51
|
Yoon EL, Yeon JE, Ko E, Lee HJ, Je JH, Yoo YJ, Kang SH, Suh SJ, Kim JH, Seo YS, Yim HJ, Byun KS. An Explorative Analysis for the Role of Serum miR-10b-3p Levels in Predicting Response to Sorafenib in Patients with Advanced Hepatocellular Carcinoma. J Korean Med Sci 2017; 32:212-220. [PMID: 28049231 PMCID: PMC5219986 DOI: 10.3346/jkms.2017.32.2.212] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022] Open
Abstract
The prognostic role of aberrant serum miRNA expression for predicting response to sorafenib treatment in advanced hepatocellular carcinoma (HCC) patients has not been well characterized. We aimed to identify specific serum miRNAs that are associated with positive radiologic responses or improved survival in sorafenib-treated HCC patients. miR-18a, miR-21, miR-139-5p, miR-221, miR-224, and miR-10b-3p, were selected for analysis. Serum samples from 24 patients with advanced stage HCC and 25 patients with liver cirrhosis (LC) were analyzed. All of the miRNAs except miR-21 were found to be upregulated in serum samples from HCC patients. None of the miRNAs assayed differed significantly in terms of expression between the responder and non-responder groups among HCC patients. However, miR-10b-3p levels were significantly higher in the subgroup of HCC patients with worse overall survival (fold change = 5.8, P = 0.008). Serum miRNA-10b-3p was upregulated in the presence of macrovascular invasion (MVI), and those with higher serum miRNA-10b-3p had significantly shorter survival during treatment (P = 0.042). Although no single serum miRNA was predictive of response to sorafenib treatment, analysis of serum miR-10b-3p levels may be valuable for diagnosis of HCC and prediction of survival of sorafenib-treated patients.
Collapse
Affiliation(s)
- Eileen L Yoon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Jong Eun Yeon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.
| | - Eunjung Ko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hyun Jung Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ji Hye Je
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Yang Jae Yoo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Seong Hee Kang
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Jun Suh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ji Hoon Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Yeon Seok Seo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hyung Joon Yim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kwan Soo Byun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
52
|
Calo N, Ramadori P, Sobolewski C, Romero Y, Maeder C, Fournier M, Rantakari P, Zhang FP, Poutanen M, Dufour JF, Humar B, Nef S, Foti M. Stress-activated miR-21/miR-21* in hepatocytes promotes lipid and glucose metabolic disorders associated with high-fat diet consumption. Gut 2016; 65:1871-1881. [PMID: 27222533 DOI: 10.1136/gutjnl-2015-310822] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 04/12/2016] [Accepted: 04/27/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVE miR-21 is an oncomir highly upregulated in hepatocellular carcinoma and in early stages of liver diseases characterised by the presence of steatosis. Whether upregulation of miR-21 contributes to hepatic metabolic disorders and their progression towards cancer is unknown. This study aims at investigating the role of miR-21/miR-21* in early stages of metabolic liver disorders associated with diet-induced obesity (DIO). DESIGN Constitutive miR-21/miR-21* knockout (miR21KO) and liver-specific miR-21/miR-21* knockout (LImiR21KO) mice were generated. Mice were then fed with high-fat diet (HFD) and alterations of the lipid and glucose metabolism were investigated. Serum and ex vivo explanted liver tissue were analysed. RESULTS Under normal breeding conditions and standard diet, miR-21/miR-21* deletion in mice was not associated with any detectable phenotypic alterations. However, when mice were challenged with an obesogenic diet, glucose intolerance, steatosis and adiposity were improved in mice lacking miR-21/miR-21*. Deletion of miR-21/miR-21* specifically in hepatocytes led to similar improvements in mice fed an HFD, indicating a crucial role for hepatic miR-21/miR-21* in metabolic disorders associated with DIO. Further molecular analyses demonstrated that miR-21/miR-21* deletion in hepatocytes increases insulin sensitivity and modulates the expression of multiple key metabolic transcription factors involved in fatty acid uptake, de novo lipogenesis, gluconeogenesis and glucose output. CONCLUSIONS Hepatic miR-21/miR-21* deficiency prevents glucose intolerance and steatosis in mice fed an obesogenic diet by altering the expression of several master metabolic regulators. This study points out miR-21/miR-21* as a potential therapeutic target for non-alcoholic fatty liver disease and the metabolic syndrome.
Collapse
Affiliation(s)
- Nicolas Calo
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Pierluigi Ramadori
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Yannick Romero
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Pia Rantakari
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Department of Physiology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Fu-Ping Zhang
- Department of Physiology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Matti Poutanen
- Department of Physiology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Bostjan Humar
- Hepatology, Department of Clinical Research, University of Berne, Bern, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
53
|
Ezzat WM, Amr KS. Insights for hepatitis C virus related hepatocellular carcinoma genetic biomarkers: Early diagnosis and therapeutic intervention. World J Hepatol 2016; 8:1251-1261. [PMID: 27843535 PMCID: PMC5084054 DOI: 10.4254/wjh.v8.i30.1251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/15/2016] [Accepted: 09/08/2016] [Indexed: 02/06/2023] Open
Abstract
The current review explores the role of emerging molecular contributing factors in liver carcinogenesis on top of hepatitis C virus (HCV). Here we will try to discuss the role genetic and epigenetic factors in pathogenesis of hepatocellular carcinoma. Understanding the role of these factors will help in discovering the mystery of liver carcinogenesis on top of chronic HCV infection. Moreover, use of the studied molecular factors will provide the hepatologists with tailored diagnostic promising biomarkers and flatten the way for establishment of emerging molecular treatment based on exploring the molecular subscription of this aggressive liver cancer.
Collapse
|
54
|
Chen Y, Wang X, Cheng J, Wang Z, Jiang T, Hou N, Liu N, Song T, Huang C. MicroRNA-20a-5p targets RUNX3 to regulate proliferation and migration of human hepatocellular cancer cells. Oncol Rep 2016; 36:3379-3386. [DOI: 10.3892/or.2016.5144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/17/2016] [Indexed: 11/05/2022] Open
|
55
|
Ramesh V, Ganesan K. Integrative analysis of transcriptome and miRNome unveils the key regulatory connections involved in different stages of hepatocellular carcinoma. Genes Cells 2016; 21:949-65. [PMID: 27465470 DOI: 10.1111/gtc.12396] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022]
Abstract
Dysregulated molecular processes are the major factors that drive and feed the signaling processes involved in carcinogenesis. In recent years, regulation of mRNAs by microRNAs (miRNAs) has been found to play a vital role in many cancers including hepatocellular carcinoma (HCC). However, genomewide studies defining molecular regulatory circuits at both mRNA and miRNA levels are just emerging. To uncover the molecular and functional processes involved in liver tumorigenesis at mRNA and miRNA level, a co-expression-based network of miRNAs was constructed from multiple miRNA profiles. The applicability of the network approach to microRNA expression profiles was assessed. Although the clustering consistency of miRNAs across the profiles was found moderate, miRNA networking has been found informative. Furthermore, microRNA network modules were integrated with the functionally defined mRNA modules derived from an mRNA co-expression network of an earlier study. Three highly clustered regulatory circuits of mRNA-miRNA modules have been identified as involved in hepatocyte, inflammatory-stress and proliferative process activated subcategories of HCC. A subset of the proliferative miRNA module was found clustered in the 14q32.31 chromosomal region. The current integrative network analysis of mRNA-miRNA modules shows the intricate miRNA-mRNA functional circuits and signaling interactions involved in liver tumorigenesis.
Collapse
Affiliation(s)
- Vignesh Ramesh
- Unit of Excellence in Cancer Genetics, Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Kumaresan Ganesan
- Unit of Excellence in Cancer Genetics, Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
56
|
Yan Y, Sun XG, Chen L, Sun LJ, Lu YY, Jiang ZR, Li L, Liu XS. Effect of formaldehyde on miRNA-21 and its downstream proteins TIMP-3 and RECK in the liver. Shijie Huaren Xiaohua Zazhi 2016; 24:2143-2151. [DOI: 10.11569/wcjd.v24.i14.2143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of formaldehyde on miRNA-21 and its downstream proteins tissue inhibitor of metalloproteinase 3 (TIMP-3) and reversion-inducing cysteine-rich protein with Kazal motifs (RECK) in the liver of mice.
METHODS: Forty female Kunming mice were randomly divided into three formaldehyde groups (low-, medium- and high-concentration groups) and a control group. The three formaldehyde groups were intraperitoneally injected with different concentrations of formaldehyde at 10:00 am daily. The control group was injected with equal volume of normal saline. Real-time quantitative PCR (RT-PCR) was used to detect the changes of expression of miRNA-21 after 30 d. Immunohistochemistry and Western blot were used to test the expression of TIMP-3 and RECK in the liver.
RESULTS: The relative expression levels of miRNA-21 in the low-, medium-, and high-concentration groups, compared with that in the control group, were 1.16 ± 0.18, 1.61 ± 0.29 and 2.48 ± 0.49, respectively. There were significant differences in miRNA-21 expression among different groups (F = 38.02, P < 0.0001). The expression values of TIMP-3 in the control group, low-, medium-, and high-concentration groups were 1.30 ± 0.058, 1.04 ± 0.083, 0.85 ± 0.070 and 0.23 ± 0.067, respectively, and there were significant differences among different groups (F = 125.8, P < 0.0001). The expression values of RECK in the control group, low-, medium-, and high-concentration groups were 1.24 ± 0.057, 1.11 ± 0.056, 0.68 ± 0.042 and 0.35 ± 0.066, respectively, and there were also significant differences among different groups (F = 158.7, P < 0.0001). The relative expression of miRNA-21 showed a negative association with expression of TIMP-3 and RECK (r = -0.990, P = 0.01; r = -0.974, P = 0.026, respectively).
CONCLUSION: The expression of miRNA-21 in the liver is significantly increased by formaldehyde in a dose-dependent manner. Formaldehyde can decrease the expression of TIMP-3 and RECK in the same dose-dependent manner.
