51
|
Calcium-Binding Nanoparticles for Vascular Disease. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-018-0083-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
52
|
Chin DD, Chowdhuri S, Chung EJ. Calcium-binding nanoparticles for vascular disease. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:74-85. [PMID: 31106257 PMCID: PMC6516760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cardiovascular disease (CVD) including atherosclerosis is the leading cause of death worldwide. As CVDs and atherosclerosis develop, plaques begin to form in the blood vessels and become calcified. Calcification within the vasculature and atherosclerotic plaques have been correlated with rupture and consequently, acute myocardial infarction. However, current imaging methods to identify vascular calcification have limitations in determining plaque composition and structure. Nanoparticles can overcome these limitations due to their versatility and ability to incorporate a wide range of targeting and contrast agents. In this review, we summarize the current understanding of calcification in atherosclerosis, their role in instigating plaque instability, and clinical methodologies to detect and analyze vascular calcification. In addition, we highlight the potential of calcium-targeting ligands and nanoparticles to create novel calcium-detecting tools.
Collapse
Affiliation(s)
- Deborah D. Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sampreeti Chowdhuri
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
53
|
Gomel MA, Lee R, Grande-Allen KJ. Comparing the Role of Mechanical Forces in Vascular and Valvular Calcification Progression. Front Cardiovasc Med 2019; 5:197. [PMID: 30687719 PMCID: PMC6335252 DOI: 10.3389/fcvm.2018.00197] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/20/2018] [Indexed: 01/07/2023] Open
Abstract
Calcification is a prevalent disease in most fully developed countries and is predominantly observed in heart valves and nearby vasculature. Calcification of either tissue leads to deterioration and, ultimately, failure causing poor quality of life and decreased overall life expectancy in patients. In valves, calcification presents as Calcific Aortic Valve Disease (CAVD), in which the aortic valve becomes stenotic when calcific nodules form within the leaflets. The initiation and progression of these calcific nodules is strongly influenced by the varied mechanical forces on the valve. In turn, the addition of calcific nodules creates localized disturbances in the tissue biomechanics, which affects extracellular matrix (ECM) production and cellular activation. In vasculature, atherosclerosis is the most common occurrence of calcification. Atherosclerosis exhibits as calcific plaque formation that forms in juxtaposition to areas of low blood shear stresses. Research in these two manifestations of calcification remain separated, although many similarities persist. Both diseases show that the endothelial layer and its regulation of nitric oxide is crucial to calcification progression. Further, there are similarities between vascular smooth muscle cells and valvular interstitial cells in terms of their roles in ECM overproduction. This review summarizes valvular and vascular tissue in terms of their basic anatomy, their cellular and ECM components and mechanical forces. Calcification is then examined in both tissues in terms of disease prediction, progression, and treatment. Highlighting the similarities and differences between these areas will help target further research toward disease treatment.
Collapse
|
54
|
Skafi N, Abdallah D, Soulage C, Reibel S, Vitale N, Hamade E, Faour W, Magne D, Badran B, Hussein N, Buchet R, Brizuela L, Mebarek S. Phospholipase D: A new mediator during high phosphate-induced vascular calcification associated with chronic kidney disease. J Cell Physiol 2018; 234:4825-4839. [PMID: 30207376 DOI: 10.1002/jcp.27281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/26/2018] [Indexed: 01/31/2023]
Abstract
Vascular calcification (VC) is the pathological accumulation of calcium phosphate crystals in one of the layers of blood vessels, leading to loss of elasticity and causing severe calcification in vessels. Medial calcification is mostly seen in patients with chronic kidney disease (CKD) and diabetes. Identification of key enzymes and their actions during calcification will contribute to understand the onset of pathological calcification. Phospholipase D (PLD1, PLD2) is active at the earlier steps of mineralization in osteoblasts and chondrocytes. In this study, we aimed to determine their effects during high-phosphate treatment in mouse vascular smooth muscle cell line MOVAS, in the ex vivo model of the rat aorta, and in the in vivo model of adenine-induced CKD. We observed an early increase in PLD1 gene and protein expression along with the increase in the PLD activity in vascular muscle cell line, during calcification induced by ascorbic acid and β-glycerophosphate. Inhibition of PLD1 by the selective inhibitor VU0155069, or the pan-PLD inhibitor, halopemide, prevented calcification. The mechanism of PLD activation is likely to be protein kinase C (PKC)-independent since bisindolylmaleimide X hydrochloride, a pan-PKC inhibitor, did not affect the PLD activity. In agreement, we found an increase in Pld1 gene expression and PLD activity in aortic explant cultures treated with high phosphate, whereas PLD inhibition by halopemide decreased calcification. Finally, an increase in both Pld1 and Pld2 expression occurred simultaneously with the appearance of VC in a rat model of CKD. Thus, PLD, especially PLD1, promotes VC in the context of CKD and could be an important target for preventing onset or progression of VC.
Collapse
Affiliation(s)
- Najwa Skafi
- University of Lyon, Université Claude Bernard Lyon 1 (UCBL), CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Lyon, France.,Genomic and Health Laboratory/PRASE-EDST Campus Rafic Hariri-Hadath-Beirut-Liban, Faculty of Sciences, Lebanese University (LU), Beirut, Lebanon
| | - Dina Abdallah
- University of Lyon, Université Claude Bernard Lyon 1 (UCBL), CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Lyon, France.,Genomic and Health Laboratory/PRASE-EDST Campus Rafic Hariri-Hadath-Beirut-Liban, Faculty of Sciences, Lebanese University (LU), Beirut, Lebanon
| | - Christophe Soulage
- University of Lyon, CarMeN, INSERM U1060, INRA U1397, Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 CNRS and Université de Strasbourg, Strasbourg, France
| | - Eva Hamade
- Genomic and Health Laboratory/PRASE-EDST Campus Rafic Hariri-Hadath-Beirut-Liban, Faculty of Sciences, Lebanese University (LU), Beirut, Lebanon
| | - Wissam Faour
- School of Medicine, Lebanese American University (LAU), Byblos, Lebanon
| | - David Magne
- University of Lyon, Université Claude Bernard Lyon 1 (UCBL), CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Lyon, France
| | - Bassam Badran
- Genomic and Health Laboratory/PRASE-EDST Campus Rafic Hariri-Hadath-Beirut-Liban, Faculty of Sciences, Lebanese University (LU), Beirut, Lebanon
| | - Nader Hussein
- Genomic and Health Laboratory/PRASE-EDST Campus Rafic Hariri-Hadath-Beirut-Liban, Faculty of Sciences, Lebanese University (LU), Beirut, Lebanon
| | - Rene Buchet
- University of Lyon, Université Claude Bernard Lyon 1 (UCBL), CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Lyon, France
| | - Leyre Brizuela
- University of Lyon, Université Claude Bernard Lyon 1 (UCBL), CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Lyon, France
| | - Saida Mebarek
- University of Lyon, Université Claude Bernard Lyon 1 (UCBL), CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Lyon, France
| |
Collapse
|
55
|
Grines CL, Skelding KA. Women and Calcium: A Love-Hate Relationship at the Center of the Heart. JACC Cardiovasc Interv 2018; 9:1902-4. [PMID: 27659565 DOI: 10.1016/j.jcin.2016.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 11/20/2022]
Affiliation(s)
- Cindy L Grines
- Department of Cardiology, Detroit Medical Center Heart Hospital, Detroit, Michigan.
| | | |
Collapse
|
56
|
Zhu D, Li X, Macrae VE, Simoncini T, Fu X. Extragonadal Effects of Follicle-Stimulating Hormone on Osteoporosis and Cardiovascular Disease in Women during Menopausal Transition. Trends Endocrinol Metab 2018; 29:571-580. [PMID: 29983231 DOI: 10.1016/j.tem.2018.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023]
Abstract
The risk of osteoporosis and cardiovascular disease increases significantly in postmenopausal women. Until recently, the underlying mechanisms have been primarily attributed to estrogen decline following menopause. However, follicle-stimulating hormone (FSH) levels rise sharply during menopausal transition and are maintained at elevated levels for many years. FSH receptor has been detected in various extragonadal sites, including osteoclasts and endothelial cells. Recent advances suggest FSH may contribute to postmenopausal osteoporosis and cardiovascular disease. Here, we review the key actions through which FSH contributes to the risk of osteoporosis and cardiovascular disease in women as they transition through menopause. Advancing our understanding of the precise mechanisms through which FSH promotes osteoporosis and cardiovascular disease may provide new opportunities for improving health-span for postmenopausal women.
Collapse
Affiliation(s)
- Dongxing Zhu
- Guangzhou Institute of Cardiovascular Diseases, The Second Affiliated Hospital; Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaosa Li
- Guangzhou Institute of Cardiovascular Diseases, The Second Affiliated Hospital; Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Vicky E Macrae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK.
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa 56100, Italy.
