51
|
Brown ER, Giussani DA. Cause of fetal growth restriction during high-altitude pregnancy. iScience 2024; 27:109702. [PMID: 38694168 PMCID: PMC11061758 DOI: 10.1016/j.isci.2024.109702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/23/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024] Open
Abstract
High-altitude pregnancy increases the incidence of fetal growth restriction and reduces birth weight. This poses a significant clinical challenge as both are linked to adverse health outcomes, including raised infant mortality and the development of the metabolic syndrome in later life. While this reduction in birth weight is mostly understood to be driven by the hypobaric hypoxia of high altitude, the causative mechanism is unclear. Moreover, it is now recognized that highland ancestry confers protection against this reduction in birth weight. Here, we analyze the evidence that pregnancy at high altitude reduces birth weight and that highland ancestry confers protection, discussing mechanisms contributing to both effects.
Collapse
Affiliation(s)
- Emily R. Brown
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Dino A. Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Cambridge Strategic Research Initiative in Reproduction
- Cambridge Cardiovascular Centre for Research Excellence
| |
Collapse
|
52
|
Luo YE, Villani KR, Lei H, Kuo LY, Imery I, Stoker BE, Fatima N, Noles SM, Moore CM, Barton ER. Ablation of specific insulin-like growth factor I forms reveals the importance of cleavage for regenerative capacity and glycosylation for skeletal muscle storage. FASEB J 2024; 38:e23634. [PMID: 38679876 PMCID: PMC11107140 DOI: 10.1096/fj.202302512rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
Insulin-like growth factor-I (IGF-I) facilitates mitotic and anabolic actions in all tissues. In skeletal muscle, IGF-I can promote growth and resolution of damage by promoting satellite cell proliferation and differentiation, suppressing inflammation, and enhancing fiber formation. While the most well-characterized form of IGF-I is the mature protein, alternative splicing and post-translational modification complexity lead to several additional forms of IGF-I. Previous studies showed muscle efficiently stores glycosylated pro-IGF-I. However, non-glycosylated forms display more efficient IGF-I receptor activation in vitro, suggesting that the removal of the glycosylated C terminus is a necessary step to enable increased activity. We employed CRISPR-Cas9 gene editing to ablate IGF-I glycosylation sites (2ND) or its cleavage site (3RA) in mice to determine the necessity of glycosylation or cleavage for IGF-I function in postnatal growth and during muscle regeneration. 3RA mice had the highest circulating and muscle IGF-I content, whereas 2ND mice had the lowest levels compared to wild-type mice. After weaning, 4-week-old 2ND mice exhibited higher body and skeletal muscle mass than other strains. However, by 16 weeks of age, muscle and body size differences disappeared. Even though 3RA mice had more IGF-I stored in muscle in homeostatic conditions, regeneration was delayed after cardiotoxin-induced injury, with prolonged necrosis most evident at 5 days post injury (dpi). In contrast, 2ND displayed improved regeneration with reduced necrosis, and greater fiber size and muscle mass at 11 and 21 dpi. Overall, these results demonstrate that while IGF-I glycosylation may be important for storage, cleavage is needed to enable IGF-I to be used for efficient activity in postnatal growth and following acute injury.
Collapse
Affiliation(s)
- Yangyi E. Luo
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL USA
- Myology Institute, University of Florida, Gainesville, FL USA
| | - Katelyn R. Villani
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL USA
- Myology Institute, University of Florida, Gainesville, FL USA
| | - Hanqin Lei
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL USA
| | - Li-Ying Kuo
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL USA
| | - Ian Imery
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL USA
| | - Bradley E. Stoker
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL USA
| | - Naureen Fatima
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL USA
| | - Steven M. Noles
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL USA
| | - Cara M. Moore
- Animal Care Services, University of Florida, Gainesville, FL USA
| | - Elisabeth R. Barton
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL USA
- Myology Institute, University of Florida, Gainesville, FL USA
| |
Collapse
|
53
|
Quesnel MJ, Labonté A, Picard C, Zetterberg H, Blennow K, Brinkmalm A, Villeneuve S, Poirier J. Insulin-like growth factor binding protein-2 in at-risk adults and autopsy-confirmed Alzheimer brains. Brain 2024; 147:1680-1695. [PMID: 37992295 PMCID: PMC11068109 DOI: 10.1093/brain/awad398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
Insulin, insulin-like growth factors (IGF) and their receptors are highly expressed in the adult hippocampus. Thus, disturbances in the insulin-IGF signalling pathway may account for the selective vulnerability of the hippocampus to nascent Alzheimer's disease (AD) pathology. In the present study, we examined the predominant IGF-binding protein in the CSF, IGFBP2. CSF was collected from 109 asymptomatic members of the parental history-positive PREVENT-AD cohort. CSF levels of IGFBP2, core AD and synaptic biomarkers were measured using proximity extension assay, ELISA and mass spectrometry. Cortical amyloid-beta (Aβ) and tau deposition were examined using 18F-NAV4694 and flortaucipir. Cognitive assessments were performed during up to 8 years of follow-up, using the Repeatable Battery for the Assessment of Neuropsychological Status. T1-weighted structural MRI scans were acquired, and neuroimaging analyses were performed on pre-specified temporal and parietal brain regions. Next, in an independent cohort, we allocated 241 dementia-free ADNI-1 participants into four stages of AD progression based on the biomarkers CSF Aβ42 and total-tau (t-tau). In this analysis, differences in CSF and plasma IGFBP2 levels were examined across the pathological stages. Finally, IGFBP2 mRNA and protein levels were examined in the frontal cortex of 55 autopsy-confirmed AD and 31 control brains from the Quebec Founder Population (QFP) cohort, a unique population isolated from Eastern Canada. CSF IGFBP2 progressively increased over 5 years in asymptomatic PREVENT-AD participants. Baseline CSF IGFBP2 was positively correlated with CSF AD biomarkers and synaptic biomarkers, and negatively correlated with longitudinal changes in delayed memory (P = 0.024) and visuospatial abilities (P = 0.019). CSF IGFBP2 was negatively correlated at a trend-level with entorhinal cortex volume (P = 0.082) and cortical thickness in the piriform (P = 0.039), inferior temporal (P = 0.008), middle temporal (P = 0.014) and precuneus (P = 0.033) regions. In ADNI-1, CSF (P = 0.009) and plasma (P = 0.001) IGFBP2 were significantly elevated in Stage 2 [CSF Aβ(+)/t-tau(+)]. In survival analyses in ADNI-1, elevated plasma IGFBP2 was associated with a greater rate of AD conversion (hazard ratio = 1.62, P = 0.021). In the QFP cohort, IGFBP2 mRNA was reduced (P = 0.049); however, IGFBP2 protein levels did not differ in the frontal cortex of autopsy-confirmed AD brains (P = 0.462). Nascent AD pathology may induce an upregulation in IGFBP2 in asymptomatic individuals. CSF and plasma IGFBP2 may be valuable markers for identifying CSF Aβ(+)/t-tau(+) individuals and those with a greater risk of AD conversion.
Collapse
Affiliation(s)
- Marc James Quesnel
- McGill University, Montréal, QC H3A 1A1, Canada
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Cynthia Picard
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792-2420, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, 75646 Cedex 13, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei 230026, P.R. China
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
| | - Sylvia Villeneuve
- McGill University, Montréal, QC H3A 1A1, Canada
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Judes Poirier
- McGill University, Montréal, QC H3A 1A1, Canada
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| |
Collapse
|
54
|
Zhu R, Chin-Sang ID. C. elegans insulin-like peptides. Mol Cell Endocrinol 2024; 585:112173. [PMID: 38346555 DOI: 10.1016/j.mce.2024.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
Insulin-like peptides are a group of hormones crucial for regulating metabolism, growth, and development in animals. Invertebrates, such as C. elegans, have been instrumental in understanding the molecular mechanisms of insulin-like peptides. Here, we review the 40 insulin-like peptide genes encoded in the C. elegans genome. Despite the large number, there is only one C. elegans insulin-like peptide receptor, called DAF-2. The insulin and insulin-like growth factor signaling (IIS) pathway is evolutionarily conserved from worms to humans. Thus C. elegans provides an excellent model to understand how these insulin-like peptides function. C. elegans is unique in that it possesses insulin-like peptides that have antagonistic properties, unlike all human insulin-like peptides, which are agonists. This review provides an overview of the current literature on C. elegans insulin-like peptide structures, processing, tissue localization, and regulation. We will also provide examples of insulin-like peptide signaling in C. elegans during growth, development, germline development, learning/memory, and longevity.
Collapse
Affiliation(s)
- Rain Zhu
- Department of Biology, Queen's University, Kingston ON Canada
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, Kingston ON Canada.
| |
Collapse
|
55
|
Reda GK, Ndunguru SF, Csernus B, Lugata JK, Knop R, Szabó C, Czeglédi L, Lendvai ÁZ. Sex-specific effects of dietary restriction on physiological variables in Japanese quails. Ecol Evol 2024; 14:e11405. [PMID: 38799393 PMCID: PMC11116846 DOI: 10.1002/ece3.11405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Nutritional limitation is a common phenomenon in nature that leads to trade-offs among processes competing for limited resources. These trade-offs are mediated by changes in physiological traits such as growth factors and circulating lipids. However, studies addressing the sex-specific effect of nutritional deficiency on these physiological variables are limited in birds. We used dietary restriction to mimic the depletion of resources to various degrees and investigated sex-specific effects on circulating levels of insulin-like growth factor 1 (IGF-1) and triglycerides in Japanese quails (Coturnix japonica) subjected to ad libitum, 20%, 30% or 40% restriction of their daily requirement, for 2 weeks. We also explored the association of both physiological variables with body mass and egg production. While dietary restriction showed no effects on circulating IGF-1, this hormone exhibited a marked sexual difference, with females having 64.7% higher IGF-1 levels than males. Dietary restriction significantly reduced plasma triglyceride levels in both sexes. Females showed more than six-fold higher triglyceride levels than males. Triglyceride levels were positively associated with body mass in females while showed not association in males. Overall, our findings revealed sex-specific expression of physiological variables under dietary restriction conditions, which coincide with body size.
Collapse
Affiliation(s)
- Gebrehaweria K. Reda
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
- Doctoral School of Animal ScienceUniversity of DebrecenDebrecenHungary
- Department of Evolutionary Zoology and Human Biology, Faculty of Life ScienceUniversity of DebrecenDebrecenHungary
| | - Sawadi F. Ndunguru
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
- Doctoral School of Animal ScienceUniversity of DebrecenDebrecenHungary
- Department of Evolutionary Zoology and Human Biology, Faculty of Life ScienceUniversity of DebrecenDebrecenHungary
| | - Brigitta Csernus
- Department of Evolutionary Zoology and Human Biology, Faculty of Life ScienceUniversity of DebrecenDebrecenHungary
| | - James K. Lugata
- Doctoral School of Animal ScienceUniversity of DebrecenDebrecenHungary
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Renáta Knop
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Ádám Z. Lendvai
- Department of Evolutionary Zoology and Human Biology, Faculty of Life ScienceUniversity of DebrecenDebrecenHungary
| |
Collapse
|
56
|
Fernández-Pereira C, Penedo MA, Alonso-Núñez A, Rivera-Baltanás T, Viéitez I, Prieto-González JM, Vilariño-Vilariño MI, Olivares JM, Ortolano S, Agís-Balboa RC. Plasma IGFBP-3 and IGFBP-5 levels are decreased during acute manic episodes in bipolar disorder patients. Front Pharmacol 2024; 15:1384198. [PMID: 38720780 PMCID: PMC11076695 DOI: 10.3389/fphar.2024.1384198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction: Bipolar disorder (BD) is a recurrent and disabling psychiatric disorder related to low-grade peripheral inflammation and altered levels of the members of the insulin-like growth factor (IGF) family. The aim of this study was to evaluate the plasma levels of IGF-2, insulin-like growth factor-binding protein 1 (IGFBP-1), IGFBP-3, IGFBP-5, IGFBP-7, and inflammatory markers such as tumor necrosis factor α (TNF-α), monocyte chemoattractant protein 1 (MCP-1), and macrophage inflammatory protein 1β (MIP-1β). Methods: We used the Young Mania Rating Scale (YMRS) to determine the severity of the symptomatology, while proteins were measured by enzyme-linked immunosorbent assay (ELISA). We included 20 patients with BD who suffered a manic episode and 20 controls. Some BD patients (n = 10) were evaluated after a period (17 ± 8 days) of pharmacological treatment. Results: No statistical difference was found in IGF-2, IGFBP-1, IGFBP-7, TNF-α, and MIP-1β levels. However, IGFBP-3 and IGFBP-5 levels were found to be statistically decreased in BD patients. Conversely, the MCP-1 level was significantly increased in BD patients, but their levels were normalized after treatment. Intriguingly, only IGFBP-1 levels were significantly decreased after treatment. No significant correlation was found between the YMRS and any of the proteins studied either before or after treatment or between IGF proteins and inflammatory markers. Discussion: To some extent, IGFBP-3 and IGFBP-5 might be further explored as potential indicators of treatment responsiveness or diagnosis biomarkers in BD.
