51
|
Duan X, Chen HL, Guo C. Polymeric Nanofibers for Drug Delivery Applications: A Recent Review. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:78. [PMID: 36462118 PMCID: PMC9719450 DOI: 10.1007/s10856-022-06700-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
With the rapid development of biomaterials and biotechnologies, various functional materials-based drug delivery systems (DDS) are developed to overcome the limitations of traditional drug release formulations, such as uncontrollable drug concentration in target organs/tissues and unavoidable adverse reactions. Polymer nanofibers exhibit promising characteristics including easy preparation, adjustable features of wettability and elasticity, tailored surface and interface properties, and surface-to-volume ratio, and are used to develop new DDS. Different kinds of drugs can be incorporated into the polymer nanofibers. Additionally, their release kinetics can be modulated via the preparation components, component proportions, and preparation processes, enabling their applications in several fields. A timely and comprehensive summary of polymeric nanofibers for DDS is thus highly needed. This review first describes the common methods for polymer nanofiber fabrication, followed by introducing controlled techniques for drug loading into and release from polymer nanofibers. Thus, the applications of polymer nanofibers in drug delivery were summarized, particularly focusing on the relation between the physiochemical properties of polymeric nanofibers and their DDS performance. It is ended by listing future perspectives. Graphical abstract.
Collapse
Affiliation(s)
- Xiaoge Duan
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Hai-Lan Chen
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China.
| | - Chunxian Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
52
|
Merzougui C, Miao F, Liao Z, Wang L, Wei Y, Huang D. Electrospun nanofibers with antibacterial properties for wound dressings. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2165-2183. [PMID: 36001387 DOI: 10.1080/09205063.2022.2099662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The antibacterial nanofibers have been proposed as an interesting material for wound healing management, since the majority of traditional wound dressings exhibit issues and complications such as infection, pain, discomfort, and poor adhesive proprieties. It allows the organism's passage through the dressing and delay the wound healing progression. Electrospun nanofibers have been intensively investigated for wound dressings in tissue engineering applications due to their distinctive features and structural similarities to the extracellular matrix including the various available methods to load the antibacterial compounds onto the nanofiber webs. To construct an effective electrospun wound dressing, various efforts have been made to design different strategies to develop advanced polymers, such as employing synthetic and/or natural materials, modifying fiber orientation, and incorporating chemicals and metallic nanoparticles (NPs) as intriguing materials for antibacterial bandages. Thus, this review summarizes the relevant recent studies on the production of electrospun antibacterial nanofibers from a wide variety of polymers used in biomedical applications for wound dressings.
Collapse
Affiliation(s)
- Chaima Merzougui
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Fenyan Miao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Ziming Liao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Longfei Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, P.R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, P.R. China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, P.R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, P.R. China
| |
Collapse
|
53
|
Kang MS, Lee GH, Yang MJ, Sung MC, Han HY, Lee BS, Baek B, Kim DW, Park EJ. Comparison of toxicity and cellular responses following pulmonary exposure to different types of nanofibers. Nanotoxicology 2022; 16:935-954. [PMID: 36803397 DOI: 10.1080/17435390.2023.2177205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Pulmonary effects of inhaled microfibers are an emerging public health concern. In this study, we investigated toxicity following pulmonary exposure to synthetic polyethylene oxide fibroin (PEONF) and silk fibroin (SFNF) nanofibers and the cellular responses. When instilled intratracheally weekly for four weeks, body weight gain was significantly reduced in female mice exposed to the higher dose of SFNF when compared with the control group. The total number of cells in the lungs was more significant in all treated groups than in the control, whereas the relative portion of neutrophils and eosinophils increased significantly only in female mice exposed to SFNF. Both types of nanofibers induced notable pathological changes and increased pulmonary expression of MCP-1α, CXCL1, and TGF-β. More importantly, blood calcium, creatinine kinase, sodium, and chloride concentration were affected significantly, showing sex- and material-dependent differences. The relative portion of eosinophils increased only in SFNF-treated mice. In addition, both types of nanofibers induced necrotic and late apoptotic cell death in alveolar macrophages after 24 h of exposure, with accompanying oxidative stress, increased NO production, cell membrane rupture, intracellular organelle damage, and intracellular calcium accumulation. Additionally, multinucleated giant cells were formed in cells exposed to PEONF or SFNF. Taken together, the findings indicate that inhaled PEONF and SFNF may cause systemic adverse health effects with lung tissue damage, showing differences by sex- and material. Furthermore, PEONF- and SFNF-induced inflammatory response may be partly due to the low clearance of dead (or damaged) pulmonary cells and the excellent durability of PEONF and SFNF.
Collapse
Affiliation(s)
- Min-Sung Kang
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, South Korea.,Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, South Korea
| | - Gwang-Hee Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Mi-Jin Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, South Korea
| | - Myeong-Chang Sung
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | | | | | - Bosung Baek
- Graduate School of Medicine, Kyung Hee University, Seoul, South Korea.,Toxicity Evaluation Center, Keyprime Research Company, Cheongju, South Korea
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Eun-Jung Park
- Graduate School of Medicine, Kyung Hee University, Seoul, South Korea.,Human Health and Environmental Toxins Research Center, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
54
|
Calixarenes as Host Molecules for Drug Carriers in the Cosmetic and Medical Field. Macromol Res 2022. [DOI: 10.1007/s13233-022-0094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
55
|
Lugoloobi I, Yuanhao W, Marriam I, Hu J, Tebyetekerwa M, Ramakrishna S. Electrospun Biomedical Nanofibers and their Future as Intelligent Biomaterials. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
56
|
Zhu N, Meng S, Li J, Liu T, Rohani S. Fenugreek Extract-Loaded Polycaprolacton/Cellulose Acetate Nanofibrous Wound Dressings for Transplantation of Unrestricted Somatic Stem Cells: An In Vitro and In Vivo Evaluation. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Complex pathophysiology of diabetic wounds causes a delayed wound healing response. Advanced wound dressing materials that deliver biochemical cues are of particular interest in wound healing research. Here, we developed a dual-function delivery vehicle for drug and cell delivery applications
to treat diabetic wounds. The delivery system was developed via electrospinning of polycaprolacton/cellulose acetate solution containing fenugreek extract. The produced delivery vehicle was characterized using microstructural studies, cell viability assay, cytoprotection assay, cell migration
assay, In Vitro anti-inflammatory assay, free radical scavenging assay, tensile strength studies, swelling studies, and protein adsorption test. Scaffolds were then seeded with 30000 unrestricted somatic stem cells and transplanted into the rat model of excisional diabetic wound. Wound
healing assay showed that the co-delivery of fenugreek extract and unrestricted somatic stem cells led to a substantial improvement in the healing activity of electrospun dressings, as evidenced by higher wound contraction, epithelial thickness, and collagen deposition in this group compared
with other experimental groups. Gene expression analysis showed that dual-function delivery system could increase the expression level of VEGF, b-FGF, and collagen type II genes. Furthermore, the tissue expression level of IL-1β and glutathione peroxidase genes was significantly
reduced in this group compared with other groups. This study shows that the developed system may be considered as a potential treatment modality for diabetic wounds in the clinic.
