| | - Maram H Zahra
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Akimasa Seno
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Masaharu Seno
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
70
|
Poondla N, Sheykhhasan M, Akbari M, Samadi P, Kalhor N, Manoochehri H. The Promise of CAR T-Cell Therapy for the Treatment of Cancer Stem Cells: A Short Review. Curr Stem Cell Res Ther 2022; 17:400-406. [PMID: 35176990 DOI: 10.2174/1574888x17666220217101817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a type of sophisticated tailored immunotherapy used to treat a variety of tumors. Immunotherapy works by utilizing the body's own immune system to discover and destroy malignant cells. In CAR-T therapy, a patient's own immune cells are genetically engineered to recognize and attack cancer. Treatments employing CAR T-cells are currently showing promising therapeutic results in patients with hematologic malignancies, and their safety and feasibility in solid tumors have been verified. In this review, we will discuss in detail the likelihood that CAR Tcells inhibit cancer stem cells (CSCs) by selectively targeting their cell surface markers will ultimately improve the therapeutic response for patients with various forms of cancer. This review addresses the major components of cancer stem cell (CSC)-targeted CAR T-cells against malignancies, from bench to bedside.
Collapse
Affiliation(s)
- Naresh Poondla
- Richmond University Medical Center, 355, Bard Avenue, Staten Island, New York 10310, United States
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Iran
| | - Mohammad Akbari
- Department of Medical School, Faculty of Medical Sciences, Islamic Azad University, Tonekabon Branch, Mazandaran, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Iran
| | - Hamed Manoochehri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
71
|
Swarup A, Ta CN, Wu AY. Molecular mechanisms and treatments for ocular symblephara. Surv Ophthalmol 2022; 67:19-30. [PMID: 33932469 PMCID: PMC8553799 DOI: 10.1016/j.survophthal.2021.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023]
Abstract
There are currently no effective methods to prevent or durably treat ocular symblephara, the adhesions between the palpebral and bulbar conjunctiva. How symblephara form at the molecular level is largely unknown. We present here an overview of current clinical symblephara treatments and describe potential molecular mechanisms behind conjunctival adhesion formation that may inform future symblephara treatment and prevention options. Understanding how symblephara form at the molecular level will facilitate treatment development. Preventative therapies may be possible by targeting symblephara progenitor cells immediately after injuries, while novel therapeutics should be aimed at modulating TGF-β pathways and effector cells in conjunctival scarring to treat symblephara formation more effectively.
Collapse
Affiliation(s)
- Aditi Swarup
- Department of Ophthalmology, Stanford University School of Medicine
| | - Christopher N Ta
- Department of Ophthalmology, Stanford University School of Medicine
| | - Albert Y Wu
- Department of Ophthalmology, Stanford University School of Medicine.
| |
Collapse
|
72
|
Havaei SM, Aucoin MG, Jahanian-Najafabadi A. Pseudomonas Exotoxin-Based Immunotoxins: Over Three Decades of Efforts on Targeting Cancer Cells With the Toxin. Front Oncol 2021; 11:781800. [PMID: 34976821 PMCID: PMC8716853 DOI: 10.3389/fonc.2021.781800] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the prominent causes of death worldwide. Despite the existence of various modalities for cancer treatment, many types of cancer remain uncured or develop resistance to therapeutic strategies. Furthermore, almost all chemotherapeutics cause a range of side effects because they affect normal cells in addition to malignant cells. Therefore, the development of novel therapeutic agents that are targeted specifically toward cancer cells is indispensable. Immunotoxins (ITs) are a class of tumor cell-targeted fusion proteins consisting of both a targeting moiety and a toxic moiety. The targeting moiety is usually an antibody/antibody fragment or a ligand of the immune system that can bind an antigen or receptor that is only expressed or overexpressed by cancer cells but not normal cells. The toxic moiety is usually a protein toxin (or derivative) of animal, plant, insect, or bacterial origin. To date, three ITs have gained Food and Drug Administration (FDA) approval for human use, including denileukin diftitox (FDA approval: 1999), tagraxofusp (FDA approval: 2018), and moxetumomab pasudotox (FDA approval: 2018). All of these ITs take advantage of bacterial protein toxins. The toxic moiety of the first two ITs is a truncated form of diphtheria toxin, and the third is a derivative of Pseudomonas exotoxin (PE). There is a growing list of ITs using PE, or its derivatives, being evaluated preclinically or clinically. Here, we will review these ITs to highlight the advances in PE-based anticancer strategies, as well as review the targeting moieties that are used to reduce the non-specific destruction of non-cancerous cells. Although we tried to be as comprehensive as possible, we have limited our review to those ITs that have proceeded to clinical trials and are still under active clinical evaluation.
Collapse
Affiliation(s)
- Seyed Mehdi Havaei
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marc G. Aucoin
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
73
|
Li W, Zhou Y, Wu Z, Shi Y, Tian E, Zhu Y, Wang T, Dou W, Meng X, Chen M, Zhai B, Zhu D. Targeting Wnt Signaling in the Tumor Immune Microenvironment to Enhancing EpCAM CAR T-Cell therapy. Front Pharmacol 2021; 12:724306. [PMID: 34790117 PMCID: PMC8591126 DOI: 10.3389/fphar.2021.724306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) patients are still lacking viable treatments. Chimeric antigen receptor (CAR) T cells have shown promise in hematologic malignancies, but their efficacy in solid tumors has been limited due to the immunosuppressive tumor microenvironment. We found that cancer antigen- EpCAM expression increased in the metastatic stage compared with the primary stage in cancers and the activation of Wnt and TGFβ pathways was positively correlated with EpCAM expression in multiple cancers, including colorectal cancer. We constructed CAR T cells targeting EpCAM that successfully showed selective cytotoxicity in highly EpCAM-expressing cancer cell lines. The combination of EpCAM CAR-T with the Wnt inhibitor-hsBCL9CT-24 displayed synergetic effect against EpCAM-positive colon cells in vitro and also in vivo. A mechanistic study showed that hsBCL9CT-24 treatment could modulate the tumor environment and improve infiltration of T cells, while possibly promoting the effector T cells at the early stages and postponing the exhaustion of CAR T cells at advanced stages. Overall, these results demonstrated that the combination of EpCAM CAR T-cell therapy with the Wnt inhibitor can overcome the limitations of CAR T cells in treating solid tumors.