Collapse
Affiliation(s)
- Carlos Fernández-Pereira
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, Vigo, Spain
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, Santiago de Compostela, Spain
- Rare Disease and Pediatric Medicine Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Servizo Galego de Saúde-Universidade de Vigo (SERGAS-UVIGO), Vigo, Spain
- Translational Research in Neurological Diseases Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, SERGAS-USC, Santiago de Compostela, Spain
| | - Maria Aránzazu Penedo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, Vigo, Spain
| | - Adrián Alonso-Núñez
- Rare Disease and Pediatric Medicine Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Servizo Galego de Saúde-Universidade de Vigo (SERGAS-UVIGO), Vigo, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, Vigo, Spain
| | - Irene Viéitez
- Rare Disease and Pediatric Medicine Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Servizo Galego de Saúde-Universidade de Vigo (SERGAS-UVIGO), Vigo, Spain
| | - José María Prieto-González
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, Santiago de Compostela, Spain
- Translational Research in Neurological Diseases Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, SERGAS-USC, Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, Santiago de Compostela, Spain
| | - María Isabel Vilariño-Vilariño
- Physiotherapy, Medicine and Biomedical Sciences Group, Faculty of Health Sciences, University of A Coruña, A Coruña, Spain
| | - José Manuel Olivares
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, Vigo, Spain
| | - Saida Ortolano
- Rare Disease and Pediatric Medicine Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Servizo Galego de Saúde-Universidade de Vigo (SERGAS-UVIGO), Vigo, Spain
| | - Roberto Carlos Agís-Balboa
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, Santiago de Compostela, Spain
- Translational Research in Neurological Diseases Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, SERGAS-USC, Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, Santiago de Compostela, Spain
| |
Collapse
|
57
|
McElwain CJ, Manna S, Musumeci A, Sylvester I, Rouchon C, O'Callaghan AM, Ebad MAB, McCarthy FP, McCarthy CM. Defective Visceral Adipose Tissue Adaptation in Gestational Diabetes Mellitus. J Clin Endocrinol Metab 2024; 109:1275-1284. [PMID: 38035802 PMCID: PMC11031241 DOI: 10.1210/clinem/dgad699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
CONTEXT Gestational diabetes mellitus (GDM) is a complex obstetric condition affecting localized glucose metabolism, resulting in systemic metabolic dysfunction. OBJECTIVE This cross-sectional study aimed to explore visceral adipose tissue (VAT) as an integral contributor to GDM, focusing on elucidating the specific contribution of obesity and GDM pathology to maternal outcomes. METHODS Fifty-six nulliparous pregnant women were recruited, including normal glucose tolerant (NGT) (n = 30) and GDM (n = 26) participants. Participants were subgrouped as nonobese (BMI <30 kg/m2) or obese (BMI ≥30 kg/m2). Metabolic markers in circulation, VAT, and placenta were determined. Morphological analysis of VAT and immunoblotting of the insulin signaling cascade were performed. RESULTS GDM participants demonstrated hyperinsulinemia and elevated homeostatic model assessment for insulin resistance (HOMA-IR) scores relative to NGT participants. The GDM-obese subgroup had significant VAT adipocyte hypoplasia relative to NGT-nonobese tissue. GDM-obese VAT had significantly lower insulin receptor substrate (IRS)-2 expression, with elevated ser312 phosphorylation of IRS-1, relative to NGT-nonobese. GDM-obese participants had significantly elevated circulating leptin levels and placental adipsin secretion, while GDM-nonobese participants had elevated circulating adipsin levels with reduced placental adiponectin secretion. CONCLUSION These findings suggest that GDM-obese pregnancy is specifically characterized by inadequate VAT remodeling and dysfunctional molecular signaling, which contribute to insulin resistance and hinder metabolic health.
Collapse
Affiliation(s)
- Colm J McElwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork T12XF62, Ireland
| | - Samprikta Manna
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork T12DC4A, Ireland
| | - Andrea Musumeci
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork T12XF62, Ireland
| | - Isaac Sylvester
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork T12XF62, Ireland
| | - Chloé Rouchon
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork T12XF62, Ireland
| | - Anne Marie O'Callaghan
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork T12XF62, Ireland
| | - Mustafa Abdalla Bakhit Ebad
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork T12XF62, Ireland
| | - Fergus P McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork T12DC4A, Ireland
| | - Cathal M McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork T12XF62, Ireland
| |
Collapse
|
58
|
Zhou AX, Jeansson M, He L, Wigge L, Tonelius P, Tati R, Cederblad L, Muhl L, Uhrbom M, Liu J, Björnson Granqvist A, Lerman LO, Betsholtz C, Hansen PBL. Renal Endothelial Single-Cell Transcriptomics Reveals Spatiotemporal Regulation and Divergent Roles of Differential Gene Transcription and Alternative Splicing in Murine Diabetic Nephropathy. Int J Mol Sci 2024; 25:4320. [PMID: 38673910 PMCID: PMC11050020 DOI: 10.3390/ijms25084320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Endothelial cell (EC) injury is a crucial contributor to the progression of diabetic kidney disease (DKD), but the specific EC populations and mechanisms involved remain elusive. Kidney ECs (n = 5464) were collected at three timepoints from diabetic BTBRob/ob mice and non-diabetic littermates. Their heterogeneity, transcriptional changes, and alternative splicing during DKD progression were mapped using SmartSeq2 single-cell RNA sequencing (scRNAseq) and elucidated through pathway, network, and gene ontology enrichment analyses. We identified 13 distinct transcriptional EC phenotypes corresponding to different kidney vessel subtypes, confirmed through in situ hybridization and immunofluorescence. EC subtypes along nephrons displayed extensive zonation related to their functions. Differential gene expression analyses in peritubular and glomerular ECs in DKD underlined the regulation of DKD-relevant pathways including EIF2 signaling, oxidative phosphorylation, and IGF1 signaling. Importantly, this revealed the differential alteration of these pathways between the two EC subtypes and changes during disease progression. Furthermore, glomerular and peritubular ECs also displayed aberrant and dynamic alterations in alternative splicing (AS), which is strongly associated with DNA repair. Strikingly, genes displaying differential transcription or alternative splicing participate in divergent biological processes. Our study reveals the spatiotemporal regulation of gene transcription and AS linked to DKD progression, providing insight into pathomechanisms and clues to novel therapeutic targets for DKD treatment.
Collapse
Affiliation(s)
- Alex-Xianghua Zhou
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 43162 Mölndal, Sweden; (A.-X.Z.); (P.T.); (M.U.)
| | - Marie Jeansson
- Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden; (M.J.); (J.L.)
- Department of Immunology, Genetics and Pathology, Uppsala University, 753 10 Uppsala, Sweden
| | - Liqun He
- Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden; (M.J.); (J.L.)
- Department of Immunology, Genetics and Pathology, Uppsala University, 753 10 Uppsala, Sweden
| | - Leif Wigge
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 43162 Mölndal, Sweden
| | - Pernilla Tonelius
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 43162 Mölndal, Sweden; (A.-X.Z.); (P.T.); (M.U.)
| | - Ramesh Tati
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 43162 Mölndal, Sweden; (A.-X.Z.); (P.T.); (M.U.)
| | - Linda Cederblad
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 43162 Mölndal, Sweden; (A.-X.Z.); (P.T.); (M.U.)
| | - Lars Muhl
- Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden; (M.J.); (J.L.)
| | - Martin Uhrbom
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 43162 Mölndal, Sweden; (A.-X.Z.); (P.T.); (M.U.)
- Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden; (M.J.); (J.L.)
| | - Jianping Liu
- Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden; (M.J.); (J.L.)
| | - Anna Björnson Granqvist
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 43162 Mölndal, Sweden; (A.-X.Z.); (P.T.); (M.U.)
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55902, USA;
| | - Christer Betsholtz
- Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden; (M.J.); (J.L.)
- Department of Immunology, Genetics and Pathology, Uppsala University, 753 10 Uppsala, Sweden
| | - Pernille B. L. Hansen
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 43162 Mölndal, Sweden; (A.-X.Z.); (P.T.); (M.U.)
| |
Collapse
|
59
|
Liu S, Ezran C, Wang MFZ, Li Z, Awayan K, Long JZ, De Vlaminck I, Wang S, Epelbaum J, Kuo CS, Terrien J, Krasnow MA, Ferrell JE. An organism-wide atlas of hormonal signaling based on the mouse lemur single-cell transcriptome. Nat Commun 2024; 15:2188. [PMID: 38467625 PMCID: PMC10928088 DOI: 10.1038/s41467-024-46070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Hormones mediate long-range cell communication and play vital roles in physiology, metabolism, and health. Traditionally, endocrinologists have focused on one hormone or organ system at a time. Yet, hormone signaling by its very nature connects cells of different organs and involves crosstalk of different hormones. Here, we leverage the organism-wide single cell transcriptional atlas of a non-human primate, the mouse lemur (Microcebus murinus), to systematically map source and target cells for 84 classes of hormones. This work uncovers previously-uncharacterized sites of hormone regulation, and shows that the hormonal signaling network is densely connected, decentralized, and rich in feedback loops. Evolutionary comparisons of hormonal genes and their expression patterns show that mouse lemur better models human hormonal signaling than mouse, at both the genomic and transcriptomic levels, and reveal primate-specific rewiring of hormone-producing/target cells. This work complements the scale and resolution of classical endocrine studies and sheds light on primate hormone regulation.
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Camille Ezran
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Michael F Z Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Zhengda Li
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyle Awayan
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford, CA, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Sheng Wang
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Jacques Epelbaum
- Adaptive Mechanisms and Evolution (MECADEV), UMR 7179, National Center for Scientific Research, National Museum of Natural History, Brunoy, France
| | - Christin S Kuo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jérémy Terrien
- Adaptive Mechanisms and Evolution (MECADEV), UMR 7179, National Center for Scientific Research, National Museum of Natural History, Brunoy, France
| | - Mark A Krasnow
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford, CA, USA.
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
60
|
Singh R, Watchorn JC, Zarbock A, Forni LG. Prognostic Biomarkers and AKI: Potential to Enhance the Identification of Post-Operative Patients at Risk of Loss of Renal Function. Res Rep Urol 2024; 16:65-78. [PMID: 38476861 PMCID: PMC10928916 DOI: 10.2147/rru.s385856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Acute kidney injury (AKI) is a common complication after surgery and the more complex the surgery, the greater the risk. During surgery, patients are exposed to a combination of factors all of which are associated with the development of AKI. These include hypotension and hypovolaemia, sepsis, systemic inflammation, the use of nephrotoxic agents, tissue injury, the infusion of blood or blood products, ischaemia, oxidative stress and reperfusion injury. Given the risks of AKI, it would seem logical to conclude that early identification of patients at risk of AKI would translate into benefit. The conventional markers of AKI, namely serum creatinine and urine output are the mainstay of defining chronic kidney disease but are less suited to the acute phase. Such concerns are compounded in surgical patients given they often have significantly reduced mobility, suboptimal levels of nutrition and reduced muscle bulk. Many patients may also have misleadingly low serum creatinine and high urine output due to aggressive fluid resuscitation, particularly in intensive care units. Over the last two decades, considerable information has accrued with regard to the performance of what was termed "novel" biomarkers of AKI, and here, we discuss the most examined molecules and performance in surgical settings. We also discuss the application of biomarkers to guide patients' postoperative care.
Collapse
Affiliation(s)
- Rishabh Singh
- Department of Surgery, Royal Surrey Hospital, Guildford, Surrey, UK
| | - James C Watchorn
- Intensive Care Unit, Royal Berkshire NHS Foundation Trust, Reading, Berkshire, UK
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Lui G Forni
- Critical Care Unit, Royal Surrey Hospital, Guildford, Surrey, UK
- School of Medicine, Kate Granger Building, University of Surrey, Guildford, UK
| |
Collapse
|
61
|
Woronkowicz M, Roberts H, Skopiński P. The Role of Insulin-like Growth Factor (IGF) System in the Corneal Epithelium Homeostasis-From Limbal Epithelial Stem Cells to Therapeutic Applications. BIOLOGY 2024; 13:144. [PMID: 38534414 DOI: 10.3390/biology13030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
The corneal epithelium, comprising three layers of cells, represents the outermost portion of the eye and functions as a vital protective barrier while concurrently serving as a critical refractive structure. Maintaining its homeostasis involves a complex regenerative process facilitated by the functions of the lacrimal gland, tear film, and corneal nerves. Crucially, limbal epithelial stem cells located in the limbus (transitional zone between the cornea and the conjunctiva) are instrumental for the corneal epithelium integrity by replenishing and renewing cells. Re-epithelialization failure results in persistent defects, often associated with various ocular conditions including diabetic keratopathy. The insulin-like growth factor (IGF) system is a sophisticated network of insulin and other proteins essential for numerous physiological processes. This review examines its role in maintaining the corneal epithelium homeostasis, with a special focus on the interplay with corneal limbal stem cells and the potential therapeutic applications of the system components.
Collapse
Affiliation(s)
- Małgorzata Woronkowicz
- NDDH, Royal Devon University Healthcare NHS Foundation Trust, Barnstaple EX31 4JB, UK
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
| | - Harry Roberts
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
- University of Exeter Medical School, Exeter EX1 2HZ, UK
| | - Piotr Skopiński
- Department of Ophthalmology, SPKSO Ophthalmic University Hospital, Medical University of Warsaw, 00-576 Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
62
|
Leandrou E, Chalatsa I, Anagnostou D, Machalia C, Semitekolou M, Filippa V, Makridakis M, Vlahou A, Anastasiadou E, Vekrellis K, Emmanouilidou E. α-Synuclein oligomers potentiate neuroinflammatory NF-κB activity and induce Ca v3.2 calcium signaling in astrocytes. Transl Neurodegener 2024; 13:11. [PMID: 38378800 PMCID: PMC10880263 DOI: 10.1186/s40035-024-00401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND It is now realized that Parkinson's disease (PD) pathology extends beyond the substantia nigra, affecting both central and peripheral nervous systems, and exhibits a variety of non-motor symptoms often preceding motor features. Neuroinflammation induced by activated microglia and astrocytes is thought to underlie these manifestations. α-Synuclein aggregation has been linked with sustained neuroinflammation in PD, aggravating neuronal degeneration; however, there is still a lack of critical information about the structural identity of the α-synuclein conformers that activate microglia and/or astrocytes and the molecular pathways involved. METHODS To investigate the role of α-synuclein conformers in the development and maintenance of neuroinflammation, we used primary quiescent microglia and astrocytes, post-mortem brain tissues from PD patients and A53T α-synuclein transgenic mice that recapitulate key features of PD-related inflammatory responses in the absence of cell death, i.e., increased levels of pro-inflammatory cytokines and complement proteins. Biochemical and -omics techniques including RNAseq and secretomic analyses, combined with 3D reconstruction of individual astrocytes and live calcium imaging, were used to uncover the molecular mechanisms underlying glial responses in the presence of α-synuclein oligomers in vivo and in vitro. RESULTS We found that the presence of SDS-resistant hyper-phosphorylated α-synuclein oligomers, but not monomers, was correlated with sustained inflammatory responses, such as elevated levels of endogenous antibodies and cytokines and microglial activation. Similar oligomeric α-synuclein species were found in post-mortem human brain samples of PD patients but not control individuals. Detailed analysis revealed a decrease in Iba1Low/CD68Low microglia and robust alterations in astrocyte number and morphology including process retraction. Our data indicated an activation of the p38/ATF2 signaling pathway mostly in microglia and a sustained induction of the NF-κB pathway in astrocytes of A53T mice. The sustained NF-κB activity triggered the upregulation of astrocytic T-type Cav3.2 Ca2+ channels, altering the astrocytic secretome and promoting the secretion of IGFBPL1, an IGF-1 binding protein with anti-inflammatory and neuroprotective potential. CONCLUSIONS Our work supports a causative link between the neuron-produced α-synuclein oligomers and sustained neuroinflammation in vivo and maps the signaling pathways that are stimulated in microglia and astrocytes. It also highlights the recruitment of astrocytic Cav3.2 channels as a potential neuroprotective mediator against the α-synuclein-induced neuroinflammation.