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Diseases, The Second Affiliated Hospital; Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
57
|
The role of OPG/RANKL in the pathogenesis of diabetic cardiovascular disease. Cardiovasc Endocrinol Metab 2018; 7:28-33. [PMID: 31646276 DOI: 10.1097/xce.0000000000000144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/21/2017] [Indexed: 11/25/2022]
Abstract
Cardiovascular (CV) disease is the leading cause of mortality in patients with type 2 diabetes mellitus. A major factor in the pathogenesis of CV disease is vascular calcification (VC), which is accelerated in type 2 diabetes mellitus. Calcification of the vessel wall contributes to vascular stiffness and left ventricular hypertrophy whereas intimal calcification may predispose to plaque rupture and CV death. The pathogenesis of VC is complex but appears to be regulated by the osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL) signaling pathway, which is involved in bone remodeling. Within the bone, OPG prevents RANKL from binding to receptor activator of nuclear factor-κB and inhibiting bone resorption. Outside of the bone, the clinical significance of OPG blocking RANKL is not well understood, but OPG knockout mice that lack OPG develop early and severe VC. This minireview outlines some of the research on OPG/RANKL in the pathogenesis of VC and discusses potential therapies, which may reduce VC and CV burden in humans.
Collapse
|
58
|
Davenport C, Harper E, Rochfort KD, Forde H, Smith D, Cummins PM. RANKL Inhibits the Production of Osteoprotegerin from Smooth Muscle Cells under Basal Conditions and following Exposure to Cyclic Strain. J Vasc Res 2018; 55:111-123. [PMID: 29635231 DOI: 10.1159/000486787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/12/2018] [Indexed: 11/19/2022] Open
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL) promotes vascular calcification, while osteoprotegerin (OPG) opposes it by blocking RANKL activity. It remains unclear which vascular cell populations produce and secrete OPG/RANKL. This study characterizes the production of OPG/RANKL from human aortic endothelial and smooth muscle cells (HAECs and HASMCs) under various conditions. HAECs and HASMCs were exposed to inflammatory stimuli (tumor necrosis factor-α or hyperglycemia) or physiological levels of hemodynamic (cyclic) strain. After 72 h, both cells and supernatant media were harvested for assessment of OPG/RANKL production. Based on initial findings, the experiments involving HASMCs were then repeated in the presence of exogenous RANKL. OPG was produced and secreted by HASMCs and (to a considerably lesser degree) HAECs under basal conditions. Inflammatory stimuli upregulated OPG production in both cell populations. Cyclic strain significantly upregulated OPG production in HASMCs. Neither cell population produced RANKL. Exposing HASMCs to exogenous RANKL inhibited basal OPG production and completely abrogated the strain-mediated upregulation of OPG. These data suggest that HASMCs are a significant source of OPG within the vasculature but that RANKL, once present, downregulates this production and appears capable of preventing the "protective" upregulation of OPG seen with HASMCs exposed to physiological levels of cyclic strain.
Collapse
Affiliation(s)
- Colin Davenport
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Emma Harper
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Keith D Rochfort
- School of Biotechnology, Dublin City University, Dublin, Ireland.,National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Hannah Forde
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Diarmuid Smith
- Department of Academic Endocrinology, Beaumont Hospital, Dublin, Ireland
| | - Philip M Cummins
- School of Biotechnology, Dublin City University, Dublin, Ireland.,National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
59
|
Patel JJ, Zhu D, Opdebeeck B, D’Haese P, Millán JL, Bourne LE, Wheeler-Jones CPD, Arnett TR, MacRae VE, Orriss IR. Inhibition of arterial medial calcification and bone mineralization by extracellular nucleotides: The same functional effect mediated by different cellular mechanisms. J Cell Physiol 2018; 233:3230-3243. [PMID: 28976001 PMCID: PMC5792173 DOI: 10.1002/jcp.26166] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022]
Abstract
Arterial medial calcification (AMC) is thought to share some outward similarities to skeletal mineralization and has been associated with the transdifferentiation of vascular smooth muscle cells (VSMCs) to an osteoblast-like phenotype. ATP and UTP have previously been shown to inhibit bone mineralization. This investigation compared the effects of extracellular nucleotides on calcification in VSMCs with those seen in osteoblasts. ATP, UTP and the ubiquitous mineralization inhibitor, pyrophosphate (PPi ), dose dependently inhibited VSMC calcification by ≤85%. Culture of VSMCs in calcifying conditions was associated with an increase in apoptosis; treatment with ATP, UTP, and PPi reduced apoptosis to levels seen in non-calcifying cells. Extracellular nucleotides had no effect on osteoblast viability. Basal alkaline phosphatase (TNAP) activity was over 100-fold higher in osteoblasts than VSMCs. ATP and UTP reduced osteoblast TNAP activity (≤50%) but stimulated VSMC TNAP activity (≤88%). The effects of extracellular nucleotides on VSMC calcification, cell viability and TNAP activity were unchanged by deletion or inhibition of the P2Y2 receptor. Conversely, the actions of ATP/UTP on bone mineralization and TNAP activity were attenuated in osteoblasts lacking the P2Y2 receptor. Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) hydrolyses ATP and UTP to produce PPi . In both VSMCs and osteoblasts, deletion of NPP1 blunted the inhibitory effects of extracellular nucleotides suggesting involvement of P2 receptor independent pathways. Our results show that although the overall functional effect of extracellular nucleotides on AMC and bone mineralization is similar there are clear differences in the cellular mechanisms mediating these actions.
Collapse
Affiliation(s)
- JJ Patel
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - D Zhu
- Guangzhou Institute of Cardiovascular Disease, School of Basic Medical Sciences, Guangzhou Medical University, China
| | - B Opdebeeck
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Belgium
| | - P D’Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Belgium
| | - JL Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - LE Bourne
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - CPD Wheeler-Jones
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - TR Arnett
- Department of Cell and Developmental Biology, University College London, London, UK
| | - VE MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - IR Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
60
|
Frazier JJ, Casian R, Benson BW. Mönckeberg medial calcinosis of the infraorbital arteries: a first case report. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 125:e31-e35. [DOI: 10.1016/j.oooo.2017.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/31/2017] [Accepted: 11/11/2017] [Indexed: 12/28/2022]
|
61
|
Fakhry M, Skafi N, Fayyad-Kazan M, Kobeissy F, Hamade E, Mebarek S, Habib A, Borghol N, Zeidan A, Magne D, Fayyad-Kazan H, Badran B. Characterization and assessment of potential microRNAs involved in phosphate-induced aortic calcification. J Cell Physiol 2017; 233:4056-4067. [PMID: 28776684 DOI: 10.1002/jcp.26121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/01/2017] [Indexed: 02/01/2023]
Abstract
Medial artery calcification, a hallmark of type 2 diabetes mellitus and chronic kidney disease (CKD), is known as an independent risk factor for cardiovascular mortality and morbidity. Hyperphosphatemia associated with CKD is a strong stimulator of vascular calcification but the molecular mechanisms regulating this process remain not fully understood. We showed that calcification was induced after exposing Sprague-Dawley rat aortic explants to high inorganic phosphate level (Pi , 6 mM) as examined by Alizarin red and Von Kossa staining. This calcification was associated with high Tissue-Nonspecific Alkaline Phosphatase (TNAP) activity, vascular smooth muscle cells de-differentiation, manifested by downregulation of smooth muscle 22 alpha (SM22α) protein expression which was assessed by immunoblot analysis, immunofluorescence, and trans-differentiation into osteo-chondrocyte-like cells revealed by upregulation of Runt related transcription factor 2 (Runx2), TNAP, osteocalcin, and osteopontin mRNA levels which were determined by quantitative real-time PCR. To unravel the possible mechanism(s) involved in this process, microRNA (miR) expression profile, which was assessed using TLDA technique and thereafter confirmed by individual qRT-PCR, revealed differential expression 10 miRs, five at day 3 and 5 at day 6 post Pi treatment versus control untreated aortas. At day 3, miR-200c, -155, 322 were upregulated and miR-708 and 331 were downregulated. After 6 days of treatment, miR-328, -546, -301a were upregulated while miR-409 and miR-542 were downregulated. Our results indicate that high Pi levels trigger aortic calcification and modulation of certain miRs. These observations suggest that mechanisms regulating aortic calcification might involve miRs, which warrant further investigations in future studies.
