51
|
Pereira F, Fernández-Barral A, Larriba MJ, Barbáchano A, González-Sancho JM. From molecular basis to clinical insights: a challenging future for the vitamin D endocrine system in colorectal cancer. FEBS J 2024; 291:2485-2518. [PMID: 37699548 DOI: 10.1111/febs.16955] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Colorectal cancer (CRC) is one of the most life-threatening neoplasias in terms of incidence and mortality worldwide. Vitamin D deficiency has been associated with an increased risk of CRC. 1α,25-Dihydroxyvitamin D3 [1,25(OH)2D3], the most active vitamin D metabolite, is a pleiotropic hormone that, through its binding to a transcription factor of the nuclear receptor superfamily, is a major regulator of the human genome. 1,25(OH)2D3 acts on colon carcinoma and stromal cells and displays tumor protective actions. Here, we review the variety of molecular mechanisms underlying the effects of 1,25(OH)2D3 in CRC, which affect multiple processes that are dysregulated during tumor initiation and progression. Additionally, we discuss the epidemiological data that associate vitamin D deficiency and CRC, and the most relevant randomized controlled trials of vitamin D3 supplementation conducted in both healthy individuals and CRC patients.
Collapse
Affiliation(s)
- Fábio Pereira
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Ourense, Spain
| | - Asunción Fernández-Barral
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - Antonio Barbáchano
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - José Manuel González-Sancho
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
52
|
Chaudhary PP, Kaur M, Myles IA. Does "all disease begin in the gut"? The gut-organ cross talk in the microbiome. Appl Microbiol Biotechnol 2024; 108:339. [PMID: 38771520 PMCID: PMC11108886 DOI: 10.1007/s00253-024-13180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
The human microbiome, a diverse ecosystem of microorganisms within the body, plays pivotal roles in health and disease. This review explores site-specific microbiomes, their role in maintaining health, and strategies for their upkeep, focusing on oral, lung, vaginal, skin, and gut microbiota, and their systemic connections. Understanding the intricate relationships between these microbial communities is crucial for unraveling mechanisms underlying human health. Recent research highlights bidirectional communication between the gut and distant microbiome sites, influencing immune function, metabolism, and disease susceptibility. Alterations in one microbiome can impact others, emphasizing their interconnectedness and collective influence on human physiology. The therapeutic potential of gut microbiota in modulating distant microbiomes offers promising avenues for interventions targeting various disorders. Through interdisciplinary collaboration and technological advancements, we can harness the power of the microbiome to revolutionize healthcare, emphasizing microbiome-centric approaches to promote holistic well-being while identifying areas for future research.
Collapse
Affiliation(s)
- Prem Prashant Chaudhary
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mahaldeep Kaur
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ian A Myles
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
53
|
Wu QL, Fang XT, Wan XX, Ding QY, Zhang YJ, Ji L, Lou YL, Li X. Fusobacterium nucleatum-induced imbalance in microbiome-derived butyric acid levels promotes the occurrence and development of colorectal cancer. World J Gastroenterol 2024; 30:2018-2037. [PMID: 38681125 PMCID: PMC11045493 DOI: 10.3748/wjg.v30.i14.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 02/29/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) ranks among the most prevalent malignant tumors globally. Recent reports suggest that Fusobacterium nucleatum (F. nucleatum) contributes to the initiation, progression, and prognosis of CRC. Butyrate, a short-chain fatty acid derived from the bacterial fermentation of soluble dietary fiber, is known to inhibit various cancers. This study is designed to explore whether F. nucleatum influences the onset and progression of CRC by impacting the intestinal metabolite butyric acid. AIM To investigate the mechanism by which F. nucleatum affects CRC occurrence and development. METHODS Alterations in the gut microbiota of BALB/c mice were observed following the oral administration of F. nucleatum. Additionally, DLD-1 and HCT116 cell lines were exposed to sodium butyrate (NaB) and F. nucleatum in vitro to examine the effects on proliferative proteins and mitochondrial function. RESULTS Our research indicates that the prevalence of F. nucleatum in fecal samples from CRC patients is significantly greater than in healthy counterparts, while the prevalence of butyrate-producing bacteria is notably lower. In mice colonized with F. nucleatum, the population of butyrate-producing bacteria decreased, resulting in altered levels of butyric acid, a key intestinal metabolite of butyrate. Exposure to NaB can impair mitochondrial morphology and diminish mitochondrial membrane potential in DLD-1 and HCT116 CRC cells. Consequently, this leads to modulated production of adenosine triphosphate and reactive oxygen species, thereby inhibiting cancer cell proliferation. Additionally, NaB triggers the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, blocks the cell cycle in HCT116 and DLD-1 cells, and curtails the proliferation of CRC cells. The combined presence of F. nucleatum and NaB attenuated the effects of the latter. By employing small interfering RNA to suppress AMPK, it was demonstrated that AMPK is essential for NaB's inhibition of CRC cell proliferation. CONCLUSION F. nucleatum can promote cancer progression through its inhibitory effect on butyric acid, via the AMPK signaling pathway.
Collapse
Affiliation(s)
- Qi-Long Wu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou 325035, Zhejiang Province, China
| | - Xiao-Ting Fang
- Department of Health Inspection and Quarantine, School of Laboratory Medicine and Life Sciences, Wenzhou 325035, Zhejiang Province, China
| | - Xin-Xin Wan
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Medical Genetics, Ministry of Education, Wenzhou 325035, Zhejiang Province, China
| | - Qing-Yong Ding
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Medical Genetics, Ministry of Education, Wenzhou 325035, Zhejiang Province, China
| | - Yan-Jun Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Medical Genetics, Ministry of Education, Wenzhou 325035, Zhejiang Province, China
| | - Ling Ji
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yong-Liang Lou
- School of Laboratory Medicine and Life Sciences, Institute of One Health, Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Medical Genetics, Ministry of Education, Wenzhou 325035, Zhejiang Province, China
| | - Xiang Li
- Department of Health Inspection and Quarantine, School of Laboratory Medicine and Life Sciences, Institute of One Health, Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Medical Genetics, Ministry of Education, Wenzhou 325035, Zhejiang Province, China
| |
Collapse
|
54
|
Alves S, Santos-Pereira C, Oliveira CSF, Preto A, Chaves SR, Côrte-Real M. Enhancement of Acetate-Induced Apoptosis of Colorectal Cancer Cells by Cathepsin D Inhibition Depends on Oligomycin A-Sensitive Respiration. Biomolecules 2024; 14:473. [PMID: 38672489 PMCID: PMC11048611 DOI: 10.3390/biom14040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of death worldwide. Conventional therapies are available with varying effectiveness. Acetate, a short-chain fatty acid produced by human intestinal bacteria, triggers mitochondria-mediated apoptosis preferentially in CRC but not in normal colonocytes, which has spurred an interest in its use for CRC prevention/therapy. We previously uncovered that acetate-induced mitochondrial-mediated apoptosis in CRC cells is significantly enhanced by the inhibition of the lysosomal protease cathepsin D (CatD), which indicates both mitochondria and the lysosome are involved in the regulation of acetate-induced apoptosis. Herein, we sought to determine whether mitochondrial function affects CatD apoptotic function. We found that enhancement of acetate-induced apoptosis by CatD inhibition depends on oligomycin A-sensitive respiration. Mechanistically, the potentiating effect is associated with an increase in cellular and mitochondrial superoxide anion accumulation and mitochondrial mass. Our results provide novel clues into the regulation of CatD function and the effect of tumor heterogeneity in the outcome of combined treatment using acetate and CatD inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Susana R. Chaves
- CBMA—Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal; (S.A.); (C.S.-P.); (C.S.F.O.); (A.P.)