Collapse
Affiliation(s)
- Emmanouela Leandrou
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Ioanna Chalatsa
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Dimitrios Anagnostou
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece
| | - Christina Machalia
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Maria Semitekolou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
- School of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Vicky Filippa
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Manousos Makridakis
- Center for Systems Biology, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Antonia Vlahou
- Center for Systems Biology, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Ema Anastasiadou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Evangelia Emmanouilidou
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece.
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece.
| |
Collapse
|
63
|
Sordillo JE, White F, Majid S, Aguet F, Ardlie KG, Karumanchi SA, Florez JC, Powe CE, Edlow AG, Bouchard L, Jacques PE, Hivert MF. Higher Maternal Body Mass Index Is Associated With Lower Placental Expression of EPYC: A Genome-Wide Transcriptomic Study. J Clin Endocrinol Metab 2024; 109:e1159-e1166. [PMID: 37864851 PMCID: PMC10876411 DOI: 10.1210/clinem/dgad619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/19/2023] [Indexed: 10/23/2023]
Abstract
CONTEXT Elevated body mass index (BMI) in pregnancy is associated with adverse maternal and fetal outcomes. The placental transcriptome may elucidate molecular mechanisms underlying these associations. OBJECTIVE We examined the association of first-trimester maternal BMI with the placental transcriptome in the Gen3G prospective cohort. METHODS We enrolled participants at 5 to 16 weeks of gestation and measured height and weight. We collected placenta samples at delivery. We performed whole-genome RNA sequencing using Illumina HiSeq 4000 and aligned RNA sequences based on the GTEx v8 pipeline. We conducted differential gene expression analysis of over 15 000 genes from 450 placental samples and reported the change in normalized gene expression per 1-unit increase in log2 BMI (kg/m2) as a continuous variable using Limma Voom. We adjusted models for maternal age, fetal sex, gestational age at delivery, gravidity, and surrogate variables accounting for technical variability. We compared participants with BMI of 18.5 to 24.9 mg/kg2 (N = 257) vs those with obesity (BMI ≥30 kg/m2, N = 82) in secondary analyses. RESULTS Participants' mean ± SD age was 28.2 ± 4.4 years and BMI was 25.4 ± 5.5 kg/m2 in early pregnancy. Higher maternal BMI was associated with lower placental expression of EPYC (slope = -1.94, false discovery rate [FDR]-adjusted P = 7.3 × 10-6 for continuous BMI; log2 fold change = -1.35, FDR-adjusted P = 3.4 × 10-3 for BMI ≥30 vs BMI 18.5-24.9 kg/m2) and with higher placental expression of IGFBP6, CHRDL1, and CXCL13 after adjustment for covariates and accounting for multiple testing (FDR < 0.05). CONCLUSION Our genome-wide transcriptomic study revealed novel genes potentially implicated in placental biologic response to higher maternal BMI in early pregnancy.
Collapse
Affiliation(s)
- Joanne E Sordillo
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Frédérique White
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Sana Majid
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - François Aguet
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Kristin G Ardlie
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - S Ananth Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jose C Florez
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Diabetes Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Camille E Powe
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Andrea G Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Medical Biology, CIUSSS of Saguenay-Lac-Saint-Jean, Saguenay, QC G7H 7K9, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC J1H 5N3, Canada
| | - Pierre-Etienne Jacques
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC J1H 5N3, Canada
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
- Diabetes Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC J1H 5N3, Canada
| |
Collapse
|
64
|
Barrios V, Martín-Rivada Á, Guerra-Cantera S, Campillo-Calatayud A, Camarneiro RA, Graell M, Chowen JA, Argente J. Reduction in Pappalysin-2 Levels and Lower IGF-I Bioavailability in Female Adolescents With Anorexia Nervosa. J Clin Endocrinol Metab 2024; 109:e920-e931. [PMID: 38066647 DOI: 10.1210/clinem/dgad713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Indexed: 02/21/2024]
Abstract
CONTEXT Anorexia nervosa (AN) can cause severe undernutrition associated with alterations in the IGF axis. Pappalysins (PAPP-A, PAPP-A2) and stanniocalcins (STC-1, STC-2) modulate IGF binding-protein (IGFBP) cleavage and IGF bioavailability, but their implications in AN are unknown. OBJECTIVE We determined serum levels of PAPP-As and STCs in relationship with classical IGF axis parameters in female adolescents with AN and their association with nutritional status and secondary amenorrhea. METHODS Parameters of the IGF axis were determined in fasting serum samples of 68 female adolescents with AN at diagnosis and 62 sex- and age-matched controls. Standardized body mass index (BMI) and bone mineral density (BMD) were calculated. RESULTS Patients with AN had lower concentrations of total and free IGF-I, total IGFBP-3, acid-labile subunit (ALS), insulin, PAPP-A2, STC-1, and STC-2 and higher levels of IGF-II and IGFBP-2. Their free/total IGF-I ratio was decreased and the intact/total IGFBP-3 and -4 ratios increased. BMI was directly related to total IGF-I and intact IGFBP-3 and inversely with IGFBP-2 and intact IGFBP-4. Weight loss was directly correlated with intact IGFBP-4 and negatively with intact IGFBP-3, ALS, STC-2, and PAPP-A2 concentrations. BMD was directly related to intact IGFBP-3 and inversely with intact IGFBP-4 and PAPP-A2 levels. Patients with amenorrhea had lower levels of total IGF-I and IGFBP-3 than those with menses. CONCLUSION The reduction of PAPP-A2 in patients with AN may be involved in a decline in IGFBP cleavage, which could underlie the decrease in IGF-I bioavailability that is influenced by nutritional status and amenorrhea.
Collapse
Affiliation(s)
- Vicente Barrios
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa", E-28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn, Instituto de Salud Carlos III, E-28009 Madrid, Spain
| | - Álvaro Martín-Rivada
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa", E-28009 Madrid, Spain
| | - Santiago Guerra-Cantera
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa", E-28009 Madrid, Spain
| | - Ana Campillo-Calatayud
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa", E-28009 Madrid, Spain
| | - Ricardo A Camarneiro
- Department of Psychiatry and Clinical Psychology, Hospital Infantil Universitario Niño Jesús, E-28009 Madrid, Spain
| | - Montserrat Graell
- Department of Psychiatry and Clinical Psychology, Hospital Infantil Universitario Niño Jesús, E-28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, E-28009 Madrid, Spain
| | - Julie A Chowen
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa", E-28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn, Instituto de Salud Carlos III, E-28009 Madrid, Spain
- IMDEA, Food Institute, CEIUAM+CSI, Cantoblanco, E-28049 Madrid, Spain
| | - Jesús Argente
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa", E-28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn, Instituto de Salud Carlos III, E-28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, E-28009 Madrid, Spain
- IMDEA, Food Institute, CEIUAM+CSI, Cantoblanco, E-28049 Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
65
|
Babington S, Tilbrook AJ, Maloney SK, Fernandes JN, Crowley TM, Ding L, Fox AH, Zhang S, Kho EA, Cozzolino D, Mahony TJ, Blache D. Finding biomarkers of experience in animals. J Anim Sci Biotechnol 2024; 15:28. [PMID: 38374201 PMCID: PMC10877933 DOI: 10.1186/s40104-023-00989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/28/2023] [Indexed: 02/21/2024] Open
Abstract
At a time when there is a growing public interest in animal welfare, it is critical to have objective means to assess the way that an animal experiences a situation. Objectivity is critical to ensure appropriate animal welfare outcomes. Existing behavioural, physiological, and neurobiological indicators that are used to assess animal welfare can verify the absence of extremely negative outcomes. But welfare is more than an absence of negative outcomes and an appropriate indicator should reflect the full spectrum of experience of an animal, from negative to positive. In this review, we draw from the knowledge of human biomedical science to propose a list of candidate biological markers (biomarkers) that should reflect the experiential state of non-human animals. The proposed biomarkers can be classified on their main function as endocrine, oxidative stress, non-coding molecular, and thermobiological markers. We also discuss practical challenges that must be addressed before any of these biomarkers can become useful to assess the experience of an animal in real-life.
Collapse
Affiliation(s)
- Sarah Babington
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Alan J Tilbrook
- Centre for Animal Science, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Shane K Maloney
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jill N Fernandes
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Tamsyn M Crowley
- School of Medicine, Deakin University, Geelong, VIC, 3217, Australia
- Poultry Hub Australia, University of New England, Armidale, NSW, 2350, Australia
| | - Luoyang Ding
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Archa H Fox
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Song Zhang
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Elise A Kho
- Centre for Animal Science, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Timothy J Mahony
- Centre for Animal Science, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dominique Blache
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia.
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
66
|
Lu C, Wolfs D, El ghormli L, Levitsky LL, Levitt Katz LE, Laffel LM, Patti ME, Isganaitis E. Growth Hormone Mediators and Glycemic Control in Youths With Type 2 Diabetes: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw Open 2024; 7:e240447. [PMID: 38421647 PMCID: PMC10905312 DOI: 10.1001/jamanetworkopen.2024.0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/06/2024] [Indexed: 03/02/2024] Open
Abstract
Importance Youth-onset type 2 diabetes (T2D) has a more aggressive phenotype than adult-onset T2D, including rapid loss of glycemic control and increased complication risk. Objective To identify associations of growth hormone mediators with glycemic failure, beta cell function, and insulin sensitivity in youth-onset T2D. Design, Setting, and Participants This post hoc secondary analysis of the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) randomized clinical trial, which enrolled participants from July 2004 to February 2009, included 398 participants from 15 university-affiliated medical centers with available plasma samples from baseline and 36 months. Participants were youths aged 10 to 17 years with a duration of T2D of less than 2 years who were randomized to metformin, metformin plus lifestyle intervention, or metformin plus rosiglitazone. Participants were followed up for a mean (SD) of 3.9 (1.5) years during the trial, ending in 2011. Statistical analysis was performed from August 2022 to November 2023. Exposure Plasma insulin-like growth factor-1 (IGF-1), growth hormone receptor (GHR), and insulin-like growth factor binding protein 1 (IGFBP-1). Main Outcomes and Measures Main outcomes were (1) loss of glycemic control during the TODAY study, defined as hemoglobin A1c (HbA1c) level of 8% or more for 6 months or inability to wean from insulin therapy, and (2) baseline and 36-month measures of glycemia (fasting glucose, HbA1c), insulin sensitivity (1/fasting C-peptide), high-molecular-weight adiponectin, and beta cell function (C-peptide index, C-peptide oral disposition index). Results This analysis included 398 participants (mean [SD] age, 13.9 [2.0] years; 248 girls [62%]; 166 Hispanic participants [42%]; 134 non-Hispanic Black participants [34%], and 84 non-Hispanic White participants [21%]). A greater increase in IGF-1 level between baseline and 36 months was associated with lower odds of glycemic failure (odds ratio [OR], 0.995 [95% CI, 0.991-0.997]; P < .001) and higher C-peptide index per 100-ng/mL increase in IGF-1 (β [SE], 0.015 [0.003]; P < .001). A greater increase in log2 GHR level between baseline and 36 months was associated with higher odds of glycemic failure (OR, 1.75 [95% CI, 1.05-2.99]; P = .04) and lower C-peptide index (β [SE], -0.02 [0.006]; P < .001). A greater increase in log2 IGFBP-1 level between baseline and 36 months was associated with higher odds of glycemic failure (OR, 1.37 [95% CI, 1.09-1.74]; P = .007) and higher high-molecular-weight adiponectin (β [SE], 431 [156]; P = .007). Conclusions and Relevance This study suggests that changes in plasma growth hormone mediators are associated with loss of glycemic control in youth-onset T2D, with IGF-1 associated with lower risk and GHR and IGFBP-1 associated with increased risk. Trial Registration ClinicalTrials.gov Identifier: NCT00081328.