Collapse
Affiliation(s)
- Weizhen Li
- Department of Laboratory Medicine, Sixth Affiliated Hospital of Yangzhou University, Taizhou, China.,Department of Laboratory Medicine, Affiliated Taixing Hospital of Bengbu Medical College, Taizhou, China
| | - Yang Zhou
- School of Pharmacy, Fudan University, Shanghai, China
| | - Zhongen Wu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yaoping Shi
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enming Tian
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yingqi Zhu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Tao Wang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Dou
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangjing Meng
- School of Pharmacy, Fudan University, Shanghai, China.,Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Ming Chen
- Department of Laboratory Medicine, Sixth Affiliated Hospital of Yangzhou University, Taizhou, China.,Department of Laboratory Medicine, Affiliated Taixing Hospital of Bengbu Medical College, Taizhou, China
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhu
- Shanghai Engineering Research Center of ImmunoTherapeutics, Fudan University, Shanghai, China.,Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
74
|
Chang P, Li S, Sun Q, Guo K, Wang H, Li S, Zhang L, Xie Y, Zheng X, Liu Y. Fully Reduced HMGB1-Containing Peptide-Based Polyurethane Scaffold with Minimal Functional Unit of Skin (MFUS) Enhances Large and Deep Wounded Skin Healing. Macromol Biosci 2021; 22:e2100403. [PMID: 34783444 DOI: 10.1002/mabi.202100403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/31/2021] [Indexed: 12/11/2022]
Abstract
A novel peptide-based polymer is developed by lysine-diisocyanate (LDI), glycerol (Gly), and fully reduced HMGB1 (frHMGB1). This frHMGB1-LDI-Gly polymer either forms sponge-like foam (scaffold) or a hydrogel or a film under different reaction conditions. It degrades into nontoxic lysine, glycerol, and frHMGB1. The hydrogel glues tissues together and the glued tissues have strong mechanical properties. The film and scaffold provide the suitable environment for enhancing cell proliferation by releasing frHMGB1. The scaffold carries 1 mm diameter of full-thickness rat skin-island as a minimal functional unit of skin (MFUS) to treat large full thickness skin wounds, and the hydrogel glues the MFUS and scaffold with skin edges together (MFUS+Scaffold group). The scaffold treated wounds (Scaffold group) heal much faster than the wounds either treated with MFUS (MFUS group) or without treatment (Wound group). The MFUS+Scaffold treated wound regenerates more functional full-thickness skin with more hair follicles and sweat glands, higher CD146 and α-smooth muscle actin levels, more blood vessels and collagen productions, and less scar tissues when compared to the other three groups. The results demonstrate that the combination of frHMGB1-LDI-Gly polymer with MFUS provides a new tissue engineering approach for large full-thickness skin wound healing.
Collapse
Affiliation(s)
- Peng Chang
- Department of Neurosurgery and Plastic and Reconstructive Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, China
| | - Shijie Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110134, China
| | - Qian Sun
- Experimental Animal Center, General Hospital of Northern Center Command, 83 Wenhua Road, Shenyang, 110084, China
| | - Kai Guo
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110134, China
| | - Heran Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110134, China
| | - Song Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110134, China
| | - Liming Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110134, China
| | - Yongbao Xie
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110134, China
| | - Xiongfei Zheng
- Medical Surgery Research Center, Liaoning Rehabilitation Robot Engineering Center, Shenyang, 110134, China.,State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning, 110000, China
| | - Yunhui Liu
- Department of Neurosurgery and Plastic and Reconstructive Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, China.,Medical Surgery Research Center, Liaoning Rehabilitation Robot Engineering Center, Shenyang, 110134, China
| |
Collapse
|
75
|
Arora G, Maman P, Sharma A, Verma N, Puri V. Systemic Overview of Microstrip Patch Antenna's for Different Biomedical Applications. Adv Pharm Bull 2021; 11:439-449. [PMID: 34513618 PMCID: PMC8421620 DOI: 10.34172/apb.2021.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 06/16/2020] [Accepted: 06/30/2020] [Indexed: 02/01/2023] Open
Abstract
Timely diagnosis is the most important parameter for the detection and hindrance with tissues (infected). Many conventional techniques are used for the determination of the chronic disease like MRI, X-ray, mammography, ultrasound and other diagnosing methods. Nevertheless, they have some limitations. We epitomize between 4 and 34 % of all carcinogenic tissues are lacking because of weak, in adequate malignant/benign cancer tissue on the contrary. So, an effective alternative method is the valid concern in the field of medical right now. Imaging with the help of patch antenna to detect chronic disease like breast cancer, oxidative stress syndrome etc. it has been proved to be a suitable potential method, and there are many works in this area. All materials have different conductivity and permittivity. With the help of these antennas, a 3D tissue structure which has different conductivity and permittivity is modelled in high-frequency structure simulator through finite element method which resolves electromagnetic field values and a microstrip patch antenna operation process. As compared with conventional antennas, micro strip patch antennas have enhanced benefits and better prospects. An integrated Antenna plays an important or crucial role for supporting many applications in biomedical, commercial and in military fields. The Antenna designed for these applications should be wideband, not sensitive to the human body. In this present review, the precise application of the Antenna in different biomedical aspects is considered. Furthermore, the author has also discussed the analytical results using simulation models and experimental results for some of the significantdisease.
Collapse
Affiliation(s)
- Govind Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Nitin Verma
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
76
|
Varty K, O’Brien C, Ignaszak A. Breast Cancer Aptamers: Current Sensing Targets, Available Aptamers, and Their Evaluation for Clinical Use in Diagnostics. Cancers (Basel) 2021; 13:cancers13163984. [PMID: 34439139 PMCID: PMC8391819 DOI: 10.3390/cancers13163984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most commonly occurring cancer in women worldwide, and the rate of diagnosis continues to increase. Early detection and targeted treatment towards histological type is crucial to improving outcomes, but current screening methods leave some patients at risk of late diagnosis. The risk of late diagnosis and progressed disease is of particular concern for young women as current screening methods are not recommended early in life. Aptamers are oligonucleotides that can bind with high specificity to target molecules such as proteins, peptides, and other small molecules. They are relatively cheap to produce and are invariable from batch to batch, making them ideal for use in large-scale clinical or screening programs. The use of aptamers for breast cancer screening, diagnosis, and therapeutics is promising, but comparison of these aptamers and their corresponding biomarkers for use in breast cancer is significantly lacking. Here, we compare the currently available aptamers for breast cancer biomarkers and their respective biomarkers, as well as highlight the electrochemical sensors that are in development.
Collapse
|
77
|
Moin AT, Sarkar B, Ullah MA, Araf Y, Ahmed N, Rudra B. In silico assessment of EpCAM transcriptional expression and determination of the prognostic biomarker for human lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Biochem Biophys Rep 2021; 27:101074. [PMID: 34345719 PMCID: PMC8319582 DOI: 10.1016/j.bbrep.2021.101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein which is involved in cell signaling, proliferation, maturation, and movement, all of which are crucial for the proper development of cells and tissues. Cleavage of the EpCAM protein leads to the up-regulation of c-myc, e-fabp, and cyclins A and E which promote tumorigenesis. EpCAM can act as potential diagnostic and prognostic biomarker for different types of cancers as it is also found to be expressed in epithelia and epithelial-derived neoplasms. Hence, we aimed to analyze the EpCAM gene expression and any associated feedback in the patients of two major types of lung cancer (LC) i.e., lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), based on the publicly available online databases. In this study, server-based gene expression analysis represents the up-regulation of EpCAM in both LUAD and LUSC subtypes as compared to the corresponding normal tissues. Besides, the histological sections revealed the over-expression of EpCAM protein in cancerous tissues by depicting strong staining signals. Furthermore, mutation analysis suggested missense as the predominant type of mutation both in LUAD and LUSC in the EpCAM gene. A significant correlation (P-value < 0.05) between the higher EpCAM expression and lower patient survival was also found in this study. Finally, the co-expressed genes were identified with their ontological features and signaling pathways associated in LC development. The overall study suggests EpCAM to be a significant biomarker for human LC prognosis.