Collapse
Affiliation(s)
- Maya Fakhry
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Beirut, Lebanon.,Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, Villeurbanne Cedex, France
| | - Najwa Skafi
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Beirut, Lebanon.,Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, Villeurbanne Cedex, France
| | - Mohammad Fayyad-Kazan
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Eva Hamade
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Beirut, Lebanon
| | - Saida Mebarek
- Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, Villeurbanne Cedex, France
| | - Aida Habib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, and the Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Nada Borghol
- Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, Villeurbanne Cedex, France
| | - Asad Zeidan
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,College of Medicine, Qatar University, Doha, Qatar
| | - David Magne
- Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, Villeurbanne Cedex, France
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Beirut, Lebanon
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Beirut, Lebanon
| |
Collapse
|
62
|
Rilla K, Mustonen AM, Arasu UT, Härkönen K, Matilainen J, Nieminen P. Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix Biol 2017; 75-76:201-219. [PMID: 29066152 DOI: 10.1016/j.matbio.2017.10.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EV) are small plasma membrane-derived particles released into the extracellular space by virtually all cell types. Recently, EV have received increased interest because of their capability to carry nucleic acids, proteins, lipids and signaling molecules and to transfer their cargo into the target cells. Less attention has been paid to their role in modifying the composition of the extracellular matrix (ECM), either directly or indirectly via regulating the ability of target cells to synthesize or degrade matrix molecules. Based on recent results, EV can be considered one of the structural and functional components of the ECM that participate in matrix organization, regulation of cells within it, and in determining the physical properties of soft connective tissues, bone, cartilage and dentin. This review addresses the relevance of EV as specific modulators of the ECM, such as during the assembly and disassembly of the molecular network, signaling through the ECM and formation of niches suitable for tissue regeneration, inflammation and tumor progression. Finally, we assess the potential of these aspects of EV biology to translational medicine.
Collapse
Affiliation(s)
- Kirsi Rilla
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland.
| | - Anne-Mari Mustonen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Uma Thanigai Arasu
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Kai Härkönen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Johanna Matilainen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Petteri Nieminen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| |
Collapse
|
63
|
Siltari A, Vapaatalo H. Vascular Calcification, Vitamin K and Warfarin Therapy - Possible or Plausible Connection? Basic Clin Pharmacol Toxicol 2017. [PMID: 28639365 DOI: 10.1111/bcpt.12834] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Atherosclerosis is a pathological process underpinning many cardiovascular diseases; it is the main cause of global mortality. Atherosclerosis is characterized by an invasion of inflammatory cells, accumulation of lipids and the formation of fatty streaks (plaques) which subsequently allow accumulation of calcium and other minerals leading to a disturbance in the vascular endothelium and its regulatory role in arterial function. Vascular calcification is a different process, stringently regulated mainly by local factors, in which osteoblast-like cells accumulate in the muscular layer of arteries ultimately taking on the physiological appearance of bone. The elevated stiffness of the arteries leads to severe vascular complications in brain, heart and kidneys. Recently, evidence from animal experiments as well as clinical and epidemiological results suggests that long-term treatment with warfarin, but not with the novel direct anticoagulants, can increase the risk or even induce vascular calcification in some individuals. Gamma-carboxylation is an enzymatic process not only needed for activation of vitamin K but also other proteins which participate in bone formation and vascular calcification. Thus, reduced expression of the vitamin K-dependent proteins which physiologically inhibit calcification of cellular matrix could be postulated to lead to vascular calcification. Published clinical data, describing at present a few thousand patients, need to be supplemented with controlled studies to confirm this interesting hypothesis.
Collapse
Affiliation(s)
- Aino Siltari
- Faculty of Medicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | - Heikki Vapaatalo
- Faculty of Medicine, Pharmacology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
64
|
Peiró C, Lorenzo Ó, Carraro R, Sánchez-Ferrer CF. IL-1β Inhibition in Cardiovascular Complications Associated to Diabetes Mellitus. Front Pharmacol 2017; 8:363. [PMID: 28659798 PMCID: PMC5468794 DOI: 10.3389/fphar.2017.00363] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/26/2017] [Indexed: 01/15/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic disease that affects nowadays millions of people worldwide. In adults, type 2 diabetes mellitus (T2DM) accounts for the majority of all diagnosed cases of diabetes. The course of the T2DM is characterized by insulin resistance and a progressive loss of β-cell mass. DM is associated with a number of related complications, among which cardiovascular complications and atherosclerosis are the main cause of morbidity and mortality in patients suffering from the disease. DM is acknowledged as a low-grade chronic inflammatory state characterized by the over-secretion of pro-inflammatory cytokines, including interleukin (IL)-1β, which reinforce inflammatory signals thus contributing to the development of complications. In this context, the pharmacological approaches to treat diabetes should not only correct hyperglycaemia, but also attenuate inflammation and prevent the development of metabolic and cardiovascular complications. Over the last years, novel biological drugs have been developed to antagonize the pathophysiological actions of IL-1β. The drugs currently used in clinical practice are anakinra, a recombinant form of the naturally occurring IL-1 receptor antagonist, the soluble decoy receptor rilonacept and the monoclonal antibodies canakinumab and gevokizumab. This review will summarize the main experimental and clinical findings obtained with pharmacological IL-1β inhibitors in the context of the cardiovascular complications of DM, and discuss the perspectives of IL-1β inhibitors as novel therapeutic tools for treating these patients.
Collapse
Affiliation(s)
- Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de MadridMadrid, Spain.,Instituto de Investigación Sanitaria Hospital Universitario de La Paz (IdiPAZ)Madrid, Spain
| | - Óscar Lorenzo
- Department of Medicine, School of Medicine, Universidad Autónoma de MadridMadrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez DíazMadrid, Spain
| | - Raffaele Carraro
- Department of Medicine, School of Medicine, Universidad Autónoma de MadridMadrid, Spain.,Service of Endocrinology, Hospital de La PrincesaMadrid, Spain.,Instituto de Investigación Sanitaria Hospital de La PrincesaMadrid, Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de MadridMadrid, Spain.,Instituto de Investigación Sanitaria Hospital Universitario de La Paz (IdiPAZ)Madrid, Spain
| |
Collapse
|
65
|
Cui L, Rashdan NA, Zhu D, Milne EM, Ajuh P, Milne G, Helfrich MH, Lim K, Prasad S, Lerman DA, Vesey AT, Dweck MR, Jenkins WS, Newby DE, Farquharson C, Macrae VE. End stage renal disease-induced hypercalcemia may promote aortic valve calcification via Annexin VI enrichment of valve interstitial cell derived-matrix vesicles. J Cell Physiol 2017; 232:2985-2995. [PMID: 28369848 PMCID: PMC5575563 DOI: 10.1002/jcp.25935] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/24/2017] [Indexed: 12/12/2022]
Abstract
Patients with end‐stage renal disease (ESRD) have elevated circulating calcium (Ca) and phosphate (Pi), and exhibit accelerated progression of calcific aortic valve disease (CAVD). We hypothesized that matrix vesicles (MVs) initiate the calcification process in CAVD. Ca induced rat valve interstitial cells (VICs) calcification at 4.5 mM (16.4‐fold; p < 0.05) whereas Pi treatment alone had no effect. Ca (2.7 mM) and Pi (2.5 mM) synergistically induced calcium deposition (10.8‐fold; p < 0.001) in VICs. Ca treatment increased the mRNA of the osteogenic markers Msx2, Runx2, and Alpl (p < 0.01). MVs were harvested by ultracentrifugation from VICs cultured with control or calcification media (containing 2.7 mM Ca and 2.5 mM Pi) for 16 hr. Proteomics analysis revealed the marked enrichment of exosomal proteins, including CD9, CD63, LAMP‐1, and LAMP‐2 and a concomitant up‐regulation of the Annexin family of calcium‐binding proteins. Of particular note Annexin VI was shown to be enriched in calcifying VIC‐derived MVs (51.9‐fold; p < 0.05). Through bioinformatic analysis using Ingenuity Pathway Analysis (IPA), the up‐regulation of canonical signaling pathways relevant to cardiovascular function were identified in calcifying VIC‐derived MVs, including aldosterone, Rho kinase, and metal binding. Further studies using human calcified valve tissue revealed the co‐localization of Annexin VI with areas of MVs in the extracellular matrix by transmission electron microscopy (TEM). Together these findings highlight a critical role for VIC‐derived MVs in CAVD. Furthermore, we identify calcium as a key driver of aortic valve calcification, which may directly underpin the increased susceptibility of ESRD patients to accelerated development of CAVD.