| | - Manuela Côrte-Real
- CBMA—Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal; (S.A.); (C.S.-P.); (C.S.F.O.); (A.P.)
| |
Collapse
|
55
|
Singhabahu R, Kodagoda Gamage SM, Gopalan V. Pathological significance of heme oxygenase-1 as a potential tumor promoter in heme-induced colorectal carcinogenesis. CANCER PATHOGENESIS AND THERAPY 2024; 2:65-73. [PMID: 38601482 PMCID: PMC11002664 DOI: 10.1016/j.cpt.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2024]
Abstract
The significance of the heme-metabolizing enzyme heme oxygenase-1 (HMOX1) in the pathogenesis of colorectal cancer (CRC) has not been fully explored. HMOX1 cytoprotection is imperative to limit oxidative stress. However, its roles in preventing carcinogenesis in response to high levels of heme are not thoroughly understood. This study reviews various mechanisms associated with the paradoxical role of HMOX1, which is advantageous for tumor growth, refractoriness, and survival of cancer cells amid oxidative stress in heme-induced CRC. The alternate role of HMOX1 promotes cell proliferation and metastasis through immune modulation and angiogenesis. Inhibiting HMOX1 has been found to reverse tumor promotion. Thus, HMOX1 acts as a conditional tumor promoter in CRC pathogenesis.
Collapse
Affiliation(s)
- Rachitha Singhabahu
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Sujani M. Kodagoda Gamage
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
- Faculty of Health Sciences and Medicine, Bond University, Robina 4226, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
56
|
Johnson-Martínez JP, Diener C, Levine AE, Wilmanski T, Suskind DL, Ralevski A, Hadlock J, Magis AT, Hood L, Rappaport N, Gibbons SM. Generally-healthy individuals with aberrant bowel movement frequencies show enrichment for microbially-derived blood metabolites associated with reduced kidney function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.04.531100. [PMID: 36945445 PMCID: PMC10028848 DOI: 10.1101/2023.03.04.531100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Bowel movement frequency (BMF) has been linked to changes in the composition of the human gut microbiome and to many chronic conditions, like metabolic disorders, neurodegenerative diseases, chronic kidney disease (CKD), and other intestinal pathologies like irritable bowel syndrome and inflammatory bowel disease. Lower BMF (constipation) can lead to compromised intestinal barrier integrity and a switch from saccharolytic to proteolytic fermentation within the microbiota, giving rise to microbially-derived toxins that may make their way into circulation and cause damage to organ systems. However, the connections between BMF, gut microbial metabolism, and the early-stage development and progression of chronic disease remain underexplored. Here, we examined the phenotypic impact of BMF variation in a cohort of generally-healthy, community dwelling adults with detailed clinical, lifestyle, and multi-omic data. We showed significant differences in microbially-derived blood plasma metabolites, gut bacterial genera, clinical chemistries, and lifestyle factors across BMF groups that have been linked to inflammation, cardiometabolic health, liver function, and CKD severity and progression. We found that the higher plasma levels of 3-indoxyl sulfate (3-IS), a microbially-derived metabolite associated with constipation, was in turn negatively associated with estimated glomerular filtration rate (eGFR), a measure of kidney function. Causal mediation analysis revealed that the effect of BMF on eGFR was significantly mediated by 3-IS. Finally, we identify self-reported diet, lifestyle, and psychological factors associated with BMF variation, which indicate several common-sense strategies for mitigating constipation and diarrhea. Overall, we suggest that aberrant BMF is an underappreciated risk factor in the development of chronic diseases, even in otherwise healthy populations.
Collapse
Affiliation(s)
- Johannes P. Johnson-Martínez
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | - Anne E. Levine
- Institute for Systems Biology, Seattle, WA 98109, USA
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| | | | | | | | | | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Phenome Health, Seattle, WA 98109
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Noa Rappaport
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- eScience Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
57
|
Wu Z, Huang Y, Zhang R, Zheng C, You F, Wang M, Xiao C, Li X. Sex differences in colorectal cancer: with a focus on sex hormone-gut microbiome axis. Cell Commun Signal 2024; 22:167. [PMID: 38454453 PMCID: PMC10921775 DOI: 10.1186/s12964-024-01549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
Sexual dimorphism has been observed in the incidence and prognosis of colorectal cancer (CRC), with men generally exhibiting a slightly higher incidence than women. Research suggests that this difference may be attributed to variations in sex steroid hormone levels and the gut microbiome. The gut microbiome in CRC shows variations in composition and function between the sexes, leading to the concept of 'microgenderome' and 'sex hormone-gut microbiome axis.' Conventional research indicates that estrogens, by promoting a more favorable gut microbiota, may reduce the risk of CRC. Conversely, androgens may have a direct pro-tumorigenic effect by increasing the proportion of opportunistic pathogens. The gut microbiota may also influence sex hormone levels by expressing specific enzymes or directly affecting gonadal function. However, this area remains controversial. This review aims to explore the differences in sex hormone in CRC incidence, the phenomenon of sexual dimorphism within the gut microbiome, and the intricate interplay of the sex hormone-gut microbiome axis in CRC. The objective is to gain a better understanding of these interactions and their potential clinical implications, as well as to introduce innovative approaches to CRC treatment.
Collapse
Affiliation(s)
- Zihong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqing Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Renyi Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
58
|
Yadav D, Sainatham C, Filippov E, Kanagala SG, Ishaq SM, Jayakrishnan T. Gut Microbiome-Colorectal Cancer Relationship. Microorganisms 2024; 12:484. [PMID: 38543535 PMCID: PMC10974515 DOI: 10.3390/microorganisms12030484] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 11/12/2024] Open
Abstract
Traditionally, the role of gut dysbiosis was thought to be limited to pathologies like Clostridioides difficile infection, but studies have shown its role in other intestinal and extraintestinal pathologies. Similarly, recent studies have surfaced showing the strong potential role of the gut microbiome in colorectal cancer, which was traditionally attributed mainly to sporadic or germline mutations. Given that it is the third most common cancer and the second most common cause of cancer-related mortality, 78 grants totaling more than USD 28 million have been granted to improve colon cancer management since 2019. Concerted efforts by several of these studies have identified specific bacterial consortia inducing a proinflammatory environment and promoting genotoxin production, causing the induction or progression of colorectal cancer. In addition, changes in the gut microbiome have also been shown to alter the response to cancer chemotherapy and immunotherapy, thus changing cancer prognosis. Certain bacteria have been identified as biomarkers to predict the efficacy of antineoplastic medications. Given these discoveries, efforts have been made to alter the gut microbiome to promote a favorable diversity to improve cancer progression and the response to therapy. In this review, we expand on the gut microbiome, its association with colorectal cancer, and antineoplastic medications. We also discuss the evolving paradigm of fecal microbiota transplantation in the context of colorectal cancer management.