Collapse
Affiliation(s)
- Chang Lu
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Danielle Wolfs
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Laure El ghormli
- The Biostatistics Center, George Washington University, Washington, DC
| | - Lynne L. Levitsky
- Division of Pediatric Endocrinology and Diabetes, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lorraine E. Levitt Katz
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Lori M. Laffel
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | | | - Elvira Isganaitis
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
67
|
Bersin TV, Cordova KL, Journey ML, Beckman BR, Lema SC. Food deprivation reduces sensitivity of liver Igf1 synthesis pathways to growth hormone in juvenile gopher rockfish (Sebastes carnatus). Gen Comp Endocrinol 2024; 346:114404. [PMID: 37940008 DOI: 10.1016/j.ygcen.2023.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Growth hormone (Gh) regulates growth in part by stimulating the liver to synthesize and release insulin-like growth factor-1 (Igf1), which then promotes somatic growth. However, for fish experiencing food limitation, elevated blood Gh can occur even with low circulating Igf1 and slow growth, suggesting that nutritional stress can alter the sensitivity of liver Igf1 synthesis pathways to Gh. Here, we examined how recent feeding experience affected Gh regulation of liver Igf1 synthesis pathways in juvenile gopher rockfish (Sebastes carnatus) to illuminate mechanisms underlying the nutritional modulation of Igf1 production. Juvenile gopher rockfish were maintained under conditions of feeding or complete food deprivation (fasting) for 14 d and then treated with recombinant sea bream (Sparus aurata) Gh or saline control. Gh upregulated hepatic igf1 mRNA levels in fed fish but not in fasted fish. The liver of fasted rockfish also showed a lower relative abundance of gene transcripts encoding teleost Gh receptors 1 (ghr1) and 2 (ghr2), as well as reduced protein levels of phosphorylated janus tyrosine kinase 2 (pJak2) and signal transducer and activator of transcription 5 (pStat5), which function to induce igf1 gene transcription following Gh binding to Gh receptors. Relative hepatic mRNA levels for suppressors of cytokine signaling (Socs) genes socs2, socs3a, and socs3b were also lower in fasted rockfish. Socs2 can suppress Gh activation of Jak2/Stat5, and fasting-related variation in socs expression may reflect modulated inhibitory control of igf1 gene transcription. Fasted rockfish also had elevated liver mRNA abundances for lipolytic hormone-sensitive lipase 1 (hsl1) and Igf binding proteins igfbp1a, -1b and -3a, reduced liver mRNAs encoding igfbp2b and an Igfbp acid labile subunit-like (igfals) gene, and higher transcript abundances for Igf1 receptors igf1ra and igf1rb in skeletal muscle. Together, these findings suggest that food deprivation impacts liver Igf1 responsiveness to Gh via multiple mechanisms that include a downregulation of hepatic Gh receptors, modulation of the intracellular Jak2/Stat5 transduction pathway, and possible shifts in Socs-inhibitory control of igf1 gene transcription, while also demonstrating that these changes occur in concert with shifts in liver Igfbp expression and muscle Gh/Igf1 signaling pathway components.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
68
|
Choi JW, Kim SW, Kim HS, Kang MJ, Kim SA, Han JY, Kim H, Ku SY. Effects of Melatonin, GM-CSF, IGF-1, and LIF in Culture Media on Embryonic Development: Potential Benefits of Individualization. Int J Mol Sci 2024; 25:751. [PMID: 38255823 PMCID: PMC10815572 DOI: 10.3390/ijms25020751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The implantation of good-quality embryos to the receptive endometrium is essential for successful live birth through in vitro fertilization (IVF). The higher the quality of embryos, the higher the live birth rate per cycle, and so efforts have been made to obtain as many high-quality embryos as possible after fertilization. In addition to an effective controlled ovarian stimulation process to obtain high-quality embryos, the composition of the embryo culture medium in direct contact with embryos in vitro is also important. During embryonic development, under the control of female sex hormones, the fallopian tubes and endometrium create a microenvironment that supplies the nutrients and substances necessary for embryos at each stage. During this process, the development of the embryo is finely regulated by signaling molecules, such as growth factors and cytokines secreted from the epithelial cells of the fallopian tube and uterine endometrium. The development of embryo culture media has continued since the first successful human birth through IVF in 1978. However, there are still limitations to mimicking a microenvironment similar to the reproductive organs of women suitable for embryo development in vitro. Efforts have been made to overcome the harsh in vitro culture environment and obtain high-quality embryos by adding various supplements, such as antioxidants and growth factors, to the embryo culture medium. Recently, there has been an increase in the number of studies on the effect of supplementation in different clinical situations such as old age, recurrent implantation failure (RIF), and unexplained infertility; in addition, anticipation of the potential benefits from individuation is rising. This article reviews the effects of representative supplements in culture media on embryo development.
Collapse
Affiliation(s)
- Jung-Won Choi
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Sung-Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hee-Sun Kim
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Moon-Joo Kang
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Sung-Ah Kim
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Ji-Yeon Han
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
69
|
Yavas A, van Putten M, Aartsma-Rus A. Antisense Oligonucleotide-Mediated Downregulation of IGFBPs Enhances IGF-1 Signaling. J Neuromuscul Dis 2024; 11:299-314. [PMID: 38189760 DOI: 10.3233/jnd-230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Insulin-like growth factor-1 (IGF-1) has been considered as a therapeutic agent for muscle wasting conditions including Duchenne muscular dystrophy as it stimulates muscle regeneration, growth and function. Several preclinical and clinical studies have been conducted to show the therapeutic potential of IGF-1, however, delivery issues, short half-life and isoform complexity have impose challenges. Antisense oligonucleotides (AONs) are able to downregulate target proteins by interfering with their transcripts. Here, we investigated the feasibility of enhancing IGF-1 signaling by downregulation of IGF-binding proteins. We observed that out of frame exon skipping of Igfbp1 and Igfbp3 downregulated their protein expression, which increased Akt phosphorylation on the downstream IGF-1 signaling in vitro. 3'RNA sequencing analysis revealed the related transcriptome in C2C12 cells in response to IGFBP3 downregulation. The AONs did however not induce any exon skipping or protein knockdown in mdx mice after 6 weeks of systemic treatment. We conclude that IGFBP downregulation could be a good strategy to increase IGF-1 signaling but alternative tools are needed for efficient delivery and knockdown in vivo.
Collapse
Affiliation(s)
- Alper Yavas
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
70
|
Samaržija I. The Potential of Extracellular Matrix- and Integrin Adhesion Complex-Related Molecules for Prostate Cancer Biomarker Discovery. Biomedicines 2023; 12:79. [PMID: 38255186 PMCID: PMC10813710 DOI: 10.3390/biomedicines12010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer is among the top five cancer types according to incidence and mortality. One of the main obstacles in prostate cancer management is the inability to foresee its course, which ranges from slow growth throughout years that requires minimum or no intervention to highly aggressive disease that spreads quickly and resists treatment. Therefore, it is not surprising that numerous studies have attempted to find biomarkers of prostate cancer occurrence, risk stratification, therapy response, and patient outcome. However, only a few prostate cancer biomarkers are used in clinics, which shows how difficult it is to find a novel biomarker. Cell adhesion to the extracellular matrix (ECM) through integrins is among the essential processes that govern its fate. Upon activation and ligation, integrins form multi-protein intracellular structures called integrin adhesion complexes (IACs). In this review article, the focus is put on the biomarker potential of the ECM- and IAC-related molecules stemming from both body fluids and prostate cancer tissue. The processes that they are involved in, such as tumor stiffening, bone turnover, and communication via exosomes, and their biomarker potential are also reviewed.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
71
|
Okawa MC, Tuska RM, Lightbourne M, Abel BS, Walter M, Dai Y, Cochran E, Brown RJ. Insulin Signaling Through the Insulin Receptor Increases Linear Growth Through Effects on Bone and the GH-IGF-1 Axis. J Clin Endocrinol Metab 2023; 109:e96-e106. [PMID: 37595266 PMCID: PMC10735468 DOI: 10.1210/clinem/dgad491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/20/2023]
Abstract
CONTEXT Childhood overnutrition is associated with increased growth and bone mineral density (BMD) vs the opposite for undernutrition. The role of insulin receptor (InsR) signaling in these phenotypes is unclear. Rare disease patients with hyperinsulinemia and impaired InsR function (homozygous [-/-] or heterozygous [+/-] INSR pathogenic variants, type B insulin resistance [TBIR]) model increased InsR signaling, while patients with intact InsR function (congenital generalized lipodystrophy, CGL) model decreased InsR signaling. OBJECTIVE This work aimed to understand mechanisms whereby InsR signaling influences growth. METHODS A cross-sectional comparison was conducted of CGL (N = 23), INSR-/- (N = 13), INSR+/- (N = 17), and TBIR (N = 8) at the National Institutes of Health. Main outcome measures included SD scores (SDS) for height, body mass index, insulin-like growth factor (IGF)-1, and BMD, and IGF binding proteins (IGFBP)-1 and -3. RESULTS INSR-/- vs CGL had higher insulin (median 266 [222-457] vs 33 [15-55] mcU/mL), higher IGFBP-1 (72 350 [55 571-103 107] vs 6453 [1634-26 674] pg/mL), lower BMI SDS (-0.7 ± 1.1 vs 0.5 ± 0.9), lower height SDS (-1.9[-4.3 to -1.3] vs 1.1 [0.5-2.5]), lower BMD SDS (-1.9 ± 1.4 vs 1.9 ± 0.7), and lower IGFBP-3 (0.37 [0.19-1.05] vs 2.00 [1.45-2.67] μg/mL) (P < .05 for all). INSR +/- were variable. Remission of TBIR lowered insulin and IGFBP-1, and increased IGF-1 and IGFBP-3 (P < .05). CONCLUSION Patients with hyperinsulinemia and impaired InsR function exhibit impaired growth and lower BMD, whereas elevated InsR signaling (CGL) causes accelerated growth and higher BMD. These patients demonstrate that insulin action through the InsR stimulates direct anabolic effects in bone and indirect actions through the growth hormone (GH)-IGF-1 axis. TBIR patients exhibit abnormalities in the GH axis that resolve when InsR signaling is restored, supporting a causal relationship between InsR and GH axis signaling.
Collapse
Affiliation(s)
- Marinna C Okawa
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca M Tuska
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marissa Lightbourne
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brent S Abel
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary Walter
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuhai Dai
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elaine Cochran
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca J Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
72
|
Barik P, Kuo WW, Kuo CH, Hsieh DJY, Day CH, Daddam J, Chen MYC, Padma VV, Shibu MA, Huang CY. Rewiring of IGF1 secretion and enhanced IGF1R signaling induced by co-chaperone carboxyl-terminus of Hsp70 interacting protein in adipose-derived stem cells provide augmented cardioprotection in aging-hypertensive rats. Aging (Albany NY) 2023; 15:14019-14038. [PMID: 38085649 PMCID: PMC10756089 DOI: 10.18632/aging.205287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/04/2023] [Indexed: 12/21/2023]
Abstract
Aging-associated cardiovascular diseases depend on the longitudinal deterioration of stem cell dynamics. The entire mechanism behind it is not completely understood. However, many studies suggest that endocrine pathways, particularly the insulin-like growth factor-1(IGF1) signaling pathway are involved in cardioprotection, especially in stem-cell treatments. Here, we investigated the role of a co-chaperone, carboxyl-terminus of Hsp70 interacting protein (CHIP) in the aspects of growth factor secretion and receptor stabilization in mesenchymal stem cells (MSCs). Briefly, we overexpressed CHIP in rat adipose-derived stem cells (rADSCs) and explored the consequences in vitro, and in vivo, in spontaneously hypertensive rats (SHR). Our data revealed that CHIP overexpression in rADSCs promoted the secretion of insulin-like growth factor-1 (IGF1) and IGF binding protein-3 (IGFBP3) as per immunoblot/cytokine array analysis. We also found that these results were dependent on the nuclear translocation of signal transducer and activator of transcription 3 (STAT3) in rADSCs. Further, the CHIP co-chaperone was also involved in the stabilization of the receptor of IGF1 (IGF1R); interactions between the beta transmembrane region of IGF1R, and the tetracopeptide repeat (TPR) domain of CHIP were evident. Importantly, after the transplantation of lentiviral CHIP overexpression of rADSCs (rADSCsCHIP-WT) into nine months aging-SHR led to an increase in their cardiac function - increased ejection fraction and fractional shortening (≈15% vs. control SHR) - as well as a decrease in their heart size and heart rate, respectively. Altogether, our results support the use of CHIP overexpressing stem cells for the mitigation of cardiac hypertrophy and remodeling associated with late-stage hypertension.
Collapse
Affiliation(s)
- Parthasarathi Barik
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | - Jayasimharayalu Daddam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - V. Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
73
|
Catunda RQ, Ho KKY, Patel S, Roy CB, Alexiou M, Levin L, Ulrich BJ, Kaplan MH, Febbraio M. Loricrin and Cytokeratin Disorganisation in Severe Forms of Periodontitis. Int Dent J 2023; 73:862-872. [PMID: 37316411 PMCID: PMC10658443 DOI: 10.1016/j.identj.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
OBJECTIVE The aim of this research was to investigate the role of the cornified epithelium, the outermost layer of the oral mucosa, engineered to prevent water loss and microorganism invasion, in severe forms of periodontitis (stage III or IV, grade C). METHODS Porphyromonas gingivalis, a major periodontal disease pathogen, can affect cornified epithelial protein expression through chronic activation of signal transducer and activator of transcription 6 (Stat6). We used a mouse model, Stat6VT, that mimics this to determine the effects of barrier defect on P gingivalis-induced inflammation, bone loss, and cornified epithelial protein expression, and compared histologic and immunohistologic findings with tissues obtained from human controls and patients with stage III and IV, grade C disease. Alveolar bone loss in mice was assessed using micro-computerised tomography, and soft tissue morphology was qualitatively and semi-quantitatively assessed by histologic examination for several proteins, including loricrin, filaggrin, cytokeratin 1, cytokeratin 14, a proliferation marker, a pan-leukocyte marker, as well as morphologic signs of inflammation. Relative cytokine levels were measured in mouse plasma by cytokine array. RESULTS In the tissues from patients with periodontal disease, there were greater signs of inflammation (rete pegs, clear cells, inflammatory infiltrates) and a decrease and broadening of expression of loricrin and cytokeratin 1. Cytokeratin 14 expression was also broader and decreased in stage IV. P gingivalis-infected Stat6VT mice showed greater alveolar bone loss in 9 out of 16 examined sites, and similar patterns of disruption to human patients in expression of loricrin and cytokeratins 1 and 14. There were also increased numbers of leukocytes, decreased proliferation, and greater signs of inflammation compared with P gingivalis-infected control mice. CONCLUSIONS Our study provides evidence that changes in epithelial organisation can exacerbate the effects of P gingivalis infection, with similarities to the most severe forms of human periodontitis.