Collapse
Affiliation(s)
- Na Zhu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Meng
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060,
People’s Republic of China
| | - Jianchun Li
- School of Pharmacy, Bengbu Medical College, Anhui Bengbu 233030, China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Saeed Rohani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1452365, Iran
| |
Collapse
|
57
|
Electrospun Poly(Styrene−Co−Vinylbenzyl Chloride−Co−Acrylonitrile) Nanofiber Mat as an Anion Exchange Membrane for Fuel Cell Applications. Polymers (Basel) 2022; 14:polym14163236. [PMID: 36015495 PMCID: PMC9416048 DOI: 10.3390/polym14163236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
A nanofiber mat of styrene−co−vinylbenzyl chloride−co−acrylonitrile copolymer as an anion exchange membrane (AEM) was synthesized via the electrospinning of organic reaction mixtures. The synthesized membranes were characterized using FT-IR spectroscopy for structural analysis. The AEM demonstrated a high ionic conductivity mainly due to the phase segregation in the membrane structure, as analyzed by transmission electron microscopy (TEM). The membrane properties such as water uptake, swelling ratio, and ion exchange capacity, as well as ionic conductivity, varied with the chemical composition. With the molar ratio of styrene, vinylbenzyl chloride, and acrylonitrile at 3:5:2, the highest ionic conductivity of 0.214 S cm−1 at 80 °C was observed. Additionally, the AEM retained 94% of original conductivity after 72 h of soaking in 1 M KOH solution.
Collapse
|
58
|
Nanofiber Carriers of Therapeutic Load: Current Trends. Int J Mol Sci 2022; 23:ijms23158581. [PMID: 35955712 PMCID: PMC9368923 DOI: 10.3390/ijms23158581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
The fast advancement in nanotechnology has prompted the improvement of numerous methods for the creation of various nanoscale composites of which nanofibers have gotten extensive consideration. Nanofibers are polymeric/composite fibers which have a nanoscale diameter. They vary in porous structure and have an extensive area. Material choice is of crucial importance for the assembly of nanofibers and their function as efficient drug and biomedicine carriers. A broad scope of active pharmaceutical ingredients can be incorporated within the nanofibers or bound to their surface. The ability to deliver small molecular drugs such as antibiotics or anticancer medications, proteins, peptides, cells, DNA and RNAs has led to the biomedical application in disease therapy and tissue engineering. Although nanofibers have shown incredible potential for drug and biomedicine applications, there are still difficulties which should be resolved before they can be utilized in clinical practice. This review intends to give an outline of the recent advances in nanofibers, contemplating the preparation methods, the therapeutic loading and release and the various therapeutic applications.
Collapse
|
59
|
Han J, Rhee SM, Kim YW, Park SH, Oh JH. Three-dimensionally printed recombinant human parathyroid hormone-soaked nanofiber sheet accelerates tendon-to-bone healing in a rabbit model of chronic rotator cuff tear. J Shoulder Elbow Surg 2022; 31:1628-1639. [PMID: 35337954 DOI: 10.1016/j.jse.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Recombinant human parathyroid hormone (rhPTH) promotes tendon-to-bone healing in humans and animals with rotator cuff tear (RCT). However, problems regarding repeated systemic rhPTH injections in humans exist. This study was conducted to evaluate the effect of topical rhPTH administration using 3-dimensionally (3D) printed nanofiber sheets on tendon-to-bone healing in a rabbit RCT model compared to that of direct topical rhPTH administration. METHODS Eighty rabbits were randomly assigned to 5 groups (n = 16 each). To create the chronic RCT model, we induced complete supraspinatus tendon tears in both shoulders and left them untreated for 6 weeks. All transected tendons were repaired in a transosseous manner with saline injection in group A, hyaluronic acid (HA) injection in group B, 3D-printed nanofiber sheet fixation in group C, rhPTH and HA injection in group D, and 3D-printed rhPTH- and HA-soaked nanofiber sheet fixation in group E. Genetic (messenger RNA expression evaluation) and histologic evaluations (hematoxylin and eosin and Masson trichrome staining) were performed in half of the rabbits at 4 weeks postrepair. Genetic, histologic, and biomechanical evaluations (mode of tear and load to failure) were performed in the remaining rabbits at 12 weeks. RESULTS For genetic evaluation, group E showed a higher collagen type I alpha 1 expression level than did the other groups (P = .008) at 4 weeks. However, its expression level was downregulated, and there was no difference at 12 weeks. For histologic evaluation, group E showed greater collagen fiber continuity, denser collagen fibers, and more mature tendon-to-bone junction than did the other groups (P = .001, P = .001, and P = .003, respectively) at 12 weeks. For biomechanical evaluation, group E showed a higher load-to-failure rate than did the other groups (P < .001) at 12 weeks. CONCLUSION Three-dimensionally printed rhPTH-soaked nanofiber sheet fixation can promote tendon-to-bone healing of chronic RCT.
Collapse
Affiliation(s)
- Jian Han
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Republic of Korea
| | - Sung Min Rhee
- Department of Orthopaedic Surgery, KyungHee University Medical Center, Seoul, Republic of Korea
| | - Young Won Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Suk Hee Park
- School of Mechanical Engineering, Pusan National University, Republic of Korea.
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Republic of Korea.
| |
Collapse
|
60
|
Furuno K, Suzuki K, Sakai S. Gelatin nanofiber mats with Lipofectamine/plasmid DNA complexes for in vitro genome editing. Colloids Surf B Biointerfaces 2022; 216:112561. [PMID: 35576881 DOI: 10.1016/j.colsurfb.2022.112561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
Gelatin electrospun nanofiber mats are gaining interest for applications in biomaterials science, such as tissue engineering and drug/gene delivery systems. In this study, we report the use of electrospun gelatin nanofiber mats for plasmid DNA (pDNA) delivery. Gelatin nanofiber mats were insolubilized via cross-linking with glutaraldehyde. On the cross-linked mats, human embryonic kidney-derived HEK293 cells demonstrated high viability for 7 days of culture (>95%) and were able to proliferate during that time. The Lipofectamine/pDNA complexes were immobilized on the mats through immersion in a solution, and HEK293 cells cultured on these mats expressed GFP for 7 days. Furthermore, HEK293 cells did not express GFP via the pDNA complexes released from the mats because the ability to deliver pDNA into the cells was lost. Since the mats could be used to transfect multiple types of pDNA into the cells simultaneously, we have achieved targeted genome editing using the mats. These data highlight the potential of gelatin nanofiber mats with Lipofectamine/pDNA complexes for local gene therapy via pDNA delivery as well as genome editing.