Collapse
Affiliation(s)
- Devvrat Yadav
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Chiranjeevi Sainatham
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Evgenii Filippov
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Sai Gautham Kanagala
- Department of Internal Medicine, NYC Health + Hospital/Metropolitan, New York, NY 10029, USA
| | - Syed Murtaza Ishaq
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Thejus Jayakrishnan
- Division of Hematology and Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
59
|
Huang Y, Huang X, Wang Z, He F, Huang Z, Chen C, Tang B, Qin M, Wu Y, Long C, Tang W, Mo X, Liu J. Analysis of differences in intestinal flora associated with different BMI status in colorectal cancer patients. J Transl Med 2024; 22:142. [PMID: 38331839 PMCID: PMC10854193 DOI: 10.1186/s12967-024-04903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Overweight is known to be an important risk factor for colorectal cancer (CRC), and the differences in intestinal flora among CRC patients with different BMI status have not been clearly defined. The purpose of this study was to elucidate the differences in the abundance, composition and biological function of intestinal flora in CRC patients with different BMI status. METHOD A total of 170 CRC patients were included and grouped according to the BMI data of CRC patients. BMI ≥ 24 kg/m2 was defined as overweight group, and BMI within the range of 18.5-23.9 kg/m2 was defined as normal weight group. Preoperative stool collection of patients in both groups was used for 16S rRNA sequencing. Total RNA was extracted from 17 CRC tumor tissue samples for transcriptome sequencing, and then CIBERSORT algorithm was used to convert the transcriptome data into the relative content matrix of 22 kinds of immune cells, and the correlation between different intestinal flora and immune cells and immune-related genes under different BMI states was analyzed. Finally, we identified BMI-related differential functional pathways and analyzed the correlation between these pathways and differential intestinal flora. RESULT There was no significant difference in α diversity and β diversity analysis between overweight group and normal weight group. Partial least square discriminant analysis (PLS-DA) could divide the flora into two different clusters according to BMI stratification. A total of 33 BMI-related differential flora were identified by linear discriminant effect size analysis (LEfSe), among which Actinomyces, Desulfovibrio and Bacteroides were significantly enriched in overweight group. ko00514: Other types of O-glycan biosynthesis are significantly enriched in overweight group. There was a significant positive correlation between Clostridium IV and Macrophages M2 and T cells regulatory (Tregs). There was a significant negative correlation with Dendritic cells activated and T cells CD4 memory activated. CONCLUSIONS The richness and diversity of intestinal flora of CRC patients may be related to different BMI status, and the enrichment of Actinomyces, Desulphurvibrio and Bacteroides may be related to overweight status of CRC patients. The tumor microenvironment in which BMI-related differential flora resides has different immune landscapes, suggesting that some intestinal flora may affect the biological process of CRC by regulating immune cell infiltration and immune gene expression, but further experiments are needed to confirm this.
Collapse
Affiliation(s)
- Yongqi Huang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Xiaoliang Huang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Zhen Wang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Fuhai He
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Zigui Huang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Chuanbin Chen
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Binzhe Tang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Mingjian Qin
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Yongzhi Wu
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Chenyan Long
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Weizhong Tang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China.
| | - Xianwei Mo
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China.
| | - Jungang Liu
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China.
| |
Collapse
|
60
|
Lai J, Rigas Y, Kantor N, Cohen N, Tomlinson A, St. Leger AJ, Galor A. Living with your biome: how the bacterial microbiome impacts ocular surface health and disease. EXPERT REVIEW OF OPHTHALMOLOGY 2024; 19:89-103. [PMID: 38764699 PMCID: PMC11101146 DOI: 10.1080/17469899.2024.2306582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/14/2024] [Indexed: 05/21/2024]
Abstract
Introduction Microbiome research has grown exponentially but the ocular surface microbiome (OSM) remains an area in need of further study. This review aims to explore its complexity, disease-related microbial changes, and immune interactions, and highlights the potential for its manipulation as a therapeutic for ocular surface diseases. Areas Covered We introduce the OSM by location and describe what constitutes a normal OSM. Second, we highlight aspects of the ocular immune system and discuss potential immune microbiome interactions in health and disease. Finally, we highlight how microbiome manipulation may have therapeutic potential for ocular surface diseases. Expert Opinion The ocular surface microbiome varies across its different regions, with a core phyla identified, but with genus variability. A few studies have linked microbiome composition to diseases like dry eye but more research is needed, including examining microbiome interactions with the host. Studies have noted that manipulating the microbiome may impact disease presentation. As such, microbiome manipulation via diet, oral and topical pre and probiotics, and hygienic measures may provide new therapeutic algorithms in ocular surface diseases.
Collapse
Affiliation(s)
- James Lai
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Yannis Rigas
- University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nicole Kantor
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Noah Cohen
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Ana Tomlinson
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Anthony J. St. Leger
- University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
- Miami Veterans Affairs Hospital, Miami, Florida, USA
| |
Collapse
|
61
|
Feng P, Xue X, Bukhari I, Qiu C, Li Y, Zheng P, Mi Y. Gut microbiota and its therapeutic implications in tumor microenvironment interactions. Front Microbiol 2024; 15:1287077. [PMID: 38322318 PMCID: PMC10844568 DOI: 10.3389/fmicb.2024.1287077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
The development of cancer is not just the growth and proliferation of a single transformed cell, but its tumor microenvironment (TME) also coevolves with it, which is primarily involved in tumor initiation, development, metastasis, and therapeutic responses. Recent years, TME has been emerged as a potential target for cancer diagnosis and treatment. However, the clinical efficacy of treatments targeting the TME, especially its specific components, remains insufficient. In parallel, the gut microbiome is an essential TME component that is crucial in cancer immunotherapy. Thus, assessing and constructing frameworks between the gut microbiota and the TME can significantly enhance the exploration of effective treatment strategies for various tumors. In this review the role of the gut microbiota in human cancers, including its function and relationship with various tumors was summarized. In addition, the interaction between the gut microbiota and the TME as well as its potential applications in cancer therapeutics was described. Furthermore, it was summarized that fecal microbiota transplantation, dietary adjustments, and synthetic biology to introduce gut microbiota-based medical technologies for cancer treatment. This review provides a comprehensive summary for uncovering the mechanism underlying the effects of the gut microbiota on the TME and lays a foundation for the development of personalized medicine in further studies.