Collapse
Affiliation(s)
- Raisa Queiroz Catunda
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Ka-Yan Ho
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Srushti Patel
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher Bryant Roy
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Maria Alexiou
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Liran Levin
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Mark H Kaplan
- Department of Microbiology & Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Maria Febbraio
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
74
|
Barany A, Fuentes J, Valderrama V, Broz-Ruiz A, Martínez-Rodríguez G, Mancera JM. Oral cortisol and dexamethasone intake: Differential physiology and transcriptional responses in the marine juvenile Sparus aurata. Gen Comp Endocrinol 2023; 344:114371. [PMID: 37640145 DOI: 10.1016/j.ygcen.2023.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/12/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
This study approached the long-term oral administration of cortisol (F) and dexamethasone (DEX), two synthetic glucocorticoids, compared to a control group (CT) in the juveniles of a marine teleost, the gilthead seabream (Sparus aurata). Physiologically, DEX treatment impaired growth, which appears to be linked to carbohydrate allocation in muscle and liver, hepatic triglycerides depletion, and reduced hematocrit. Hypophyseal gh mRNA expression was 2-fold higher in DEX than in CT or F groups. Similarly, hypothalamic trh and hypophyseal pomcb followed this pattern. Plasma cortisol levels were significantly lower in DEX than in CT, while F presented intermediate levels. In the posterior intestine, measured short circuit-current (Isc) was more anion absorptive in CT and F compared to the DEX group, whereas Isc remained unaffected in the anterior intestine. The derived transepithelial electric resistance (TEER) significantly differed between intestinal regions in the DEX group. These results provide new insights to understand better potential targeted biomarkers indicative of the differential glucocorticoid or mineralocorticoid-receptors activation in fish.
Collapse
Affiliation(s)
- A Barany
- Department of Biology, Morrill Science Center, University of Massachusetts, 01003 Amherst, MA, USA; Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain.
| | - J Fuentes
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - V Valderrama
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
| | - A Broz-Ruiz
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
| | - G Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Spanish National Research Council (ICMAN-CSIC), E-11510 Puerto Real, Cádiz, Spain
| | - J M Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
75
|
He M, Borlak J. A genomic perspective of the aging human and mouse lung with a focus on immune response and cellular senescence. Immun Ageing 2023; 20:58. [PMID: 37932771 PMCID: PMC10626779 DOI: 10.1186/s12979-023-00373-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The aging lung is a complex process and influenced by various stressors, especially airborne pathogens and xenobiotics. Additionally, a lifetime exposure to antigens results in structural and functional changes of the lung; yet an understanding of the cell type specific responses remains elusive. To gain insight into age-related changes in lung function and inflammaging, we evaluated 89 mouse and 414 individual human lung genomic data sets with a focus on genes mechanistically linked to extracellular matrix (ECM), cellular senescence, immune response and pulmonary surfactant, and we interrogated single cell RNAseq data to fingerprint cell type specific changes. RESULTS We identified 117 and 68 mouse and human genes linked to ECM remodeling which accounted for 46% and 27%, respectively of all ECM coding genes. Furthermore, we identified 73 and 31 mouse and human genes linked to cellular senescence, and the majority code for the senescence associated secretory phenotype. These cytokines, chemokines and growth factors are primarily secreted by macrophages and fibroblasts. Single-cell RNAseq data confirmed age-related induced expression of marker genes of macrophages, neutrophil, eosinophil, dendritic, NK-, CD4+, CD8+-T and B cells in the lung of aged mice. This included the highly significant regulation of 20 genes coding for the CD3-T-cell receptor complex. Conversely, for the human lung we primarily observed macrophage and CD4+ and CD8+ marker genes as changed with age. Additionally, we noted an age-related induced expression of marker genes for mouse basal, ciliated, club and goblet cells, while for the human lung, fibroblasts and myofibroblasts marker genes increased with age. Therefore, we infer a change in cellular activity of these cell types with age. Furthermore, we identified predominantly repressed expression of surfactant coding genes, especially the surfactant transporter Abca3, thus highlighting remodeling of surfactant lipids with implications for the production of inflammatory lipids and immune response. CONCLUSION We report the genomic landscape of the aging lung and provide a rationale for its growing stiffness and age-related inflammation. By comparing the mouse and human pulmonary genome, we identified important differences between the two species and highlight the complex interplay of inflammaging, senescence and the link to ECM remodeling in healthy but aged individuals.
Collapse
Affiliation(s)
- Meng He
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
76
|
Collins JA, Kim CJ, Coleman A, Little A, Perez MM, Clarke EJ, Diekman B, Peffers MJ, Chubinskaya S, Tomlinson RE, Freeman TA, Loeser RF. Cartilage-specific Sirt6 deficiency represses IGF-1 and enhances osteoarthritis severity in mice. Ann Rheum Dis 2023; 82:1464-1473. [PMID: 37550003 PMCID: PMC10579179 DOI: 10.1136/ard-2023-224385] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023]
Abstract
OBJECTIVES Prior studies noted that chondrocyte SIRT6 activity is repressed in older chondrocytes rendering cells susceptible to catabolic signalling events implicated in osteoarthritis (OA). This study aimed to define the effect of Sirt6 deficiency on the development of post-traumatic and age-associated OA in mice. METHODS Male cartilage-specific Sirt6-deficient mice and Sirt6 intact controls underwent destabilisation of the medial meniscus (DMM) or sham surgery at 16 weeks of age and OA severity was analysed at 6 and 10 weeks postsurgery. Age-associated OA was assessed in mice aged 12 and 18 months of age. OA severity was analysed by micro-CT, histomorphometry and scoring of articular cartilage structure, toluidine blue staining and osteophyte formation. SIRT6-regulated pathways were analysed in human chondrocytes by RNA-sequencing, qRT-PCR and immunoblotting. RESULTS Sirt6-deficient mice displayed enhanced DMM-induced OA severity and accelerated age-associated OA when compared with controls, characterised by increased cartilage damage, osteophyte formation and subchondral bone sclerosis. In chondrocytes, RNA-sequencing revealed that SIRT6 depletion significantly repressed cartilage extracellular matrix (eg, COL2A1) and anabolic growth factor (eg, insulin-like growth factor-1 (IGF-1)) gene expression. Gain-of-function and loss-of-function studies in chondrocytes demonstrated that SIRT6 depletion attenuated, whereas adenoviral overexpression or MDL-800-induced SIRT6 activation promoted IGF-1 signalling by increasing Aktser473 phosphorylation. CONCLUSIONS SIRT6 deficiency increases post-traumatic and age-associated OA severity in vivo. SIRT6 profoundly regulated the pro-anabolic and pro-survival IGF-1/Akt signalling pathway and suggests that preserving the SIRT6/IGF-1/Akt axis may be necessary to protect cartilage from injury-associated or age-associated OA. Targeted therapies aimed at increasing SIRT6 function could represent a novel strategy to slow or stop OA.
Collapse
Affiliation(s)
- John A Collins
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Medicine, Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - C James Kim
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ashley Coleman
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abreah Little
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Matheus M Perez
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Emily J Clarke
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Brian Diekman
- Department of Medicine, Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mandy J Peffers
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Susanna Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, Illinois, USA
| | - Ryan E Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Theresa A Freeman
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Richard F Loeser
- Department of Medicine, Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
77
|
Sridar J, Mafi A, Judge RA, Xu J, Kong KA, Wang JCK, Stoll VS, Koukos G, Simon RJ, Eaton D, Bratkowski M, Hao Q. Cryo-EM structure of human PAPP-A2 and mechanism of substrate recognition. Commun Chem 2023; 6:234. [PMID: 37898658 PMCID: PMC10613257 DOI: 10.1038/s42004-023-01032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Pregnancy-Associated Plasma Protein A isoforms, PAPP-A and PAPP-A2, are metalloproteases that cleave insulin-like growth factor binding proteins (IGFBPs) to modulate insulin-like growth factor signaling. The structures of homodimeric PAPP-A in complex with IGFBP5 anchor peptide, and inhibitor proteins STC2 and proMBP have been recently reported. Here, we present the single-particle cryo-EM structure of the monomeric, N-terminal LG, MP, and the M1 domains (with the exception of LNR1/2) of human PAPP-A2 to 3.13 Å resolution. Our structure together with functional studies provides insight into a previously reported patient mutation that inactivates PAPP-A2 in a distal region of the protein. Using a combinational approach, we suggest that PAPP-A2 recognizes IGFBP5 in a similar manner as PAPP-A and show that PAPP-A2 cleaves IGFBP5 less efficiently due to differences in the M2 domain. Overall, our studies characterize the cleavage mechanism of IGFBP5 by PAPP-A2 and shed light onto key differences with its paralog PAPP-A.
Collapse
Affiliation(s)
- Janani Sridar
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA
| | | | | | - Jun Xu
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA
| | - Kailyn A Kong
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA
| | - John C K Wang
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA
| | | | - Georgios Koukos
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA
| | - Reyna J Simon
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA
| | - Dan Eaton
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA
| | | | - Qi Hao
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA.
| |
Collapse
|
78
|
Li S, Li H, Wang Z, Duan C. Stanniocalcin 1a regulates organismal calcium balance and survival by suppressing Trpv6 expression and inhibiting IGF signaling in zebrafish. Front Endocrinol (Lausanne) 2023; 14:1276348. [PMID: 37964974 PMCID: PMC10640984 DOI: 10.3389/fendo.2023.1276348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Stanniocalcin 1 (Stc1) is well known for its role in regulating calcium uptake in fish by acting on ionocytes or NaR cells. A hallmark of NaR cells is the expression of Trpv6, a constitutively open calcium channel. Recent studies in zebrafish suggest that genetical deletion of Stc1a and Trpv6 individually both increases IGF signaling and NaR cell proliferation. While trpv6-/- fish suffered from calcium deficiency and died prematurely, stc1a-/- fish had elevated body calcium levels but also died prematurely. The relationship between Stc1a, Trpv6, and IGF signaling in regulating calcium homeostasis and organismal survival is unclear. Here we report that loss of Stc1a increases Trpv6 expression in NaR cells in an IGF signaling-dependent manner. Treatment with CdCl2, a Trpv6 inhibitor, reduced NaR cell number in stc1a -/- fish to the sibling levels. Genetic and biochemical analysis results suggest that Stc1a and Trpv6 regulate NaR cell proliferation via the same IGF pathway. Alizarin red staining detected abnormal calcium deposits in the yolk sac region and kidney stone-like structures in stc1a -/- fish. Double knockout or pharmacological inhibition of Trpv6 alleviated these phenotypes, suggesting that Stc1a inhibit epithelial Ca2+ uptake by regulating Trpv6 expression and activity. stc1a-/- mutant fish developed cardiac edema, body swelling, and died prematurely. Treatment of stc1a-/- fish with CdCl2 or double knockout of Trpv6 alleviated these phenotypes. These results provide evidence that Stc1a regulates calcium homeostasis and organismal survival by suppressing Trpv6 expression and inhibiting IGF signaling in ionocytes.
Collapse
Affiliation(s)
| | | | | | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
79
|
Abstract
Nutrient intake is obligatory for animal growth and development, but nutrients alone are not sufficient. Indeed, insulin and homologous hormones are required for normal growth even in the presence of nutrients. These hormones communicate nutrient status between organs, allowing animals to coordinate growth and metabolism with nutrient supply. Insulin and related hormones, such as insulin-like growth factors and insulin-like peptides, play important roles in development and metabolism, with defects in insulin production and signaling leading to hyperglycemia and diabetes. Here, we describe the insulin hormone family and the signal transduction pathways activated by these hormones. We highlight the roles of insulin signaling in coordinating maternal and fetal metabolism and growth during pregnancy, and we describe how secretion of insulin is regulated at different life stages. Additionally, we discuss the roles of insulin signaling in cell growth, stem cell proliferation and cell differentiation. We provide examples of the role of insulin in development across multiple model organisms: Caenorhabditis elegans, Drosophila, zebrafish, mouse and human.
Collapse
Affiliation(s)
- Miyuki Suzawa
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Michelle L. Bland
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
80
|
White CA, Serrat MA. Dysregulation of insulin-like growth factor-1 signaling in postnatal bone elongation. Biochem Cell Biol 2023; 101:388-393. [PMID: 37246759 DOI: 10.1139/bcb-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is a critical modulator of cell growth and survival, making it a central part of maintaining essentially every biological system in the body. Knowledge of the intricate mechanisms involved in activating IGF-1 signaling is not only key to understanding basic processes of growth and development, but also for addressing diseases, such as cancer and diabetes. This brief review explores how dysregulation of normal IGF-1 signaling can impact growth by examining its role in postnatal bone elongation. IGF-1 actions are dysregulated in autoimmune diseases, such as juvenile idiopathic arthritis and chronic kidney disease, which results in growth stunting. Conversely, childhood obesity results in growth acceleration, premature growth cessation, and ultimately, diminished bone quality, while systemic IGF-1 levels remain normal. Understanding the role of IGF-1 signaling in normal and dysregulated growth can add to other studies that address how this system regulates chronic diseases.