Collapse
|
57
|
Zhang C, Shu L, Kim H, Khor TO, Wu R, Li W, Kong ANT. Phenethyl isothiocyanate (PEITC) suppresses prostate cancer cell invasion epigenetically through regulating microRNA-194. Mol Nutr Food Res 2016; 60:1427-36. [PMID: 26820911 DOI: 10.1002/mnfr.201500918] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022]
Abstract
SCOPE Tumor metastasis greatly contributes to the mortality of prostate cancer. The glucosinolate-derived phenethyl isothiocyanate (PEITC) has been widely documented to reduce the risk of prostate cancer by modulating multiple biologically relevant processes. Emerging evidence suggests that PEITC may exert its anti-cancer effects through epigenetic mechanisms including microRNAs. Altered levels of miRNA have been linked to tumor malignancy due to their capacity to regulate functional gene expression in carcinogenesis. Here, we assessed the effects of PEITC on miRNA expression which is related to PCa cell invasiveness. METHODS AND RESULTS Utilizing oligonucleotide microarray first identified the most affected miRNAs in LNCaP cells after PEITC treatment. Several top altered miRNAs were further validated using quantitative PCR. Interestingly, overexpression of miR-194 suppressed PC3 cell invasion in matrigel-coated Transwell chambers. Bone morphogenetic protein 1 (BMP1) was shown to be a direct target of miR-194. Downregulation of BMP1 by miR-194 or PEITC led to decreased expression of key oncogenic matrix metalloproteinases, MMP2 and MMP9. This in turn resulted in the suppression of tumor invasion. CONCLUSION Our results indicate that miR-194 downregulates the expression of oncogenic MMP2 and MMP9 by targeting BMP1, which suggests a potential new mechanistic target by which PEITC suppresses prostate cancer cell invasiveness.
Collapse
Affiliation(s)
- Chengyue Zhang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Limin Shu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA
| | - Hyuck Kim
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA
| | - Tin Oo Khor
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Wenji Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| |
Collapse
|
58
|
Design of a small molecule against an oncogenic noncoding RNA. Proc Natl Acad Sci U S A 2016; 113:5898-903. [PMID: 27170187 DOI: 10.1073/pnas.1523975113] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The design of precision, preclinical therapeutics from sequence is difficult, but advances in this area, particularly those focused on rational design, could quickly transform the sequence of disease-causing gene products into lead modalities. Herein, we describe the use of Inforna, a computational approach that enables the rational design of small molecules targeting RNA to quickly provide a potent modulator of oncogenic microRNA-96 (miR-96). We mined the secondary structure of primary microRNA-96 (pri-miR-96) hairpin precursor against a database of RNA motif-small molecule interactions, which identified modules that bound RNA motifs nearby and in the Drosha processing site. Precise linking of these modules together provided Targaprimir-96 (3), which selectively modulates miR-96 production in cancer cells and triggers apoptosis. Importantly, the compound is ineffective on healthy breast cells, and exogenous overexpression of pri-miR-96 reduced compound potency in breast cancer cells. Chemical Cross-Linking and Isolation by Pull-Down (Chem-CLIP), a small-molecule RNA target validation approach, shows that 3 directly engages pri-miR-96 in breast cancer cells. In vivo, 3 has a favorable pharmacokinetic profile and decreases tumor burden in a mouse model of triple-negative breast cancer. Thus, rational design can quickly produce precision, in vivo bioactive lead small molecules against hard-to-treat cancers by targeting oncogenic noncoding RNAs, advancing a disease-to-gene-to-drug paradigm.
Collapse
|
59
|
Yu G, Chen X, Chen S, Ye W, Hou K, Liang M. MiR-19a, miR-122 and miR-223 are differentially regulated by hepatitis B virus X protein and involve in cell proliferation in hepatoma cells. J Transl Med 2016; 14:122. [PMID: 27150195 PMCID: PMC4858919 DOI: 10.1186/s12967-016-0888-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 04/30/2016] [Indexed: 02/07/2023] Open
Abstract
Background Hepatitis B virus (HBV) X protein (HBx) is a type of oncogenic protein involved in the progression of hepatocellular carcinoma (HCC) via interacting with host genes. Dysregulation of microRNAs (miRNAs) has been observed in HCC. This study aimed to investigate the role of HBx protein in the regulation of miR-19a, miR-122 and miR-223, and examine if these miRNAs involve in progression of malignant hepatocytes. Methods Quantitative real time PCR (qRT-PCR) was used to measure the expression of miR-19a, miR-122 and miR-223 in patient samples and in HepG2 cells transfected with HBx or 1.3 fold HBV genome and also in HepG2.2.15 cells, which stably produces HBV. Their target mRNAs and proteins-PTEN, cyclin G1 and c-myc were measured by qRT-PCR and western blot, respectively. The effect of miR-19a, miR-122 and miR-223, and their respective target genes, on cell proliferation was analyzed using 5-ethynyl-2-deoxyuridine incorporation and MTT assay. Results MiR-19a showed an up-regulation in HBV-positive HCC patients compared to healthy controls and HBV-negative HCC patients, while miR-122 and miR-223 showed a down-regulation compared to healthy controls, and miR-122 in HBV-positive HCC patients was also down-regulated when compared to HBV-negative HCC patients. MiR-19a was found to be up-regulated in HepG2 cells transfected with HBx or 1.3 fold HBV genome, but down-regulated in HepG2.2.15 cells. MiR-122 and miR-223 were down-regulated in HBx or 1.3 fold HBV transfected HepG2 cells as well as in HepG2.2.15 cell. Their target mRNAs and corresponding proteins-PTEN was down-regulated, while cyclin G1 and c-myc were found to be up-regulated. Modulated expression of miR-19a, miR-122 and miR-223 enhanced cell proliferation of HBx-transfected HepG2 cells, and rescue experiment further showed that their target genes-PTEN, cyclin G1and c-myc involved in cell proliferation of HBx-transfected HepG2 cells. Conclusions The expression of miR-19a, miR-122 and miR-223 were differentially regulated by HBx protein, the differential expression of miR-19a, miR-122 and miR-223 plays an important role in cell proliferation of HCC. This study provides new insight into understanding how HBx protein interacts with miRNAs and subsequently regulates host function.
Collapse
Affiliation(s)
- Guifang Yu
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No.621, Gangwan Road, Huangpu District, Guangzhou, 510700, China.
| | - Xuezhu Chen
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No.621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| | - Shudi Chen
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No.621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| | - Weipeng Ye
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No.621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| | - Kailian Hou
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No.621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| | - Min Liang
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No.621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| |
Collapse
|
60
|
Zhou Y, Zhang L, Ji H, Lu X, Xia J, Li L, Chen F, Bu H, Shi Y. MiR-17~92 ablation impairs liver regeneration in an estrogen-dependent manner. J Cell Mol Med 2016; 20:939-948. [PMID: 26781774 PMCID: PMC4831359 DOI: 10.1111/jcmm.12782] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/07/2015] [Indexed: 02/05/2023] Open
Abstract
As one of the most important post-transcriptional regulators, microRNAs (miRNAs) participate in diverse biological processes, including the regulation of cell proliferation. MiR-17~92 has been found to act as an oncogene, and it is closely associated with cell proliferation. However, its role in liver regeneration is still unclear. We generated a hepatocyte-specific miR-17~92-deficient mouse and used a mouse model with 70% partial hepatectomy (PH) or intraperitoneal injection of carbon tetrachloride to demonstrate the role of MiR-17~92 in liver regeneration. In quiescent livers, the expression of the miR-17~92 cluster showed a gender disparity, with much higher expression in female mice. The expression of four members of this cluster was found to be markedly reduced after 70% PH. The ablation of miR-17~92 led to obvious regeneration impairment during the early-stage regeneration in the female mice. Ovariectomy greatly reduced miR-17~92 expression but significantly promoted liver regeneration in wild-type mice. In addition, early regeneration impairment in miR-17~92-deficient livers could be largely restored following ovariectomy. The proliferation suppressors p21 and Pten were found to be the target effectors of miR-17~92. MiR-17~92 disruption resulted in elevated protein levels of p21 and Pten in regenerating livers. MiR-17~92 functions as a proliferation stimulator and acts in an oestrogen-dependent manner. The loss of this miRNA results in increases in p21 and Pten expression and therefore impairs liver regeneration in female mice.
Collapse
Affiliation(s)
- Yongjie Zhou
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu, China
| | - Lei Zhang
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu, China
| | - Hongjie Ji
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu, China
| | - Xufeng Lu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu, China
| | - Jie Xia
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu, China
| | - Li Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Chen
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Bu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yujun Shi
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu, China
| |
Collapse
|
61
|
Fiorino S, Bacchi-Reggiani ML, Visani M, Acquaviva G, Fornelli A, Masetti M, Tura A, Grizzi F, Zanello M, Mastrangelo L, Lombardi R, Di Tommaso L, Bondi A, Sabbatani S, Domanico A, Fabbri C, Leandri P, Pession A, Jovine E, de Biase D. MicroRNAs as possible biomarkers for diagnosis and prognosis of hepatitis B- and C-related-hepatocellular-carcinoma. World J Gastroenterol 2016; 22:3907-3936. [PMID: 27099435 PMCID: PMC4823242 DOI: 10.3748/wjg.v22.i15.3907] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/05/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023] Open
Abstract
Aim of the present review is to summarize the current knowledge about the potential relationship between miRNAs and hepatitis B virus (HBV)-hepatitis C virus (HCV) related liver diseases. A systematic computer-based search of published articles, according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis Statement, was performed to identify relevant studies on usefulness of serum/plasma/urine miRNAs, as noninvasive biomarkers for early detection of HBV and HCV-induced hepatocellular carcinoma (HCC) development, as well as for its prognostic evaluation. The used Medical Subject Headings terms and keywords were: "HBV", "HCV", "hepatocellular carcinoma", "microRNAs", "miRNAs", "diagnosis", "prognosis", "therapy", "treatment". Some serum/plasma miRNAs, including miR-21, miR-122, mi-125a/b, miR-199a/b, miR-221, miR-222, miR-223, miR-224 might serve as biomarkers for early diagnosis/prognosis of HCC, but, to date, not definitive results or well-defined panels of miRNAs have been obtained. More well-designed studies, focusing on populations of different geographical areas and involving larger series of patients, should be carried out to improve our knowledge on the potential role of miRNAs for HCC early detection and prognosis.