Collapse
Affiliation(s)
- Pengya Feng
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Children Rehabilitation Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xia Xue
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ihtisham Bukhari
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunjing Qiu
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Li
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
62
|
Zhu M, Benson AB. An update on pharmacotherapies for colorectal cancer: 2023 and beyond. Expert Opin Pharmacother 2024; 25:91-99. [PMID: 38224000 DOI: 10.1080/14656566.2024.2304654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) is one of the most prevalent and lethal cancers worldwide. The treatment of metastatic colorectal cancer (mCRC) is difficult, and mCRC has a survival rate of only 13-17% compared with 70-90% in locoregional CRC. There is ongoing research effort on pharmacotherapy for CRC to improve the treatment outcome. AREAS COVERED We reviewed the current literature and ongoing clinical trials on CRC pharmacotherapy, with a focus on targeted therapy based on the results of genetic testing. The pharmacotherapies covered in this article include novel agents targeting EGFR and EGFR-related pathways, agents targeting the VEGF pathway, immunotherapy options depending on the MMR/MSI status, and new therapies targeting genetic fusions such as NTRK. We also briefly discuss the value of next-generation sequencing (NGS) in treatment selection and response monitoring. EXPERT OPINION We advocate for the early and routine use of NGS to genetically characterize CRC to assist with pharmacotherapy selection. Targeted therapy is a promising field of ongoing research and improves CRC treatment outcome.
Collapse
Affiliation(s)
- Mengou Zhu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Al B Benson
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
63
|
Ouyang ML, Zou SP, Cheng Q, Shi X, Zhao YZ, Sun MH. Effect of potassium-competitive acid blockers on human gut microbiota: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1269125. [PMID: 38192408 PMCID: PMC10773775 DOI: 10.3389/fphar.2023.1269125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Background: Vonoprazan has been reported to exert more potent and long-lasting gastric acid inhibition than proton pump inhibitors, potentially leading to a greater impact on the gut microbiota. This study aimed to clarify changes in microbial diversity and bacterial composition after VPZ treatments. Methods: We searched from PubMed, Embase, WOS, Scopus, Cochrane Library, and ClinicalTrials.gov (all years up to May 2023). The primary outcomes were alpha and beta diversity, as well as differences in gut microbiota composition between before and after VPZ treatments. We performed a meta-analysis to uncover the potential changes in human gut microbiota among VPZ users by pooled mean difference (MD) with a 95% confidence interval (CI). The risk of bias was assessed using the ROBINS-I tool. Results: A total of 12 studies were included to compare differences before and after VPZ treatments. Compared with baseline, alpha diversity was significantly reduced after VPZ treatments and gradually returned to baseline with longer follow-up. At the phylum level, there was a decrease in the relative abundance of Firmicutes and Actinobacteria, while Bacteroidetes increased compared with baseline. At the genus level, we found a significant decrease in the relative abundance of Coprococcus and Bifidobacterium and a significant increase in the relative abundance of Bacteroides compared with those before treatment. In subgroup analyses according to country and participants, we found differences in microbial changes after VPZ treatments. Conclusion: Vonoprazan can affect the changes of gut microbiota, which may be potentially associated with its strong ability of acid inhibition. However, due to the large heterogeneity, further studies are required to validate these findings. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023412265.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming-Hui Sun
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
64
|
Souza VGP, Forder A, Pewarchuk ME, Telkar N, de Araujo RP, Stewart GL, Vieira J, Reis PP, Lam WL. The Complex Role of the Microbiome in Non-Small Cell Lung Cancer Development and Progression. Cells 2023; 12:2801. [PMID: 38132121 PMCID: PMC10741843 DOI: 10.3390/cells12242801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, there has been a growing interest in the relationship between microorganisms in the surrounding environment and cancer cells. While the tumor microenvironment predominantly comprises cancer cells, stromal cells, and immune cells, emerging research highlights the significant contributions of microbial cells to tumor development and progression. Although the impact of the gut microbiome on treatment response in lung cancer is well established, recent investigations indicate complex roles of lung microbiota in lung cancer. This article focuses on recent findings on the human lung microbiome and its impacts in cancer development and progression. We delve into the characteristics of the lung microbiome and its influence on lung cancer development. Additionally, we explore the characteristics of the intratumoral microbiome, the metabolic interactions between lung tumor cells, and how microorganism-produced metabolites can contribute to cancer progression. Furthermore, we provide a comprehensive review of the current literature on the lung microbiome and its implications for the metastatic potential of tumor cells. Additionally, this review discusses the potential for therapeutic modulation of the microbiome to establish lung cancer prevention strategies and optimize lung cancer treatment.
Collapse
Affiliation(s)
- Vanessa G. P. Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | | | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Rachel Paes de Araujo
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
| | - Greg L. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Juliana Vieira
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Patricia P. Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
65
|
Elahi Z, Shariati A, Bostanghadiri N, Dadgar-Zankbar L, Razavi S, Norzaee S, Vazirbani Arasi S, Darban-Sarokhalil D. Association of Lactobacillus, Firmicutes, Bifidobacterium, Clostridium, and Enterococcus with colorectal cancer in Iranian patients. Heliyon 2023; 9:e22602. [PMID: 38089982 PMCID: PMC10711133 DOI: 10.1016/j.heliyon.2023.e22602] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the primary causes of cancer-associated deaths worldwide, and growing evidence shows that alteration in the gut microbiota may be a contributing factor to the development and progression of the disease. This study investigates the correlation between CRC and specific intestinal microbiota abundance, including Firmicutes, Lactobacillus, Enterococcus, Clostridium, and Bifidobacterium. MATERIAL AND METHODS In this study, 100 CRC samples and adjacent normal tissues were obtained from Iranian patients. Afterward, we assessed the abundance of the mentioned bacteria in matched tumor and normal tissue samples from 100 CRC patients, by TaqMan quantitative real-time polymerase chain reaction (qPCR). RESULTS Most of the patients (55 %) had grade II cancer (moderately differentiated), followed by grade III (poorly Differentiated) in 19 %, and the distribution of the tumor location was 65 % in the colon and 35 % in the rectum. Our research showed a substantial difference in the relative abundance of specific bacteria in tumors and healthy tissues. To this end, four genera of bacteria, including Bifidobacterium, Lactobacillus, Clostridium, and Firmicutes, exhibited statistically significant reductions in tumor tissues compared to adjacent normal tissue (p < 0.05). Conversely, Enterococcus demonstrated a statistically significant increase in tumor tissue samples (p < 0.05). Noteworthy, statistical analysis revealed a significant relationship between Enterococcus and prior cancer (p < 0.05). CONCLUSIONS These findings provide significant insight into the complex association between the gut microbiota and CRC and may pave the way for future research on novel screening methods, preventive measures, and therapeutic strategies targeting the gut microbiota in CRC patients.