Collapse
Affiliation(s)
- Cassaundra A White
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Maria A Serrat
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
81
|
Lodjak J, Boonekamp J, Lendvai ÁZ, Verhulst S. Short- and long-term effects of nutritional state on IGF-1 levels in nestlings of a wild passerine. Oecologia 2023; 203:27-35. [PMID: 37676486 PMCID: PMC10615909 DOI: 10.1007/s00442-023-05445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
Growth trajectories of young animals are intimately connected to their fitness prospects, but we have little knowledge of growth regulation mechanisms, particularly in the wild. Insulin-like growth factor 1 (IGF-1) is a central hormone in regulating resource allocation, with higher IGF-1 levels resulting in more growth. IGF-1 levels generally increase in conjunction with nutritional state, but whether IGF-1 levels are adjusted in response to current nutrient availability or to the nutrient availability integrated over a longer term is not well known. We tested for such effects by supplementary feeding the jackdaw (Corvus monedula) nestlings in experimentally reduced or enlarged broods with either water (control) or a food solution; these manipulations have long- and short-term effects on the nutritional state, respectively. Baseline plasma IGF-1 levels were higher in reduced broods. Food supplementation induced an increase in plasma IGF-1 levels measured one hour later, and this effect was significantly more substantial in nestlings in reduced broods. Changes in plasma IGF-1 levels increased with increased retention of the supplementary food, which was higher in reduced broods, explaining the stronger IGF-1 response. Thus, IGF-1 levels respond to short-term variations in the nutritional state, but this effect is amplified by longer-term variations in the nutritional state. We discuss our findings using a graphical model that integrates the results of the two treatments.
Collapse
Affiliation(s)
- Jaanis Lodjak
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 2 Juhan Liivi Street, 50409, Tartu, Estonia.
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands.
| | - Jelle Boonekamp
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands.
| |
Collapse
|
82
|
El Essawy ES, Baar K. Rapamycin insensitive regulation of engineered ligament structure and function by IGF-1. J Appl Physiol (1985) 2023; 135:833-839. [PMID: 37650137 DOI: 10.1152/japplphysiol.00593.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023] Open
Abstract
Following rupture, the anterior cruciate ligament (ACL) will not heal and therefore more than 400,000 surgical repairs are performed annually. Ligament engineering is one way to meet the increasing need for donor tissue to replace the native ligament; however, currently these tissues are too weak for this purpose. Treating engineered human ligaments with insulin-like growth factor-1 (IGF-1) improves the structure and function of these grafts. Since the anabolic effects of IGF-1 are largely mediated by rapamycin complex I (mTORC1), we used rapamycin to determine whether mTORC1 was necessary for the improvement in collagen content and mechanics of engineered ligaments. The effect of IGF-1 and rapamycin was determined independently and interactions between the two treatments were tested. Grafts were treated for 6 days before mechanical testing and analysis of collagen content. Following 8 days of treatment, mechanical properties increased 34% with IGF-1 and decreased 24.5% with rapamycin. Similarly, collagen content increased 63% with IGF-1 and decreased 36% with rapamycin. Interestingly, there was no interaction between IGF-1 and rapamycin, suggesting that IGF-1 was working in a largely mTORC1-independent manner. Acute treatment with IGF-1 did not alter procollagen synthesis in growth media, even though rapamycin decreased procollagen 55%. IGF-1 decreased collagen degradation 15%, whereas rapamycin increased collagen degradation 10%. Once again, there was no interaction between IGF-1 and rapamycin on collagen degradation. Together, these data suggest that growth factor-dependent increases in collagen synthesis are dependent on mTORC1 activity; however, IGF-1 improves human-engineered ligament mechanics and collagen content by decreasing collagen degradation in a rapamycin-independent manner. How the anticatabolic effects of IGF-1 are regulated have yet to be determined.NEW & NOTEWORTHY IGF-1 increases and rapamycin decreases mechanical and material properties of engineered human ligaments by regulating collagen content and concentration. There was no interaction between IGF-1 and rapamycin, suggesting that IGF-1 and rapamycin work independently. We found that IGF-1 improves collagen content by decreasing collagen degradation in a rapamycin-independent manner, whereas growth factor-dependent increases in collagen synthesis are blocked by rapamycin. These data may explain why interventions to increase IGF-1 have not helped rehabilitation.
Collapse
Affiliation(s)
- El Sayed El Essawy
- Department of Sport Psychology, Mansoura University, Mansoura, Egypt
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, United States
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, United States
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California, United States
- VA Northern California Health Care System, Mather, California, United States
| |
Collapse
|
83
|
Xu G, Chen J, Lu B, Sethupathy P, Qian WJ, Shalev A. Verapamil Prevents Decline of IGF-I in Subjects With Type 1 Diabetes and Promotes β-Cell IGF-I Signaling. Diabetes 2023; 72:1460-1469. [PMID: 37494660 PMCID: PMC10545554 DOI: 10.2337/db23-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Verapamil promotes functional β-cell mass and improves glucose homeostasis in diabetic mice and humans with type 1 diabetes (T1D). Now, our global proteomics analysis of serum from subjects with T1D at baseline and after 1 year of receiving verapamil or placebo revealed IGF-I as a protein with significantly changed abundance over time. IGF-I, which promotes β-cell survival and insulin secretion, decreased during disease progression, and this decline was blunted by verapamil. In addition, we found that verapamil reduces β-cell expression of IGF-binding protein 3 (IGFBP3), whereas IGFBP3 was increased in human islets exposed to T1D-associated cytokines and in diabetic NOD mouse islets. IGFBP3 binds IGF-I and blocks its downstream signaling, which has been associated with increased β-cell apoptosis and impaired glucose homeostasis. Consistent with the downregulation of IGFBP3, we have now discovered that verapamil increases β-cell IGF-I signaling and phosphorylation/activation of the IGF-I receptor (IGF1R). Moreover, we found that thioredoxin-interacting protein (TXNIP), a proapoptotic factor downregulated by verapamil, promotes IGFBP3 expression and inhibits the phosphorylation/activation of IGF1R. Thus, our results reveal IGF-I signaling as yet another previously unappreciated pathway affected by verapamil and TXNIP that may contribute to the beneficial verapamil effects in the context of T1D. ARTICLE HIGHLIGHTS Verapamil prevents the decline of IGF-I in subjects with type 1 diabetes (T1D). Verapamil decreases the expression of β-cell IGF-binding protein 3 (IGFBP3), whereas IGFBP3 is increased in human and mouse islets under T1D conditions. Verapamil promotes β-cell IGF-I signaling by increasing phosphorylation of IGF-I receptor and its downstream effector AKT. Thioredoxin-interacting protein (TXNIP) increases IGFBP3 expression and inhibits the phosphorylation/activation of IGF1R in β-cells. Regulation of IGFBP3 and IGF-I signaling by verapamil and TXNIP may contribute to the beneficial verapamil effects in the context of T1D.
Collapse
Affiliation(s)
- Guanlan Xu
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Junqin Chen
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Brian Lu
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Anath Shalev
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
84
|
Piau TB, de Queiroz Rodrigues A, Paulini F. Insulin-like growth factor (IGF) performance in ovarian function and applications in reproductive biotechnologies. Growth Horm IGF Res 2023; 72-73:101561. [PMID: 38070331 DOI: 10.1016/j.ghir.2023.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
The role of the insulin-like growth factor (IGF) system has attracted close attention. The activity of IGF binding proteins (IGFBPs) within the ovary has not been fully elucidated to date. These proteins bind to IGF with an equal, or greater, affinity than to the IGF1 receptor, thus being in the main position to regulate IGF signalling, in addition to extending the half-life of IGFs within the bloodstream and promoting IGF storage in specific tissue niches. IGF1 has an important part in cell proliferation, differentiation and apoptosis. Considering the importance of IGFs in oocyte maturation, this review sought to elucidate aspects including: IGF production mechanisms; constituent members of their family and their respective functions; the role that these factors play during folliculogenesis, together with their functions during oocyte maturation and apoptosis, and their performance during luteal development. This review also explores the role of IGFs in biotechnological applications, focusing specifically on animal genetic gain.
Collapse
Affiliation(s)
- Tathyana Benetis Piau
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil
| | - Aline de Queiroz Rodrigues
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil
| | - Fernanda Paulini
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
85
|
Bima A, Eldakhakhny B, Alamoudi AA, Awan Z, Alnami A, Abo-Elkhair SM, Sakr H, Ghoneim FM, Elsamanoudy A. Molecular Study of the Protective Effect of a Low-Carbohydrate, High-Fat Diet against Brain Insulin Resistance in an Animal Model of Metabolic Syndrome. Brain Sci 2023; 13:1383. [PMID: 37891752 PMCID: PMC10605073 DOI: 10.3390/brainsci13101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Brain insulin resistance is linked to metabolic syndrome (MetS). A low-carbohydrate, high-fat (LCHF) diet has been proposed to have a protective effect. Therefore, this study aimed to investigate the brain insulin resistance markers in a rat animal model of MetS and the protective effects of the LCHF diet. Four groups of male rats (10/group) were created. Group I (Control) was fed a regular diet. Groups II-IV were injected with dexamethasone (DEX) to induce MetS. Group II received DEX with a regular diet. Group III (DEX + LCHF) rates were fed a low-carbohydrate, high-fat diet, while Group IV (DEX + HCLF) rats were fed a high-carbohydrate, low-fat (HCLF) diet. At the end of the four-week experiment, HOMA-IR was calculated. Moreover, cerebral gene expression analysis of S-100B, BDNF, TNF-α, IGF-1, IGF-1 R, IGFBP-2, IGFBP-5, Bax, Bcl-2, and caspase-3 was carried out. In the DEX group, rats showed a significant increase in the HOMA-IR and a decrease in the gene expression of IGF-1, IGF-1 R, IGFBP-2, IGFBP-5, BDNF, and Bcl2, with a concomitant rise in S100B, TNF-α, Bax, and caspase-3. The LCHF diet group showed a significantly opposite effect on all parameters. In conclusion, MetS is associated with dysregulated cerebral gene expression of BDNF, S100B, and TNF-α and disturbed IGF-1 signaling, with increased apoptosis and neuroinflammation. Moreover, the LCHF diet showed a protective effect, as evidenced by preservation of the investigated biochemical and molecular parameters.
Collapse
Affiliation(s)
- Abdulhadi Bima
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
| | - Basmah Eldakhakhny
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
- Food, Nutrition, and Lifestyle Research Unit, King Fahd for Medical Research Centre, King Abdulaziz University, Jeddah 21465, Saudi Arabia
| | - Aliaa A. Alamoudi
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
| | - Zuhier Awan
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
| | - Abrar Alnami
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
| | - Salwa Mohamed Abo-Elkhair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Hussein Sakr
- Physiology Department, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman;
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Fatma Mohamed Ghoneim
- Faculty Development Unit, Physiological Science and Medical Education Department, Fakeeh College for Medical Sciences, Jeddah 23323, Saudi Arabia;
| | - Ayman Elsamanoudy
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
86
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
87
|
Negrea MO, Neamtu B, Costea R, Teodoru M, Domnariu C. IGF-1 Levels are Dependent on Age, but Not Weight Status in Children. MAEDICA 2023; 18:395-398. [PMID: 38023764 PMCID: PMC10674113 DOI: 10.26574/maedica.2023.18.3.395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Introduction: The intersecting pathways involved in linear growth, glucose, and lipid metabolism may play a key part in the imbalances leading to the dysmetabolic changes observed in obese children, and later adults. The growth-hormone/insulin growth factor 1 (GH/IGF-1) axis is a prime example in this regard and IGF-1 levels have been shown to correlate with insulin resistance. Objectives: The aim of this study is to examine whether there is a relationship between circulating IGF levels and weight status in children as an independent relationship, regardless of insulin sensitivity. Materials and method: We retrospectively collected data from patients aged 5-12 years referred to the Pediatric Clinical Hospital Sibiu between January 2010 and May 2023, for which IGF-1 levels were documented. We excluded patients with pathologies or medication which could have influenced weight status, glucose and lipid metabolism, or growth hormone secretion, and those with short stature or a growth velocity of under 5 cm a year. Anthropometric measurements were retrieved and BMI Z-score was calculated. Results: Our study included 66 patients (32 females and 34 males) with a mean age of 100,09 months (SD: 24,754 months). Initial bivariate analysis showed a significant negative correlation between BMI Z-score and IGF-1 values. However, adjusting for age indicated that there was in fact no significant relationship between these two parameters. Insulin-like growth factor 1 levels did however vary significantly with patient age. Conclusions: Levels of IGF-1 showed an age-dependent variation which should be accounted for in data analysis. Our study found no correlation between weight status and IGF-1 levels when adjusting for age-dependent variation. Further studies may shed light on the possible role of IGF-1 in discerning between obese children with or without increased insulin resistance.
Collapse
Affiliation(s)
- Mihai Octavian Negrea
- Faculty of Medicine, Lucian Blaga University, 550024 Sibiu, Romania
- County Clinical Emergency Hospital of Sibiu, 2-4 Corneliu Coposu Str., 550245 Sibiu, Romania
| | - Bogdan Neamtu
- Faculty of Medicine, Lucian Blaga University, 550024 Sibiu, Romania
- Research and Telemedicine Center for Neurological Diseases in Children, Pediatric Clinical Hospital Sibiu, 550166 Sibiu, Romania
| | - Raluca Costea
- Research and Telemedicine Center for Neurological Diseases in Children, Pediatric Clinical Hospital Sibiu, 550166 Sibiu, Romania
| | - Minodora Teodoru
- Faculty of Medicine, Lucian Blaga University, 550024 Sibiu, Romania
- County Clinical Emergency Hospital of Sibiu, 2-4 Corneliu Coposu Str., 550245 Sibiu, Romania
| | - Carmen Domnariu
- Faculty of Medicine, Lucian Blaga University, 550024 Sibiu, Romania
| |
Collapse
|
88
|
Thompson D, Odufuwa AE, Brissette CA, Watt JA. Transcriptome and methylome of the supraoptic nucleus provides insights into the age-dependent loss of neuronal plasticity. Front Aging Neurosci 2023; 15:1223273. [PMID: 37711995 PMCID: PMC10498476 DOI: 10.3389/fnagi.2023.1223273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
The age-dependent loss of neuronal plasticity is a well-known phenomenon that is poorly understood. The loss of this capacity for axonal regeneration is emphasized following traumatic brain injury, which is a major cause of disability and death among adults in the US. We have previously shown the intrinsic capacity of magnocellular neurons within the supraoptic nucleus to undergo axonal regeneration following unilateral axotomization in an age-dependent manner. The aim of this research was to determine the age-dependent molecular mechanisms that may underlie this phenomenon. As such, we characterized the transcriptome and DNA methylome of the supraoptic nucleus in uninjured 35-day old rats and 125-day old rats. Our data indicates the downregulation of a large number of axonogenesis related transcripts in 125-day old rats compared to 35-day old rats. Specifically, several semaphorin and ephrin genes were downregulated, as well as growth factors including FGF's, insulin-like growth factors (IGFs), and brain-derived neurotrophic factor (BDNF). Differential methylation analysis indicates enrichment of biological processes involved in axonogenesis and axon guidance. Conversely, we observed a robust and specific upregulation of MHCI related transcripts. This may involve the activator protein 1 (AP-1) transcription factor complex as motif analysis of differentially methylated regions indicate enrichment of AP-1 binding sites in hypomethylated regions. Together, our data suggests a loss of pro-regenerative capabilities with age which would prevent axonal growth and appropriate innervation following injury.