Collapse
Affiliation(s)
- Lin Cui
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Nabil A Rashdan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Dongxing Zhu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Elspeth M Milne
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Paul Ajuh
- Gemini Biosciences Ltd, Liverpool Science Park, Liverpool, United Kingdom
| | - Gillian Milne
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Miep H Helfrich
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Kelvin Lim
- Department of Cardiothoracic Surgery, Royal Infirmary Hospital of Edinburgh (NHS Lothian), The University of Edinburgh, Edinburgh, United Kingdom
| | - Sai Prasad
- Department of Cardiothoracic Surgery, Royal Infirmary Hospital of Edinburgh (NHS Lothian), The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel A Lerman
- Department of Cardiothoracic Surgery, Royal Infirmary Hospital of Edinburgh (NHS Lothian), The University of Edinburgh, Edinburgh, United Kingdom
| | - Alex T Vesey
- University/BHF Center for Cardiovascular Sciences, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Marc R Dweck
- University/BHF Center for Cardiovascular Sciences, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - William S Jenkins
- University/BHF Center for Cardiovascular Sciences, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - David E Newby
- University/BHF Center for Cardiovascular Sciences, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Vicky E Macrae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| |
Collapse
|
66
|
Qian S, Regan JN, Shelton MT, Hoggatt A, Mohammad KS, Herring PB, Seye CI. The P2Y 2 nucleotide receptor is an inhibitor of vascular calcification. Atherosclerosis 2016; 257:38-46. [PMID: 28038380 DOI: 10.1016/j.atherosclerosis.2016.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Mutations in the 5'-nucleotidase ecto (NT5E) gene that encodes CD73, a nucleotidase that converts AMP to adenosine, are linked to arterial calcification. However, the role of purinergic receptor signaling in the pathology of intimal calcification is not well understood. In this study, we examined whether extracellular nucleotides acting via P2Y2 receptor (P2Y2R) modulate arterial intimal calcification, a condition highly correlated with cardiovascular morbidity. METHODS Apolipoprotein E, P2Y2R double knockout mice (ApoE-/-P2Y2R-/-) were used to determine the effect of P2Y2R deficiency on vascular calcification in vivo. Vascular smooth muscle cells (VSMC) isolated from P2Y2R-/- mice grown in high phosphate medium were used to assess the role of P2Y2R in the conversion of VSMC into osteoblasts. Luciferase-reporter assays were used to assess the effect of P2Y2R on the transcriptional activity of Runx2. RESULTS P2Y2R deficiency in ApoE-/- mice caused extensive intimal calcification despite a significant reduction in atherosclerosis and macrophage plaque content. The ectoenzyme apyrase that degrades nucleoside di- and triphosphates accelerated high phosphate-induced calcium deposition in cultured VSMC. Expression of P2Y2R inhibits calcification in vitro inhibited the osteoblastic trans-differentiation of VSMC. Mechanistically, expression of P2Y2R inhibited Runx2 transcriptional activation of an osteocalcin promoter driven luciferase reporter gene. CONCLUSIONS This study reveals a role for vascular P2Y2R as an inhibitor of arterial intimal calcification and provides a new mechanistic insight into the regulation of the osteoblastic trans-differentiation of SMC through P2Y2R-mediated Runx2 antagonism. Given that calcification of atherosclerotic lesions is a significant clinical problem, activating P2Y2R may be an effective therapeutic approach for treatment or prevention of vascular calcification.
Collapse
Affiliation(s)
- Shaomin Qian
- Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jenna N Regan
- Medicine/Endocrinology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maxwell T Shelton
- Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - April Hoggatt
- Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Khalid S Mohammad
- Medicine/Endocrinology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul B Herring
- Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cheikh I Seye
- Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
67
|
Zhou S, Zhang Y, Wang L, Zhang Z, Cai B, Liu K, Zhang H, Dai M, Sun L, Xu X, Cai H, Liu X, Lu G, Xu G. CDKN2B methylation is associated with carotid artery calcification in ischemic stroke patients. J Transl Med 2016; 14:333. [PMID: 27905995 PMCID: PMC5134267 DOI: 10.1186/s12967-016-1093-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cyclin-dependent kinase inhibitor 2A/2B (CDKN2A/2B) near chromosome 9p21 have been associated with both atherosclerosis and artery calcification, but the underlying mechanisms remained largely unknown. Considering that CDKN2A/2B is a frequently reported site for DNA methylation, this study aimed to evaluate whether carotid artery calcification (CarAC) is related to methylation levels of CDKN2A/2B in patients with ischemic stroke. METHODS DNA methylation levels of CDKN2A/2B were measured in 322 ischemic stroke patients using peripheral blood leukocytes. Methylation levels of 36 CpG sites around promoter regions of CDKN2A/2B were examined with BiSulfite Amplicon Sequencing. CarAC was quantified with Agatston score based on results of computed tomography angiography. Generalized liner model was performed to explore the association between methylation levels and CarAC. RESULTS Of the 322 analyzed patients, 187 (58.1%) were classified as with and 135 (41.9%) without evident CarAC. The average methylation levels of CDKN2B were higher in patents with CarAC than those without (5.7 vs 5.4, p = 0.001). After adjustment for potential confounders, methylation levels of CDKN2B were positively correlated with cube root transformed calcification scores (β = 0.591 ± 0.172, p = 0.001) in generalized liner model. A positive correlation was also detected between average methylation levels of CDKN2B and cube root transformed calcium volumes (β = 0.533 ± 0.160, p = 0.001). CONCLUSIONS DNA methylation of CDKN2B may play a potential role in artery calcification.
Collapse
Affiliation(s)
- Shuyu Zhou
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 21002, China
| | - Yumeng Zhang
- Department of Gerontology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 21008, China
| | - Li Wang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 21002, China
| | - Zhizhong Zhang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 21002, China
| | - Biyang Cai
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 21002, China
| | - Keting Liu
- Department of Neurology, Jinling Hospital, Southern Medical University, Nanjing, 21002, China
| | - Hao Zhang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 21002, China
| | - Minhui Dai
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 21002, China
| | - Lingli Sun
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 21002, China
| | - Xiaomeng Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 21002, China
| | - Huan Cai
- Department of Neurology, Jinling Hospital, Southern Medical University, Nanjing, 21002, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 21002, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 21002, China.
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 21002, China.
| |
Collapse
|
68
|
Zhou S, Cai B, Zhang Z, Zhang Y, Wang L, Liu K, Zhang H, Sun L, Cai H, Lu G, Liu X, Xu G. CDKN2B Methylation and Aortic Arch Calcification in Patients with Ischemic Stroke. J Atheroscler Thromb 2016; 24:609-620. [PMID: 27773886 PMCID: PMC5453686 DOI: 10.5551/jat.36897] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim:CDKN2A/2B near chromosome 9p21 has been proposed as a potential genetic etiology for both atherosclerosis and arterial calcification. DNA methylation, which can change the expression of CDKN2A/2B, may be an underlying mechanism for this association. This study aimed to evaluate whether CDKN2A/2B methylation is related to aortic arch calcification (AAC) in patients with ischemic stroke. Methods: DNA methylation levels of CDKN2A/2B was measured using venous blood samples in 322 patients with ischemic stroke. A total of 36 CpG sites around promoter regions of CDKN2A/2B were examined. AAC was quantified with Agatston score based on results of computed tomography angiography. Results: There were 248 (77.0%) patients with and 74 (23.0%) patients without evident AAC. Compared with patients without AAC, patients with AAC had higher methylation levels of CDKN2B (5.72 vs 4.94, P < 0.001). Using a generalized linear model, positive correlation between methylation levels and log-transformed calcification scores was detected at CDKN2B (β = 0.275 ± 0.116, P = 0.018). Conclusion: Patients with higher levels of DNA methylation of CDKN2B may bear increased risk for AAC. Further studies to reveal the underlying mechanisms of this association are warranted for establishing a cause–effect relationship.
Collapse
Affiliation(s)
- Shuyu Zhou
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University
| | - Biyang Cai
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University
| | - Zhizhong Zhang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University
| | - Yumeng Zhang
- Department of Gerontology, Nanjing Drum Tower Hospital, Medical School of Nanjing University
| | - Li Wang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University
| | - Keting Liu
- Department of Neurology, Jinling Hospital, Southern Medical University
| | - Hao Zhang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University
| | - Lingli Sun
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University
| | - Huan Cai
- Department of Neurology, Jinling Hospital, Southern Medical University
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University
| |
Collapse
|
69
|
New perspectives on rare connective tissue calcifying diseases. Curr Opin Pharmacol 2016; 28:14-23. [DOI: 10.1016/j.coph.2016.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/27/2016] [Accepted: 02/08/2016] [Indexed: 12/27/2022]
|
70
|
Cui L, Houston DA, Farquharson C, MacRae VE. Characterisation of matrix vesicles in skeletal and soft tissue mineralisation. Bone 2016; 87:147-58. [PMID: 27072517 DOI: 10.1016/j.bone.2016.04.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 12/16/2022]
Abstract
The importance of matrix vesicles (MVs) has been repeatedly highlighted in the formation of cartilage, bone, and dentin since their discovery in 1967. These nano-vesicular structures, which are found in the extracellular matrix, are believed to be one of the sites of mineral nucleation that occurs in the organic matrix of the skeletal tissues. In the more recent years, there have been numerous reports on the observation of MV-like particles in calcified vascular tissues that could be playing a similar role. Therefore, here, we review the characteristics MVs possess that enable them to participate in mineral deposition. Additionally, we outline the content of skeletal tissue- and soft tissue-derived MVs, and discuss their key mineralisation mediators that could be targeted for future therapeutic use.