Collapse
Affiliation(s)
- Kotoko Furuno
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Keiichiro Suzuki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan; Institute for Advanced Co-Creation Studies, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan; Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Sakai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
61
|
Cojocaru E, Ghitman J, Stan R. Electrospun-Fibrous-Architecture-Mediated Non-Viral Gene Therapy Drug Delivery in Regenerative Medicine. Polymers (Basel) 2022; 14:2647. [PMID: 35808692 PMCID: PMC9269101 DOI: 10.3390/polym14132647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022] Open
Abstract
Gene-based therapy represents the latest advancement in medical biotechnology. The principle behind this innovative approach is to introduce genetic material into specific cells and tissues to stimulate or inhibit key signaling pathways. Although enormous progress has been achieved in the field of gene-based therapy, challenges connected to some physiological impediments (e.g., low stability or the inability to pass the cell membrane and to transport to the desired intracellular compartments) still obstruct the exploitation of its full potential in clinical practices. The integration of gene delivery technologies with electrospun fibrous architectures represents a potent strategy that may tackle the problems of stability and local gene delivery, being capable to promote a controlled and proficient release and expression of therapeutic genes in the targeted cells, improving the therapeutic outcomes. This review aims to outline the impact of electrospun-fibrous-architecture-mediated gene therapy drug delivery, and it emphatically discusses the latest advancements in their formulation and the therapeutic outcomes of these systems in different fields of regenerative medicine, along with the main challenges faced towards the translation of promising academic results into tangible products with clinical application.
Collapse
Affiliation(s)
- Elena Cojocaru
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| | - Jana Ghitman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| | - Raluca Stan
- Department of Organic Chemistry “C. Nenitzescu”, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| |
Collapse
|
62
|
Opálková Šišková A, Mosnáčková K, Musioł M, Opálek A, Bučková M, Rychter P, Eckstein Andicsová A. Electrospun Nisin-Loaded Poly(ε-caprolactone)-Based Active Food Packaging. MATERIALS 2022; 15:ma15134540. [PMID: 35806664 PMCID: PMC9267198 DOI: 10.3390/ma15134540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/30/2022]
Abstract
Packaging for fresh fruits and vegetables with additional properties such as inhibition of pathogens grown can reduce food waste. With its biodegradability, poly(ε-caprolactone) (PCL) is a good candidate for packaging material, especially in the form of an electrospun membrane. The preparation of nonwoven fabric of PCL loaded with food additive, antimicrobial nisin makes them an active packaging with antispoilage properties. During the investigation of the nonwoven fabric mats, different concentrations of nisin were obtained from the solution of PCL via the electrospinning technique. The obtained active porous PCL loaded with varying concentrations of nisin inhibited the growth of Staphylococcus aureus and Escherichia coli. Packages made of PCL and PCL/nisin fibrous mats demonstrated a prolongation of the fruits’ freshness, improving their shelf life and, consequently, their safety.
Collapse
Affiliation(s)
- Alena Opálková Šišková
- Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (K.M.); (A.E.A.)
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 13 Bratislava, Slovakia;
- Correspondence:
| | - Katarína Mosnáčková
- Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (K.M.); (A.E.A.)
| | - Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland;
| | - Andrej Opálek
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 13 Bratislava, Slovakia;
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia;
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Długosz University in Częstochowa, 13/15 Armii Krajowej Av., 42-200 Częstochowa, Poland;
| | - Anita Eckstein Andicsová
- Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (K.M.); (A.E.A.)
| |
Collapse
|
63
|
Effect of Electrode Type on Electrospun Membrane Morphology Using Low-Concentration PVA Solutions. MEMBRANES 2022; 12:membranes12060609. [PMID: 35736316 PMCID: PMC9229226 DOI: 10.3390/membranes12060609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022]
Abstract
Electrospun polymer nanofiber materials have been studied as basic materials for various applications. Depending on the intended use of the fibers, their morphology can be adjusted by changing the technological parameters, the properties of the spinning solutions, and the combinations of composition. The aim of the research was to evaluate the effect of electrode type, spinning parameters, polymer molecular weight, and solution concentration on membranes morphology. The main priority was to obtain the smallest possible fiber diameters and homogeneous electrospun membranes. As a result, five electrode types were selected, the lowest PVA solution concentration for stable spinning process was detected, spinning parameters for homogenous fibers were obtained, and the morphology of electrospun fiber membranes was analyzed. Viscosity, conductivity, pH, and density were evaluated for PVA polymers with five different molecular weights (30-145 kDa) and three concentration solutions (6, 8, and 10 wt.%). The membrane defects and fiber diameters were compared as a function of molecular weight and electrode type. The minimum concentration of PVA in the solution allowed more additives to be added to the solution, resulting in thinner diameters and a higher concentration of the additive in the membranes. The molecular weight, concentration, and electrode significantly affected the fiber diameters and the overall quality of the membrane.
Collapse
|
64
|
Influence of Excipient Composition on Survival of Vaginal Lactobacilli in Electrospun Nanofibers. Pharmaceutics 2022; 14:pharmaceutics14061155. [PMID: 35745728 PMCID: PMC9229553 DOI: 10.3390/pharmaceutics14061155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
The lack of appropriate delivery systems hinders the use of probiotics in the treatment of vaginal infections. Therefore, the development of a new delivery system for the local administration of vaginal probiotics is necessary. In this study, we selected three vaginal lactobacilli, i.e., Lactobacillus crispatus, Lactobacillus gasseri, and Lactobacillus jensenii, and incorporated them into nanofibers using electrospinning. Polyethylene oxide (PEO) was used as a carrier polymer to produce nanofibers. It was supplemented with alginate and sucrose selected from a group of carbohydrates for their growth-promoting effect on lactobacilli. The interaction between excipients and lactobacilli was evaluated thermally and spectroscopically. Bacterial survival in polymer solutions and in nanofibers immediately after electrospinning and after storage varied among species and was dependent on the formulation. Sucrose improved the survival in polymer solutions and preserved the viability of L. crispatus and L. jensenii immediately after electrospinning, and L. gasseri and L. jensenii during storage. Blending PEO with alginate did not improve species viability. However, the three lactobacilli in the nanofibers retained some viability after 56 days, indicating that composite multifunctional nanofibers can maintain the viability of vaginal lactobacilli and can be used as a potential solid delivery system for vaginal administration of probiotics.