Collapse
Affiliation(s)
| | | | | | - John A. Watt
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
89
|
Wong SK, Mohamad NV, Jayusman PA, Ibrahim N‘I. A Review on the Crosstalk between Insulin and Wnt/β-Catenin Signalling for Bone Health. Int J Mol Sci 2023; 24:12441. [PMID: 37569816 PMCID: PMC10419059 DOI: 10.3390/ijms241512441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
A positive association between insulin resistance and osteoporosis has been widely established. However, crosstalk between the signalling molecules in insulin and Wingless (Wnt)/beta-(β-)catenin transduction cascades orchestrating bone homeostasis remains not well understood. The current review aims to collate the existing evidence, reporting (a) the expression of insulin signalling molecules involved in bone-related disorders and (b) the expression of Wnt/β-catenin signalling molecules involved in governing insulin homeostasis. The downstream effector molecule, glycogen synthase kinase-3 beta (GSK3β), has been identified to be a point of convergence linking the two signal transduction networks. This review highlights that GSK3β may be a drug target in the development of novel anabolic agents and the potential use of GSK3β inhibitors to treat bone-related disorders.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Nur Vaizura Mohamad
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Nurul ‘Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
90
|
Nuñez A, Zegarra-Valdivia J, Fernandez de Sevilla D, Pignatelli J, Torres Aleman I. The neurobiology of insulin-like growth factor I: From neuroprotection to modulation of brain states. Mol Psychiatry 2023; 28:3220-3230. [PMID: 37353586 DOI: 10.1038/s41380-023-02136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
After decades of research in the neurobiology of IGF-I, its role as a prototypical neurotrophic factor is undisputed. However, many of its actions in the adult brain indicate that this growth factor is not only involved in brain development or in the response to injury. Following a three-layer assessment of its role in the central nervous system, we consider that at the cellular level, IGF-I is indeed a bona fide neurotrophic factor, modulating along ontogeny the generation and function of all the major types of brain cells, contributing to sculpt brain architecture and adaptive responses to damage. At the circuit level, IGF-I modulates neuronal excitability and synaptic plasticity at multiple sites, whereas at the system level, IGF-I intervenes in energy allocation, proteostasis, circadian cycles, mood, and cognition. Local and peripheral sources of brain IGF-I input contribute to a spatially restricted, compartmentalized, and timed modulation of brain activity. To better define these variety of actions, we consider IGF-I a modulator of brain states. This definition aims to reconcile all aspects of IGF-I neurobiology, and may provide a new conceptual framework in the design of future research on the actions of this multitasking neuromodulator in the brain.
Collapse
Affiliation(s)
- A Nuñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED, Madrid, Spain
- Universidad Señor de Sipán, Chiclayo, Perú
| | - D Fernandez de Sevilla
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Pignatelli
- CIBERNED, Madrid, Spain
- Cajal Institute (CSIC), Madrid, Spain
| | - I Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- CIBERNED, Madrid, Spain.
- Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
91
|
Martinez BA, Gill MS. The C. elegans truncated insulin receptor DAF-2B regulates survival of L1 arrested larvae. PLoS One 2023; 18:e0288764. [PMID: 37471418 PMCID: PMC10358897 DOI: 10.1371/journal.pone.0288764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
We have previously characterized a truncated isoform of the C. elegans insulin-like receptor, DAF-2B, which retains the ligand binding domain but cannot transduce a signal due to the absence of the intracellular signaling domain. DAF-2B modifies insulin / insulin-like growth factor signaling-dependent processes, such as dauer formation and lifespan, by sequestering insulin-like peptides (ILP) and preventing signaling through full length DAF-2 receptors. Here we show that DAF-2B is also important for starvation resistance, as genetic loss of daf-2b reduces survival in arrested first stage larvae (L1). Under fed conditions, we observe daf-2b splicing capacity in both the intestine and the hypodermis, but in starved L1s this becomes predominantly hypodermal. Using a novel splicing reporter system, we observe an increase in the ratio of truncated to full length insulin receptor splicing capacity in starved L1 larvae compared with fed, that may indicate a decrease in whole body insulin responsiveness. Consistent with this, overexpression of DAF-2B from the hypodermis, but not the intestine, confers increased survival to L1 animals under starvation conditions. Our findings demonstrate that the truncated insulin receptor DAF-2B is involved in the response to L1 starvation and promotes survival when expressed from the hypodermis.
Collapse
Affiliation(s)
- Bryan A. Martinez
- Institute on the Biology of Aging and Metabolism and the Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| | - Matthew S. Gill
- Institute on the Biology of Aging and Metabolism and the Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
92
|
Conway JRW, Dinç DD, Follain G, Paavolainen O, Kaivola J, Boström P, Hartiala P, Peuhu E, Ivaska J. IGFBP2 secretion by mammary adipocytes limits breast cancer invasion. SCIENCE ADVANCES 2023; 9:eadg1840. [PMID: 37436978 DOI: 10.1126/sciadv.adg1840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The progression of noninvasive ductal carcinoma in situ to invasive ductal carcinoma for patients with breast cancer results in a significantly poorer prognosis and is the precursor to metastatic disease. In this work, we have identified insulin-like growth factor-binding protein 2 (IGFBP2) as a potent adipocrine factor secreted by healthy breast adipocytes that acts as a barrier against invasive progression. In line with this role, adipocytes differentiated from patient-derived stromal cells were found to secrete IGFBP2, which significantly inhibited breast cancer invasion. This occurred through binding and sequestration of cancer-derived IGF-II. Moreover, depletion of IGF-II in invading cancer cells using small interfering RNAs or an IGF-II-neutralizing antibody ablated breast cancer invasion, highlighting the importance of IGF-II autocrine signaling for breast cancer invasive progression. Given the abundance of adipocytes in the healthy breast, this work exposes the important role they play in suppressing cancer progression and may help expound upon the link between increased mammary density and poorer prognosis.
Collapse
Affiliation(s)
- James R W Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Defne D Dinç
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Institute of Biomedicine, and Cancer Research Laboratory FICAN West, University of Turku, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
| | - Gautier Follain
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Oona Paavolainen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Institute of Biomedicine, and Cancer Research Laboratory FICAN West, University of Turku, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Pia Boström
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; University of Turku, 20520 Turku, Finland
| | - Pauliina Hartiala
- Department of Plastic and General Surgery, Turku University Hospital, 20520 Turku, Finland
- Medicity Research Laboratory, InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Emilia Peuhu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Institute of Biomedicine, and Cancer Research Laboratory FICAN West, University of Turku, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014 Helsinki, Finland
| |
Collapse
|
93
|
Mohebi R, Liu Y, Hansen MK, Yavin Y, Sattar N, Pollock CA, Butler J, Jardine M, Masson S, Heerspink HJL, Januzzi JL. Insulin growth factor axis and cardio-renal risk in diabetic kidney disease: an analysis from the CREDENCE trial. Cardiovasc Diabetol 2023; 22:176. [PMID: 37438734 DOI: 10.1186/s12933-023-01916-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND The insulin-like growth factors (IGF) play a crucial role in regulating cellular proliferation, apoptosis, and key metabolic pathways. The ratio of IGF-1 to IGF binding protein-3 (IGFBP-3) is an important factor in determining IGF-1 bioactivity. We sought to investigate the association of IGF-1 and IGFBP-3 with cardio-renal outcomes among persons with type 2 diabetes. METHODS Samples were available from 2627 individuals with type 2 diabetes and chronic kidney disease that were randomized to receive canagliflozin or placebo and were followed up for incident cardio-renal events. Primary outcome was defined as a composite of end-stage kidney disease, doubling of the serum creatinine level, or renal/cardiovascular death. IGF-1 and IGFBP-3 were measured at baseline, Year-1 and Year-3. Elevated IGF-1 level was defined according to age-specific cutoffs. Cox proportional hazard regression was used to investigate the association between IGF-1 level, IGFBP-3, and the ratio of IGF-1/IGFBP-3 with clinical outcomes. RESULTS Elevated IGF-1 was associated with lower glomerular filtration rate at baseline. Treatment with canagliflozin did not significantly change IGF-1 and IGFBP-3 concentrations by 3 years (p-value > 0.05). In multivariable models, elevated IGF-1 (above vs below age-specific cutoffs) was associated with the primary composite outcome (incidence rate:17.8% vs. 12.7% with a hazard ratio [HR]: 1.52; 95% confidence interval CI 1.09-2.13;P: 0.01), renal composite outcome (HR: 1.65; 95% CI 1.14-2.41; P: 0.01), and all-cause mortality (HR: 1.52; 95% CI 1.00-2.32; P; 0.05). Elevations in log IGFBP-3 did not associate with any clinical outcomes. Increase in log IGF-1/IGFBP-3 ratio was also associated with a higher risk of the primary composite outcome (HR per unit increase: 1.57; 95% CI 1.09-2.26; P; 0.01). CONCLUSIONS These results further suggest potential importance of IGF biology in the risk for cardio-renal outcomes in type 2 diabetes. SGLT2 inhibition has no impact on the biology of IGF despite its significant influence on outcomes. TRIAL REGISTRATION CREDENCE; ClinicalTrials.gov Identifier: NCT02065791.
Collapse
Affiliation(s)
- Reza Mohebi
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Yuxi Liu
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Michael K Hansen
- Janssen Research Development, LLC, Spring House, Montgomery, PA, USA
| | - Yshai Yavin
- Janssen Research Development, LLC, Spring House, Montgomery, PA, USA
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Carol A Pollock
- Kolling Institute, Royal North Shore Hospital University of Sydney, Sydney, NSW, Australia
| | - Javed Butler
- University of Mississippi Medical Center, Jackson, MS, USA
- Baylor Scott & White Institute, Dallas, TX, USA
| | - Meg Jardine
- The George Institute for Global Health, UNSW Sydney, Sydney, NSW, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- Concord Repatriation General Hospital, Sydney, NSW, Australia
| | - Serge Masson
- Roche Diagnostics International, Rotkreuz, Switzerland
| | - Hiddo J L Heerspink
- Department Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, The Netherlands
| | - James L Januzzi
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
- Heart Failure and Biomarker Trials, Baim Institute for Clinical Research, Boston, MA, USA.
| |
Collapse
|
94
|
Niedra H, Konrade I, Peculis R, Isajevs S, Saksis R, Skapars R, Sivins A, Daukste BE, Mezaka D, Rovite V. Solitary fibrous tumor with IGF-II-induced non-islet cell tumor hypoglycemia: a case report and molecular characterization by next-generation sequencing. Front Oncol 2023; 13:1188579. [PMID: 37469410 PMCID: PMC10352493 DOI: 10.3389/fonc.2023.1188579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Background Non-islet cell tumor-induced hypoglycemia (NICTH) is a rare, life-threatening medical condition caused by excessive insulin-like growth factor II (IGF-II) secretion from tumors of most commonly mesenchymal origin. Using next-generation sequencing, we have characterized the genome and transcriptome of the resected IGF-II-secreting solitary fibrous tumor from a patient with severe hypoglycemia accompanied by hypoglycemia unawareness. Case presentation A 69-year-old male patient presenting with abdominal discomfort was examined using computer tomography, revealing a large lesion at the lesser pelvis extending above the umbilicus. As no bone and lymph node metastases were detected, the patient was scheduled for laparotomy. Before surgery, the patient presented with symptoms of severe hypoglycemia. Suppressed C-peptide levels and subsequent hypokalemia indicated a possible case of NICTH. The patient was treated with methylprednisolone (8 mg) to assess hypoglycemia. After the surgery, mild hypoglycemia was present for the postoperative period, and no radiological recurrences were observed 3 and 12 months after discharge. Histopathological examination results were consistent with the diagnosis of malignant solitary fibrous tumor (SFT). Overexpression of IGF-II was confirmed by both immunohistochemistry and RNA sequencing. Further NGS analysis revealed an SFT characteristic alteration-NAB2-STAT6 fusion. Additionally, three deleterious missense variants were detected in oncogenes BIRC6, KIT, and POLQ, and one homozygous in-frame deletion in the RBM10 tumor suppressor gene. Conclusion While the NAB2-STAT6 fusions are well characterized, the mutational landscape of SFTs remains understudied. This study reports the importance of NGS to characterize SFTs as we detected four coding variants in genes (BIRC6, KIT, POLQ, and RBM10) associated with tumorigenesis that could potentially contribute to the overall pathogenesis of SFT.