Collapse
Affiliation(s)
- Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Bishajit Sarkar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Nafisa Ahmed
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
| | - Bashudev Rudra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
78
|
Pradhan RN, Krishnamurty AT, Fletcher AL, Turley SJ, Müller S. A bird's eye view of fibroblast heterogeneity: A pan-disease, pan-cancer perspective. Immunol Rev 2021; 302:299-320. [PMID: 34164824 DOI: 10.1111/imr.12990] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts, custodians of tissue architecture and function, are no longer considered a monolithic entity across tissues and disease indications. Recent advances in single-cell technologies provide an unrestricted, high-resolution view of fibroblast heterogeneity that exists within and across tissues. In this review, we summarize a compendium of single-cell transcriptomic studies and provide a comprehensive accounting of fibroblast subsets, many of which have been described to occupy specific niches in tissues at homeostatic and pathologic states. Understanding this heterogeneity is particularly important in the context of cancer, as the diverse cancer-associated fibroblast (CAF) phenotypes in the tumor microenvironment (TME) are directly impacted by the expression phenotypes of their predecessors. Relationships between these heterogeneous populations often accompany and influence response to therapy in cancer and fibrosis. We further highlight the importance of integrating single-cell studies to deduce common fibroblast phenotypes across disease states, which will facilitate the identification of common signaling pathways, gene regulatory programs, and cell surface markers that are going to advance drug discovery and targeting.
Collapse
|
79
|
Žagar T, Pavšič M, Gaber A. Destabilization of EpCAM dimer is associated with increased susceptibility towards cleavage by TACE. PeerJ 2021; 9:e11484. [PMID: 34055495 PMCID: PMC8142927 DOI: 10.7717/peerj.11484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
The cell-surface protein EpCAM is a carcinoma marker utilized in diagnostics and prognostics, and a promising therapeutic target. It is involved in nuclear signaling via regulated intramembrane proteolysis (RIP). Many aspects of this process are not fully understood, including the events at the molecular level leading to the exposure of cleavage sites, buried at the dimerization interface. To investigate the effect of dimer stability on cleavage susceptibility we prepared two mutants of human EpCAM ectodomain: a monomeric form, and a disulfide-stabilized dimeric form. We show that the disulfide-stabilized dimer is resistant to tumor necrosis factor-α-converting enzyme (TACE) cleavage, while the monomeric form is more susceptible than the predominantly dimeric wild type. This provides experimental evidence that the oligomeric state of EpCAM is a determinant in RIP and demonstrates the usefulness of the oligomeric state-specific mutants in investigations of EpCAM biological function.
Collapse
Affiliation(s)
- Tomaž Žagar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Aljaž Gaber
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
80
|
Guo W, Wang Z, Wang S, Liao X, Qin T. Transcriptome sequencing reveals differential expression of circRNAs in sepsis induced acute respiratory distress syndrome. Life Sci 2021; 278:119566. [PMID: 33957172 DOI: 10.1016/j.lfs.2021.119566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 11/29/2022]
Abstract
circRNAs play important roles in regulating gene expression at both transcriptional and post transcriptional levels and involve in a variety of human diseases. But up to now, it is still unclear whether circRNAs are involved in the occurrence and development of sepsis induced acute respiratory distress syndrome (ARDS). In the present research, we collected lung tissues of sepsis induced ARDS patients (n = 3) and brain dead patients without ARDS (n = 3). From the results of genome-wide sequencing, a total of 272 significantly up-regulated and 231 significantly down-regulated circRNAs were obtained. Combining the previous sequencing results in the plasma of ARDS patients, 11 up-regulated and 3 down-regulated circRNAs simultaneously in plasma and lung tissues were identified. Pathway enrichment analysis showed that the co differentially expressed circRNAs might be involved in the regulation of ECM-receptor interaction and adherens junction etc. In conclusion, these data indicates that circRNAs may involve in the progression of sepsis induced ARDS.
Collapse
Affiliation(s)
- Weixin Guo
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, NO.106 Zhongshan Road, Guangzhou 510080, China
| | - Zhonghua Wang
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, NO.106 Zhongshan Road, Guangzhou 510080, China
| | - Shouhong Wang
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, NO.106 Zhongshan Road, Guangzhou 510080, China.
| | - Xiaolong Liao
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, NO.106 Zhongshan Road, Guangzhou 510080, China.
| | - Tiehe Qin
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, NO.106 Zhongshan Road, Guangzhou 510080, China
| |
Collapse
|
81
|
Gao Y, Fan WH, Song Z, Lou H, Kang X. Comparison of circulating tumor cell (CTC) detection rates with epithelial cell adhesion molecule (EpCAM) and cell surface vimentin (CSV) antibodies in different solid tumors: a retrospective study. PeerJ 2021; 9:e10777. [PMID: 33717672 PMCID: PMC7934682 DOI: 10.7717/peerj.10777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Status of epithelial-mesenchymal transition (EMT) varies from tumors to tumors. Epithelial cell adhesion molecule (EpCAM) and cell surface vimentin (CSV) are the most common used targets for isolating epithelial and mesenchymal CTCs, respectively. This study aimed to identify a suitable CTC capturing antibody for CTC enrichment in each solid tumor by comparing CTC detection rates with EpCAM and CSV antibodies in different solid tumors. Methods Treatment-naive patients with confirmed cancer diagnosis and healthy people who have performed CTC detection between April 2017 and May 2018 were included in this study. CTC detection was performed with CytoSorter® CTC system using either EpCAM or CSV antibody. In total, 853 CTC results from 690 cancer patients and 72 healthy people were collected for analysis. The performance of CTC capturing antibody was determined by the CTC detection rate. Results EpCAM has the highest CTC detection rate of 84.09% in CRC, followed by BCa (78.32%). CTC detection rates with EpCAM antibody are less than 40% in HCC (25%), PDAC (32.5%) and OC (33.33%). CSV has the highest CTC detection rate of 90% in sarcoma, followed by BC (85.71%), UC (84.62%), OC (83.33%) and BCa (81.82%). CTC detection rates with CSV antibody are over 60% in all 14 solid tumors. Except for CRC, CSV has better performances than EpCAM in most solid tumors regarding the CTC detection rates. Conclusion EpCAM can be used as a target to isolate CTCs in CRC, LC, GC, BCa, EC, HNSCC, CC and PCa, especially in CRC, while CSV can be used in most solid tumors for isolating CTCs.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Polytechnic University, Beijing, China
| | | | - Zhengbo Song
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Haizhou Lou
- Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xixong Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Polytechnic University, Beijing, China
| |
Collapse
|
82
|
Aissa AF, Islam ABMMK, Ariss MM, Go CC, Rader AE, Conrardy RD, Gajda AM, Rubio-Perez C, Valyi-Nagy K, Pasquinelli M, Feldman LE, Green SJ, Lopez-Bigas N, Frolov MV, Benevolenskaya EV. Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer. Nat Commun 2021; 12:1628. [PMID: 33712615 PMCID: PMC7955121 DOI: 10.1038/s41467-021-21884-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Tyrosine kinase inhibitors were found to be clinically effective for treatment of patients with certain subsets of cancers carrying somatic mutations in receptor tyrosine kinases. However, the duration of clinical response is often limited, and patients ultimately develop drug resistance. Here, we use single-cell RNA sequencing to demonstrate the existence of multiple cancer cell subpopulations within cell lines, xenograft tumors and patient tumors. These subpopulations exhibit epigenetic changes and differential therapeutic sensitivity. Recurrently overrepresented ontologies in genes that are differentially expressed between drug tolerant cell populations and drug sensitive cells include epithelial-to-mesenchymal transition, epithelium development, vesicle mediated transport, drug metabolism and cholesterol homeostasis. We show analysis of identified markers using the LINCS database to predict and functionally validate small molecules that target selected drug tolerant cell populations. In combination with EGFR inhibitors, crizotinib inhibits the emergence of a defined subset of EGFR inhibitor-tolerant clones. In this study, we describe the spectrum of changes associated with drug tolerance and inhibition of specific tolerant cell subpopulations with combination agents.