Collapse
|
62
|
Comprehensive Expression Profiling and Functional Network Analysis of p53-Regulated MicroRNAs in HepG2 Cells Treated with Doxorubicin. PLoS One 2016; 11:e0149227. [PMID: 26886852 PMCID: PMC4757586 DOI: 10.1371/journal.pone.0149227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/28/2016] [Indexed: 01/04/2023] Open
Abstract
Acting as a sequence-specific transcription factor, p53 tumor suppressor involves in a variety of biological processes after being activated by cellular stresses such as DNA damage. In recent years, microRNAs (miRNAs) have been confirmed to be regulated by p53 in several cancer types. However, it is still unclear how miRNAs orchestrate their regulation and function in p53 network after p53 activation in hepatocellular carcinoma (HCC). In this study, we used small RNA sequencing and systematic bioinformatic analysis to characterize the regulatory networks of differentially expressed miRNAs after the p53 activation in HepG2. Here, 33 miRNAs significantly regulated by p53 (12 up-regulated and 21 down-regulated) were detected between the doxorubicin-treated and untreated HepG2 cells in two biological replicates for small RNA sequencing and 8 miRNAs have been reported previously to be associated with HCC. Gene ontology (GO) and KEGG pathway enrichment analysis showed that 87.9% (29 out of 33) and 90.9% (30 out of 33) p53-regulated miRNAs were involved in p53-related biological processes and pathways with significantly low p-value, respectively. Remarkably, 18 out of 33 p53-regulated miRNAs were identified to contain p53 binding sites around their transcription start sites (TSSs). Finally, comprehensive p53-miRNA regulatory networks were constructed and analyzed. These observations provide a new insight into p53-miRNA co-regulatory network in the context of HCC.
Collapse
|
63
|
Louten J, Beach M, Palermino K, Weeks M, Holenstein G. MicroRNAs Expressed during Viral Infection: Biomarker Potential and Therapeutic Considerations. Biomark Insights 2016; 10:25-52. [PMID: 26819546 PMCID: PMC4718089 DOI: 10.4137/bmi.s29512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short sequences of noncoding single-stranded RNAs that exhibit inhibitory effects on complementary target mRNAs. Recently, it has been discovered that certain viruses express their own miRNAs, while other viruses activate the transcription of cellular miRNAs for their own benefit. This review summarizes the viral and/or cellular miRNAs that are transcribed during infection, with a focus on the biomarker and therapeutic potential of miRNAs (or their antagomirs). Several human viruses of clinical importance are discussed, namely, herpesviruses, polyomaviruses, hepatitis B virus, hepatitis C virus, human papillomavirus, and human immunodeficiency virus.
Collapse
Affiliation(s)
- Jennifer Louten
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Michael Beach
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Kristina Palermino
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Maria Weeks
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Gabrielle Holenstein
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| |
Collapse
|
64
|
Wang Y, Tian Y. miRNA for diagnosis and clinical implications of human hepatocellular carcinoma. Hepatol Res 2016; 46:89-99. [PMID: 26284466 DOI: 10.1111/hepr.12571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/12/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies, as a result of being asymptomatic at early stage, subsequent late clinical confirmation and poor prognosis. It is urgent to search more accurate biomarkers for diagnosing early HCC and predicting prognosis. Many factors participate in liver carcinogenesis, including dysregulation of miRNA. miRNA were endogenously expressed non-coding single-stranded small RNA with 19-25 nucleotides. Accumulating evidences have showed that miRNA from circulation and solitary tumors may be useful to classify the differentiation degree and stages of HCC, detect the hepatitis B/C virus-related HCC, and predict the survival rate after surgical resection or orthotopic liver transplantation. In this review, we summarize dysregulated miRNA, their roles in diagnosis and clinical implications of HCC.
Collapse
Affiliation(s)
- Yurong Wang
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yaping Tian
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
65
|
Park KU, Seo YS, Lee YH, Park J, Hwang I, Kang KJ, Nam J, Kim SW, Kim JY. Altered microRNA expression profile in hepatitis B virus-related hepatocellular carcinoma. Gene 2015; 573:278-84. [DOI: 10.1016/j.gene.2015.07.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 07/07/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022]
|
66
|
Zambrano T, Hirata RDC, Hirata MH, Cerda Á, Salazar LA. Altered microRNome Profiling in Statin-Induced HepG2 Cells: A Pilot Study Identifying Potential new Biomarkers Involved in Lipid-Lowering Treatment. Cardiovasc Drugs Ther 2015; 29:509-518. [PMID: 26602562 DOI: 10.1007/s10557-015-6627-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Statins are widely prescribed drugs to manage hypercholesterolemia. Despite they are considered effective lipid-lowering agents, significant inter-individual variability has been reported in relation to drug response. Among the reasons explaining this variation, genetic factors are known to partially contribute. Nonetheless, poor evidence exists regarding epigenetic factors involved. METHODS We investigated if atorvastatin can modulate the cholesterol related miR-33 family. Furthermore, we analyzed the microRNA expression profiles in HepG2 cells treated for 24 hours with atorvastatin or simvastatin using a microarray platform. RESULTS Our results indicate that atorvastatin does not influence the expression of the miR-33 family. In addition, microarray examination revealed that atorvastatin modulated thirteen miRs, whilst simvastatin only affected two miRs. All significantly modulated miRs after simvastastin therapy were also modulated by atorvastatin. In addition, four novel miRs with previously unreported functions were identified as statin-modulated. CONCLUSION We identified several novel miRs affected by statin treatment. Additional research is needed to determine the biological significance of differentially expressed miRs identified in statins-induced HepG2 cells.
Collapse
Affiliation(s)
- Tomás Zambrano
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.,School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Rosario D C Hirata
- School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Mario H Hirata
- School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Álvaro Cerda
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.,School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile. .,Centro de Biología Molecular & Farmacogenética, Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile.
| |
Collapse
|
67
|
HepatomiRNoma: The proposal of a new network of targets for diagnosis, prognosis and therapy in hepatocellular carcinoma. Crit Rev Oncol Hematol 2015; 97:312-21. [PMID: 26603462 DOI: 10.1016/j.critrevonc.2015.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/06/2015] [Accepted: 09/29/2015] [Indexed: 12/16/2022] Open
Abstract
The diagnosis and treatment of hepatocellular carcinoma (HCC) underwent a huge advancement in the last years. Recently, microRNAs (miRNAs) have been also studied to provide a new tool for early diagnosis of high risk patients, for prognostic classification to identify those patients who benefit cancer treatment and for predictive definition to select the right targeted drug. In this review we revised all the available data obtained to explore the role of miRNAs in HCC. This analysis led to identification of miRNAs which could gain a diagnostic, prognostic or predictive role. The results of studies on miRNAs involved in HCC are initial and far from providing scientific evidences to translate into clinical practice. We propose a classification of these miRNAs, that we could name HepatomiRNoma as a whole. Anyway prospective studies have to be designed to clarify the real clinical impact of this new tool.
Collapse
|
68
|
He C, Dong X, Zhai B, Jiang X, Dong D, Li B, Jiang H, Xu S, Sun X. MiR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway. Oncotarget 2015; 6:28867-28881. [PMID: 26311740 PMCID: PMC4745697 DOI: 10.18632/oncotarget.4814] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/17/2015] [Indexed: 02/06/2023] Open
Abstract
Sorafenib resistance remains a major obstacle for the effective treatments of hepatocellular carcinoma (HCC). Recent studies indicate that activated Akt contributes to the acquired resistance to sorafenib, and miR-21 dysregulates phosphatase and tensin homolog (PTEN), which inhibits Akt activation. Sorafenib-resistant HCC cells were shown to be refractory to sorafenib-induced growth inhibition and apoptosis. Akt and its downstream factors were highly activated and/or upregulated in sorafenib-resistant cells. Inhibition of autophagy decreased the sensitivity of sorafenib-resistant cells to sorafenib, while its induction had the opposite effect. Differential screening of miRNAs showed higher levels of miR-21 in sorafenib-resistant HCC cells. Exposure of HCC cells to sorafenib led to an increase in miR-21 expression, a decrease in PTEN expression and sequential Akt activation. Transfection of miR-21 mimics in HCC cells restored sorafenib resistance by inhibiting autophagy. Anti-miR-21 oligonucleotides re-sensitized sorafenib-resistant cells by promoting autophagy. Inhibition of miR-21 enhances the efficacy of sorafenib in treating sorafenib-resistant HCC tumors in vivo. We conclude that miR-21 participates in the acquired resistance of sorafenib by suppresing autophagy through the Akt/PTEN pathway. MiR-21 could serve as a therapeutic target for overcoming sorafenib resistance in the treatment of HCC.
Collapse
Affiliation(s)
- Changjun He
- Department of Surgery, the Affiliated Cancer Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, China
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuesong Dong
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Zhai
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xian Jiang
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Deli Dong
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, China
| | - Baoxin Li
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, China
| | - Hongchi Jiang
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shidong Xu
- Department of Surgery, the Affiliated Cancer Hospital of Harbin Medical University, Harbin, China
| | - Xueying Sun
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
69
|
Jiang G, Zhou R, He X, Shi Z, Huang M, Yu J, Wang X. Expression levels of microRNA-199 and hypoxia-inducible factor-1 alpha in brain tissue of patients with intractable epilepsy. Int J Neurosci 2015; 126:326-34. [PMID: 25539181 DOI: 10.3109/00207454.2014.994209] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES During the last decade, experimental evidence has demonstrated an important role of hypoxia, which leads to neuronal cell death and angiogenesis, in the mechanisms of seizure precipitation and recurrence. MicroRNA-199 targets hypoxia-inducible factor-1alpha (HIF-1α), which has recently been implicated in the pathophysiology of the hypoxic state and brain injury. However, little is known about the roles of MicroRNA-199 and HIF-1α in the human epileptogenic process. DESIGN AND METHODS In this study, we investigated the expression of miR-199a-5p, miR-199b-5p and HIF-1α using real-time PCR, immunohistochemistry and western blots in the temporal neocortex of twenty four patients with intractable epilepsy and twelve control subjects. RESULTS Compared with the control group, the expression of miR-199a-5p and miR-199b-5p was significantly lower in epileptic brain tissues (p < 0.05). The levels of HIF-1α mRNA and protein were highly up-regulated in epileptic brain tissues compared with those of control subjects (p < 0.05). CONCLUSION These data suggest that the abnormal expression of miR-199 and HIF-1α in epileptic brain tissue may be involved in the pathophysiology of human epilepsy and that the expression of HIF-1α may be regulated by miR-199. These findings may provide new insights into the treatment of epilepsy.