Collapse
Affiliation(s)
- Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
- Molecular and Medicine Research Centre, Khomein University of Medical Sciences, Khomein, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Norzaee
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
66
|
Tesolato S, Ortega-Hernández A, Gómez-Garre D, Claver P, De Juan C, De la Serna S, Paz M, Domínguez-Serrano I, Dziakova J, Rivera D, Torres A, Iniesta P. Gut microbiota profiles in feces and paired tumor and non-tumor tissues from Colorectal Cancer patients. Relationship to the Body Mass Index. PLoS One 2023; 18:e0292551. [PMID: 37796924 PMCID: PMC10553240 DOI: 10.1371/journal.pone.0292551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Colorectal Cancer (CRC) and Obesity constitute two of the most common malignancies in the western world, and previously have been associated with intestinal microbial composition alterations. Our main aim in this study is to provide molecular data on intestinal microbiota patterns in subjects with CRC, as well as to establish possible associations with their Body Mass Index (BMI). A total of 113 samples from 45 subjects were collected and submitted to metagenomics analysis for gut microbiota. This study was performed by 16S ribosomal RNA bacterial gene amplification and sequencing using the Ion Torrent™ technology. The same dominant phyla were observed in feces and colorectal tissues, although a greater proportion of Fusobacteriota was found in tumor samples. Moreover, at the genus level, LEfSe analysis allowed us to detect a significant increase in Fusobacterium and Streptococcus in colorectal tissues with respect to fecal samples, with a significant preponderance of Fusobacterium in tumor tissues. Also, our data revealed relevant associations between gut microbiota composition and tumor location. When comparing bacterial profiles between right and left colon cancers, those from the left-sided colon showed a significant preponderance, among others, of the order Staphylococcales. Moreover, phyla Firmicutes and Spirochaetota were more abundant in the group of right-sided CRCs and phylum Proteobacteria was increased in rectal cancers. In relation to BMI of patients, we detected significant differences in beta diversity between the normal weight and the obese groups of cases. Microbiota from obese patients was significantly enriched, among others, in Bacteroidales. Therefore, our results are useful in the molecular characterization of CRC in obese and non-obese patients, with a clear impact on the establishment of diagnostic and prognosis of CRC.
Collapse
Affiliation(s)
- Sofía Tesolato
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, Madrid, Spain
- San Carlos Health Research Institute (IdISSC), Madrid, Spain
| | - Adriana Ortega-Hernández
- San Carlos Health Research Institute (IdISSC), Madrid, Spain
- Cardiovascular Risk Group and Microbiota Laboratory, San Carlos Hospital, Madrid, Spain
| | - Dulcenombre Gómez-Garre
- San Carlos Health Research Institute (IdISSC), Madrid, Spain
- Cardiovascular Risk Group and Microbiota Laboratory, San Carlos Hospital, Madrid, Spain
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
- Biomedical Research Networking Center in Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Paula Claver
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Carmen De Juan
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, Madrid, Spain
- San Carlos Health Research Institute (IdISSC), Madrid, Spain
| | - Sofía De la Serna
- San Carlos Health Research Institute (IdISSC), Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, Madrid, Spain
| | - Mateo Paz
- San Carlos Health Research Institute (IdISSC), Madrid, Spain
- Biomedical Research Networking Center in Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Inmaculada Domínguez-Serrano
- San Carlos Health Research Institute (IdISSC), Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, Madrid, Spain
| | - Jana Dziakova
- San Carlos Health Research Institute (IdISSC), Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, Madrid, Spain
| | - Daniel Rivera
- San Carlos Health Research Institute (IdISSC), Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, Madrid, Spain
| | - Antonio Torres
- San Carlos Health Research Institute (IdISSC), Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, Madrid, Spain
| | - Pilar Iniesta
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, Madrid, Spain
- San Carlos Health Research Institute (IdISSC), Madrid, Spain
| |
Collapse
|
67
|
Wang X, Sun X, Chu J, Sun W, Yan S, Wang Y. Gut microbiota and microbiota-derived metabolites in colorectal cancer: enemy or friend. World J Microbiol Biotechnol 2023; 39:291. [PMID: 37653349 DOI: 10.1007/s11274-023-03742-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Colorectal cancer (CRC) is a highly prevalent gastrointestinal cancer worldwide. Recent research has shown that the gut microbiota plays a significant role in the development of CRC. There is mounting evidence supporting the crucial contributions of bacteria-derived toxins and metabolites to cancer-related inflammation, immune imbalances, and the response to therapy. Besides, some gut microbiota and microbiota-derived metabolites have protective effects against CRC. This review aims to summarize the current studies on the effects and mechanisms of gut microbiota and microbiota-produced metabolites in the initiation, progression, and drug sensitivity/resistance of CRC. Additionally, we explore the clinical implications and future prospects of utilizing gut microbiota as innovative approaches for preventing and treating CRC.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xicai Sun
- Department of Hospital Office, Weifang People's Hospital, Weifang, China
| | - Jinjin Chu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Wenchang Sun
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, 261053, China.
| | - Yaowen Wang
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, 261041, China.
| |
Collapse
|
68
|
Parisi GF, Papale M, Pecora G, Rotolo N, Manti S, Russo G, Leonardi S. Cystic Fibrosis and Cancer: Unraveling the Complex Role of CFTR Gene in Cancer Susceptibility. Cancers (Basel) 2023; 15:4244. [PMID: 37686519 PMCID: PMC10486401 DOI: 10.3390/cancers15174244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder affecting multiple organs, primarily the lungs and digestive system. Over the years, advancements in medical care and treatments have significantly increased the life expectancy of individuals with CF. However, with this improved longevity, concerns about the potential risk of developing certain types of cancers have arisen. This narrative review aims to explore the relationship between CF, increased life expectancy, and the associated risk for cancers. We discuss the potential mechanisms underlying this risk, including chronic inflammation, immune system dysregulation, and genetic factors. Additionally, we review studies that have examined the incidence and types of cancers seen in CF patients, with a focus on gastrointestinal, breast, and respiratory malignancies. We also explore the impact of CFTR modulator therapies on cancer risk. In the gastrointestinal tract, CF patients have an elevated risk of developing colorectal cancer, pancreatic cancer, and possibly esophageal cancer. The underlying mechanisms contributing to these increased risks are not fully understood, but chronic inflammation, altered gut microbiota, and genetic factors are believed to play a role. Regular surveillance and colonoscopies are recommended for early detection and management of colorectal cancer in CF patients. Understanding the factors contributing to cancer development in CF patients is crucial for implementing appropriate surveillance strategies and improving long-term outcomes. Further research is needed to elucidate the molecular mechanisms involved and develop targeted interventions to mitigate cancer risk in individuals with CF.