Collapse
Affiliation(s)
- Alexandre F Aissa
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Abul B M M K Islam
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Majd M Ariss
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Cammille C Go
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexandra E Rader
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Ryan D Conrardy
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexa M Gajda
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Carlota Rubio-Perez
- Biomedical Genomics Lab, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Klara Valyi-Nagy
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mary Pasquinelli
- Department of Medicine, Section of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Lawrence E Feldman
- Department of Medicine, Section of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Stefan J Green
- Genome Research Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Nuria Lopez-Bigas
- Biomedical Genomics Lab, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
83
|
Labarta-Bajo L, Nilsen SP, Humphrey G, Schwartz T, Sanders K, Swafford A, Knight R, Turner JR, Zúñiga EI. Type I IFNs and CD8 T cells increase intestinal barrier permeability after chronic viral infection. J Exp Med 2021; 217:152069. [PMID: 32880630 PMCID: PMC7953738 DOI: 10.1084/jem.20192276] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/29/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Intestinal barrier leakage constitutes a potential therapeutic target for many inflammatory diseases and represents a disease progression marker during chronic viral infections. However, the causes of altered gut barrier remain mostly unknown. Using murine infection with lymphocytic choriomeningitis virus, we demonstrate that, in contrast to an acute viral strain, a persistent viral isolate leads to long-term viral replication in hematopoietic and mesenchymal cells, but not epithelial cells (IECs), in the intestine. Viral persistence drove sustained intestinal epithelial barrier leakage, which was characterized by increased paracellular flux of small molecules and was associated with enhanced colitis susceptibility. Type I IFN signaling caused tight junction dysregulation in IECs, promoted gut microbiome shifts and enhanced intestinal CD8 T cell responses. Notably, both type I IFN receptor blockade and CD8 T cell depletion prevented infection-induced barrier leakage. Our study demonstrates that infection with a virus that persistently replicates in the intestinal mucosa increases epithelial barrier permeability and reveals type I IFNs and CD8 T cells as causative factors of intestinal leakage during chronic infections.
Collapse
Affiliation(s)
- Lara Labarta-Bajo
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Steven P Nilsen
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Gregory Humphrey
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Tara Schwartz
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Karenina Sanders
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Austin Swafford
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA.,Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Elina I Zúñiga
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|
84
|
Henry S, Trousdell MC, Cyrill SL, Zhao Y, Feigman MJ, Bouhuis JM, Aylard DA, Siepel A, Dos Santos CO. Characterization of Gene Expression Signatures for the Identification of Cellular Heterogeneity in the Developing Mammary Gland. J Mammary Gland Biol Neoplasia 2021; 26:43-66. [PMID: 33988830 PMCID: PMC8217035 DOI: 10.1007/s10911-021-09486-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
The developing mammary gland depends on several transcription-dependent networks to define cellular identities and differentiation trajectories. Recent technological advancements that allow for single-cell profiling of gene expression have provided an initial picture into the epithelial cellular heterogeneity across the diverse stages of gland maturation. Still, a deeper dive into expanded molecular signatures would improve our understanding of the diversity of mammary epithelial and non-epithelial cellular populations across different tissue developmental stages, mouse strains and mammalian species. Here, we combined differential mammary gland fractionation approaches and transcriptional profiles obtained from FACS-isolated mammary cells to improve our definitions of mammary-resident, cellular identities at the single-cell level. Our approach yielded a series of expression signatures that illustrate the heterogeneity of mammary epithelial cells, specifically those of the luminal fate, and uncovered transcriptional changes to their lineage-defined, cellular states that are induced during gland development. Our analysis also provided molecular signatures that identified non-epithelial mammary cells, including adipocytes, fibroblasts and rare immune cells. Lastly, we extended our study to elucidate expression signatures of human, breast-resident cells, a strategy that allowed for the cross-species comparison of mammary epithelial identities. Collectively, our approach improved the existing signatures of normal mammary epithelial cells, as well as elucidated the diversity of non-epithelial cells in murine and human breast tissue. Our study provides a useful resource for future studies that use single-cell molecular profiling strategies to understand normal and malignant breast development.
Collapse
Affiliation(s)
- Samantha Henry
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, US
- Graduate Program in Genetics, Stony Brook University, NY, 11794, US
| | | | | | - Yixin Zhao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, US
| | - Mary J Feigman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, US
| | | | - Dominik A Aylard
- College of Biological Sciences, University of California, Davis, CA, 95616, US
| | - Adam Siepel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, US
| | | |
Collapse
|
85
|
Polak ME, Singh H. Tolerogenic and immunogenic states of Langerhans cells are orchestrated by epidermal signals acting on a core maturation gene module. Bioessays 2021; 43:e2000182. [PMID: 33645739 DOI: 10.1002/bies.202000182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Langerhans cells (LCs), residing in the epidermis, are able to induce potent immunogenic responses and also to mediate immune tolerance. We propose that tolerogenic and immunogenic responses of LCs are directed by signaling from the epidermis and involve counter-acting gene circuits that are coupled to a core maturation gene module. We base our analysis on recent genetic and genomic findings facilitating the understanding of the molecular mechanisms controlling these divergent immune functions. Comparing gene regulatory network (GRN) analyses of various types of dendritic cells (DCs) including LCs we integrate signaling-dependent (TGFβ, EpCAM, β-Catenin) and transcription factor (IRF4, IRF1, NFκB) regulated gene circuits that appear to orchestrate the distinctive LC functional states. Our model proposes, that while epidermal signaling in the steady-state promotes LC tolerogenic function, the disruption of cell-cell contacts coupled with inflammatory signaling induces LC immunogenic programing. The conceptual framework emphasizes the sensing of discrete epidermal and inflammatory cues by resident LCs in dictating their genomic programing and cell state dynamics.
Collapse
Affiliation(s)
- Marta E Polak
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Harinder Singh
- Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
86
|
Middleton LYM, Dou J, Fisher J, Heiss JA, Nguyen VK, Just AC, Faul J, Ware EB, Mitchell C, Colacino JA, M Bakulski K. Saliva cell type DNA methylation reference panel for epidemiological studies in children. Epigenetics 2021; 17:161-177. [PMID: 33588693 DOI: 10.1080/15592294.2021.1890874] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Saliva is a widely used biological sample, especially in pediatric research, containing a heterogenous mixture of immune and epithelial cells. Associations of exposure or disease with saliva DNA methylation can be influenced by cell-type proportions. Here, we developed a saliva cell-type DNA methylation reference panel to estimate interindividual cell-type heterogeneity in whole saliva studies. Saliva was collected from 22 children (7-16 years) and sorted into immune and epithelial cells, using size exclusion filtration and magnetic bead sorting. DNA methylation was measured using the Illumina MethylationEPIC BeadChip. We assessed cell-type differences in DNA methylation profiles and tested for enriched biological pathways. Immune and epithelial cells differed at 181,577 (22.8%) DNA methylation sites (t-test p < 6.28 × 10-8). Immune cell hypomethylated sites are mapped to genes enriched for immune pathways (p < 3.2 × 10-5). Epithelial cell hypomethylated sites were enriched for cornification (p = 5.2 × 10-4), a key process for hard palette formation. Saliva immune and epithelial cells have distinct DNA methylation profiles which can drive whole-saliva DNA methylation measures. A primary saliva DNA methylation reference panel, easily implemented with an R package, will allow estimates of cell proportions from whole saliva samples and improve epigenetic epidemiology studies by accounting for measurement heterogeneity by cell-type proportions.