Collapse
Affiliation(s)
- Guohui Jiang
- a 1 Department of Neurology, Institute of Neurology, Affiliated Hospital of North Sichuan Medical College , Wen Hua Road, Nanchong 637000 , China
| | - Ruijiao Zhou
- a 1 Department of Neurology, Institute of Neurology, Affiliated Hospital of North Sichuan Medical College , Wen Hua Road, Nanchong 637000 , China
| | - Xuzhi He
- b 2 Department of Neurosurgery, Daping Hospital and Institute of Surgery Research, Third Military Medical University , Chongqing 400042 , China
| | - Zhiqing Shi
- c 3 Diagnosis Department of Hebei Medical University , Shijiazhuang 050000 , China
| | - Min Huang
- a 1 Department of Neurology, Institute of Neurology, Affiliated Hospital of North Sichuan Medical College , Wen Hua Road, Nanchong 637000 , China
| | - Juming Yu
- a 1 Department of Neurology, Institute of Neurology, Affiliated Hospital of North Sichuan Medical College , Wen Hua Road, Nanchong 637000 , China
| | - Xiaoming Wang
- a 1 Department of Neurology, Institute of Neurology, Affiliated Hospital of North Sichuan Medical College , Wen Hua Road, Nanchong 637000 , China
| |
Collapse
|
70
|
Shi KQ, Lin Z, Chen XJ, Song M, Wang YQ, Cai YJ, Yang NB, Zheng MH, Dong JZ, Zhang L, Chen YP. Hepatocellular carcinoma associated microRNA expression signature: integrated bioinformatics analysis, experimental validation and clinical significance. Oncotarget 2015; 6:25093-25108. [PMID: 26231037 PMCID: PMC4694817 DOI: 10.18632/oncotarget.4437] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/19/2015] [Indexed: 12/30/2022] Open
Abstract
microRNA (miRNA) expression profiles varied greatly among current studies due to different technological platforms and small sample size. Systematic and integrative analysis of published datesets that compared the miRNA expression profiles between hepatocellular carcinoma (HCC) tissue and paired adjacent noncancerous liver tissue was performed to determine candidate HCC associated miRNAs. Moreover, we further validated the confirmed miRNAs in a clinical setting using qRT-PCR and Tumor Cancer Genome Atlas (TCGA) dataset. A miRNA integrated-signature of 5 upregulated and 8 downregulated miRNAs was identified from 26 published datesets in HCC using robust rank aggregation method. qRT-PCR demonstrated that miR-93-5p, miR-224-5p, miR-221-3p and miR-21-5p was increased, whereas the expression of miR-214-3p, miR-199a-3p, miR-195-5p, miR-150-5p and miR-145-5p was decreased in the HCC tissues, which was also validated on TCGA dataset. A miRNA based score using LASSO regression model provided a high accuracy for identifying HCC tissue (AUC = 0.982): HCC risk score = 0.180E_miR-221 + 0.0262E_miR-21 - 0.007E_miR-223 - 0.185E_miR-130a. E_miR-n = Log 2 (expression of microRNA n). Furthermore, expression of 5 miRNAs (miR-222, miR-221, miR-21 miR-214 and miR-130a) correlated with pathological tumor grade. Cox regression analysis showed that miR-21 was related with 3-year survival (hazard ratio [HR]: 1.509, 95%CI: 1.079-2.112, P = 0.016) and 5-year survival (HR: 1.416, 95%CI: 1.057-1.897, P = 0.020). However, none of the deregulated miRNAs was related with microscopic vascular invasion. This study provides a basis for further clinical application of miRNAs in HCC.
Collapse
Affiliation(s)
- Ke-Qing Shi
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Zhuo Lin
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xiang-Jian Chen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Mei Song
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yu-Qun Wang
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yi-Jing Cai
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Nai-Bing Yang
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Ming-Hua Zheng
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Jin-Zhong Dong
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Lei Zhang
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yong-Ping Chen
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
71
|
Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Exp Mol Med 2015; 47:e184. [PMID: 26380927 PMCID: PMC4650928 DOI: 10.1038/emm.2015.68] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 12/17/2022] Open
Abstract
Recent studies have shown that circulating microRNAs are a potential biomarker in various types of malignancies. The aim of this study was to investigate the feasibility of using serum exosomal microRNAs as novel serological biomarkers for hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). We measured the serum exosomal microRNAs and serum circulating microRNAs in patients with CHB (n=20), liver cirrhosis (LC) (n=20) and HCC (n=20). Serum exosomal microRNA was extracted from 500 μl of serum using an Exosome RNA Isolation kit. The expression levels of microRNAs were quantified by real-time PCR. The expression levels of selected microRNAs were normalized to Caenorhabditis elegans microRNA (Cel-miR-39). The serum levels of exosomal miR-18a, miR-221, miR-222 and miR-224 were significantly higher in patients with HCC than those with CHB or LC (P<0.05). Further, the serum levels of exosomal miR-101, miR-106b, miR-122 and miR-195 were lower in patients with HCC than in patients with CHB (P=0.014, P<0.001, P<0.001 and P<0.001, respectively). There was no significant difference in the levels of miR-21 and miR-93 among the three groups. Additionally, the serum levels of circulating microRNAs showed a smaller difference between HCC and either CHB or LC. This study suggests that serum exosomal microRNAs may be used as novel serological biomarkers for HCC.
Collapse
|
72
|
MicroRNA-19 triggers epithelial-mesenchymal transition of lung cancer cells accompanied by growth inhibition. J Transl Med 2015; 95:1056-70. [PMID: 26098000 DOI: 10.1038/labinvest.2015.76] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/12/2015] [Accepted: 04/28/2015] [Indexed: 02/07/2023] Open
Abstract
The miR-19 family (miR-19a and miR-19b-1) are key oncogenic components of the miR-17-92 cluster. Overexpression of miR-19 is strongly associated with cancer invasion and metastasis, and poor prognosis of cancer patients. However, the underlying mechanisms remain largely unknown. In the present study, we found that enforced expression of miR-19 including miR-19a and miR-19b-1 triggered epithelial-mesenchymal transition (EMT) of lung cancer cells A549 and HCC827 as shown by mesenchymal-like morphological conversion, downregulation of epithelial proteins (e.g., E-cadherin, ZO-1 (zona occludens 1), and α-catenin), upregulation of mesenchymal proteins (e.g., vimentin, fibronectin 1, N-cadherin, and snail1), formation of stress fibers, and reduced cell adhesion. In addition, enhanced migration and invasion were observed in the cancer cells A549 and HCC827 undergoing EMT. In contrast, silencing of endogenous miR-19 reversed EMT and reduced the migration and invasion abilities of A549 and HCC827 cells. DNA microarray results revealed significant changes of the expression of genes related to EMT, migration, and metastasis of miR-19-expressing A549 cells. Moreover, siRNA-mediated knockdown of PTEN, a target of miR-19, also resulted in EMT, migration, and invasion of A549 and HCC827 cells, suggesting that PTEN is involved in miR-19-induced EMT, migration and invasion of lung cancer cells. Furthermore, lung cancer cells undergoing EMT induced by miR-19 demonstrated reduced proliferation in vitro and in vivo, and enhanced resistance to apoptosis caused by TNF-α. Taken together, these findings suggest that miR-19 triggers EMT, which has an important role in the invasion and migration of lung cancer cells, accompanied by the reduced proliferation of cells.
Collapse
|
73
|
Jin S, Tan SS, Li H. MicroRNA-18a as a promising biomarker for cancer detection: a meta-analysis. Int J Clin Exp Med 2015; 8:12286-12296. [PMID: 26550138 PMCID: PMC4612823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/06/2015] [Indexed: 06/05/2023]
Abstract
Patients with cancer discovered at an early stage have relatively high survival rates. Increasing researches have shown the potential of detecting dysregulated microRNA-18a (miR-18a) to diagnose cancer. However, non-uniform results in previous studies were found. Thus, this meta-analysis was conducted to further explore the clinical applicability of miR-18a as an ideal biomarker for cancer detection. Suitable articles were obtained from online databases like PubMed, Embase, Cochrane, CBM and Wanfang. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was used to evaluate the quality of our meta-analysis. The pooled diagnostic parameters like specificity, sensitivity, diagnostic odds ratio (DOR), positive and negative likelihood ratios (PLR and NLR) and area under the summary receiver operator characteristic curve (SROC) were pooled to assess the entire test accuracy. Overall, 10 studies from 9 articles, including 979 patients with cancer and 713 healthy controls were involved in our meta-analysis. The pooled sensitivity was 0.78 (95% CI: 0.70-0.84) and the corresponding specificity was 0.82 (95% CI: 0.73-0.89). The merged PLR was 4.3 (95% CI: 2.8-6.8), NLR was 0.27 (95% CI: 0.20-0.37), and DOR was 16 (95% CI: 8-31). The pooled AUC was 0.86 (95% CI: 0.83-0.89). Our meta-analysis suggested that miR-18a might open up a new field for novel clinical cancer screening with the merits of high accuracy, non-invasiveness, convenience and cheap cost. However, more reliable studies in larger cohort should be conducted before it is used.