Collapse
Affiliation(s)
- L Cui
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK.
| | - D A Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - C Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - V E MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
71
|
A novel role for the mineralocorticoid receptor in glucocorticoid driven vascular calcification. Vascul Pharmacol 2016; 86:87-93. [PMID: 27153999 PMCID: PMC5111541 DOI: 10.1016/j.vph.2016.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/22/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023]
Abstract
Vascular calcification, which is common in the elderly and in patients with atherosclerosis, diabetes and chronic renal disease, increases the risk of cardiovascular morbidity and mortality. It is a complex, active and highly regulated cellular process that resembles physiological bone formation. It has previously been established that pharmacological doses of glucocorticoids facilitate arterial calcification. However, the consequences for vascular calcification of endogenous glucocorticoid elevation have yet to be established. Glucocorticoids (cortisol, corticosterone) are released from the adrenal gland, but can also be generated within cells from 11-keto metabolites of glucocorticoids (cortisone, 11-dehydrocorticosterone [11-DHC]) by the enzyme, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). In the current study we hypothesized that endogenous glucocorticoids facilitate vascular smooth muscle cell (VSMC) calcification and investigated the receptor-mediated mechanism underpinning this process. In vitro studies revealed increased phosphate-induced calcification in mouse VSMCs following treatment for 7 days with corticosterone (100 nM; 7.98 fold; P < 0.01), 11-DHC (100 nM; 7.14 fold; P < 0.05) and dexamethasone (10 nM; 7.16 fold; P < 0.05), a synthetic glucocorticoid used as a positive control. Inhibition of 11β-HSD isoenzymes by 10 μM carbenoxolone reduced the calcification induced by 11-DHC (0.37 fold compared to treatment with 11-DHC alone; P < 0.05). The glucocorticoid receptor (GR) antagonist mifepristone (10 μM) had no effect on VSMC calcification in response to corticosterone or 11-DHC. In contrast, the mineralocorticoid receptor (MR) antagonist eplerenone (10 μM) significantly decreased corticosterone- (0.81 fold compared to treatment with corticosterone alone; P < 0.01) and 11-DHC-driven (0.64 fold compared to treatment with 11-DHC alone; P < 0.01) VSMC calcification, suggesting this glucocorticoid effect is MR-driven and not GR-driven. Neither corticosterone nor 11-DHC altered the mRNA levels of the osteogenic markers PiT-1, Osx and Bmp2. However, DAPI staining of pyknotic nuclei and flow cytometry analysis of surface Annexin V expression showed that corticosterone induced apoptosis in VSMCs. This study suggests that in mouse VSMCs, corticosterone acts through the MR to induce pro-calcification effects, and identifies 11β-HSD-inhibition as a novel potential treatment for vascular calcification.
Collapse
|
72
|
Ablation of the androgen receptor from vascular smooth muscle cells demonstrates a role for testosterone in vascular calcification. Sci Rep 2016; 6:24807. [PMID: 27095121 PMCID: PMC4837411 DOI: 10.1038/srep24807] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/05/2016] [Indexed: 02/06/2023] Open
Abstract
Vascular calcification powerfully predicts mortality and morbidity from cardiovascular disease. Men have a greater risk of cardiovascular disease, compared to women of a similar age. These gender disparities suggest an influence of sex hormones. Testosterone is the primary and most well-recognised androgen in men. Therefore, we addressed the hypothesis that exogenous androgen treatment induces vascular calcification. Immunohistochemical analysis revealed expression of androgen receptor (AR) in the calcified media of human femoral artery tissue and calcified human valves. Furthermore, in vitro studies revealed increased phosphate (Pi)-induced mouse vascular smooth muscle cell (VSMC) calcification following either testosterone or dihydrotestosterone (DHT) treatment for 9 days. Testosterone and DHT treatment increased tissue non-specific alkaline phosphatase (Alpl) mRNA expression. Testosterone-induced calcification was blunted in VSMC-specific AR-ablated (SM-ARKO) VSMCs compared to WT. Consistent with these data, SM-ARKO VSMCs showed a reduction in Osterix mRNA expression. However, intriguingly, a counter-intuitive increase in Alpl was observed. These novel data demonstrate that androgens play a role in inducing vascular calcification through the AR. Androgen signalling may represent a novel potential therapeutic target for clinical intervention.
Collapse
|
73
|
Orriss IR, Arnett TR, Russell RGG. Pyrophosphate: a key inhibitor of mineralisation. Curr Opin Pharmacol 2016; 28:57-68. [PMID: 27061894 DOI: 10.1016/j.coph.2016.03.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/18/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022]
Abstract
Inorganic pyrophosphate has long been known as a by-product of many intracellular biosynthetic reactions, and was first identified as a key endogenous inhibitor of biomineralisation in the 1960s. The major source of pyrophosphate appears to be extracellular ATP, which is released from cells in a controlled manner. Once released, ATP can be rapidly hydrolysed by ecto-nucleotide pyrophosphatase/phosphodiesterases to produce pyrophosphate. The main action of pyrophosphate is to directly inhibit hydroxyapatite formation thereby acting as a physiological 'water-softener'. Evidence suggests pyrophosphate may also act as a signalling molecule to influence gene expression and regulate its own production and breakdown. This review will summarise our current understanding of pyrophosphate metabolism and how it regulates bone mineralisation and prevents harmful soft tissue calcification.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK.
| | - Timothy R Arnett
- Department of Cell and Developmental Biology, University College London, London, UK
| | - R Graham G Russell
- The Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, UK; The Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
74
|
Tsang HG, Rashdan NA, Whitelaw CBA, Corcoran BM, Summers KM, MacRae VE. Large animal models of cardiovascular disease. Cell Biochem Funct 2016; 34:113-32. [PMID: 26914991 PMCID: PMC4834612 DOI: 10.1002/cbf.3173] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The human cardiovascular system is a complex arrangement of specialized structures with distinct functions. The molecular landscape, including the genome, transcriptome and proteome, is pivotal to the biological complexity of both normal and abnormal mammalian processes. Despite our advancing knowledge and understanding of cardiovascular disease (CVD) through the principal use of rodent models, this continues to be an increasing issue in today's world. For instance, as the ageing population increases, so does the incidence of heart valve dysfunction. This may be because of changes in molecular composition and structure of the extracellular matrix, or from the pathological process of vascular calcification in which bone-formation related factors cause ectopic mineralization. However, significant differences between mice and men exist in terms of cardiovascular anatomy, physiology and pathology. In contrast, large animal models can show considerably greater similarity to humans. Furthermore, precise and efficient genome editing techniques enable the generation of tailored models for translational research. These novel systems provide a huge potential for large animal models to investigate the regulatory factors and molecular pathways that contribute to CVD in vivo. In turn, this will help bridge the gap between basic science and clinical applications by facilitating the refinement of therapies for cardiovascular disease.
Collapse
Affiliation(s)
- H G Tsang
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - N A Rashdan
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - C B A Whitelaw
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - B M Corcoran
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - K M Summers
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - V E MacRae
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| |
Collapse
|
75
|
Lin CP, Huang PH, Lai CF, Chen JW, Lin SJ, Chen JS. Simvastatin Attenuates Oxidative Stress, NF-κB Activation, and Artery Calcification in LDLR-/- Mice Fed with High Fat Diet via Down-regulation of Tumor Necrosis Factor-α and TNF Receptor 1. PLoS One 2015; 10:e0143686. [PMID: 26625143 PMCID: PMC4666466 DOI: 10.1371/journal.pone.0143686] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 11/09/2015] [Indexed: 11/18/2022] Open
Abstract
Simvastatin (SIM) is anti-inflammatory. We used low density lipoprotein receptor knockout (LDLR-/-) mice and human aortic smooth muscle cells (HASMCs) as model systems to study the effect of SIM on arterial calcification and to explore the potential mechanisms contributing to this protective effect. High-fat diet (HFD) caused the LRLR -/- to develop dyslipidemia, diabetics, atherosclerosis and aortic smooth muscle calcification. SIM, N-acetyl cysteine (NAC, a ROS scavenger) and apocynin (APO, a NADPH oxidase inhibitor) did not significantly retard the development of dyslipidemia or diabetic. However, those treatments were still effective in attenuating the HFD-induced atherosclerosis and aortic smooth muscle calcification. These findings suggest that the protective effect of SIM against aortic calcification is not contributed by the cholesterol lowering effect. SIM, NAC and APO were found to attenuate the HFD induced elevation of serum TNF-α, soluble TNFR1 (sTNFR1), 3-nitro-tyrosine. We hypothesized that the pro-inflammatory cytokine, oxidative stress and TNFR1 played a role in inducing aortic calcification. We used HASMC to investigate the role of TNF-α, oxidative stress and TNFR1 in inducing aortic calcification and to elucidate the mechanism contributes the protective effect of SIM against aortic calcification. We demonstrated that treating HASMC with TNF-α induced cell Ca deposit and result in an increase in ALP, NADPH oxidase activity, NF-kB subunit p65, BMP2, MSX2, and RUNX2 expression. SIM suppressed the TNF-α induced activation of NADPH oxidase subunit p47, the above-mentioned bone markers and TNFR1 expression. Furthermore, p65, p47 and TNFR1 siRNAs inhibited the TNF-α-mediated stimulation of BMP-2, MSX2, RUNX2 expression. SIM, APO, and NAC either partially inhibit or completely block the TNF-α induced H2O2 or superoxide production. These results suggest that SIM may, independent of its cholesterol-lowering effect, suppresses the progression of vascular diseases through the inhibition of the inflammation mediators TNF-α and TNFR1.