Collapse
Affiliation(s)
- Lauren Y M Middleton
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.,Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jonah Fisher
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan A Heiss
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vy K Nguyen
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.,Population Studies Center, Institute for Social Research, University of Michigan
| | - Colter Mitchell
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.,Population Studies Center, Institute for Social Research, University of Michigan
| | - Justin A Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.,Department of Nutritional Sciences, School of Public Health, University of Michigan.,Center for Computational Medicine and Bioinformatics, University of Michigan.,Program in the Environment, College of Literature, Sciences, and the Arts, University of Michigan
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
87
|
Du L, Cheng Q, Zheng H, Liu J, Liu L, Chen Q. Targeting stemness of cancer stem cells to fight colorectal cancers. Semin Cancer Biol 2021; 82:150-161. [PMID: 33631296 DOI: 10.1016/j.semcancer.2021.02.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Cancer initiating/ stem cells (CSCs) undergo self-renewal and differentiation that contributes to tumor initiation, recurrence and metastasis in colorectal cancer (CRC). Targeting of colorectal cancer stem cells (CCSCs) holds significant promise in eradicating cancer cells and ultimately curing patients with cancer. In this review, we will introduce the current progress of CCSC studies, including the specific surface markers of CCSCs, the intrinsic signaling pathways that regulate the stemness and differentiation characteristics of CCSCs, and the tumor organoid model for CCSC research. We will focus on how these studies will lead to the progress in targeting specific surface markers or signaling pathways on CCSCs by monoclonal antibodies, or by natural or synthetic compounds, or by immunotherapy. As CSCs are highly heterogeneous and plastic, we suggest that combinatory approaches that target the stemness network may represent an important strategy for eradicating cancers.
Collapse
Affiliation(s)
- Lei Du
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine. Beijing, 100101, China.
| | - Qi Cheng
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; The Graduate University of Chinese Academy of Sciences. Beijing, 100049, China
| | - Hao Zheng
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinming Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lei Liu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine. Beijing, 100101, China
| | - Quan Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
88
|
Semaan A, Bernard V, Lee JJ, Wong JW, Huang J, Swartzlander DB, Stephens BM, Monberg ME, Weston BR, Bhutani MS, Chang K, Scheet PA, Maitra A, Jakubek YA, Guerrero PA. Defining the Comprehensive Genomic Landscapes of Pancreatic Ductal Adenocarcinoma Using Real-World Endoscopic Aspiration Samples. Clin Cancer Res 2021; 27:1082-1093. [PMID: 33188144 PMCID: PMC7887035 DOI: 10.1158/1078-0432.ccr-20-2667] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Most patients with pancreatic ductal adenocarcinoma (PDAC) present with surgically unresectable cancer. As a result, endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) is the most common biospecimen source available for diagnosis in treatment-naïve patients. Unfortunately, these limited samples are often not considered adequate for genomic analysis, precluding the opportunity for enrollment on precision medicine trials. EXPERIMENTAL DESIGN Applying an epithelial cell adhesion molecule (EpCAM)-enrichment strategy, we show the feasibility of using real-world EUS-FNA for in-depth, molecular-barcoded, whole-exome sequencing (WES) and somatic copy-number alteration (SCNA) analysis in 23 patients with PDAC. RESULTS Potentially actionable mutations were identified in >20% of patients. Further, an increased mutational burden and higher aneuploidy in WES data were associated with an adverse prognosis. To identify predictive biomarkers for first-line chemotherapy, we developed an SCNA-based complexity score that was associated with response to platinum-based regimens in this cohort. CONCLUSIONS Collectively, these results emphasize the feasibility of real-world cytology samples for in-depth genomic characterization of PDAC and show the prognostic potential of SCNA for PDAC diagnosis.
Collapse
Affiliation(s)
- Alexander Semaan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vincent Bernard
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jaewon J Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Justin W Wong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan Huang
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel B Swartzlander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bret M Stephens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria E Monberg
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian R Weston
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Manoop S Bhutani
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyle Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul A Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasminka A Jakubek
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Paola A Guerrero
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
89
|
Zhou Y, Cheng JT, Feng ZX, Wang YY, Zhang Y, Cai WQ, Han ZW, Wang XW, Xiang Y, Yang HY, Liu BR, Peng XC, Cui SZ, Xin HW. Could gastrointestinal tumor-initiating cells originate from cell-cell fusion in vivo? World J Gastrointest Oncol 2021; 13:92-108. [PMID: 33643526 PMCID: PMC7896421 DOI: 10.4251/wjgo.v13.i2.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/25/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor-initiating cells (TICs) or cancer stem cells are believed to be responsible for gastrointestinal tumor initiation, progression, metastasis, and drug resistance. It is hypothesized that gastrointestinal TICs (giTICs) might originate from cell-cell fusion. Here, we systemically evaluate the evidence that supports or opposes the hypothesis of giTIC generation from cell-cell fusion both in vitro and in vivo. We review giTICs that are capable of initiating tumors in vivo with 5000 or fewer in vivo fused cells. Under this restriction, there is currently little evidence demonstrating that giTICs originate from cell-cell fusion in vivo. However, there are many reports showing that tumor generation in vitro occurs with more than 5000 fused cells. In addition, the mechanisms of giTIC generation via cell-cell fusion are poorly understood, and thus, we propose its potential mechanisms of action. We suggest that future research should focus on giTIC origination from cell-cell fusion in vivo, isolation or enrichment of giTICs that have tumor-initiating capabilities with 5000 or less in vivo fused cells, and further clarification of the underlying mechanisms. Our review of the current advances in our understanding of giTIC origination from cell-cell fusion may have significant implications for the understanding of carcinogenesis and future cancer therapeutic strategies targeting giTICs.