Collapse
Affiliation(s)
- Shan Jin
- Department of Oncology, People's Hospital of Guizhou Province No. 83 East Zhongshan Road, Guiyang 550002, Guizhou Province, China
| | - Shi-Sheng Tan
- Department of Oncology, People's Hospital of Guizhou Province No. 83 East Zhongshan Road, Guiyang 550002, Guizhou Province, China
| | - Hang Li
- Department of Oncology, People's Hospital of Guizhou Province No. 83 East Zhongshan Road, Guiyang 550002, Guizhou Province, China
| |
Collapse
|
74
|
Wang Y, Cai Y, Miao Y. Evolving-Pattern Analysis of Transient and Long-Term Biomarkers for Cancers: Hepatocellular Carcinoma as a Case. Interdiscip Sci 2015; 7:414-22. [DOI: 10.1007/s12539-015-0276-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 12/23/2022]
|
75
|
Sarkar N, Chakravarty R. Hepatitis B Virus Infection, MicroRNAs and Liver Disease. Int J Mol Sci 2015; 16:17746-62. [PMID: 26247932 PMCID: PMC4581219 DOI: 10.3390/ijms160817746] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) attacks the liver and can cause both acute as well as chronic liver diseases which might lead to liver cirrhosis and hepatocellular carcinoma. Regardless of the availability of a vaccine and numerous treatment options, HBV is a major cause of morbidity and mortality across the world. Recently, microRNAs (miRNAs) have emerged as important modulators of gene function. Studies on the role of miRNA in the regulation of hepatitis B virus gene expression have been the focus of modern antiviral research. miRNAs can regulate viral replication and pathogenesis in a number of different ways, which includefacilitation, direct or indirect inhibition, activation of immune response, epigenetic modulation, etc. Nevertheless, these mechanisms can appropriately be used with a diagnosticand/or therapeutic approach. The present review is an attempt to classify specific miRNAs that are reported to be associated with various aspects of hepatitis B biology, in order to precisely present the participation of individual miRNAs in multiple aspects relating to HBV.
Collapse
Affiliation(s)
- Neelakshi Sarkar
- ICMR Virus Unit, Kolkata, ID & BG Hospital Campus, Kolkata-700010, India.
| | - Runu Chakravarty
- ICMR Virus Unit, Kolkata, ID & BG Hospital Campus, Kolkata-700010, India.
| |
Collapse
|
76
|
Henrici A, Montalbano R, Neureiter D, Krause M, Stiewe T, Slater EP, Quint K, Ocker M, Di Fazio P. The pan-deacetylase inhibitor panobinostat suppresses the expression of oncogenic miRNAs in hepatocellular carcinoma cell lines. Mol Carcinog 2015; 54:585-597. [PMID: 24375802 DOI: 10.1002/mc.22122] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/18/2013] [Accepted: 11/26/2013] [Indexed: 02/05/2023]
Abstract
Deacetylase inhibitors (DACi) are a new class of drugs with a broad spectrum of mechanisms that favor their application in cancer therapy. Currently, the exact mechanisms and cellular effects of DACi have not been fully elucidated. In addition to their effects on histone acetylation, DACi can interfere with gene expression via miRNA pathways. Treatment with panobinostat (LBH589), a novel potent DACi, led to the highly aberrant modulation of several miRNAs in hepatocellular carcinoma (HCC) cell lines as shown by miRNA array analysis. Among them, hsa-miR-19a, hsa-miR-19b1 and the corresponding precursors were down-regulated by panobinostat in TP53(-/-) Hep3B and TP53(+/+) HepG2 cell lines; hsa-miR30a-5p mature form only was suppressed in both HCC cell lines, as confirmed by further RT-qPCR analysis. In HCC cell lines, panobinostat caused the upregulation of the predicted miRNA targets APAF1 and Beclin1 protein levels. Transfection with oligonucleotides mimicking these miRNAs led to an increase in the viability rate of both cell lines as analyzed by impedance-based real-time cell analysis. In addition, transfecting miRNA mimicking oligonucleotides resulted in the decrease of APAF1, Beclin1 and PAK6 at the protein level, proving the regulating influence of the investigated miRNAs on gene final products. The overexpression of the above mentioned oncomiRs in Hep3B and HepG2 cell lines leads to cell proliferation and downregulation of cell death associated proteins. In our model, panobinostat exerts its anti-cancer effect by suppressing these miRNAs and restoring the expression of their corresponding tumor suppressor targets.
Collapse
Affiliation(s)
- Alexander Henrici
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
| | - Roberta Montalbano
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Private Medical University, Salzburg, Austria
| | - Michael Krause
- Institute of Molecular Biology and Tumor Research, Philipps University of Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Biology and Tumor Research, Philipps University of Marburg, Marburg, Germany
| | - Emily Prentice Slater
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| | - Karl Quint
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
| | - Matthias Ocker
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
| | - Pietro Di Fazio
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
77
|
Zhu H, Han C, Wu T. MiR-17-92 cluster promotes hepatocarcinogenesis. Carcinogenesis 2015; 36:1213-22. [PMID: 26233958 DOI: 10.1093/carcin/bgv112] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023] Open
Abstract
MiR-17-92 cluster is an oncogenic miRNA cluster that is implicated in several cancers, although its role in hepatocarcinogenesis has not been clearly defined. In this study, we show that the miR-17-92 cluster is highly expressed in human hepatocellular carcinoma (HCC) tissues compared to the non-tumorous liver tissues by RT-PCR and in situ hybridization analyses. Increased miR-17-92 cluster expression in HCC tissues was further confirmed by analysis of the RNA-sequencing data of 319 patients available from the Cancer Genome Atlas (TCGA) Data Portal (https://tcga-data.nci.nih.gov/tcga/). To create an animal model that resembles enhanced miR-17-92 in the liver, we developed liver-specific miR-17-92 transgenic mice and the animals were treated with the hepatic carcinogen, diethylnitrosamine (DEN). We observed that the liver-specific miR-17-92 transgenic mice showed significantly increased hepatocellular cancer development compared to the matched wild-type control mice. Forced overexpression of the miR-17-92 cluster in cultured human hepatocellular cancer cells enhanced tumor cell proliferation, colony formation and invasiveness in vitro, whereas inhibition of the miR-17-92 cluster reduced tumor cell growth. By analyzing the miRNA and mRNA sequencing data from the 312 hepatocellular cancer patients available from the TCGA database, we observed that the expression levels of the miR-17-92 cluster members and host gene in the tumor tissues are negatively correlated with several target genes, including CREBL2, PRRG1, NTN4. Our findings demonstrate an important role of the miR-17-92 cluster in hepatocarcinogenesis and suggest the possibility of targeting this pivotal miRNA cluster for potential therapy.
Collapse
Affiliation(s)
- Hanqing Zhu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue SL-79, New Orleans, LA 70112, USA
| | - Chang Han
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue SL-79, New Orleans, LA 70112, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue SL-79, New Orleans, LA 70112, USA
| |
Collapse
|
78
|
Yu P, Wu D, You Y, Sun J, Lu L, Tan J, Bie P. miR-208-3p promotes hepatocellular carcinoma cell proliferation and invasion through regulating ARID2 expression. Exp Cell Res 2015; 336:232-41. [PMID: 26169693 PMCID: PMC7094640 DOI: 10.1016/j.yexcr.2015.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at post-transcriptional level. miRNA dysregulation plays a causal role in cancer progression. In this study, miR-208-3p was highly expressed and directly repressed ARID2 expression. As a result, ARID2 expression in hepatocellular carcinoma (HCC) was decreased. In vitro, miR-208-3p down-regulation and ARID2 over-expression elicited similar inhibitory effects on HCC cell proliferation and invasion. In vivo test results revealed that miR-208-3p down-regulation inhibited HCC tumorigenesis in Hep3B cells. Moreover, ARID2 was possibly a downstream element of transforming growth factor beta1 (TGFβ1)/miR-208-3p/ARID2 regulatory pathway. These findings suggested that miR-208-3p up-regulation is associated with HCC cell progression and may provide a new target for liver cancer treatment. miR-208-3p was highly expressed and directly repressed the expression of ARID2 in HCC. miR-208-3p contributed to HCC cell progression both in vitro and in vivo. Over-expression of ARID2 inhibited the HCC cell proliferation and invasion. Restoration of ARID2 partly reversed the the effect of miR-208-3p down-regulation on HCC cells. Newly regulatory pathway: miR-208-3p mediated the repression of ARID2 by TGFβ1 in HCC cells.
Collapse
Affiliation(s)
- Peng Yu
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Dingguo Wu
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yu You
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Jing Sun
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Lele Lu
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Jiaxing Tan
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Ping Bie
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
79
|
Kitab B, Alj HS, Ezzikouri S, Benjelloun S. MicroRNAs as Important Players in Host-hepatitis B Virus Interactions. J Clin Transl Hepatol 2015; 3:149-61. [PMID: 26357642 PMCID: PMC4548348 DOI: 10.14218/jcth.2015.00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) infection, a major public health problem, causes acute and chronic hepatitis that is often complicated by liver cirrhosis and hepatocellular carcinoma. The pathogenic mechanisms of HBV-related liver disease are not well understood, and the current licensed therapies are not effective in permanently clearing virus from the circulation. In recent years, the role of micro-ribonucleic acids (miRNAs) in HBV infection has attracted great interest. Cellular miRNAs can influence HBV replication directly by binding to HBV transcripts and indirectly by targeting cellular factors relevant to the HBV life cycle. They are also involved in the regulation of cellular genes and signaling pathways that have critical roles in HBV pathogenesis. HBV infection, in turn, can trigger changes in cellular miRNA expression that are associated with distinctive miRNA expression profiles depending on the phase of liver disease. These alterations in miRNA expression have been linked to disease progression and hepatocarcinogenesis. We provide here an up to date review regarding the field of miRNAs and HBV interplay and highlight the potential utility of miRNAs as diagnostic biomarkers and therapeutic targets for the management of HBV-related liver disease.