Collapse
|
65
|
Wang X, Gao S, Yun S, Zhang M, Peng L, Li Y, Zhou Y. Microencapsulating Alginate-Based Polymers for Probiotics Delivery Systems and Their Application. Pharmaceuticals (Basel) 2022; 15:644. [PMID: 35631470 PMCID: PMC9144165 DOI: 10.3390/ph15050644] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
Probiotics exhibit many health benefits and a great potential for broad applications in pharmaceutical fields, such as prevention and treatment of gastrointestinal tract diseases (irritable bowel syndrome), prevention and therapy of allergies, certain anticancer effects, and immunomodulation. However, their applications are limited by the low viability and metabolic activity of the probiotics during processing, storage, and delivery in the digestive tract. To overcome the mentioned limitations, probiotic delivery systems have attracted much attention. This review focuses on alginate as a preferred polymer and presents recent advances in alginate-based polymers for probiotic delivery systems. We highlight several alginate-based delivery systems containing various types of probiotics and the physical and chemical modifications with chitosan, cellulose, starch, protein, fish gel, and many other materials to enhance their performance, of which the viability and protective mechanisms are discussed. Withal, various challenges in alginate-based polymers for probiotics delivery systems are traced out, and future directions, specifically on the use of nanomaterials as well as prebiotics, are delineated to further facilitate subsequent researchers in selecting more favorable materials and technology for probiotic delivery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanxia Zhou
- Marine College, Shandong University, Weihai 264209, China; (X.W.); (S.G.); (S.Y.); (M.Z.); (L.P.); (Y.L.)
| |
Collapse
|
66
|
Xu L, Liu Y, Zhou W, Yu D. Electrospun Medical Sutures for Wound Healing: A Review. Polymers (Basel) 2022; 14:1637. [PMID: 35566807 PMCID: PMC9105379 DOI: 10.3390/polym14091637] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
With the increasing demand for wound healing around the world, the level of medical equipment is also increasing, but sutures are still the preferred medical equipment for medical personnel to solve wound closures. Compared with the traditional sutures, the nanofiber sutures produced by combining the preparation technology of drug-eluting sutures have greatly improved both mechanical properties and biological properties. Electrospinning technology has attracted more attention as one of the most convenient and simple methods for preparing functional nanofibers and the related sutures. This review firstly discusses the structural classification of sutures and the performance analysis affecting the manufacture and use of sutures, followed by the discussion and classification of electrospinning technology, and then summarizes the relevant research on absorbable and non-absorbable sutures. Finally, several common polymers and biologically active substances used in creating sutures are concluded, the related applications of sutures are discussed, and the future prospects of electrospinning sutures are suggested.
Collapse
Affiliation(s)
- Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
| | - Yanan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
| | - Wenhui Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
67
|
Electrospun Polysaccharides for Periodontal Tissue Engineering: A Review of Recent Advances and Future Perspectives. Ann Biomed Eng 2022; 50:769-793. [DOI: 10.1007/s10439-022-02952-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/16/2022] [Indexed: 12/18/2022]
|
68
|
Puhl DL, Mohanraj D, Nelson DW, Gilbert RJ. Designing electrospun fiber platforms for efficient delivery of genetic material and genome editing tools. Adv Drug Deliv Rev 2022; 183:114161. [PMID: 35183657 PMCID: PMC9724629 DOI: 10.1016/j.addr.2022.114161] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023]
Abstract
Electrospun fibers are versatile biomaterial platforms with great potential to support regeneration. Electrospun fiber characteristics such as fiber diameter, degree of alignment, rate of degradation, and surface chemistry enable the creation of unique, tunable scaffolds for various drug or gene delivery applications. The delivery of genetic material and genome editing tools via viral and non-viral vectors are approaches to control cellular protein production. However, immunogenicity, off-target effects, and low delivery efficiencies slow the progression of gene delivery strategies to clinical settings. The delivery of genetic material from electrospun fibers overcomes such limitations by allowing for localized, tunable delivery of genetic material. However, the process of electrospinning is harsh, and care must be taken to retain genetic material bioactivity. This review presents an up-to-date summary of strategies to incorporate genetic material onto or within electrospun fiber platforms to improve delivery efficiency and enhance the regenerative potential of electrospun fibers for various tissue engineering applications.
Collapse
Affiliation(s)
- Devan L Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| | - Divya Mohanraj
- Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| | - Derek W Nelson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| |
Collapse
|
69
|
Pompa-Monroy DA, Iglesias AL, Dastager SG, Thorat MN, Olivas-Sarabia A, Valdez-Castro R, Hurtado-Ayala LA, Cornejo-Bravo JM, Pérez-González GL, Villarreal-Gómez LJ. Comparative Study of Polycaprolactone Electrospun Fibers and Casting Films Enriched with Carbon and Nitrogen Sources and Their Potential Use in Water Bioremediation. MEMBRANES 2022; 12:327. [PMID: 35323802 PMCID: PMC8951516 DOI: 10.3390/membranes12030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022]
Abstract
Augmenting bacterial growth is of great interest to the biotechnological industry. Hence, the effect of poly (caprolactone) fibrous scaffolds to promote the growth of different bacterial strains of biological and industrial interest was evaluated. Furthermore, different types of carbon (glucose, fructose, lactose and galactose) and nitrogen sources (yeast extract, glycine, peptone and urea) were added to the scaffold to determinate their influence in bacterial growth. Bacterial growth was observed by scanning electron microscopy; thermal characteristics were also evaluated; bacterial cell growth was measured by ultraviolet-visible spectrophotometry at 600-nm. Fibers produced have an average diameter between 313 to 766 nm, with 44% superficial porosity of the scaffolds, a glass transition around ~64 °C and a critical temperature of ~338 °C. The fibrous scaffold increased the cell growth of Escherichia coli by 23% at 72 h, while Pseudomonas aeruginosa and Staphylococcus aureus increased by 36% and 95% respectively at 48 h, when compared to the normal growth of their respective bacterial cultures. However, no significant difference in bacterial growth between the scaffolds and the casted films could be observed. Cell growth depended on a combination of several factors: type of bacteria, carbon or nitrogen sources, casted films or 3D scaffolds. Microscopy showed traces of a biofilm formation around 3 h in culture of P. aeruginosa. Water bioremediation studies showed that P. aeruginosa on poly (caprolactone)/Glucose fibers was effective in removing 87% of chromium in 8 h.
Collapse
Affiliation(s)
- Daniella Alejandra Pompa-Monroy
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico; (D.A.P.-M.); (A.L.I.); (G.L.P.-G.)
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| | - Ana Leticia Iglesias
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico; (D.A.P.-M.); (A.L.I.); (G.L.P.-G.)
| | - Syed Gulam Dastager
- National Collection of Industrial Microorganism (NCIM), CSIR-National Chemical Laboratory, Pune 41008, Maharashtra, India; (S.G.D.); (M.N.T.)
| | - Meghana Namdeo Thorat
- National Collection of Industrial Microorganism (NCIM), CSIR-National Chemical Laboratory, Pune 41008, Maharashtra, India; (S.G.D.); (M.N.T.)
| | - Amelia Olivas-Sarabia
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, Baja California, Mexico; (A.O.-S.); (R.V.-C.)
| | - Ricardo Valdez-Castro
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, Baja California, Mexico; (A.O.-S.); (R.V.-C.)
| | - Lilia Angélica Hurtado-Ayala
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| | - Graciela Lizeth Pérez-González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico; (D.A.P.-M.); (A.L.I.); (G.L.P.-G.)