Collapse
Affiliation(s)
- Chih-Pei Lin
- Division of Central Laboratory, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine and Institute of Biotechnology in Medicine, Taipei, Taiwan
- * E-mail:
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | - Jaw-Wen Chen
- Division of Cardiology, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jia-Shiong Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
76
|
Shang X, Sanders KM, Scott D, Khan B, Hodge A, Khan N, English DR, Giles GG, Ebeling PR. Dietary α-Linolenic Acid and Total ω-3 Fatty Acids Are Inversely Associated with Abdominal Aortic Calcification in Older Women, but Not in Older Men. J Nutr 2015; 145:1778-86. [PMID: 26041673 DOI: 10.3945/jn.115.211789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/15/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Associations of α-linolenic acid (ALA), eicosapentaenoic acid (EPA) plus decosahexaenoic acid (DHA), and total omega-3 (n-3) fatty acid (FA) intakes with abdominal aortic calcification (AAC) are not well understood. OBJECTIVE This study explored the associations between baseline and long-term changes in ω-3 FA consumption and AAC severity among community-dwelling older men and women. METHODS The present study used a subset of the Melbourne Collaborative Cohort Study in which participants were interviewed in 1990-1994 and again in 2010-2011. Dietary intake was evaluated at both baseline and follow-up with use of food-frequency questionnaires. AAC severity was assessed by both lateral thoraco-lumbar radiography and dual-energy X-ray absorptiometry (DXA) at follow-up. RESULTS A total of 312 participants aged 45-64 y old at baseline were followed for a duration of (mean ± SD) 18 ± 1 y. Baseline energy-adjusted ALA intake tended to be inversely associated with AAC severity by radiography [OR (95% CI) for tertile 3 vs. tertile 1: 0.49 (0.23, 1.02), P-trend: 0.06] and was inversely associated with AAC severity by DXA [OR (95% CI) for tertile 3 vs. tertile 1: 0.37 (0.16, 0.83)] in women, after adjustment for confounders. Women in the third tertile of total ω-3 FA intake had significantly lower AAC severity by radiography [OR (95% CI): 0.33 (0.16, 0.71)] and DXA [OR (95% CI): 0.27 (0.12, 0.62)] than those in the first tertile. Changes in tertile of ω-3 FA intake over 18 y were not found to be associated with AAC severity in either men or women. CONCLUSION The results of our study suggest that dietary ALA and total ω-3 FA intakes are both important predictors of the development of AAC in older women, but not in older men.
Collapse
Affiliation(s)
- Xianwen Shang
- Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Melbourne Medical School-Western Campus, Melbourne, Australia; Australian Institute for Musculoskeletal Science, Melbourne, Australia;
| | - Kerrie M Sanders
- Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Melbourne Medical School-Western Campus, Melbourne, Australia; Institute for Health and Ageing, Australian Catholic University, Melbourne, Australia
| | - David Scott
- Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Melbourne Medical School-Western Campus, Melbourne, Australia; Australian Institute for Musculoskeletal Science, Melbourne, Australia; Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Belal Khan
- Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Melbourne Medical School-Western Campus, Melbourne, Australia; Australian Institute for Musculoskeletal Science, Melbourne, Australia; Department of Medicine, Max Super Speciality Hospital, Patparganj, Delhi, India
| | - Allison Hodge
- Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia; and
| | - Nayab Khan
- Department of Radiology, Diwan Chand Satyapal Aggarwaal Diagnostic Imaging Research Centre, New Delhi, India
| | - Dallas R English
- Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia; and
| | - Graham G Giles
- Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia; and
| | - Peter R Ebeling
- Australian Institute for Musculoskeletal Science, Melbourne, Australia; Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| |
Collapse
|
77
|
Yiu AJ, Callaghan D, Sultana R, Bandyopadhyay BC. Vascular Calcification and Stone Disease: A New Look towards the Mechanism. J Cardiovasc Dev Dis 2015; 2:141-164. [PMID: 26185749 PMCID: PMC4501032 DOI: 10.3390/jcdd2030141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Calcium phosphate (CaP) crystals are formed in pathological calcification as well as during stone formation. Although there are several theories as to how these crystals can develop through the combined interactions of biochemical and biophysical factors, the exact mechanism of such mineralization is largely unknown. Based on the published scientific literature, we found that common factors can link the initial stages of stone formation and calcification in anatomically distal tissues and organs. For example, changes to the spatiotemporal conditions of the fluid flow in tubular structures may provide initial condition(s) for CaP crystal generation needed for stone formation. Additionally, recent evidence has provided a meaningful association between the active participation of proteins and transcription factors found in the bone forming (ossification) mechanism that are also involved in the early stages of kidney stone formation and arterial calcification. Our review will focus on three topics of discussion (physiological influences-calcium and phosphate concentration-and similarities to ossification, or bone formation) that may elucidate some commonality in the mechanisms of stone formation and calcification, and pave the way towards opening new avenues for further research.
Collapse
Affiliation(s)
- Allen J. Yiu
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; E-Mails: (A.J.Y.); (D.C.); (R.S.)
| | - Daniel Callaghan
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; E-Mails: (A.J.Y.); (D.C.); (R.S.)
- Department of Pharmacology and Physiology, Georgetown University, 3900 Reservoir Road, NW, Washington, DC 20007, USA
| | - Razia Sultana
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; E-Mails: (A.J.Y.); (D.C.); (R.S.)
| | - Bidhan C. Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; E-Mails: (A.J.Y.); (D.C.); (R.S.)
- Department of Pharmacology and Physiology, Georgetown University, 3900 Reservoir Road, NW, Washington, DC 20007, USA
- Department of Pharmacology and Physiology, School of Medicine, George Washington University, Ross Hall 2300 Eye Street, NW, Washington, DC 20037, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-202-745-8622; Fax: +1-202-462-2006
| |
Collapse
|
78
|
Craiem D, Chironi G, Casciaro ME, Graf S, Simon A. Calcifications of the thoracic aorta on extended non-contrast-enhanced cardiac CT. PLoS One 2014; 9:e109584. [PMID: 25302677 PMCID: PMC4193816 DOI: 10.1371/journal.pone.0109584] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/02/2014] [Indexed: 02/06/2023] Open
Abstract
Background The presence of calcified atherosclerosis in different vascular beds has been associated with a higher risk of mortality. Thoracic aorta calcium (TAC) can be assessed from computed tomography (CT) scans, originally aimed at coronary artery calcium (CAC) assessment. CAC screening improves cardiovascular risk prediction, beyond standard risk assessment, whereas TAC performance remains controversial. However, the curvilinear portion of the thoracic aorta (TA), that includes the aortic arch, is systematically excluded from TAC analysis. We investigated the prevalence and spatial distribution of TAC all along the TA, to see how those segments that remain invisible in standard TA evaluation were affected. Methods and Results A total of 970 patients (77% men) underwent extended non-contrast cardiac CT scans including the aortic arch. An automated algorithm was designed to extract the vessel centerline and to estimate the vessel diameter in perpendicular planes. Then, calcifications were quantified using the Agatston score and associated with the corresponding thoracic aorta segment. The aortic arch and the proximal descending aorta, “invisible” in routine CAC screening, appeared as two vulnerable sites concentrating 60% of almost 11000 calcifications. The aortic arch was the most affected segment per cm length. Using the extended measurement method, TAC prevalence doubled from 31% to 64%, meaning that 52% of patients would escape detection with a standard scan. In a stratified analysis for CAC and/or TAC assessment, 111 subjects (46% women) were exclusively identified with the enlarged scan. Conclusions Calcium screening in the TA revealed that the aortic arch and the proximal descending aorta, hidden in standard TA evaluations, concentrated most of the calcifications. Middle-aged women were more prone to have calcifications in those hidden portions and became candidates for reclassification.