Collapse
Affiliation(s)
- Bouchra Kitab
- Viral Hepatitis Laboratory, Virology Unit, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hanane Salih Alj
- Laboratory of Biology and Health, URAC34, Faculty of Sciences Ben M’sik, University Hassan II Casablanca, Morocco
| | - Sayeh Ezzikouri
- Viral Hepatitis Laboratory, Virology Unit, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Soumaya Benjelloun
- Viral Hepatitis Laboratory, Virology Unit, Institut Pasteur du Maroc, Casablanca, Morocco
- Correspondence to: Soumaya Benjelloun, Virology Unit, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca 20360, Morocco. Tel: +212‐527‐016‐076; +212‐522‐434‐450, Fax: +212‐522‐260‐957, E‐mail:
| |
Collapse
|
80
|
Tian Y, Ou JHJ. Genetic and epigenetic alterations in hepatitis B virus-associated hepatocellular carcinoma. Virol Sin 2015; 30:85-91. [PMID: 25862579 DOI: 10.1007/s12250-015-3582-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). Its chronic infection can lead to chronic liver inflammation and the accumulation of genetic alterations to result in the oncogenic transformation of hepatocytes. HBV can also sensitize hepatocytes to oncogenic transformation by causing genetic and epigenetic changes of the host chromosomes. HBV DNA can insert into host chromosomes and recent large-scale whole-genome sequencing studies revealed recurrent HBV DNA integrations sites that may play important roles in the initiation of hepatocellular carcinogenesis. HBV can also cause epigenetic changes by altering the methylation status of cellular DNA, the post-translational modification of histones, and the expression of microRNAs. These changes can also lead to the eventual hepatocellular transformation. These recent findings on the genetic and epigenetic alterations of the host chromosomes induced by HBV opened a new avenue for the development of novel diagnosis and treatments for HBV-induced HCC.
Collapse
Affiliation(s)
- Yongjun Tian
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, 90033, USA
| | | |
Collapse
|
81
|
Sidhu K, Kapoor NR, Pandey V, Kumar V. The "Macro" World of microRNAs in Hepatocellular Carcinoma. Front Oncol 2015; 5:68. [PMID: 25859429 PMCID: PMC4373247 DOI: 10.3389/fonc.2015.00068] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 03/08/2015] [Indexed: 12/23/2022] Open
Abstract
Hepatotropic viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) are the major etiological agents associated with development of hepatocellular carcinoma (HCC). Progression of HCC is a multistep process that requires sequential or parallel deregulation of oncogenic and tumor suppressive pathways leading to chromosomal instability and neoplastic phenotype. In the recent years, microRNAs (miRNAs) have carved their own niche alongside oncogenes and tumor suppressors, owing to their innate ability to receive and relay multiple signals. Not surprisingly, miRNAs are fast emerging as central player in myriads of malignancies including HCC. miRNAs are reported to participate in initiation and progression of HCC, and have also been clinically correlated with risk assessment, disease grade, aggressiveness, and prognosis. Despite extensive data available on the role of miRNAs in HCC, there is a pressing need to integrate and evaluate these datasets to find its correlation, if any, with causal agents in order to devise novel interventional modalities. Through this review, we attempt to bridge the gap by consolidating the current knowledge and concepts in the field of HCC-related miRNAs with special emphasis on HBV and HCV. Further, we assess the potential of common as well as unique signatures that may be useful in developing novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Kaveri Sidhu
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB) , New Delhi , India
| | - Neetu Rohit Kapoor
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB) , New Delhi , India
| | - Vijaya Pandey
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB) , New Delhi , India
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB) , New Delhi , India
| |
Collapse
|
82
|
Nicolaidou V, Koufaris C. MicroRNA responses to environmental liver carcinogens: Biological and clinical significance. Clin Chim Acta 2015; 445:25-33. [PMID: 25773117 DOI: 10.1016/j.cca.2015.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/03/2015] [Accepted: 03/06/2015] [Indexed: 12/18/2022]
Abstract
A large number of biological, chemical, and dietary factors have been implicated in the development of liver cancer. These involve complex and protracted interactions between genetic, epigenetic, and environmental factors. The survival rate for patients diagnosed with late-stage liver cancer is currently low due to the aggressive nature of the disease and resistance to therapy. An increasing body of evidence has offered support for the crucial role of non-coding microRNA (miRNA) in directing hepatic responses to environmental risk factors for liver cancer. In this review we focus on miRNA responses to environmental liver cancer risk factors and their potential biological and clinical significance.
Collapse
Affiliation(s)
- Vicky Nicolaidou
- Department of Life and Health Sciences, University of Nicosia, Cyprus; Center for the study of Haematological Malignancies, Nicosia, Cyprus
| | - Costas Koufaris
- Department of Cytogenetics and Genomic, Cyprus Institute of Neurology and Genetics, Cyprus.
| |
Collapse
|
83
|
Wang Y, Cai Y, Miao Y. Evolving-pattern analysis of transient and long-term biomarkers for cancers: Hepatocellular carcinoma as a case. Interdiscip Sci 2015. [PMID: 25663115 DOI: 10.1007/s12539-014-0241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 09/29/2022]
Abstract
Cancer is a complex disease arises from combinations of changes that occur over a period of time. With the development of bioinformatics, more and more biomarkers representing changes in cancers had been identified using gene expression profiles. However, biomarkers alone are quite limited in explaining the molecular processed occurred in the due process. In this paper, we develop an evolving-pattern analysis pipeline for in-depth studies of gene expression changes during different disease stages, choosing hepatocellular carcinoma (HCC) as a case. Enrichment analyses were performed on three levels: functional terms, validated genes, and regulation factors for all the biomarkers to find out their biological characters. Our results show that biomarkers with distinct evolving patterns exhibit quite different characteristics on functional and regulation levels. For the case of HCC, transient biomarkers are mostly annotated to metabolic processes, while long-term biomarkers are mostly annotated to regulation processes, with a larger number of enriched regulation factors. Furthermore, our pipeline reveals the important roles of microRNAs in various evolving patterns, which are known to be closely related to HCC. These results confirm that evolving-pattern analysis may provide a new sight for in-depth studies of biomarkers and diseases.
Collapse
Affiliation(s)
- Yingying Wang
- Research Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | | |
Collapse
|
84
|
Wang X, Zhang J, Zhou L, Lu P, Zheng ZG, Sun W, Wang JL, Yang XS, Li XL, Xia N, Zhang N, Dou KF. Significance of serum microRNA-21 in diagnosis of hepatocellular carcinoma (HCC): clinical analyses of patients and an HCC rat model. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1466-1478. [PMID: 25973032 PMCID: PMC4396214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
MicroRNAs (miRNAs) are associated with human carcinogenesis and tumor development. Moreover, serum miRNAs can reflect the level of tissue miRNAs and be potential tumor markers. Serum microRNA-21 (miR-21) is overexpressed in many human cancers including hepatocellular carcinoma (HCC). However, how serum miR-21 changes during the HCC formation and whether miR-21 plays a regulatory role in this whole process are unknown. The current study evaluated the prognostic and diagnostic potential of serum miR-21 in HCC patients. Next, we established a HCC rat model and collected the blood and liver tissues at regular time points. AFP from the serum, RNA from the serum and liver tissues were collected and quantified separately. The results revealed that tissue and serum miR-21 was upregulated significantly in the groups of cirrhosis, early and advanced HCC compared with normal and fibrosis groups. The AFP levels were increased in early and advanced HCC compared with other groups. Then, the changes of miR-21 downstream proteins (i.e., programmed cell death 4 [PDCD4] and phosphatase and tensin homolog [PTEN]) in the liver tissues were measured. PDCD4 and PTEN expression was decreased gradually after tumor induction and negatively correlated with miR-21 expression. All these results suggested that serum miR-21 was associated with the prognosis of HCC; the changes in serum miR-21 were earlier and more accurately reflected the pathogenesis of HCC than AFP; therefore, it could be used as an early diagnostic marker for HCC. Our in vivo experiments further confirmed that miR-21 plays an important role in promoting the occurrence and development of HCC by regulating PDCD4 and PTEN.
Collapse
Affiliation(s)
- Xing Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical UniversityXi’an 710032, Shannxi, China
| | - Juan Zhang
- Department of Stomatology, 44 Hospital of PLAGuiyang, Guizhou 550009, China
| | - Liang Zhou
- Department of General Surgery, 155 Central Hospital of PLAKaifeng, He’nan 471000, China
| | - Peng Lu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical UniversityXi’an 710032, Shannxi, China
| | - Zhi-Gang Zheng
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical UniversityXi’an 710032, Shannxi, China
| | - Wei Sun
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical UniversityXi’an 710032, Shannxi, China
| | - Jian-Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical UniversityXi’an 710032, Shannxi, China
| | - Xi-Sheng Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical UniversityXi’an 710032, Shannxi, China
| | - Xiao-Lei Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical UniversityXi’an 710032, Shannxi, China
| | - Ning Xia
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical UniversityXi’an 710032, Shannxi, China
| | - Ning Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical UniversityXi’an 710032, Shannxi, China
| | - Ke-Feng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical UniversityXi’an 710032, Shannxi, China
| |
Collapse
|
85
|
Serum/plasma microRNAs as biomarkers for HBV-related hepatocellular carcinoma in China. BIOMED RESEARCH INTERNATIONAL 2015; 2015:965185. [PMID: 25688372 PMCID: PMC4320924 DOI: 10.1155/2015/965185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a group of small RNAs with a fundamental role in the regulation of gene expression. These RNAs have been shown to participate in various cellular and physiological processes, including cellular development, apoptosis, proliferation, and differentiation. Aberrant expression of several miRNAs was found to be involved in a large variety of neoplasms, including hepatocellular carcinoma (HCC). Previous studies have shown the existence of a large amount of stable miRNAs in human serum/plasma, which laid the foundation for studying the role of serum/plasma miRNAs in the diagnosis and prognosis of HCC. Here, we review the recent progress in research on serum miRNAs as biomarkers for HCC in Chinese patients.
Collapse
|
86
|
Yang N, Ekanem NR, Sakyi CA, Ray SD. Hepatocellular carcinoma and microRNA: new perspectives on therapeutics and diagnostics. Adv Drug Deliv Rev 2015; 81:62-74. [PMID: 25450260 DOI: 10.1016/j.addr.2014.10.029] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/03/2014] [Accepted: 10/30/2014] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most lethal forms of cancer in the world. In this arena, utilities of microRNA (miRNA) as a sophisticated tool, in therapeutics and diagnostics, remains a prime focus among the leading researchers. It is well known that viral hepatitis, chronic alcoholism and metabolic syndrome are the prime causes of HCCs. Nevertheless, HCCs are usually diagnosed at late stages by using current serum biomarkers. Most epidemiological studies have found the survival rate in HCC cases to be relatively low. Therefore, development of effective noninvasive biomarkers for early detention of HCC and new strategies for HCC treatment remains a high priority research area on the shoulders of liver oncologists. Accumulating evidence in cancer diagnostics and therapeutics indicates that miRNAs involve in HCC progression, which may serve as sensitive biomarkers for detecting carcinogenesis and monitoring therapies of HCC. This review focuses on the role of miRNAs in the diagnostics and therapeutics of HCC.