Collapse
Affiliation(s)
- Yang Zhou
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Jun-Ting Cheng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Zi-Xian Feng
- Department of Oncology and Haematology, Lianjiang People's Hospital, Guangzhou 524400, Guangdong Province, China
| | - Ying-Ying Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Ying Zhang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Wen-Qi Cai
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Zi-Wen Han
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Xian-Wang Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Hui-Yu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Bing-Rong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| |
Collapse
|
90
|
Heyward CY, Dong L, Shakhzadyan H, Wan C, Stokol T. Detection of Epithelial Cell Adhesion Molecule in Feline Normal and Tumor Cell Lines and Tissues With Selected Commercial Anti-human EpCAM Antibodies. Front Vet Sci 2021; 8:622189. [PMID: 33614766 PMCID: PMC7890202 DOI: 10.3389/fvets.2021.622189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane protein expressed at intercellular junctions in epithelial cells. As an epithelial biomarker, it used for immunologic-based capture of epithelial-derived circulating tumor cells (CTCs) in human patients with different carcinomas. EpCAM expression has not been described in normal or neoplastic epithelial tissues in cats. Our goal was to find a commercial antibody that recognizes surface EpCAM expression for CTC detection. We tested two anti-human EpCAM antibodies, designated for use with flow cytometry, for detection of surface EpCAM expression on feline cell lines derived from normal mammary and renal epithelia and mammary and oropharyngeal squamous cell carcinomas in cats. Only one of the antibodies, a goat polyclonal antibody, labeled normal and neoplastic feline mammary epithelial cells and oropharyngeal squamous cell carcinoma cells; no labeling was observed for normal feline kidney epithelial cells. At low dilution, this antibody immunohistochemically stained the intercellular junctions of normal pancreatic, intestinal and mammary epithelium, as well as neoplastic mammary epithelium in feline tissues; however, oral mucosa, skin, and an oropharyngeal squamous cell carcinoma showed no positive immunostaining. The antibody only weakly bound feline squamous cell carcinoma cell lines under static adhesion. Our results indicate that EpCAM is expressed in specific epithelia in cats but is variably expressed in feline mammary tumors and oropharyngeal squamous cell carcinoma. A higher avidity cross-reactive or feline-specific antibody will be required to further investigate EpCAM expression in normal and neoplastic feline tissue or for detecting CTCs in the blood of tumor-bearing cats.
Collapse
Affiliation(s)
- Christa Y Heyward
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Lynn Dong
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Hayk Shakhzadyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Christopher Wan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Tracy Stokol
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
91
|
Li G, Hu X, Nie P, Mang D, Jiao S, Zhang S, Roy SR, Yukawa S, Asahina S, Sugasawa H, Cortes W, Zhou Z, Zhang Y. Lipid-Raft-Targeted Molecular Self-Assembly Inactivates YAP to Treat Ovarian Cancer. NANO LETTERS 2021; 21:747-755. [PMID: 33356330 DOI: 10.1021/acs.nanolett.0c04435] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Yes-associated protein (YAP) is a major oncoprotein responsible for cell proliferation control. YAP's oncogenic activity is regulated by both the Hippo kinase cascade and uniquely by a mechanical-force-induced actin remodeling process. Inspired by reports that ovarian cancer cells specifically accumulate the phosphatase protein ALPP on lipid rafts that physically link to actin cytoskeleton, we developed a molecular self-assembly (MSA) technology that selectively halts cancer cell proliferation by inactivating YAP. We designed a ruthenium-complex-peptide precursor molecule that, upon cleavage of phosphate groups, undergoes self-assembly to form nanostructures specifically on lipid rafts of ovarian cancer cells. The MSAs exert potent, cancer-cell-specific antiproliferative effects in multiple cancer cell lines and in mouse xenograft tumor models. Our work illustrates how basic biochemical insights can be exploited as the basis for a nanobiointerface fabrication technology which links nanoscale protein activities at specific subcellular locations to molecular biological activities to suppress cancer cell proliferation.
Collapse
Affiliation(s)
- Guanying Li
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Xunwu Hu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Pingping Nie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhua Road, Shanghai 200438, China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Dingze Mang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Shi Jiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shijin Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Sona Rani Roy
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Sachie Yukawa
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Shunsuke Asahina
- SM Application Group, JEOL Ltd., Akishima, Tokyo 196-8558, Japan
| | - Hiroaki Sugasawa
- Asylum Research Oxford Instruments, Nihonbashi Laboratory, Chuo-ku, Tokyo 103-0006, Japan
| | - William Cortes
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhua Road, Shanghai 200438, China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
92
|
A smart dual-drug nanosystem based on co-assembly of plant and food-derived natural products for synergistic HCC immunotherapy. Acta Pharm Sin B 2021; 11:246-257. [PMID: 33532190 PMCID: PMC7838026 DOI: 10.1016/j.apsb.2020.07.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
Nanotechnology has emerged as an ideal approach for achieving the efficient chemo agent delivery. However, the potential toxicity and unclear internal metabolism of most nano-carriers was still a major obstacle for the clinical application. Herein, a novel “core‒shell” co-assembly carrier-free nanosystem was constructed based on natural sources of ursolic acid (UA) and polyphenol (EGCG) with the EpCAM-aptamer modification for hepatocellular carcinoma (HCC) synergistic treatment. As the nature products derived from food-plant, UA and EGCG had good anticancer activities and low toxicity. With the simple and “green” method, the nanodrugs had the advantages of good stability, pH-responsive and strong penetration of tumor tissues, which was expected to increase tumor cellular uptake, long circulation and effectively avoid the potential defects of traditional carriers. The nanocomplex exhibited the low cytotoxicity in the normal cells in vitro, good biosafety of organic tissues and efficient tumor accumulation in vivo. Importantly, UA combined with EGCG showed the immunotherapy by activating the innate immunity and acquired immunity resulting in significant synergistic therapeutic effect. The research could provide new ideas for the research and development of self-assembly delivery system in the future, and offer effective intervention strategies for clinical HCC treatment.
Collapse
|
93
|
Saito A, Tojo M, Kumagai Y, Ohzawa H, Yamaguchi H, Miyato H, Sadatomo A, Naoi D, Ota G, Koinuma K, Horie H, Lefor AK, Sata N, Kitayama J. Flow cytometry detection of cell type-specific expression of programmed death receptor ligand-1 (PD-L1) in colorectal cancer specimens. Heliyon 2020; 7:e05880. [PMID: 33458446 PMCID: PMC7797507 DOI: 10.1016/j.heliyon.2020.e05880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/28/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Aim PD-1/PD-L1 blockade therapy is now widely used for the treatment of advanced malignancies. Although PD-L1 is known to be expressed by various host cells as well as tumor cells, the role of PD-L1 on non-malignant cells and its clinical significance is unknown. We evaluated cell type-specific expression of PD-L1 in colorectal cancer (CRC) specimens using multicolor flow cytometry. Methods Single cell suspensions were made from 21 surgically resected CRC specimens, and immunostained with various mAbs conjugated with different fluorescent dyes. Tumor cells, stromal cells, and immune cells were identified as CD326(+), CD90(+) and CD45(+) phenotype, respectively. CD11b(+) myeloid cells, CD19(+) B cells and CD4(+) or CD8(+) T cells were also stained in different samples, and their frequencies in the total cell population and the ratio of PD-L1(+) cells to each phenotype were determined. Results PD-L1 was expressed by all the cell types. The ratio of PD-L1(+) cells to CD326(+) tumor cells was 19.1% ± 14.0%, lower than those for CD90(+) stromal cells (39.6% ± 16.0%) and CD11b(+) myeloid cells (31.9% ± 14.3%). The ratio of PD-L1(+) cells in tumor cells correlated strongly with the ratio in stromal cells, while only weakly with that in myeloid cells. Tumor cells were divided into two populations by CD326 expression levels, and the PD-L1 positive ratios were inversely correlated with the rate of CD326 highly expressing cells as well as mean fluorescein intensity of CD326 in tumor cells, while positively correlated with the frequencies of stromal cells or myeloid cells in CRC. Conclusion PD-L1 is differentially expressed on various cell types in CRC. PD-L1 on tumor cells may be upregulated together with CD326 downregulation in the process of epithelial mesenchymal transition. Quantification of cell type-specific expression of PD-L1 using multicolor flow cytometry may provide useful information for the immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Akira Saito
- Department of Gastrointestinal Surgery, Jichi Medical University, Japan
| | - Mineyuki Tojo
- Department of Gastrointestinal Surgery, Jichi Medical University, Japan
| | - Yuko Kumagai
- Department of Gastrointestinal Surgery, Jichi Medical University, Japan
| | - Hideyuki Ohzawa
- Department of Clinical Oncology, Jichi Medical University, Japan
| | | | - Hideyo Miyato
- Department of Gastrointestinal Surgery, Jichi Medical University, Japan
| | - Ai Sadatomo
- Department of Gastrointestinal Surgery, Jichi Medical University, Japan
| | - Daishi Naoi
- Department of Gastrointestinal Surgery, Jichi Medical University, Japan
| | - Gaku Ota
- Department of Gastrointestinal Surgery, Jichi Medical University, Japan
| | - Koji Koinuma
- Department of Gastrointestinal Surgery, Jichi Medical University, Japan
| | - Hisanaga Horie
- Department of Gastrointestinal Surgery, Jichi Medical University, Japan
| | | | - Naohiro Sata
- Department of Gastrointestinal Surgery, Jichi Medical University, Japan
| | - Joji Kitayama
- Department of Gastrointestinal Surgery, Jichi Medical University, Japan
- Corresponding author.