Collapse
Affiliation(s)
- Damian Craiem
- Favaloro University. Facultad de Ingeniería, Ciencias Exactas y Naturales, CONICET, Buenos Aires, Argentina; APHP, Hôpital Européen Georges Pompidou, INSERM U970, Université Paris-Descartes, Paris, France
| | - Gilles Chironi
- APHP, Hôpital Européen Georges Pompidou, INSERM U970, Université Paris-Descartes, Paris, France
| | - Mariano E Casciaro
- Favaloro University. Facultad de Ingeniería, Ciencias Exactas y Naturales, CONICET, Buenos Aires, Argentina
| | - Sebastian Graf
- Favaloro University. Facultad de Ingeniería, Ciencias Exactas y Naturales, CONICET, Buenos Aires, Argentina
| | - Alain Simon
- APHP, Hôpital Européen Georges Pompidou, INSERM U970, Université Paris-Descartes, Paris, France
| |
Collapse
|
79
|
Zhu D, Mackenzie NCW, Shanahan CM, Shroff RC, Farquharson C, MacRae VE. BMP-9 regulates the osteoblastic differentiation and calcification of vascular smooth muscle cells through an ALK1 mediated pathway. J Cell Mol Med 2014; 19:165-74. [PMID: 25297851 PMCID: PMC4288360 DOI: 10.1111/jcmm.12373] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/13/2014] [Indexed: 01/24/2023] Open
Abstract
The process of vascular calcification shares many similarities with that of physiological skeletal mineralization, and involves the deposition of hydroxyapatite crystals in arteries. However, the cellular mechanisms responsible have yet to be fully explained. Bone morphogenetic protein (BMP-9) has been shown to exert direct effects on both bone development and vascular function. In the present study, we have investigated the role of BMP-9 in vascular smooth muscle cell (VSMC) calcification. Vessel calcification in chronic kidney disease (CKD) begins pre-dialysis, with factors specific to the dialysis milieu triggering accelerated calcification. Intriguingly, BMP-9 was markedly elevated in serum from CKD children on dialysis. Furthermore, in vitro studies revealed that BMP-9 treatment causes a significant increase in VSMC calcium content, alkaline phosphatase (ALP) activity and mRNA expression of osteogenic markers. BMP-9-induced calcium deposition was significantly reduced following treatment with the ALP inhibitor 2,5-Dimethoxy-N-(quinolin-3-yl) benzenesulfonamide confirming the mediatory role of ALP in this process. The inhibition of ALK1 signalling using a soluble chimeric protein significantly reduced calcium deposition and ALP activity, confirming that BMP-9 is a physiological ALK1 ligand. Signal transduction studies revealed that BMP-9 induced Smad2, Smad3 and Smad1/5/8 phosphorylation. As these Smad proteins directly bind to Smad4 to activate target genes, siRNA studies were subsequently undertaken to examine the functional role of Smad4 in VSMC calcification. Smad4-siRNA transfection induced a significant reduction in ALP activity and calcium deposition. These novel data demonstrate that BMP-9 induces VSMC osteogenic differentiation and calcification via ALK1, Smad and ALP dependent mechanisms. This may identify new potential therapeutic strategies for clinical intervention.
Collapse
Affiliation(s)
- Dongxing Zhu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | | | | | | | | | | |
Collapse
|
80
|
El Asmar MS, Naoum JJ, Arbid EJ. Vitamin k dependent proteins and the role of vitamin k2 in the modulation of vascular calcification: a review. Oman Med J 2014; 29:172-7. [PMID: 24936265 DOI: 10.5001/omj.2014.44] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/09/2014] [Indexed: 12/25/2022] Open
Abstract
Vascular calcification, a cause of cardiovascular morbidity and mortality, is an actively regulated process involving vitamin K dependent proteins (VKDPs) among others. Vitamin K is an essential micronutrient, present in plants and animal fermented products that plays an important role as a cofactor for the post-translational γ-carboxylation of glutamic acid residues in a number of proteins. These VKDPs require carboxylation to become biologically active, and they have been identified as having an active role in vascular cell migration, angiogenesis and vascular calcification. This paper will review the process of vascular calcification and delineate the role that vitamin K2 plays in the modulation of that process, through the activation of VKDPs. One such VKDP is Matrix Gla Protein (MGP), which when activated inhibits osteogenic factors, thereby inhibiting vascular and soft tissue calcification.
Collapse
Affiliation(s)
| | - Joseph J Naoum
- Department of Surgery, Section of Vascular and Endovascular Surgery, University Medical Center Rizk Hospital, Lebanese American University, P.O. Box 11-3288, Beirut, Lebanon
| | - Elias J Arbid
- Department of Surgery, Section of Vascular and Endovascular Surgery, University Medical Center Rizk Hospital, Lebanese American University, P.O. Box 11-3288, Beirut, Lebanon
| |
Collapse
|
81
|
Zhu D, Mackenzie NCW, Millan JL, Farquharson C, Macrae VE. Upregulation of IGF2 expression during vascular calcification. J Mol Endocrinol 2014; 52:77-85. [PMID: 24482492 PMCID: PMC5610348 DOI: 10.1530/jme-13-0136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The process of vascular calcification shares many similarities with that of skeletal mineralisation and involves the deposition of hydroxyapatite crystals in arteries and cardiac valves. However, the cellular mechanisms responsible have yet to be fully elucidated. In this study, we employed microarray analysis to demonstrate the upregulation of more than >9000 genes during the calcification of murine vascular smooth muscle cells (VSMCs), of which the most significantly, differentially expressed gene was Igf2. Following the validation of increased IGF2 expression by RT-qPCR and immunoblotting in calcifying murine VSMCs, IGF2 expression was further demonstrated in the calcified aorta of the Enpp1(-/-) mouse model of medial aortic calcification. Having confirmed that IGF1R and IGF2R were expressed in cultured murine VSMCs, cell-signalling studies in these cells revealed that IGF2 (50 ng/ml) significantly stimulated the phosphorylation of Akt and Erk1/2 (P<0.05). These results potentially indicate that IGF2 may mediate VSMC calcification via the stimulation of Erk1/2 and Akt signalling. This study suggests that the increased IGF2 expression in calcifying VSMCs may reflect the well-established prenatal role of IGF2, particularly as the osteogenic phenotypic transition of VSMCs in a calcified environment recapitulates many of the events occurring during embryonic development. A full understanding of the importance of IGF2 in this pathological process will lead to a better understanding of the aetiology of vascular calcification.
Collapse
Affiliation(s)
- Dongxing Zhu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG Scotland, UK Sanford-Burnham Medical Research Institute, Sanford Children's Health Research Center, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
82
|
Siltari A, Wickholm N, Kivimäki AS, Olli K, Salli K, Tiihonen K, Korpela R, Vapaatalo H. Effects of Vitamin K-1 and Menaquinone-7 on Vascular Function and Blood Pressure in Warfarin-Induced Calcification-Model in Rats. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/pp.2014.512119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
83
|
Kalbasi Anaraki P, Patecki M, Larmann J, Tkachuk S, Jurk K, Haller H, Theilmeier G, Dumler I. Urokinase receptor mediates osteogenic differentiation of mesenchymal stem cells and vascular calcification via the complement C5a receptor. Stem Cells Dev 2013; 23:352-62. [PMID: 24192237 DOI: 10.1089/scd.2013.0318] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vascular calcification is a severe consequence of several pathological processes with a lack of effective therapy. Recent studies suggest that circulating and resident mesenchymal stem cells (MSC) contribute to the osteogenic program of vascular calcification. Molecular mechanisms underlying MSC osteogenic potential and differentiation remain, however, sparsely explored. We investigated a role for the complement receptor C5aR in these processes. We found that expression of C5aR was upregulated upon differentiation of human MSC to osteoblasts. C5aR inhibition by silencing and specific antagonist impaired osteogenic differentiation. We demonstrate that C5aR expression upon MSC differentiation was regulated by the multifunctional urokinase receptor (uPAR). uPAR targeting by siRNA resulted in complete abrogation of C5aR expression and consequently in the inhibition of MSC-osteoblast differentiation. We elucidated the NFκB pathway as the mechanism utilized by the uPAR-C5aR axis. MSC treatment with the NFκB inhibitor completely blocked the differentiation process. Nuclear translocation of the p65 RelA component of the NFκB complex was induced under osteogenic conditions and impaired by the inhibition of uPAR or C5aR. Dual-luciferase reporter assays demonstrated enhanced NFκB signaling upon MSC differentiation, whereas uPAR and C5aR downregulation lead to inhibition of the NFκB activity. We show involvement of the Erk1/2 kinase in this cascade. In vivo studies in a uPAR/LDLR double knockout mouse model of diet-induced atherosclerosis revealed impaired C5aR expression and calcification in aortic sinus plaques in uPAR(-/-)/LDLR(-/-) versus uPAR(+/+)/LDLR(-/-) control animals. These results suggest that uPAR-C5aR axis via the underlying NFκB transcriptional program controls osteogenic differentiation with functional impact on vascular calcification in vivo.