Collapse
Affiliation(s)
- Giuseppe Fabio Parisi
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Viale Carlo Azeglio Ciampi sn, 95121 Catania, Italy; (M.P.); (G.P.); (N.R.); (S.L.)
| | - Maria Papale
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Viale Carlo Azeglio Ciampi sn, 95121 Catania, Italy; (M.P.); (G.P.); (N.R.); (S.L.)
| | - Giulia Pecora
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Viale Carlo Azeglio Ciampi sn, 95121 Catania, Italy; (M.P.); (G.P.); (N.R.); (S.L.)
| | - Novella Rotolo
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Viale Carlo Azeglio Ciampi sn, 95121 Catania, Italy; (M.P.); (G.P.); (N.R.); (S.L.)
| | - Sara Manti
- Pediatric Unit, Department of Human and Pediatric Pathology “Gaetano Barresi”, AOUP G. Martino, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy;
| | - Giovanna Russo
- Pediatric Hematology and Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Salvatore Leonardi
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Viale Carlo Azeglio Ciampi sn, 95121 Catania, Italy; (M.P.); (G.P.); (N.R.); (S.L.)
| |
Collapse
|
69
|
Gong D, Adomako-Bonsu AG, Wang M, Li J. Three specific gut bacteria in the occurrence and development of colorectal cancer: a concerted effort. PeerJ 2023; 11:e15777. [PMID: 37554340 PMCID: PMC10405800 DOI: 10.7717/peerj.15777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Colorectal cancer (CRC), which develops from the gradual evolution of tubular adenomas and serrated polyps in the colon and rectum, has a poor prognosis and a high mortality rate. In addition to genetics, lifestyle, and chronic diseases, intestinal integrity and microbiota (which facilitate digestion, metabolism, and immune regulation) could promote CRC development. For example, enterotoxigenic Bacteroides fragilis, genotoxic Escherichia coli (pks+ E. coli), and Fusobacterium nucleatum, members of the intestinal microbiota, are highly correlated in CRC. This review describes the roles and mechanisms of these three bacteria in CRC development. Their interaction during CRC initiation and progression has also been proposed. Our view is that in the precancerous stage of colorectal cancer, ETBF causes inflammation, leading to potential changes in intestinal ecology that may provide the basic conditions for pks+ E. coli colonization and induction of oncogenic mutations, when cancerous intestinal epithelial cells can further recruit F. nucleatum to colonise the lesion site and F. nucleatum may contribute to CRC advancement by primarily the development of cancer cells, stemization, and proliferation, which could create new and tailored preventive, screening and therapeutic interventions. However, there is the most dominant microbiota in each stage of CRC development, not neglecting the possibility that two or even all three bacteria could be engaged at any stage of the disease. The relationship between the associated gut microbiota and CRC development may provide important information for therapeutic strategies to assess the potential use of the associated gut microbiota in CRC studies, antibiotic therapy, and prevention strategies.
Collapse
Affiliation(s)
- Dengmei Gong
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Amma G Adomako-Bonsu
- Institute of Toxicology and Pharmacology, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Maijian Wang
- Gastrointestinal Surgery, Affiliate Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jida Li
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
70
|
Thoda C, Touraki M. Probiotic-Derived Bioactive Compounds in Colorectal Cancer Treatment. Microorganisms 2023; 11:1898. [PMID: 37630458 PMCID: PMC10456921 DOI: 10.3390/microorganisms11081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Colorectal cancer (CRC) is a multifactorial disease with increased morbidity and mortality rates globally. Despite advanced chemotherapeutic approaches for the treatment of CRC, low survival rates due to the regular occurrence of drug resistance and deleterious side effects render the need for alternative anticancer agents imperative. Accumulating evidence supports that gut microbiota imbalance precedes the establishment of carcinogenesis, subsequently contributing to cancer progression and response to anticancer therapy. Manipulation of the gut microbiota composition via the administration of probiotic-derived bioactive compounds has gradually attained the interest of scientific communities as a novel therapeutic strategy for CRC. These compounds encompass miscellaneous metabolic secreted products of probiotics, including bacteriocins, short-chain fatty acids (SCFAs), lactate, exopolysaccharides (EPSs), biosurfactants, and bacterial peptides, with profound anti-inflammatory and antiproliferative properties. This review provides a classification of postbiotic types and a comprehensive summary of the current state of research on their biological role against CRC. It also describes how their intricate interaction with the gut microbiota regulates the proper function of the intestinal barrier, thus eliminating gut dysbiosis and CRC development. Finally, it discusses the future perspectives in precision-medicine approaches as well as the challenges of their synthesis and optimization of administration in clinical studies.
Collapse
Affiliation(s)
| | - Maria Touraki
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece;
| |
Collapse
|
71
|
Boustany A, Rahhal R, Mitri J, Onwuzo S, Zeid HKA, Asaad I. INCREASED RISK OF COLORECTAL CANCER IN PATIENTS WITH CHRONIC TOPHACEOUS GOUT: A POPULATION-BASED STUDY. ARQUIVOS DE GASTROENTEROLOGIA 2023; 60:339-344. [PMID: 37792763 DOI: 10.1590/s0004-2803.230302023-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/20/2023] [Indexed: 10/06/2023]
Abstract
•The study aims to investigate the risk of developing Colorectal cancer in patients with a history of chronic tophaceous gout. •A retrospective cohort analysis of adults extracted from a validated multicenter and research platform database from hospitals in the United States was utilized. •The risk of Colorectal cancer was statistically significantly increased in male gender, smokers, alcoholics, obese, type 2 Diabetic, and chronic tophaceous gout patients. •The risk of developing Colorectal cancer was significantly higher in patients who have a history of Chronic tophaceous gout while accounting for potential confounding variables. Background - Colorectal cancer is the third most common type of cancer in both men and women and ranks second as the most common cause of cancer death in the United States. Classic risk factors include tobacco smoking, high alcohol consumption, physical inactivity and excess body weight. A prospective study found that an elevated serum uric acid was associated with higher rates of cancer-associated polyps. Interestingly, other studies found an association between elevated levels of serum uric acid and other types of cancer including colorectal cancer. Objective - Our study aimed to evaluate whether patients with chronic tophaceous gout had an increased risk of developing colorectal cancer. Methods - A validated multicenter and research platform database of more than 360 hospitals from 26 different healthcare systems across the United States was utilized to construct this study. Patients aged 18 years and above were included. Individuals who have had a history of familial adenomatous polyposis, a family history of colon cancer, and those diagnosed with inflammatory bowel disease were excluded from the analysis. The risk of developing colon cancer was calculated using a multivariate regression analysis to account for potential confounders. Results - 80,927,194 individuals were screened in the database and 70,177,200 were selected in the final analysis after accounting for inclusion and exclusion criteria. Type 2 diabetics (28.57%), smokers (10.98%), obese individuals (18.71%), alcoholics (3.13%), and patients who have had a diagnosis of chronic tophaceous gout were more common in the colon cancer group compared to those without the malignancy. Using multivariate regression analysis, risk of colon cancer was calculated for male gender (OR: 1.02; 95%CI: 1.01-1.03), smokers (OR: 1.54; 95%CI: 1.52-1.56), alcoholics (OR: 1.40; 95%CI: 1.37-1.43), obese patients (OR: 1.52; 95%CI: 1.50-1.54), type 2 diabetic individuals (OR: 3.53; 95%CI: 3.50-3.57), and those who have had a diagnosis of chronic tophaceous gout (OR: 1.40; 95%CI: 2.48-3.23). Conclusion - As expected, patients with colon cancer were found to have a higher prevalence in males, obese, tobacco and alcohol users. We also demonstrated that patients with gout have a significantly higher prevalence of CRC than those who do not before and after adjusting for metabolic risk factors. In fact, uric acid was found to induce production of reactive oxygen species, thus potentially promoting tumorigenesis. It would be interesting to assess the prevalence of colon cancer in patients with gout who have a serum uric acid that is less than 7 mg/dL. This might promote a tighter control of serum uric acid levels in this population in order to decrease the risk of colon cancer.