Collapse
|
87
|
Abstract
MicroRNAs (miRNAs) are a class of 20-24 nt small non-coding RNAs that regulate a wide range of biological processes through changing the stability and translation of their target messenger RNA (mRNA) genes. Shortly after their identification, many miRNA genes have been found dysregulated in a variety of human cancers, indicating a pathological function of this gene class in mediating cancer progression. Over the past decade, accumulated literature has shown that miRNAs participate in numerous cancer-relevant processes including cell proliferation, apoptosis, differentiation, metabolism, and importantly, metastasis, which accounts for the mortality of approximately 90 % of cancer patients. Several recent publications have linked miRNAs with metastasis-associated protein (MTA) family members. Given the fact that the MTA family members are widely overexpressed in human cancers and their nature of serving as both corepressor and coactivator in gene regulation, it is intriguing to study whether certain miRNAs regulate cancer progression through modulating the expression of MTA family members. In this review, we will focus on recent advances in understanding the regulatory relationship between certain miRNAs and MTA family members.
Collapse
Affiliation(s)
- Yun Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | |
Collapse
|
88
|
El-Garem H, Ammer A, Shehab H, Shaker O, Anwer M, El-Akel W, Omar H. Circulating microRNA, miR-122 and miR-221 signature in Egyptian patients with chronic hepatitis C related hepatocellular carcinoma. World J Hepatol 2014; 6:818-824. [PMID: 25429320 PMCID: PMC4243156 DOI: 10.4254/wjh.v6.i11.818] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/20/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the potential usefulness of serum miR-122 and miR-221 as non-invasive diagnostic markers of hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC).
METHODS: This prospective study was conducted on 90 adult patients of both sex with HCV-related chronic liver disease and chronic hepatitis C related HCC. In addition to the 10 healthy control individuals, patients were stratified into; interferon-naïve chronic hepatitis C (CH) (n = 30), post-hepatitis C compensated cirrhosis (LC) (n = 30) and treatment-naïve HCC (n = 30). All patients and controls underwent full clinical assessment and laboratory investigations in addition to the evaluation of the level of serum miRNA expression by RT-PCR.
RESULTS: There was a significant fold change in serum miRNA expression in the different patient groups when compared to normal controls; miR-122 showed significant fold increasing in both CH and HCC and significant fold decrease in LC. On the other hand, miR-221 showed significant fold elevation in both CH and LC groups and significant fold decrease in HCC group (P = 0.01). Comparing fold changes in miRNAs in HCC group vs non HCC group (CH and Cirrhosis), there was non-significant fold elevation in miR-122 (P = 0.21) and significant fold decreasing in miR-221 in HCC vs non-HCC (P = 0.03). ROC curve analysis for miR-221 yielded 87% sensitivity and 40% specificity for the differentiation of HCC patients from non-HCC at a cutoff 1.82.
CONCLUSION: Serum miR-221 has a strong potential to serve as one of the novel non-invasive biomarkers of HCC.
Collapse
|
89
|
MicroRNAs in virus-induced tumorigenesis and IFN system. Cytokine Growth Factor Rev 2014; 26:183-94. [PMID: 25466647 DOI: 10.1016/j.cytogfr.2014.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/05/2014] [Indexed: 12/13/2022]
Abstract
Numerous microRNAs (miRNAs), small non-coding RNAs encoded in the human genome, have been shown to be involved in cancer pathogenesis and progression. There is evidence that some of these miRNAs possess proapoptotic or proliferation promoting roles in the cell by negatively regulating target mRNAs. Oncogenic viruses are able to produce persistent infection, favoring tumor development by deregulating cell proliferation and inhibiting apoptosis. It has been recently suggested that cellular miRNAs may participate in host-virus interactions, influencing viral replication. Many mammalian viruses counteract this cellular antiviral defense by using viral proteins but also by encoding viral miRNAs involved in virus-induced tumorigenesis. Interferons (IFNs) modulate a number of non-coding RNA genes, especially miRNAs, that may be used by mammalian organisms as a mechanism of IFN system to combat viral infection and related diseases. In particular, IFNs might induce specific cellular miRNAs that target viral transcripts thereby using this strategy as part of their effectiveness against invading viruses. Therefore IFNs, interferon stimulated genes and miRNAs could act synergistically as innate response to virus infection to induce a potent non-permissive cellular environment for virus replication and virus-induced cancer. The relevance of this reviewed research topic is clearly related to the observation that although virus infections are responsible of specific tumors, other unidentified genetic alterations are likely involved in the induction of malignant transformation. The identification of such genetic alterations, i.e. miRNA expression in transformed cells, would be of considerable importance for the analysis of the pathogenesis and for the treatment of cancer induced by specific viruses as well as for the advancement of the current knowledge on the molecular mechanisms underlying virus-host interaction. In this respect, we will review also the important, still little explored, roles of miRNAs acting both as IFN-stimulated anti-viral molecules and as critical regulators of IFNs and IFN-stimulated genes.
Collapse
|
90
|
Xiao H, Bid HK, Jou D, Wu X, Yu W, Li C, Houghton PJ, Lin J. A novel small molecular STAT3 inhibitor, LY5, inhibits cell viability, cell migration, and angiogenesis in medulloblastoma cells. J Biol Chem 2014; 290:3418-29. [PMID: 25313399 DOI: 10.1074/jbc.m114.616748] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Signal transducers and activators of transcription 3 (STAT3) signaling is persistently activated and could contribute to tumorigenesis of medulloblastoma. Numerous studies have demonstrated that inhibition of the persistent STAT3 signaling pathway results in decreased proliferation and increased apoptosis in human cancer cells, indicating that STAT3 is a viable molecular target for cancer therapy. In this study, we investigated a novel non-peptide, cell-permeable small molecule, named LY5, to target STAT3 in medulloblastoma cells. LY5 inhibited persistent STAT3 phosphorylation and induced apoptosis in human medulloblastoma cell lines expressing constitutive STAT3 phosphorylation. The inhibition of STAT3 signaling by LY5 was confirmed by down-regulating the expression of the downstream targets of STAT3, including cyclin D1, bcl-XL, survivin, and micro-RNA-21. LY5 also inhibited the induction of STAT3 phosphorylation by interleukin-6 (IL-6), insulin-like growth factor (IGF)-1, IGF-2, and leukemia inhibitory factor in medulloblastoma cells, but did not inhibit STAT1 and STAT5 phosphorylation stimulated by interferon-γ (IFN-γ) and EGF, respectively. In addition, LY5 blocked the STAT3 nuclear localization induced by IL-6, but did not block STAT1 and STAT5 nuclear translocation mediated by IFN-γ and EGF, respectively. A combination of LY5 with cisplatin or x-ray radiation also showed more potent effects than single treatment alone in the inhibition of cell viability in human medulloblastoma cells. Furthermore, LY5 demonstrated a potent inhibitory activity on cell migration and angiogenesis. Taken together, these findings indicate LY5 inhibits persistent and inducible STAT3 phosphorylation and suggest that LY5 is a promising therapeutic drug candidate for medulloblastoma by inhibiting persistent STAT3 signaling.
Collapse
Affiliation(s)
- Hui Xiao
- From the Department of Pediatrics, College of Medicine, Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio 43205 and
| | - Hemant Kumar Bid
- From the Department of Pediatrics, College of Medicine, Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio 43205 and
| | - David Jou
- From the Department of Pediatrics, College of Medicine, Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio 43205 and
| | - Xiaojuan Wu
- From the Department of Pediatrics, College of Medicine, Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio 43205 and
| | - Wenying Yu
- the Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Chenglong Li
- the Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Peter J Houghton
- From the Department of Pediatrics, College of Medicine, Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio 43205 and
| | - Jiayuh Lin
- From the Department of Pediatrics, College of Medicine, Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio 43205 and
| |
Collapse
|
91
|
Fan HX, Tang H. Complex interactions between microRNAs and hepatitis B/C viruses. World J Gastroenterol 2014; 20:13477-13492. [PMID: 25309078 PMCID: PMC4188899 DOI: 10.3748/wjg.v20.i37.13477] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/28/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that post-transcriptionally regulate the expression of many target genes via mRNA degradation or translation inhibition. Many studies have shown that miRNAs are involved in the modulation of gene expression and replication of hepatitis B virus (HBV) and hepatitis C virus (HCV) and play a pivotal role in host-virus interactions. Increasing evidence also demonstrates that viral infection leads to alteration of the miRNA expression profile in hepatic tissues or circulation. The deregulated miRNAs participate in hepatocellular carcinoma (HCC) initiation and progression by functioning as oncogenes or tumor suppressor genes by targeting various genes involved in cancer-related signaling pathways. The distinct expression pattern of miRNAs may be a useful marker for the diagnosis and prognosis of virus-related diseases considering the limitation of currently used biomarkers. Moreover, the role of deregulated miRNA in host-virus interactions and HCC development suggested that miRNAs may serve as therapeutic targets or as tools. In this review, we summarize the recent findings about the deregulation and the role of miRNAs during HBV/HCV infection and HCC development, and we discuss the possible mechanism of action of miRNAs in the pathogenesis of virus-related diseases. Furthermore, we discuss the potential of using miRNAs as markers for diagnosis and prognosis as well as therapeutic targets and drugs.