Collapse
|
84
|
Yavropoulou MP, Pikilidou M, Yovos JG. Anti-osteoporotic drugs and vascular calcification: the bidirectional calcium traffic. J Vasc Res 2013; 51:37-49. [PMID: 24280985 DOI: 10.1159/000355204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022] Open
Abstract
During the last years, numerous epidemiological studies have demonstrated a direct relationship between vascular calcification and low bone mineral density. This observation is in line with experimental data demonstrating the osteogenic characteristics of calcified arteries. Various common risk factors have been suggested to link vascular calcification and bone loss, including aging, estrogen deficiency, vitamin D and K deficiency, diabetes mellitus, renal failure, smoking, chronic inflammation and oxidative stress. Although the underlying pathogenetic mechanisms are not yet clear, current research is focusing on anti-osteoporotic agents that could potentially affect the deposition of calcium in the arterial wall and thus provide an additional therapeutic strategy in elderly osteoporotic women prone to calcific cardiovascular disease.
Collapse
Affiliation(s)
- Maria P Yavropoulou
- Division of Endocrinology and Metabolism, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | |
Collapse
|
85
|
Müller KH, Motskin M, Philpott AJ, Routh AF, Shanahan CM, Duer MJ, Skepper JN. The effect of particle agglomeration on the formation of a surface-connected compartment induced by hydroxyapatite nanoparticles in human monocyte-derived macrophages. Biomaterials 2013; 35:1074-88. [PMID: 24183166 PMCID: PMC3843813 DOI: 10.1016/j.biomaterials.2013.10.041] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/12/2013] [Indexed: 01/03/2023]
Abstract
Agglomeration dramatically affects many aspects of nanoparticle–cell interactions. Here we show that hydroxyapatite nanoparticles formed large agglomerates in biological medium resulting in extensive particle uptake and dose-dependent cytotoxicity in human macrophages. Particle citration and/or the addition of the dispersant Darvan 7 dramatically reduced mean agglomerate sizes, the amount of particle uptake and concomitantly cytotoxicity. More surprisingly, agglomeration governed the mode of particle uptake. Agglomerates were sequestered within an extensive, interconnected membrane labyrinth open to the extracellular space. In spite of not being truly intracellular, imaging studies suggest particle degradation occurred within this surface-connected compartment (SCC). Agglomerate dispersion prevented the SCC from forming, but did not completely inhibit nanoparticle uptake by other mechanisms. The results of this study could be relevant to understanding particle–cell interactions during developmental mineral deposition, in ectopic calcification in disease, and during application of hydroxyapatite nanoparticle vectors in biomedicine.
Collapse
Affiliation(s)
- Karin H Müller
- Cambridge Advanced Imaging Centre, Dept. of Physiology, Development and Neuroscience, Anatomy Building, Cambridge University, Downing Street, Cambridge CB2 3DY, UK
| | | | | | | | | | | | | |
Collapse
|
86
|
Mackenzie NCW, Staines KA, Zhu D, Genever P, Macrae VE. miRNA-221 and miRNA-222 synergistically function to promote vascular calcification. Cell Biochem Funct 2013; 32:209-16. [PMID: 24604335 PMCID: PMC4158883 DOI: 10.1002/cbf.3005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/30/2013] [Accepted: 08/28/2013] [Indexed: 01/28/2023]
Abstract
Vascular calcification shares many similarities with skeletal mineralisation and involves the phenotypic trans-differentiation of vascular smooth muscle cells (VSMCs) to osteoblastic cells within a calcified environment. Various microRNAs (miRs) are known to regulate cell differentiation; however, their role in mediating VSMC calcification is not fully understood. miR-microarray analysis revealed the significant down-regulation of a range of miRs following nine days in culture, including miR-199b, miR-29a, miR-221, miR-222 and miR-31 (p < 0.05). Subsequent studies investigated the specific role of the miR-221/222 family in VSMC calcification. Real-time quantitative polymerase chain reaction data confirmed the down-regulation of miR-221 (32.4%; p < 0.01) and miR-222 (15.7%; p < 0.05). VSMCs were transfected with mimics of miR-221 and miR-222, individually and in combination. Increased calcium deposition was observed in the combined treatment (two-fold; p < 0.05) but not in individual treatments. Runx2 and Msx2 expression was increased during calcification, but no difference in expression was observed following transfection with miR mimics. Interestingly, miR-221 and miR-222 mimics induced significant changes in ectonucleotide phosphodiesterase 1 (Enpp1) and Pit-1 expression, suggesting that these miRs may modulate VSMC calcification through cellular inorganic phosphate and pyrophosphate levels. © 2013 The Authors. Cell Biochemistry and Function published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- N C W Mackenzie
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | | | | | | |
Collapse
|
87
|
HUESA C, MILLÁN J, VAN 'T HOF R, MacRAE V. A new method for the quantification of aortic calcification by three-dimensional micro-computed tomography. Int J Mol Med 2013; 32:1047-50. [DOI: 10.3892/ijmm.2013.1490] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/23/2013] [Indexed: 11/05/2022] Open
|
88
|
Downing L, Islam MA. Influence of calcium supplements on the occurrence of cardiovascular events. Am J Health Syst Pharm 2013; 70:1132-9. [DOI: 10.2146/ajhp120421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Leanne Downing
- School of Pharmacy, Lake Erie College of Osteopathic Medicine (LECOM), Bradenton campus, Bradenton, FL
| | - Mohammed A. Islam
- School of Pharmacy, West Coast University, North Hollywood, CA; at the time of writing, he was Assistant Professor of Pharmaceutical Sciences, School of Pharmacy, LECOM, Bradenton campus
| |
Collapse
|
89
|
Zhu D, Mackenzie NCW, Millan JL, Farquharson C, MacRae VE. A protective role for FGF-23 in local defence against disrupted arterial wall integrity? Mol Cell Endocrinol 2013; 372:1-11. [PMID: 23523568 PMCID: PMC3725806 DOI: 10.1016/j.mce.2013.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 03/08/2013] [Accepted: 03/10/2013] [Indexed: 12/21/2022]
Abstract
Increasing interest is focusing on the role of the FGF-23/Klotho axis in mediating vascular calcification. However, the underpinning mechanisms have yet to be fully elucidated. Murine VSMCs were cultured in calcifying medium for a 21 d period. FGF-23 mRNA expression was significantly up-regulated by 7d (1.63-fold; P<0.001), with a concomitant increase in protein expression. mRNA and protein expression of both FGFR1 and Klotho were confirmed. Increased FGF-23 and Klotho protein expression was also observed in the calcified media of Enpp1(-/-) mouse aortic tissue. Reduced calcium deposition was observed in calcifying VSMCs cultured with recombinant FGF-23 (10 ng/ml; 28.1% decrease; P<0.01). Calcifying VSMCs treated with PD173074, an inhibitor of FGFR1 and FGFR3, showed significantly increased calcification (50 nM; 87.8% increase; P<0.001). FGF-23 exposure induced phosphorylation of ERK1/2. Treatment with FGF-23 in combination with PD98059, an ERK1/2 inhibitor, significantly increased VSMC calcification (10 μM; 41.3% increase; P<0.01). Use of FGF-23 may represent a novel therapeutic strategy for inhibiting vascular calcification.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Calcium/metabolism
- Cell Survival
- Cells, Cultured
- Core Binding Factor Alpha 1 Subunit/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- Fibroblast Growth Factor-23
- Fibroblast Growth Factors/physiology
- Gene Expression
- Gene Expression Regulation
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Klotho Proteins
- MAP Kinase Signaling System
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Primary Cell Culture
- Pyrimidines/pharmacology
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Vascular Calcification/metabolism
Collapse
Affiliation(s)
- Dongxing Zhu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - Neil C W Mackenzie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - Jose Luis Millan
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - Vicky E MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Scotland, UK
| |
Collapse
|
90
|
Genetic mapping and exome sequencing identify 2 mutations associated with stroke protection in pediatric patients with sickle cell anemia. Blood 2013; 121:3237-45. [PMID: 23422753 DOI: 10.1182/blood-2012-10-464156] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stroke is a devastating complication of sickle cell anemia (SCA), occurring in 11% of patients before age 20 years. Previous studies of sibling pairs have demonstrated a genetic component to the development of cerebrovascular disease in SCA, but few candidate genetic modifiers have been validated as having a substantial effect on stroke risk. We performed an unbiased whole-genome search for genetic modifiers of stroke risk in SCA. Genome-wide association studies were performed using genotype data from single-nucleotide polymorphism arrays, whereas a pooled DNA approach was used to perform whole-exome sequencing. In combination, 22 nonsynonymous variants were identified and represent key candidates for further in-depth study. To validate the association of these mutations with the risk for stroke, the 22 candidate variants were genotyped in an independent cohort of control patients (n = 231) and patients with stroke (n = 57) with SCA. One mutation in GOLGB1 (Y1212C) and another mutation in ENPP1 (K173Q) were confirmed as having significant associations with a decreased risk for stroke. These mutations were discovered and validated by an unbiased whole-genome approach, and future studies will focus on how these functional mutations may lead to protection from stroke in the context of SCA.
Collapse
|