Collapse
Affiliation(s)
- Antoine Boustany
- Department of Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Romy Rahhal
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jad Mitri
- Department of Medicine, St. Elizabeth's Medical Center, MA, USA
| | | | | | - Imad Asaad
- Department of Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
72
|
Zhao X, Wu H, Zhu R, Shang G, Wei J, Shang H, Tian P, Chen T, Wei H. Combination of thalidomide and Clostridium butyricum relieves chemotherapy-induced nausea and vomiting via gut microbiota and vagus nerve activity modulation. Front Immunol 2023; 14:1220165. [PMID: 37426650 PMCID: PMC10327820 DOI: 10.3389/fimmu.2023.1220165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Nausea and vomiting (CINV) are distressful and widespread side effects of chemotherapy, and additional efficient regimens to alleviate CINV are urgently needed. In the present study, colorectal cancer (CRC) mice model induced by Azoxymethane (AOM)/Dextran Sodium Sulfate (DSS) was employed to evaluate the cancer suppression and CINV amelioration effect of the combination of thalidomide (THD) and Clostridium butyricum. Our results suggested that the combination of THD and C. butyricum abundantly enhanced the anticancer effect of cisplatin via activating the caspase-3 apoptosis pathway, and also ameliorated CINV via inhibiting the neurotransmitter (e.g., 5-HT and tachykinin 1) and its receptor (e.g., 5-HT3R and NK-1R) in brain and colon. Additionally, the combination of THD and C. butyricum reversed the gut dysbacteriosis in CRC mice by increasing the abundance of Clostridium, Lactobacillus, Bifidobacterium, and Ruminococcus at the genus level, and also led to increased expression of occludin and Trek1 in the colon, while decreased expression of TLR4, MyD88, NF-κB, and HDAC1, as well as the mRNA level of IL-6, IL-1β, and TNF-α. In all, these results suggest that the combination of THD and C. butyricum had good efficacy in enhancing cancer treatments and ameliorating CINV, which thus provides a more effective strategy for the treatment of CRC.
Collapse
Affiliation(s)
- Xuanqi Zhao
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Heng Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ruizhe Zhu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | | | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Haitao Shang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Puyuan Tian
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingtao Chen
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
73
|
Hayes JA, Lunger AW, Sharma AS, Fernez MT, Koppes AN, Koppes R, Woolston BM. Engineered bacteria titrate hydrogen sulfide and induce concentration-dependent effects on host in a gut microphysiological system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.538950. [PMID: 37293009 PMCID: PMC10245736 DOI: 10.1101/2023.05.16.538950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogen sulfide (H2S) is a gaseous microbial metabolite whose role in gut diseases is debated, largely due to the difficulty in controlling its concentration and the use of non-representative model systems in previous work. Here, we engineered E. coli to titrate H2S controllably across the physiological range in a gut microphysiological system (chip) supportive of the co-culture of microbes and host cells. The chip was designed to maintain H2S gas tension and enable visualization of co-culture in real-time with confocal microscopy. Engineered strains colonized the chip and were metabolically active for two days, during which they produced H2S across a sixteen-fold range and induced changes in host gene expression and metabolism in an H2S concentration-dependent manner. These results validate a novel platform for studying the mechanisms underlying microbe-host interactions, by enabling experiments that are infeasible with current animal and in vitro models.
Collapse
Affiliation(s)
- Justin A. Hayes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Anna W. Lunger
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Aayushi S. Sharma
- Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
- Department of Bioengineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Matthew T. Fernez
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Abigail N. Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
- Department of Bioengineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Ryan Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Benjamin M. Woolston
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| |
Collapse
|
74
|
Selvaggi F, Catalano T, Lattanzio R, Cotellese R, Aceto GM. Wingless/It/β-catenin signaling in liver metastasis from colorectal cancer: A focus on biological mechanisms and therapeutic opportunities. World J Gastroenterol 2023; 29:2764-2783. [PMID: 37274070 PMCID: PMC10237106 DOI: 10.3748/wjg.v29.i18.2764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
The liver is the most common site of metastases in patients with colorectal cancer. Colorectal liver metastases (CRLMs) are the result of molecular mechanisms that involve different cells of the liver microenvironment. The aberrant activation of Wingless/It (Wnt)/β-catenin signals downstream of Wnt ligands initially drives the oncogenic transformation of the colon epithelium, but also the progression of metastatization through the epithelial-mesenchymal transition/mesenchymal-epithelial transition interactions. In liver microenvironment, metastatic cells can also survive and adapt through dormancy, which makes them less susceptible to pro-apoptotic signals and therapies. Treatment of CRLMs is challenging due to its variability and heterogeneity. Advances in surgery and oncology have been made in the last decade and a pivotal role for Wnt/β-catenin pathway has been re-cognized in chemoresistance. At the state of art, there is a lack of clear understanding of why and how this occurs and thus where exactly the opportunities for developing anti-CRLMs therapies may lie. In this review, current knowledge on the involvement of Wnt signaling in the development of CRLMs was considered. In addition, an overview of useful biomarkers with a revision of surgical and non-surgical therapies currently accepted in the clinical practice for colorectal liver metastasis patients were provided.