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico; (D.A.P.-M.); (A.L.I.); (G.L.P.-G.)
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| |
Collapse
|
70
|
Yang R, Zheng Y, Zhang Y, Li G, Xu Y, Zhang Y, Xu Y, Zhuang C, Yu P, Deng L, Cui W, Chen Y, Wang L. Bipolar Metal Flexible Electrospun Fibrous Membrane Based on Metal-Organic Framework for Gradient Healing of Tendon-to-Bone Interface Regeneration. Adv Healthc Mater 2022; 11:e2200072. [PMID: 35286782 DOI: 10.1002/adhm.202200072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Indexed: 12/17/2022]
Abstract
Metal ions play a significant role in tissue repair, with widely application in clinical treatment. However, the therapeutic effect of metal ions is always limited due to metabolization and narrow repair capability. Here, a bipolar metal flexible electrospun fibrous membrane based on a metal-organic framework (MOF), which is bioinspired by the gradient structure of the tendon-to-bone interface, with a combination of regulating osteoblasts differentiation and angiogenesis properties, is constructed successfully by a continuous electrospinning technique and matching the longitudinal space morphology for synchronous regeneration. Furthermore, the MOF, acting as carriers, can not only achieve the sustainable release of metal ions, but promote the osteogenesis and tenogenesis on the scaffold. The in vitro data show that this novel hierarchical structure can accelerate the tenogenesis, the biomineralization, and angiogenesis. Moreover, in the in vivo experiment, the flexible fibrous membrane can promote tendon and bone tissue repair, and fibrocartilage reconstruction, to realize the multiple tissue synchronous regeneration at the damaged tendon-to-bone interface. Altogether, this newly developed bipolar metal flexible electrospun fibrous membrane based on a MOF, as a new biomimetic flexible scaffold, has great potential in reconstruct the tissue damage, especially gradient tissue damage.
Collapse
Affiliation(s)
- Renhao Yang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yunlong Zheng
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University Tianjin 300071 P. R. China
| | - Yin Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Gen Li
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yidong Xu
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yin Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yang Xu
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Chengyu Zhuang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Pei Yu
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Lianfu Deng
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University Tianjin 300071 P. R. China
| | - Lei Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| |
Collapse
|
71
|
Hernández‐Arriaga AM, Campano C, Rivero‐Buceta V, Prieto MA. When microbial biotechnology meets material engineering. Microb Biotechnol 2022; 15:149-163. [PMID: 34818460 PMCID: PMC8719833 DOI: 10.1111/1751-7915.13975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial biopolymers such as bacterial cellulose (BC), alginate or polyhydroxyalkanotes (PHAs) have aroused the interest of researchers in many fields, for instance biomedicine and packaging, due to their being biodegradable, biocompatible and renewable. Their properties can easily be tuned by means of microbial biotechnology strategies combined with materials science. This provides them with highly diverse properties, conferring them non-native features. Herein we highlight the enormous structural diversity of these macromolecules, how are they produced, as well as their wide range of potential applications in our daily lives. The emergence of new technologies, such as synthetic biology, enables the creation of next-generation-advanced materials presenting smart functional properties, for example the ability to sense and respond to stimuli as well as the capacity for self-repair. All this has given rise to the recent emergence of biohybrid materials, in which a synthetic component is brought to life with living organisms. Two different subfields have recently garnered particular attention: hybrid living materials (HLMs), such as encapsulation or bioprinting, and engineered living materials (ELMs), in which the material is created bottom-up with the use of microbial biotechnology tools. Early studies showed the strong potential of alginate and PHAs as HLMs, whilst BC constituted the most currently promising material for the creation of ELMs.
Collapse
Affiliation(s)
- Ana M. Hernández‐Arriaga
- Polymer Biotechnology Group, Department of Plant and Microbial BiotechnologyBiological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| | - Cristina Campano
- Polymer Biotechnology Group, Department of Plant and Microbial BiotechnologyBiological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| | - Virginia Rivero‐Buceta
- Polymer Biotechnology Group, Department of Plant and Microbial BiotechnologyBiological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| | - M. Auxiliadora Prieto
- Polymer Biotechnology Group, Department of Plant and Microbial BiotechnologyBiological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| |
Collapse
|
72
|
Pavlova E, Maslakova A, Prusakov K, Bagrov D. Optical sensors based on electrospun membranes – principles, applications, and prospects for chemistry and biology. NEW J CHEM 2022. [DOI: 10.1039/d2nj01821g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrospun membranes are promising substrates for receptor layer immobilization in optical sensors. Either colorimetric, luminescence, or Raman scattering signal can be used to detect the analyte.
Collapse
Affiliation(s)
- Elizaveta Pavlova
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, 119234, Moscow, Russian Federation
- Federal Research Clinical Center of Physical–Chemical Medicine of the Federal Medical and Biological Agency of Russia, 1a Malaya Pirogovskaya Street, 119435, Moscow, Russian Federation
| | - Aitsana Maslakova
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, 119234, Moscow, Russian Federation
| | - Kirill Prusakov
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, 119234, Moscow, Russian Federation
- Federal Research Clinical Center of Physical–Chemical Medicine of the Federal Medical and Biological Agency of Russia, 1a Malaya Pirogovskaya Street, 119435, Moscow, Russian Federation
| | - Dmitry Bagrov
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, 119234, Moscow, Russian Federation
| |
Collapse
|
73
|
Engineering of Vaginal Lactobacilli to Express Fluorescent Proteins Enables the Analysis of Their Mixture in Nanofibers. Int J Mol Sci 2021; 22:ijms222413631. [PMID: 34948426 PMCID: PMC8708671 DOI: 10.3390/ijms222413631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022] Open
Abstract
Lactobacilli are a promising natural tool against vaginal dysbiosis and infections. However, new local delivery systems and additional knowledge about their distribution and mechanism of action would contribute to the development of effective medicine. This will be facilitated by the introduction of the techniques for effective, inexpensive, and real-time tracking of these probiotics following their release. Here, we engineered three model vaginal lactobacilli (Lactobacillus crispatus ATCC 33820, Lactobacillus gasseri ATCC 33323, and Lactobacillus jensenii ATCC 25258) and a control Lactobacillus plantarum ATCC 8014 to express fluorescent proteins with different spectral properties, including infrared fluorescent protein (IRFP), green fluorescent protein (GFP), red fluorescent protein (mCherry), and blue fluorescent protein (mTagBFP2). The expression of these fluorescent proteins differed between the Lactobacillus species and enabled quantification and discrimination between lactobacilli, with the longer wavelength fluorescent proteins showing superior resolving power. Each Lactobacillus strain was labeled with an individual fluorescent protein and incorporated into poly (ethylene oxide) nanofibers using electrospinning, as confirmed by fluorescence and scanning electron microscopy. The lactobacilli retained their fluorescence in nanofibers, as well as after nanofiber dissolution. To summarize, vaginal lactobacilli were incorporated into electrospun nanofibers to provide a potential solid vaginal delivery system, and the fluorescent proteins were introduced to distinguish between them and allow their tracking in the future probiotic-delivery studies.