Collapse
Affiliation(s)
- Helvijs Niedra
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ilze Konrade
- RigaEast Clinical University Hospital, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Raitis Peculis
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Rihards Saksis
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | - Dace Mezaka
- RigaEast Clinical University Hospital, Riga, Latvia
| | - Vita Rovite
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
95
|
Oxvig C, Conover CA. The Stanniocalcin-PAPP-A-IGFBP-IGF Axis. J Clin Endocrinol Metab 2023; 108:1624-1633. [PMID: 36718521 DOI: 10.1210/clinem/dgad053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
The pappalysin metalloproteinases, PAPP-A and PAPP-A2, have emerged as highly specific proteolytic enzymes involved in the regulation of insulin-like growth factor (IGF) signaling. The only known pappalysin substrates are a subset of the IGF binding proteins (IGFBPs), which bind IGF-I or IGF-II with high affinity to antagonize receptor binding. Thus, by cleaving IGFBPs, the pappalysins have the potential to increase IGF bioactivity and hence promote IGF signaling. This is relevant both in systemic and local IGF regulation, in normal and several pathophysiological conditions. Stanniocalcin-1 and -2 were recently found to be potent pappalysin inhibitors, thus comprising the missing components of a complete proteolytic system, the stanniocalcin-PAPP-A-IGFBP-IGF axis. Here, we provide the biological context necessary for understanding the properties of this molecular network, and we review biochemical data, animal experiments, clinical data, and genetic data supporting the physiological operation of this branch as an important part of the IGF system. However, although in vivo data clearly illustrate its power, it is a challenge to understand its subtle operation, for example, multiple equilibria and inhibitory kinetics may determine how, where, and when the IGF receptor is stimulated. In addition, literally all of the regulatory proteins have suspected or known activities that are not directly related to IGF signaling. How such activities may integrate with IGF signaling is also important to address in the future.
Collapse
Affiliation(s)
- Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 C, Aarhus, Denmark
| | - Cheryl A Conover
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
96
|
Wade H, Pan K, Duan Q, Kaluzny S, Pandey E, Fatumoju L, Saraswathi V, Wu R, Harris EN, Su Q. Akkermansia muciniphila and its membrane protein ameliorates intestinal inflammatory stress and promotes epithelial wound healing via CREBH and miR-143/145. J Biomed Sci 2023; 30:38. [PMID: 37287024 PMCID: PMC10249216 DOI: 10.1186/s12929-023-00935-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND The intestinal epithelial barrier is the interface for interaction between gut microbiota and host metabolic systems. Akkermansia muciniphila (A. muciniphila) is a key player in the colonic microbiota that resides in the mucus layer, whose abundance is selectively decreased in the faecal microbiota of inflammatory bowel disease (IBD) patients. This study aims to investigate the regulatory mechanism among A. muciniphila, a transcription factor cAMP-responsive element-binding protein H (CREBH), and microRNA-143/145 (miR-143/145) in intestinal inflammatory stress, gut barrier integrity and epithelial regeneration. METHODS A novel mouse model with increased colonization of A muciniphila in the intestine of CREBH knockout mice, an epithelial wound healing assay and several molecular biological techniques were applied in this study. Results were analysed using a homoscedastic 2-tailed t-test. RESULTS Increased colonization of A. muciniphila in mouse gut enhanced expression of intestinal CREBH, which was associated with the mitigation of intestinal endoplasmic reticulum (ER) stress, gut barrier leakage and blood endotoxemia induced by dextran sulfate sodium (DSS). Genetic depletion of CREBH (CREBH-KO) significantly inhibited the expression of tight junction proteins that are associated with gut barrier integrity, including Claudin5 and Claudin8, but upregulated Claudin2, a tight junction protein that enhances gut permeability, resulting in intestinal hyperpermeability and inflammation. Upregulation of CREBH by A. muciniphila further coupled with miR-143/145 promoted intestinal epithelial cell (IEC) regeneration and wound repair via insulin-like growth factor (IGF) and IGFBP5 signalling. Moreover, the gene expressing an outer membrane protein of A. muciniphila, Amuc_1100, was cloned into a mammalian cell-expression vector and successfully expressed in porcine and human IECs. Expression of Amuc_1100 in IECs could recapitulate the health beneficial effect of A. muciniphila on the gut by activating CREBH, inhibiting ER stress and enhancing the expression of genes involved in gut barrier integrity and IEC's regeneration. CONCLUSIONS This study uncovers a novel mechanism that links A. muciniphila and its membrane protein with host CREBH, IGF signalling and miRNAs in mitigating intestinal inflammatory stress-gut barrier permeability and promoting intestinal wound healing. This novel finding may lend support to the development of therapeutic approaches for IBD by manipulating the interaction between host genes, gut bacteria and its bioactive components.
Collapse
Affiliation(s)
- Henry Wade
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Kaichao Pan
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, USA
| | - Qihua Duan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Szczepan Kaluzny
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Ekta Pandey
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Linda Fatumoju
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | | | - Rongxue Wu
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, USA
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK.
| |
Collapse
|
97
|
Furusaka Y, Inoue S, Mizoguchi I, Hasegawa H, Katahira Y, Watanabe A, Sakamoto E, Sekine A, Miyakawa S, Umezu T, Owaki T, Yoneto T, Yoshimoto T. Potent antitumor effects of the conditioned medium of bone marrow-derived mesenchymal stem cells via IGFBP-4. Cancer Sci 2023; 114:2499-2514. [PMID: 36942841 PMCID: PMC10486206 DOI: 10.1111/cas.15789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Cell transfer therapy using mesenchymal stem cells (MSCs) has pronounced therapeutic potential, but concerns remain about immune rejection, emboli formation, and promotion of tumor progression. Because the mode of action of MSCs highly relies on their paracrine effects through secretion of bioactive molecules, cell-free therapy using the conditioned medium (CM) of MSCs is an attractive option. However, the effects of MSC-CM on tumor progression have not been fully elucidated. Herein, we addressed this issue and investigated the possible underlying molecular mechanisms. The CM of MSCs derived from human bone marrow greatly inhibited the in vitro growth of several human tumor cell lines and the in vivo growth of the SCCVII murine squamous cell carcinoma cell line with reduced neovascularization. Exosomes in the MSC-CM were only partially involved in the inhibitory effects. The CM contained a variety of cytokines including insulin-like growth factor binding proteins (IGFBPs). Among them, IGFBP-4 greatly inhibited the in vitro growth of these tumors and angiogenesis, and immunodepletion of IGFBP-4 from the CM significantly reversed these effects. Of note, the CM greatly reduced the phosphorylation of AKT, ERK, IGF-1 receptor beta, and p38 MAPK in a partly IGFBP4-dependent manner, possibly through its binding to IGF-1/2 and blocking the signaling. The CM depleted of IGFBP-4 also reversed the inhibitory effects on in vivo tumor growth and neovascularization. Thus, MSC-CM has potent inhibitory effects on tumor growth and neovascularization in an IGFBP4-dependent manner, suggesting that cell-free therapy using MSC-CM could be a safer promising alternative for even cancer patients.
Collapse
Affiliation(s)
- Yuma Furusaka
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical University6‐1‐1 Shinjuku, Shinjuku‐kuTokyo160‐8402Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical University6‐1‐1 Shinjuku, Shinjuku‐kuTokyo160‐8402Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical University6‐1‐1 Shinjuku, Shinjuku‐kuTokyo160‐8402Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical University6‐1‐1 Shinjuku, Shinjuku‐kuTokyo160‐8402Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical University6‐1‐1 Shinjuku, Shinjuku‐kuTokyo160‐8402Japan
| | - Aruma Watanabe
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical University6‐1‐1 Shinjuku, Shinjuku‐kuTokyo160‐8402Japan
| | - Eri Sakamoto
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical University6‐1‐1 Shinjuku, Shinjuku‐kuTokyo160‐8402Japan
| | - Ami Sekine
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical University6‐1‐1 Shinjuku, Shinjuku‐kuTokyo160‐8402Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical University6‐1‐1 Shinjuku, Shinjuku‐kuTokyo160‐8402Japan
| | - Tomohiro Umezu
- Department of Molecular PathologyTokyo Medical University6‐1‐1 Shinjuku, Shinjuku‐kuTokyo160‐8402Japan
| | - Toshiyuki Owaki
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical University6‐1‐1 Shinjuku, Shinjuku‐kuTokyo160‐8402Japan
| | - Toshihiko Yoneto
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical University6‐1‐1 Shinjuku, Shinjuku‐kuTokyo160‐8402Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical University6‐1‐1 Shinjuku, Shinjuku‐kuTokyo160‐8402Japan
| |
Collapse
|
98
|
Feng H, Wang X, Zhou H, Mai K, He G, Liu C. Involvement of insulin-like growth factor binding proteins (IGFBPs) and activation of insulin/IGF-like signaling (IIS)-target of rapamycin (TOR) signaling cascade in pacific white shrimp, Litopenaeus vannamei exposed to acute low-salinity. AQUACULTURE REPORTS 2023; 30:101627. [DOI: 10.1016/j.aqrep.2023.101627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
99
|
Åberg D, Gadd G, Jood K, Redfors P, Stanne TM, Isgaard J, Blennow K, Zetterberg H, Jern C, Åberg ND, Svensson J. Serum IGFBP-1 Concentration as a Predictor of Outcome after Ischemic Stroke-A Prospective Observational Study. Int J Mol Sci 2023; 24:ijms24119120. [PMID: 37298072 DOI: 10.3390/ijms24119120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Insulin-like growth factor-binding protein-1 (IGFBP-1) regulates insulin-like growth factor-I (IGF-I) bioactivity, and is a central player in normal growth, metabolism, and stroke recovery. However, the role of serum IGFBP-1 (s-IGFBP-1) after ischemic stroke is unclear. We determined whether s-IGFBP-1 is predictive of poststroke outcome. The study population comprised patients (n = 470) and controls (n = 471) from the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS). Functional outcome was evaluated after 3 months, 2, and 7 years using the modified Rankin Scale (mRS). Survival was followed for a minimum of 7 years or until death. S-IGFBP-1 was increased after 3 months (p < 0.01), but not in the acute phase after stroke, compared with the controls. Higher acute s-IGFBP-1 was associated with poor functional outcome (mRS score > 2) after 7 years [fully adjusted odds ratio (OR) per log increase 2.9, 95% confidence interval (CI): 1.4-5.9]. Moreover, higher s-IGFBP-1 after 3 months was associated with a risk of poor functional outcome after 2 and 7 years (fully adjusted: OR 3.4, 95% CI: 1.4-8.5 and OR 5.7, 95% CI: 2.5-12.8, respectively) and with increased mortality risk (fully adjusted: HR 2.0, 95% CI: 1.1-3.7). Thus, high acute s-IGFBP-1 was only associated with poor functional outcome after 7 years, whereas s-IGFBP-1 after 3 months was an independent predictor of poor long-term functional outcome and poststroke mortality.
Collapse
Affiliation(s)
- Daniel Åberg
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 5, 413 45 Gothenburg, Sweden
- Region Västra Götaland, Department of Specialist Medicine, Sahlgrenska University Hospital, Blå Stråket 5, 413 45 Gothenburg, Sweden
| | - Gustaf Gadd
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 5, 413 45 Gothenburg, Sweden
- Region Västra Götaland, Department of Acute Medicine and Geriatrics, Sahlgrenska University Hospital, Blå Stråket 5, 413 45 Gothenburg, Sweden
| | - Katarina Jood
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Blå Stråket 5, 413 45 Gothenburg, Sweden
| | - Petra Redfors
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Blå Stråket 5, 413 45 Gothenburg, Sweden
| | - Tara M Stanne
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jörgen Isgaard
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 5, 413 45 Gothenburg, Sweden
- Region Västra Götaland, Department of Specialist Medicine, Sahlgrenska University Hospital, Blå Stråket 5, 413 45 Gothenburg, Sweden
| | - Kaj Blennow
- Region Västra Götaland, Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
| | - Henrik Zetterberg
- Region Västra Götaland, Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London (UCL), London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706-1380, USA
| | - Christina Jern
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Region Västra Götaland, Department of Genetics and Genomics, Sahlgrenska University Hospital, Blå Stråket 5, 413 45 Gothenburg, Sweden
| | - N David Åberg
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 5, 413 45 Gothenburg, Sweden
- Region Västra Götaland, Department of Acute Medicine and Geriatrics, Sahlgrenska University Hospital, Blå Stråket 5, 413 45 Gothenburg, Sweden
| | - Johan Svensson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 5, 413 45 Gothenburg, Sweden
- Region Västra Götaland, Department of Internal Medicine, Skaraborg Central Hospital, 541 42 Skövde, Sweden
| |
Collapse
|
100
|
Moreira LR, Smith BT. Convergent genomic signatures of local adaptation across a continental-scale environmental gradient. SCIENCE ADVANCES 2023; 9:eadd0560. [PMID: 37205757 PMCID: PMC10198635 DOI: 10.1126/sciadv.add0560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 04/17/2023] [Indexed: 05/21/2023]
Abstract
Convergent local adaptation offers a glimpse into the role of constraint and stochasticity in adaptive evolution, in particular the extent to which similar genetic mechanisms drive adaptation to common selective forces. Here, we investigated the genomics of local adaptation in two nonsister woodpeckers that are codistributed across an entire continent and exhibit remarkably convergent patterns of geographic variation. We sequenced the genomes of 140 individuals of Downy (Dryobates pubescens) and Hairy (Dryobates villosus) woodpeckers and used a suite of genomic approaches to identify loci under selection. We showed evidence that convergent genes have been targeted by selection in response to shared environmental pressures, such as temperature and precipitation. Among candidates, we found multiple genes putatively linked to key phenotypic adaptations to climate, including differences in body size (e.g., IGFPB) and plumage (e.g., MREG). These results are consistent with genetic constraints limiting the pathways of adaptation to broad climatic gradients, even after genetic backgrounds diverge.
Collapse
Affiliation(s)
- Lucas R. Moreira
- Department of Ecology, Evolution and Environmental Biology, Columbia University, NY, USA
- Department of Ornithology, American Museum of Natural History, New York City, NY, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York City, NY, USA
| |
Collapse
|