| |
Collapse
|
94
|
Grant D, Wanner N, Frimel M, Erzurum S, Asosingh K. Comprehensive phenotyping of endothelial cells using flow cytometry 2: Human. Cytometry A 2020; 99:257-264. [PMID: 33369145 DOI: 10.1002/cyto.a.24293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In vascular research, clinical samples and samples from animal models are often used together to foster translation of preclinical findings to humans. General concepts of endothelia and murine-specific endothelial phenotypes were discussed in part 1 of this two part series. Here, in part 2, we present a comprehensive overview of human-specific endothelial phenotypes. Pan-endothelial cell markers, organ specific endothelial antigens, and flow cytometric immunophenotyping of blood-borne endothelial cells are reviewed.
Collapse
Affiliation(s)
- Dillon Grant
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas Wanner
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthew Frimel
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Serpil Erzurum
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Flow Cytometry Core Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
95
|
Mashreghi M, Zamani P, Karimi M, Mehrabian A, Arabsalmani M, Zarqi J, Moosavian SA, Jaafari MR. Anti-epithelial cell adhesion molecule RNA aptamer-conjugated liposomal doxorubicin as an efficient targeted therapy in mice bearing colon carcinoma tumor model. Biotechnol Prog 2020; 37:e3116. [PMID: 33369269 DOI: 10.1002/btpr.3116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
To overcome the lack of selectivity and nonspecific biodistribution of drugs in the body, targeted delivery of chemotherapeutic agents with aptamers is a very effective method. In this strategy, aptamers could be specifically identified and attach to targeted molecules on the cancerous cells and deliver the chemotherapeutic agents to desired tissue with minimal or no damage to the normal cells. In this study, we designed anti-epithelial cell adhesion molecule (EpCAM) RNA aptamer conjugated PEGylated liposomal doxorubicin (ER-lip) to investigate its in vitro and in vivo anticancer abilities. Data showed that EpCAM aptamer was able to enhance cell uptake and cytotoxic effects of Dox in C26 cell line. The biodistribution study indicated that ER-lip enhanced the tumor accumulation of Dox compared to Caelyx. Also, double staining of isolated tumor cells with anti-CD44-PE-cy5 and anti-EpCAM Cy-7 antibodies indicated that tumor cells expressed a high level of EpCAM+ CD44+ cells (p ≤ .001) compared to cultured C26 cell line. in vivo results showed that ER-lip promoted survival and reduced tumor growth rate in animal model compared to Caelyx. In conclusion, these results suggested that the ER-lip could be served as promising formulation for the treatment of cancers with the high expression of EpCAM.
Collapse
Affiliation(s)
- Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Karimi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mehrabian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Arabsalmani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Zarqi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Alia Moosavian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
96
|
Robertson N, Lopez-Anton N, Gurjar SA, Khalique H, Khalaf Z, Clerkin S, Leydon VR, Parker-Manuel R, Raeside A, Payne T, Jones TD, Seymour L, Cawood R. Development of a novel mammalian display system for selection of antibodies against membrane proteins. J Biol Chem 2020; 295:18436-18448. [PMID: 33127646 PMCID: PMC7939478 DOI: 10.1074/jbc.ra120.015053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Reliable, specific polyclonal and monoclonal antibodies are important tools in research and medicine. However, the discovery of antibodies against their targets in their native forms is difficult. Here, we present a novel method for discovery of antibodies against membrane proteins in their native configuration in mammalian cells. The method involves the co-expression of an antibody library in a population of mammalian cells that express the target polypeptide within a natural membrane environment on the cell surface. Cells that secrete a single-chain fragment variable (scFv) that binds to the target membrane protein thereby become self-labeled, enabling enrichment and isolation by magnetic sorting and FRET-based flow sorting. Library sizes of up to 109 variants can be screened, thus allowing campaigns of naïve scFv libraries to be selected against membrane protein antigens in a Chinese hamster ovary cell system. We validate this method by screening a synthetic naïve human scFv library against Chinese hamster ovary cells expressing the oncogenic target epithelial cell adhesion molecule and identify a panel of three novel binders to this membrane protein, one with a dissociation constant (KD ) as low as 0.8 nm We further demonstrate that the identified antibodies have utility for killing epithelial cell adhesion molecule-positive cells when used as a targeting domain on chimeric antigen receptor T cells. Thus, we provide a new tool for identifying novel antibodies that act against membrane proteins, which could catalyze the discovery of new candidates for antibody-based therapies.
Collapse
Affiliation(s)
| | | | | | - Hena Khalique
- Anticancer Viruses and Cancer Vaccines Group, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | - Tom Payne
- OXGENE, Medawar Centre, Oxford, United Kingdom
| | - Tim D Jones
- OXGENE, Medawar Centre, Oxford, United Kingdom
| | - Len Seymour
- Anticancer Viruses and Cancer Vaccines Group, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ryan Cawood
- OXGENE, Medawar Centre, Oxford, United Kingdom.
| |
Collapse
|
97
|
Grant D, Wanner N, Frimel M, Erzurum S, Asosingh K. Comprehensive phenotyping of endothelial cells using flow cytometry 1: Murine. Cytometry A 2020; 99:251-256. [PMID: 33345421 DOI: 10.1002/cyto.a.24292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
The endothelium forms a selective barrier between circulating blood or lymph and surrounding tissue. Endothelial cells play an essential role in vessel homeostasis, and identification of these cells is critical in vascular biology research. However, characteristics of endothelial cells differ depending on the location and type of blood or lymph vessel. Endothelial cell subsets are numerous and often identified using different flow cytometric markers, making immunophenotyping these cells complex. In part 1 of this two part review series, we present a comprehensive overview of markers for the flow cytometric identification and phenotyping of murine endothelial subsets. These subsets can be distinguished using a panel of cell surface and intracellular markers shared by all endothelial cells in combination with additional markers of specialized endothelial cell types. This review can be used to determine the best markers for identifying and phenotyping desired murine endothelial cell subsets.