Collapse
|
74
|
Baral KC, Bajracharya R, Lee SH, Han HK. Advancements in the Pharmaceutical Applications of Probiotics: Dosage Forms and Formulation Technology. Int J Nanomedicine 2021; 16:7535-7556. [PMID: 34795482 PMCID: PMC8594788 DOI: 10.2147/ijn.s337427] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics have demonstrated their high potential to treat and/or prevent various diseases including neurodegenerative disorders, cancers, cardiovascular diseases, and inflammatory diseases. Probiotics are also effective against multidrug-resistant pathogens and help maintain a balanced gut microbiota ecosystem. Accordingly, the global market of probiotics is growing rapidly, and research efforts to develop probiotics into therapeutic adjuvants are gaining momentum. However, because probiotics are living microorganisms, many biological and biopharmaceutical barriers limit their clinical application. Probiotics may lose their activity in the harsh gastric conditions of the stomach or in the presence of bile salts. Moreover, they easily lose their viability under thermal or oxidative stress during their preparation and storage. Therefore, stable formulations of probiotics are required to overcome the various physicochemical, biopharmaceutical, and biological barriers and to maximize their therapeutic effectiveness and clinical applicability. This review provides an overview of the pharmaceutical applications of probiotics and covers recent formulation approaches to optimize the delivery of probiotics with particular emphasis on various dosage forms and formulation technologies.
Collapse
Affiliation(s)
- Kshitis Chandra Baral
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Rajiv Bajracharya
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Sang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Hyo-Kyung Han
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| |
Collapse
|
75
|
Bacteria-Based Microdevices for the Oral Delivery of Macromolecules. Pharmaceutics 2021; 13:pharmaceutics13101610. [PMID: 34683903 PMCID: PMC8537518 DOI: 10.3390/pharmaceutics13101610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
The oral delivery of macromolecules is quite challenging due to environmental insults and biological barriers encountered along the gastrointestinal (GI) tract. Benefiting from their living characteristics, diverse bacterial species have been engineered as intelligent platforms to deliver various therapeutics. To tackle difficulties in oral delivery, innovative bacteria-based microdevices have been developed by virtue of advancements in synthetic biology and nanotechnology, with aims to overcome the instability and short half-life of macromolecules in the GI tract. In this review, we summarize the main classes of macromolecules that are produced and delivered through the oral ingestion of bacteria and bacterial derivatives. Furtherly, we discuss the engineering strategies and biomedical applications of these living microdevices in disease diagnosis, bioimaging, and treatment. Finally, we highlight the advantages as well as the limitations of these engineered bacteria used as platforms for the oral delivery of macromolecules and also propose their potential for clinical translation. The results summarized in this review article would contribute to the invention of next-generation bacteria-based systems for the oral delivery of macromolecules.
Collapse
|
76
|
Zhuang Y, Cui W. Biomaterial-based delivery of nucleic acids for tissue regeneration. Adv Drug Deliv Rev 2021; 176:113885. [PMID: 34324886 DOI: 10.1016/j.addr.2021.113885] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Gene therapy is a promising novel method of tissue regeneration by stimulating or inhibiting key signaling pathways. However, their therapeutic applications in vivo are largely limited by several physiological obstacles, such as degradation of nucleases, impermeability of cell membranes, and transport to the desired intracellular compartments. Biomaterial-based gene delivery systems can overcome the problems of stability and local drug delivery, and can temporarily control the overexpression of therapeutic genes, leading to the local production of physiologically relevant levels of regulatory factors. But the gene delivery of biomaterials for tissue regeneration relies on multi-factor design. This review aims to outline the impact of gene delivery methods, therapeutic genes and biomaterials selection on this strategy, emphatically introduce the latest developments in the design of gene delivery vehicles based on biomaterials, summarize the mechanism of nucleic acid for tissue regeneration, and explore the strategies of nucleic acid delivery vehicles for various tissue regeneration.
Collapse
Affiliation(s)
- Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention, Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention, Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| |
Collapse
|
77
|
Kamoun EA, Loutfy SA, Hussein Y, Kenawy ERS. Recent advances in PVA-polysaccharide based hydrogels and electrospun nanofibers in biomedical applications: A review. Int J Biol Macromol 2021; 187:755-768. [PMID: 34358597 DOI: 10.1016/j.ijbiomac.2021.08.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 02/08/2023]
Abstract
Among several types of carbohydrate polymers blend PVA hydrogel membranes used for biomedical applications in particular wound dressings; electrospun nanofibrous membranes have gained increased interest because of their extraordinary features e.g. huge surface area to volume ratio, high porosity, adequate permeability, excellent wound-exudates absorption capacity, architecture similarity with skin ECM and sustained release-profile over long time. In this study, modern perspectives of synthesized/developed electrospun nanofibrous hydrogel membranes based popular carbohydrate polymers blend PVA which recently have been employed for versatile biomedical applications particularly wound dressings, were discussed intensively and compared in detail with traditional fabricated membranes based films, as well. Clinically relevant and advantages of electrospun nanofibrous membranes were discussed in terms of their biocompatibility and easily fabrication and functionalization in different biomedical applications.
Collapse
Affiliation(s)
- Elbadawy A Kamoun
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt; Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt.
| | - Samah A Loutfy
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt; Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Egypt
| | - Yasmein Hussein
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt
| | - El-Refaie S Kenawy
- Polymer Research Group, Department of Chemistry, Faculty of Science, University of Tanta, Tanta 31527, Egypt
| |
Collapse
|
78
|
Zare M, Dziemidowicz K, Williams GR, Ramakrishna S. Encapsulation of Pharmaceutical and Nutraceutical Active Ingredients Using Electrospinning Processes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1968. [PMID: 34443799 PMCID: PMC8399548 DOI: 10.3390/nano11081968] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Electrospinning is an inexpensive and powerful method that employs a polymer solution and strong electric field to produce nanofibers. These can be applied in diverse biological and medical applications. Due to their large surface area, controllable surface functionalization and properties, and typically high biocompatibility electrospun nanofibers are recognized as promising materials for the manufacturing of drug delivery systems. Electrospinning offers the potential to formulate poorly soluble drugs as amorphous solid dispersions to improve solubility, bioavailability and targeting of drug release. It is also a successful strategy for the encapsulation of nutraceuticals. This review aims to briefly discuss the concept of electrospinning and recent progress in manufacturing electrospun drug delivery systems. It will further consider in detail the encapsulation of nutraceuticals, particularly probiotics.