Collapse
|
92
|
Xie KL, Zhang YG, Liu J, Zeng Y, Wu H. MicroRNAs associated with HBV infection and HBV-related HCC. Theranostics 2014; 4:1176-92. [PMID: 25285167 PMCID: PMC4183996 DOI: 10.7150/thno.8715] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/10/2014] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global problem and a major risk factor for hepatocellular carcinoma (HCC). microRNAs (miRNAs) comprise a group of small noncoding RNAs regulating gene expression at the posttranslational level, thereby participating in fundamental biological processes, including cell proliferation, differentiation, and apoptosis. In this review, we summarize the roles of miRNAs in HBV infection, the recently identified mechanism underlying dysregulation of miRNAs in HBV-associated HCC, and their association with hepatocarcinogenesis. Moreover, we discuss the recent advances in the use of circulating miRNAs in the early diagnosis of HCC as well as therapies based on these aberrantly expressed miRNAs.
Collapse
|
93
|
Anestopoulos I, Voulgaridou GP, Georgakilas AG, Franco R, Pappa A, Panayiotidis MI. Epigenetic therapy as a novel approach in hepatocellular carcinoma. Pharmacol Ther 2014; 145:103-19. [PMID: 25205159 DOI: 10.1016/j.pharmthera.2014.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/02/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver malignancy and one with high fatality. Its 5-year survival rate remains low and thus, there is a need for improvement of current treatment strategies as well as development of novel targeted methodologies in order to optimize existing therapeutic protocols. To this end, only recently, it was discovered that its pathophysiology also involves epigenetic alterations in DNA methylation, histone modifications and/or non-coding microRNA patterns. Unlike genetic events, epigenetic alterations are reversible and thus potentially considered to be an alternative option in cancer treatment protocols. In this review, we describe the general characteristics and resulted major alterations of the epigenetic machinery as well as current state of progress of epigenetic therapy (via different single or combinatorial experimental approaches) in HCC.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Alexandros G Georgakilas
- School of Applied Mathematical & Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Rodrigo Franco
- Redox Biology Center, School of Veterinary Medicine & Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
94
|
MicroRNAs in liver cancer: a model for investigating pathogenesis and novel therapeutic approaches. Cell Death Differ 2014; 22:46-57. [PMID: 25190143 DOI: 10.1038/cdd.2014.136] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/02/2014] [Accepted: 07/24/2014] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) constitute a large class of short RNAs (e.g., 20-24 nucleotides in length), whose main function is to posttranscriptionally regulate the expression of protein-coding genes. Their importance in tumorigenesis has been demonstrated over the past decade, and correspondingly, they have emerged as potential therapeutic molecules and targets. Liver cancer is one of the most common neoplastic diseases worldwide, and it currently has a poor prognosis owing to largely ineffective therapeutic options. Liver cancer is also an excellent model for testing miRNA-based therapy approaches as it can be easily targeted with the systemic delivery of oligonucleotides. In recent years, the role of miRNAs in hepatocellular carcinoma (HCC) has been established with molecular studies and the development of animal models. These studies have also provided the basis for evaluating the therapeutic potential of miRNAs, or anti-miRNAs. In general, the safety of miRNAs has been proven and antitumor activity has been observed. Moreover, because of the absence or presence of mild side effects, the prophylactic use of miRNA-based approaches may be foreseen.
Collapse
|
95
|
Feasibility of global miRNA analysis from fine-needle biopsy FFPE material in patients with hepatocellular carcinoma treated with sorafenib. Clin Sci (Lond) 2014; 128:29-37. [DOI: 10.1042/cs20140007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study demonstrates that miRNA analyses are feasible from fine-needle biopsy specimens and is the first to correlate the response under sorafenib therapy to miRNA expression signatures in hepatocellular carcinoma (HCC). The data do not support that miRNA profiles function as reliable biomarkers for sorafenib response prediction.
Collapse
|
96
|
Zhu Z, Zhang X, Wang G, Zheng H. Role of MicroRNAs in Hepatocellular Carcinoma. HEPATITIS MONTHLY 2014; 14:e18672. [PMID: 25337143 PMCID: PMC4199151 DOI: 10.5812/hepatmon.18672] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/20/2014] [Accepted: 06/09/2014] [Indexed: 02/06/2023]
Abstract
CONTEXT MicroRNAs (miRNAs) are small, noncoding RNAs that play an important role in posttranscriptional gene regulation and function as negative gene regulators. They are an abundant class of RNA, each of which can control hundreds of gene targets and regulate diverse biological processes such as hematopoiesis, organogenesis, apoptosis and cell proliferation. Aberrant miRNA expression contributes to tumorigenesis and cancer progression. EVIDENCE ACQUISITION In this study we provided a summarized review of the most important new data available on hepatocellular carcinoma (HCC)-associated miRNAs. The data were collected through searching the related keywords and were categorized and summarized in different sections. RESULTS Researchers have reported that miRNAs can repress the expression of important cancer-related genes and might be helpful in the diagnosis and treatment of cancer. During the past two decades, numerous studies have shown that miRNAs play an essential role in inhibiting HCC via several different pathways. Deregulated miRNAs may contribute to carcinogenesis, indicating that miRNAs can act as tumor suppressors and oncogenes. CONCLUSIONS In this mini review, we highlight current findings and discuss recent work to determine the contribution of miRNA expression to the maintenance and growth of HCC, thereby providing a significant source of hope that miRNAs could serve as therapeutic targets.
Collapse
Affiliation(s)
- Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangle Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guoqing Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Corresponding Author: Haixue Zheng, State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1, Xujiaping Road, 730046, Lanzhou, China. Tel: +86-2134293139, Fax: +86-9318342710, E-mail:
| |
Collapse
|
97
|
Chiu LY, Kishnani PS, Chuang TP, Tang CY, Liu CY, Bali D, Koeberl D, Austin S, Boyette K, Weinstein DA, Murphy E, Yao A, Chen YT, Li LH. Identification of differentially expressed microRNAs in human hepatocellular adenoma associated with type I glycogen storage disease: a potential utility as biomarkers. J Gastroenterol 2014; 49:1274-84. [PMID: 24129885 DOI: 10.1007/s00535-013-0890-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 09/18/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND It is known that malignant transformation to hepatocellular carcinoma (HCC) occurs at a higher frequency in hepatocellular adenoma (HCA) from type I glycogen storage disease (GSD I) compared to HCA from other etiologies. In this study, we aimed to identify differentially expressed miRNAs in GSD Ia HCA as candidates that could serve as putative biomarkers for detection of GSD Ia HCA and/or risk assessment of malignant transformation. METHODS Utilizing massively parallel sequencing, the miRNA profiling was performed for paired adenomas and normal liver tissues from seven GSD Ia patients. Differentially expressed miRNAs were validated in liver tumor tissues, HCC cell lines and serum using quantitative RT-PCR. RESULTS miR-34a, miR-34a, miR-224, miR-224, miR-424, miR-452 and miR-455-5p were found to be commonly deregulated in GSD Ia HCA, general population HCA, and HCC cell lines at compatible levels. In comparison with GSD Ia HCA, the upregulation of miR-130b and downregulation of miR-199a-5p, miR-199b-5p, and miR-214 were more significant in HCC cell lines. Furthermore, serum level of miR-130b in GSD Ia patients with HCA was moderately higher than that in either GSD Ia patients without HCA or healthy individuals. CONCLUSION We make the first observation of distinct miRNA deregulation in HCA associated with GSD Ia. We also provide evidence that miR-130b could serve as a circulating biomarker for detection of GSD Ia HCA. This work provides prominent candidate miRNAs worth evaluating as biomarkers for monitoring the development and progress of liver tumors in GSD Ia patients in the future.
Collapse
Affiliation(s)
- Li-Ya Chiu
- National Center for Genome Medicine, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Loh WP, Loo B, Zhou L, Zhang P, Lee DY, Yang Y, Lam KP. Overexpression of microRNAs enhances recombinant protein production in Chinese hamster ovary cells. Biotechnol J 2014; 9:1140-51. [DOI: 10.1002/biot.201400050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/15/2014] [Accepted: 05/09/2014] [Indexed: 12/27/2022]
|
99
|
Mogilyansky E, Rigoutsos I. The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 2014; 20:1603-14. [PMID: 24212931 PMCID: PMC3824591 DOI: 10.1038/cdd.2013.125] [Citation(s) in RCA: 677] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 12/11/2022] Open
Abstract
The miR-17/92 cluster is among the best-studied microRNA clusters. Interest in the cluster and its members has been increasing steadily and the number of publications has grown exponentially since its discovery with more than 1000 articles published in 2012 alone. Originally found to be involved in tumorigenesis, research work in recent years has uncovered unexpected roles for its members in a wide variety of settings that include normal development, immune diseases, cardiovascular diseases, neurodegenerative diseases and aging. In light of its ever-increasing importance and ever-widening regulatory roles, we review here the latest body of knowledge on the cluster's involvement in health and disease as well as provide a novel perspective on the full spectrum of protein-coding and non-coding transcripts that are likely regulated by its members.
Collapse
Affiliation(s)
- E Mogilyansky
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
100
|
Tan W, Li Y, Lim SG, Tan TMC. miR-106b-25/miR-17-92 clusters: Polycistrons with oncogenic roles in hepatocellular carcinoma. World J Gastroenterol 2014; 20:5962-5972. [PMID: 24876719 PMCID: PMC4033436 DOI: 10.3748/wjg.v20.i20.5962] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/11/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are small endogenously expressed RNA molecules which are involved in the process of silencing gene expression through translational regulation. The polycistronic miR-17-92 cluster is the first microRNA cluster shown to play a role in tumorigenesis. It has two other paralogs in the human genome, the miR-106b-25 cluster and the miR-106a-363 cluster. Collectively, the microRNAs encoded by these clusters can be further grouped based on the seed sequences into four families, namely the miR-17, the miR-92, the miR-18 and the miR-19 families. Over-expression of the miR-106b-25 and miR-17-92 clusters has been reported not only during the development of cirrhosis but also subsequently during the development of hepatocellular carcinoma. Members of these clusters have also been shown to affect the replication of hepatitis B and hepatitis C viruses. Various targets of these microRNAs have been identified, and these targets are involved in tumor growth, cell survival and metastasis. In this review, we first describe the regulation of these clusters by c-Myc and E2F1, and how the members of these clusters in turn regulate E2F1 expression forming an auto-regulatory loop. In addition, the roles of the various members of the clusters in affecting relevant target gene expression in the pathogenesis of hepatocellular carcinoma will also be discussed.
Collapse
|