Collapse
Affiliation(s)
- Dillon Grant
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas Wanner
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthew Frimel
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Serpil Erzurum
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Flow Cytometry Core Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
98
|
Respiratory Epithelial Cells Respond to Lactobacillus plantarum but Provide No Cross-Protection against Virus-Induced Inflammation. Viruses 2020; 13:v13010002. [PMID: 33374950 PMCID: PMC7821944 DOI: 10.3390/v13010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Virus-induced inflammation plays a critical role in determining the clinical outcome of an acute respiratory virus infection. We have shown previously that the administration of immunobiotic Lactobacillus plantarum (Lp) directly to the respiratory tract prevents lethal inflammatory responses to subsequent infection with a mouse respiratory virus pathogen. While Lp-mediated protective responses involve non-redundant contributions of both Toll-like receptor 2 (TLR2) and NOD2, the cellular basis of these findings remains unclear. Here, we address the impact of Lp and its capacity to suppress inflammation in virus-infected respiratory epithelial cells in two cell culture models. We found that both MLE-12 cells and polarized mouse tracheal epithelial cells (mTECs) were susceptible to infection with Influenza A and released proinflammatory cytokines, including CCL2, CCL5, CXCL1, and CXCL10, in response to replicating virus. MLE-12 cells express NOD2 (81 ± 6.3%) and TLR2 (19 ± 4%), respond to Lp, and are TLR2-specific, but not NOD2-specific, biochemical agonists. By contrast, we found that mTECs express NOD2 (81 ± 17%) but minimal TLR2 (0.93 ± 0.58%); nonetheless, mTECs respond to Lp and the TLR2 agonist, Pam2CSK4, but not NOD2 agonists or the bifunctional TLR2-NOD2 agonist, CL-429. Although MLE-12 cells and mTECS were both activated by Lp, little to no cytokine suppression was observed in response to Lp followed by virus infection via a protocol that replicated experimental conditions that were effective in vivo. Further study and a more complex approach may be required to reveal critical factors that suppress virus-induced inflammatory responses.
Collapse
|
99
|
Nanou A, Mol L, Coumans FAW, Koopman M, Punt CJA, Terstappen LWMM. Endothelium-Derived Extracellular Vesicles Associate with Poor Prognosis in Metastatic Colorectal Cancer. Cells 2020; 9:E2688. [PMID: 33333805 PMCID: PMC7765205 DOI: 10.3390/cells9122688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
Elevated, tumor-derived extracellular vesicle (tdEV) and circulating tumor cell (CTC) loads in metastatic cancer are associated with poor clinical outcome. Herein, we investigate whether endothelium-derived extracellular vesicles (edEVs) can be detected in the blood of metastatic colorectal cancer (mCRC) patients, and whether those vesicles associate with prognosis. The open-source ACCEPT (Automated CTC Classification, Enumeration, and Phenotyping) software was used to enumerate edEVs, tdEVs, and other objects from digitally stored CellSearch images acquired after CTC and circulating endothelial cell (CEC) enrichment from the blood of 395 mCRC patients before the initiation of a new therapy. Patients had participated in the prospective phase III CAIRO2 study. The presence of edEVs was found 5- to 10-fold higher than CECs. The hazard ratio (HR) (95% CI) of progression-free survival (PFS) for increased CTCs (≥3 in 7.5 mL), tdEVs (≥40 in 7.5 mL), and edEVs (≥287 in 4.0 mL.) was 1.4 (1.1-1.9), 2.0 (1.5-2.6), and 1.7 (1.2-2.5), respectively. The HR of Overall Survival (OS) for increased CTCs, tdEVs and edEVs was 2.2 (1.7-3.0), 2.7 (2.0-3.5), and 2.1 (1.5-2.8), respectively. There was no cut-off value for CECs, leading to a dichotomization of patients with a significant HR. Only tdEVs remained a significant predictor of OS in the final multivariable model.
Collapse
Affiliation(s)
- Afroditi Nanou
- Department of Medical Cell BioPhysics, University of Twente, 7522ND Enschede, The Netherlands;
| | - Linda Mol
- Netherlands Comprehensive Cancer Organization, 6533AA Nijmegen, The Netherlands;
| | - Frank A. W. Coumans
- Department of Medical Cell BioPhysics, University of Twente, 7522ND Enschede, The Netherlands;
| | - Miriam Koopman
- Department of Medical Oncology, University Medical Center Utrecht, 3584CS Utrecht, The Netherlands;
| | - Cornelis J. A. Punt
- Julius Center for Health Sciences and Primary Care, Department of Epidemiology, University Medical Center Utrecht, 3584CG Utrecht, The Netherlands;
| | | |
Collapse
|
100
|
Minimal Residual Disease in Melanoma:molecular characterization of in transit cutaneous metastases and Circulating Melanoma Cells recognizes an expression panel potentially related to disease progression. Cancer Treat Res Commun 2020; 25:100262. [PMID: 33338742 DOI: 10.1016/j.ctarc.2020.100262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Isolating circulating melanoma cells (CMCs) represents a powerful method to monitor minimal residual disease. We documented that MCAM/MUC18/CD146 expression is strongly associated with disease progression. ABCB5 is melanoma-stem antigen with self-renewal, proliferation, differentiation, tumorigenicity capabilities. These findings supported us to improve CMC detection, investigating MCAM/MUC18/CD146 and ABCB5 as enrichment targets in MM progression. Moreover, we decided to compare possible molecular diversity of these CMC fractions with metastatic tissue expression, collecting concomitantly cutaneous in transit metastases (CTM). We enriched CMCs from eight melanoma patients staged ≥pT1b AJCC, who developed CTMs at baseline or during follow up. We assessed a gene expression panel comprising ABCB5, the differentiation markers (Tyrosinase, MART1), angiogenic factors (VEGF, bFGF), the cell-cell adhesion molecules (MCAM/MUC18/CD146 5'-portion, Long, and Short isoforms, E-Cadherin, N-Cadherin, VE-Cadherin) and matrix-metallo-proteinases (MMP2 and MMP9) via high-sensitive RT-PCR. Preliminary findings defined three distinct sub-populations: "endothelial" CD45-CD146+CMCs, "stem" CD45-ABCB5+CMCs and a "hybrid- stem-endothelial"- CD45-MCAM+ABCB5+CMCs. The expression panel documented that - almost high expression found in CTMs - like in 73.5% of CMCs resulted positive for at least one transcript at baseline, showing gene-expression variability. Longitudinal monitoring documented shut-down of all gene-expressions in "endothelial"- and "hybrid stem-endothelial"-subsets, whilst persistency or acquisition of MCAM/MUC18/CD146, VE-CADH and MMPs was documented in disease-progression status.Conversely, a drastic expression shut-down was documented when patients achieved clinical remission. The "stem"- CMCs fraction" showed quite lower gene expression frequencies. MCAM/MUC18/CD146 and ABCB5 as melanoma-specific-targets are effective in the selection of highly primitive CMCs and highlights those putative genes associated with disease spreading progression.
Collapse
|