Collapse
Affiliation(s)
- Mina Zare
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Karolina Dziemidowicz
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore
| |
Collapse
|
79
|
New Biocomposite Electrospun Fiber/Alginate Hydrogel for Probiotic Bacteria Immobilization. MATERIALS 2021; 14:ma14143861. [PMID: 34300780 PMCID: PMC8307157 DOI: 10.3390/ma14143861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
Biotechnological use of probiotic microorganisms involves providing them with appropriate conditions for growth, but also protection against environmental changes caused by an exchange of the medium, isolation of metabolites, etc. Therefore, the research on effective immobilization of probiotic microorganisms should be focused in this direction. The present study aimed to evaluate the effectiveness of an innovative hybrid immobilization system based on electrospun nanofibers and alginate hydrogel. The analyses carried out included the study of properties of the initial components, the evaluation of the degree and durability of cell immobilization in the final material, and their survival under stress conditions. Effective binding of microorganisms to the hydrogel and nanofibers was confirmed, and the collected results proved that the proposed biocomposite is an efficient method of cell protection. In addition, it was shown that immobilization on electrospun nanofibers leads to the preservation of the highest cell activity and the least cell growth restriction as compared to free or lyophilized cells only. The completed research opens new perspectives for the effective immobilization of microorganisms of significant economic importance.
Collapse
|
80
|
Diep E, Schiffman JD. Encapsulating bacteria in alginate-based electrospun nanofibers. Biomater Sci 2021; 9:4364-4373. [PMID: 34128000 DOI: 10.1039/d0bm02205e] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Encapsulation technologies are imperative for the safe delivery of live bacteria into the gut where they regulate bodily functions and human health. In this study, we develop alginate-based nanofibers that could potentially serve as a biocompatible, edible probiotic delivery system. By systematically exploring the ratio of three components, the biopolymer alginate (SA), the carrier polymer poly(ethylene oxide) (PEO), and the FDA approved surfactant polysorbate 80 (PS80), the surface tension and conductivity of the precursor solutions were optimized to electrospin bead-free fibers with an average diameter of 167 ± 23 nm. Next, the optimized precursor solution (2.8/1.2/3 wt% of SA/PEO/PS80) was loaded with Escherichia coli (E. coli, 108 CFU mL-1), which served as our model bacterium. We determined that the bacteria in the precursor solution remained viable after passing through a typical electric field (∼1 kV cm-1) employed during electrospinning. This is because the microbes are pulled into a sink-like flow, which encapsulates them into the polymer nanofibers. Upon electrospinning the E. coli-loaded solutions, beads that were much smaller than the size of an E. coli were initially observed. To compensate for the addition of bacteria, the SA/PEO/PS80 weight ratio was reoptimized to be 2.5/1.5/3. Smooth fibers with bulges around the live microbes were formed, as confirmed using fluorescence and scanning electron microscopy. By dissolving and plating the nanofibers, we found that 2.74 × 105 CFU g-1 of live E. coli cells were contained within the alginate-based fibers. This work demonstrates the use of electrospinning to encapsulate live bacteria in alginate-based nanofibers for the potential delivery of probiotics to the gut.
Collapse
Affiliation(s)
- Emily Diep
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-9303, USA.
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-9303, USA.
| |
Collapse
|
81
|
Attia MF, Montaser AS, Arifuzzaman M, Pitz M, Jlassi K, Alexander-Bryant A, Kelly SS, Alexis F, Whitehead DC. In Situ Photopolymerization of Acrylamide Hydrogel to Coat Cellulose Acetate Nanofibers for Drug Delivery System. Polymers (Basel) 2021; 13:1863. [PMID: 34205186 PMCID: PMC8200032 DOI: 10.3390/polym13111863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 01/17/2023] Open
Abstract
In this study we developed electrospun cellulose acetate nanofibers (CANFs) that were loaded with a model non-steroidal anti-inflammatory drug (NSAID) (ibuprofen, Ib) and coated with poly(acrylamide) (poly-AAm) hydrogel polymer using two consecutive steps: an electrospinning process followed by photopolymerization of AAm. Coated and non-coated CANF formulations were characterized by several microscopic and spectroscopic techniques to evaluate their physicochemical properties. An analysis of the kinetic release profile of Ib showed noticeable differences due to the presence or absence of the poly-AAm hydrogel polymer. Poly-AAm coating facilitated a constant release rate of drug as opposed to a more conventional burst release. The non-coated CANFs showed low cumulative drug release concentrations (ca. 35 and 83% at 5 and 10% loading, respectively). Conversely, poly-AAm coated CANFs were found to promote the release of drug (ca. 84 and 99.8% at 5 and 10% loading, respectively). Finally, the CANFs were found to be superbly cytocompatible.
Collapse
Affiliation(s)
- Mohamed F. Attia
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA;
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ahmed S. Montaser
- Textile Research Division, Pretreatment and Finishing Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Md Arifuzzaman
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA;
| | - Megan Pitz
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (M.P.); (A.A.-B.)
| | - Khouloud Jlassi
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar;
| | | | - Stephen S. Kelly
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27607, USA;
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuqui 100650, Ecuador;
| | | |
Collapse
|
82
|
Ghaderpour A, Hoseinkhani Z, Yarani R, Mohammadiani S, Amiri F, Mansouri K. Altering the characterization of nanofibers by changing the electrospinning parameters and their application in tissue engineering, drug delivery, and gene delivery systems. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amir Ghaderpour
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- Biology Department, Urmia Branch Islamic Azad University Urmia Iran
| | - Zohreh Hoseinkhani
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research Steno Diabetes Center Copenhagen Gentofte Denmark
| | | | - Farshid Amiri
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Kamran Mansouri
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- Molecular Medicine Department, Faculty of Medicine Kermanshah University of Medical Kermanshah Iran
| |
Collapse
|
83
|
Rivera-Tarazona LK, Campbell ZT, Ware TH. Stimuli-responsive engineered living materials. SOFT MATTER 2021; 17:785-809. [PMID: 33410841 DOI: 10.1039/d0sm01905d] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Stimuli-responsive materials are able to undergo controllable changes in materials properties in response to external cues. Increasing efforts have been directed towards building materials that mimic the responsive nature of biological systems. Nevertheless, limitations remain surrounding the way these synthetic materials interact and respond to their environment. In particular, it is difficult to synthesize synthetic materials that respond with specificity to poorly differentiated (bio)chemical and weak physical stimuli. The emerging area of engineered living materials (ELMs) includes composites that combine living cells and synthetic materials. ELMs have yielded promising advances in the creation of stimuli-responsive materials that respond with diverse outputs in response to a broad array of biochemical and physical stimuli. This review describes advances made in the genetic engineering of the living component and the processing-property relationships of stimuli-responsive ELMs. Finally, the implementation of stimuli-responsive ELMs as environmental sensors, biomedical sensors, drug delivery vehicles, and soft robots is discussed.
Collapse
Affiliation(s)
- Laura K Rivera-Tarazona
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77843, USA.
| | | | | |
Collapse
|
84
|
Gregory H, Phillips JB. Materials for peripheral nerve repair constructs: Natural proteins or synthetic polymers? Neurochem Int 2020; 143:104953. [PMID: 33388359 DOI: 10.1016/j.neuint.2020.104953] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
The efficacious repair of severe peripheral nerve injuries is currently an unmet clinical need, and biomaterial constructs offer a promising approach to help promote nerve regeneration. Current research focuses on the development of more sophisticated constructs with complex architecture and the addition of regenerative agents to encourage timely reinnervation and promote functional recovery. This review surveyed the present landscape of nerve repair construct literature with a focus on six selected materials that are frequently encountered in this application: the natural proteins collagen, chitosan, and silk, and the synthetic polymers poly-ε-caprolactone (PCL), poly-lactic-co-glycolic acid (PLGA) and poly-glycolic acid (PGA). This review also investigated the use of cell therapy in nerve repair constructs, and in all instances concentrated on publications reporting constructs developed and tested in vivo in the last five years (2015-2020). Across the selected literature, the popularity of natural proteins and synthetic polymers appears to be broadly equivalent, with a similar number of studies reporting successful outcomes in vivo. Both material types are also utilised as vehicles for cell therapy, which has much potential to improve the results of nerve bridging for treating longer gaps.
Collapse
Affiliation(s)
- Holly Gregory
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK; UCL Centre for Nerve Engineering, University College London, London, UK.
| | - James B Phillips
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK; UCL Centre for Nerve Engineering, University College London, London, UK
| |
Collapse
|
85
|
Puhl DL, Funnell JL, Nelson DW, Gottipati MK, Gilbert RJ. Electrospun Fiber Scaffolds for Engineering Glial Cell Behavior to Promote Neural Regeneration. Bioengineering (Basel) 2020; 8:4. [PMID: 33383759 PMCID: PMC7823609 DOI: 10.3390/bioengineering8010004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Electrospinning is a fabrication technique used to produce nano- or micro- diameter fibers to generate biocompatible, biodegradable scaffolds for tissue engineering applications. Electrospun fiber scaffolds are advantageous for neural regeneration because they mimic the structure of the nervous system extracellular matrix and provide contact guidance for regenerating axons. Glia are non-neuronal regulatory cells that maintain homeostasis in the healthy nervous system and regulate regeneration in the injured nervous system. Electrospun fiber scaffolds offer a wide range of characteristics, such as fiber alignment, diameter, surface nanotopography, and surface chemistry that can be engineered to achieve a desired glial cell response to injury. Further, electrospun fibers can be loaded with drugs, nucleic acids, or proteins to provide the local, sustained release of such therapeutics to alter glial cell phenotype to better support regeneration. This review provides the first comprehensive overview of how electrospun fiber alignment, diameter, surface nanotopography, surface functionalization, and therapeutic delivery affect Schwann cells in the peripheral nervous system and astrocytes, oligodendrocytes, and microglia in the central nervous system both in vitro and in vivo. The information presented can be used to design and optimize electrospun fiber scaffolds to target glial cell response to mitigate nervous system injury and improve regeneration.
Collapse
Affiliation(s)
- Devan L. Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Jessica L. Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Derek W. Nelson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Manoj K. Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, USA
| | - Ryan J. Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| |
Collapse
|
86
|
El-Aassar MR, El-Beheri NG, Agwa MM, Eltaher HM, Alseqely M, Sadik WS, El-Khordagui L. Antibiotic-free combinational hyaluronic acid blend nanofibers for wound healing enhancement. Int J Biol Macromol 2020; 167:1552-1563. [PMID: 33212109 DOI: 10.1016/j.ijbiomac.2020.11.109] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 01/07/2023]
Abstract
An innovative approach in the functionalization of nanofibers (NFs) for wound healing relies on non-antibiotic combinational therapy to subdue microbial invasion while reducing antimicrobial resistance and enhancing healing. Despite great potentials, wound healing efficacy of NFs embedding antimicrobial metal nanoparticles (NPs)/essential oils has been scarcely documented. We developed combinational NFs using an electrospinnable hyaluronic acid/polyvinyl alcohol/polyethylene oxide blend embedding a new ZnO NPs/cinnamon essential oil (CEO) antimicrobial combination. Fourier transform infrared, X-ray diffraction and transmission electron microscopy confirmed the presence of HA and distribution of ZnO NPs and CEO within NFs. Results for mean diameter, thermal stability, hydrophilicity, tensile strength, in vitro biodegradability, and cytocompatibility of crosslinked combinational NFs were intermediate between those of their singly loaded counterparts. All NFs inhibited the growth of Staphylococcus aureus (S. aureus). Compared with singly loaded NFs, combinational NFs showed the greatest healing efficacy of full thickness S. aureus inoculated incision wounds in rats in terms of bacterial inhibition following a single application, healing speed, and quality of skin structure recovery as verified by morphological, microbiological, and histopathological studies. Results highlighted the potentials of metal NPs/essential oil functionalization of nanofibrous wound dressings as an emerging antibiotic-free combinational approach for more effective and safer wound healing.
Collapse
Affiliation(s)
- Mohamed R El-Aassar
- Department of Chemistry, College of Science, Jouf University, Sakaka 2014, Saudi Arabia; Polymer Materials Research Department, Advanced Technology and New Materials Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Universities and Research Institutes District, Alexandria 21934, Egypt.
| | - Nagham G El-Beheri
- Polymer Materials Research Department, Advanced Technology and New Materials Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Universities and Research Institutes District, Alexandria 21934, Egypt; Materials Science Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El- Behooth St, Dokki, Giza 12311, Egypt
| | - Hoda M Eltaher
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mostafa Alseqely
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Wagih S Sadik
- Materials Science Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Labiba El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
87
|
Shaw GS, Dash RA, Samavedi S. Evaluating the protective role of carrier microparticles in preserving protein secondary structure within electrospun meshes. J Appl Polym Sci 2020. [DOI: 10.1002/app.50016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gauri Shankar Shaw
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Hyderabad India
| | - Ricky A. Dash
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Hyderabad India
| | - Satyavrata Samavedi
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Hyderabad India
| |
Collapse
|
88
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|