Collapse
Affiliation(s)
- Federico Selvaggi
- Department of Surgical, ASL2 Lanciano-Vasto-Chieti, Ospedale Clinicizzato SS Annunziata of Chieti, Chieti 66100, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Messina 98125, Italy
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Chieti 66100, Italy
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti 66100, Italy
- Villa Serena Foundation for Research, Villa Serena - Del Dott. L. Petruzzi, Città Sant’Angelo 65013, Pescara, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| |
Collapse
|
75
|
Kunst C, Schmid S, Michalski M, Tümen D, Buttenschön J, Müller M, Gülow K. The Influence of Gut Microbiota on Oxidative Stress and the Immune System. Biomedicines 2023; 11:biomedicines11051388. [PMID: 37239059 DOI: 10.3390/biomedicines11051388] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The human gastrointestinal tract is home to a complex microbial community that plays an important role in the general well-being of the entire organism. The gut microbiota generates a variety of metabolites and thereby regulates many biological processes, such as the regulation of the immune system. In the gut, bacteria are in direct contact with the host. The major challenge here is to prevent unwanted inflammatory reactions on one hand and on the other hand to ensure that the immune system can be activated when pathogens invade. Here the REDOX equilibrium is of utmost importance. This REDOX equilibrium is controlled by the microbiota either directly or indirectly via bacterial-derived metabolites. A balanced microbiome sorts for a stable REDOX balance, whereas dysbiosis destabilizes this equilibrium. An imbalanced REDOX status directly affects the immune system by disrupting intracellular signaling and promoting inflammatory responses. Here we (i) focus on the most common reactive oxygen species (ROS) and (ii) define the transition from a balanced REDOX state to oxidative stress. Further, we (iii) describe the role of ROS in regulating the immune system and inflammatory responses. Thereafter, we (iv) examine the influence of microbiota on REDOX homeostasis and how shifts in pro- and anti-oxidative cellular conditions can suppress or promote immune responses or inflammation.
Collapse
Affiliation(s)
- Claudia Kunst
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Stephan Schmid
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Marlen Michalski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Deniz Tümen
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Jonas Buttenschön
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| |
Collapse
|
76
|
Sambruni G, Macandog AD, Wirbel J, Cagnina D, Catozzi C, Dallavilla T, Borgo F, Fazio N, Fumagalli-Romario U, Petz WL, Manzo T, Ravenda SP, Zeller G, Nezi L, Schaefer MH. Location and condition based reconstruction of colon cancer microbiome from human RNA sequencing data. Genome Med 2023; 15:32. [PMID: 37131219 PMCID: PMC10155404 DOI: 10.1186/s13073-023-01180-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND The association between microbes and cancer has been reported repeatedly; however, it is not clear if molecular tumour properties are connected to specific microbial colonisation patterns. This is due mainly to the current technical and analytical strategy limitations to characterise tumour-associated bacteria. METHODS Here, we propose an approach to detect bacterial signals in human RNA sequencing data and associate them with the clinical and molecular properties of the tumours. The method was tested on public datasets from The Cancer Genome Atlas, and its accuracy was assessed on a new cohort of colorectal cancer patients. RESULTS Our analysis shows that intratumoural microbiome composition is correlated with survival, anatomic location, microsatellite instability, consensus molecular subtype and immune cell infiltration in colon tumours. In particular, we find Faecalibacterium prausnitzii, Coprococcus comes, Bacteroides spp., Fusobacterium spp. and Clostridium spp. to be strongly associated with tumour properties. CONCLUSIONS We implemented an approach to concurrently analyse clinical and molecular properties of the tumour as well as the composition of the associated microbiome. Our results may improve patient stratification and pave the path for mechanistic studies on microbiota-tumour crosstalk.
Collapse
Affiliation(s)
- Gaia Sambruni
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Angeli D Macandog
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Jakob Wirbel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Danilo Cagnina
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Carlotta Catozzi
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Tiziano Dallavilla
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Francesca Borgo
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
- Center for Omics Sciences, IRCCS San Raffaele Institute, Milano, Italy
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology-IRCCS, Milano, Italy
| | | | - Wanda L Petz
- Digestive Surgery, European Institute of Oncology-IRCCS, Milano, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Simona P Ravenda
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology-IRCCS, Milano, Italy
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Luigi Nezi
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy.
| | - Martin H Schaefer
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy.
| |
Collapse
|
77
|
Fan L, Guo X, Zhang J, Wang Y, Wang J, Li Y. Relationship between DHX15 expression and survival in colorectal cancer. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2023; 115:234-240. [PMID: 36177832 DOI: 10.17235/reed.2022.8838/2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
OBJECTIVE to explore the relationship between the expression of DEAH-box RNA helicase 15 (DHX15) in colorectal cancer (CRC), its clinical pathological features and survival. METHOD DHX15 expression data with clinical pathological features from the Cancer Gene Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) were statistically analyzed for the association between DHX15 expression and overall survival in CRC. The expression of DHX15 was performed by immunohistochemical staining (IHC) using tumor and the adjacent normal tissue, mounted in tissue microarrays. The significance of DHX15 expression to predict survival and prognosis of CRC were analyzed using the Kaplan-Meier method, univariate and multivariate Cox regression analysis. RESULTS low expression of DHX15 mRNA and DHX15 protein in CRC were both negative factors for survival. Overall survival of patients with low-expression of DHX15 was significantly lower (χ2 = 8.452, p = 0.004) by Kaplan-Meier evaluation. Low expression of DHX15 in CRC tissues correlated with distal lymph node metastasis (χ² = 7.120, p = 0.008), TNM stage (χ² = 3.935, p = 0.047) and disease recurrence (χ² = 9.524, p = 0.002) in CRC. Low expression of DHX15 (HR = 4.012, 95 % CI: 1.462-11.013, p = 0.007), late TNM stage (HR = 0.067, 95 % CI: 0.029-0.156, p < 0.001) and recurrence (HR = 0.008, 95 % CI: 0.002-0.034, p < 0.001) were risk factors related to the prognosis of CRC patients by univariate Cox regression analysis. CONCLUSION our findings reveal a key role for DHX15 in the progress of CRC metastasis and recurrence. DHX15 may be a potential biomarker for CRC targeted therapy.
Collapse
Affiliation(s)
- Leqi Fan
- Pharmacology, Capital Medical University
| | | | - Jiyi Zhang
- Medical Chemistry, Capital Medical University
| | - Yuji Wang
- Medical Chemistry, Capital Medical University
| | - Jinhui Wang
- Pharmaceutical Science, Harbin Medical University
| | - Ye Li
- Pharmacology, Capital Medical University, China
| |
Collapse
|
78
|
Gobert AP, Asim M, Smith TM, Williams KJ, Barry DP, Allaman MM, McNamara KM, Hawkins CV, Delgado AG, Zhao S, Piazuelo MB, Washington MK, Coburn LA, Rathmacher JA, Wilson KT. Electrophilic reactive aldehydes as a therapeutic target in colorectal cancer prevention and treatment. Oncogene 2023; 42:1685-1691. [PMID: 37037901 PMCID: PMC10182918 DOI: 10.1038/s41388-023-02691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/12/2023]
Abstract
Colorectal cancer (CRC) is a major health problem worldwide. Dicarbonyl electrophiles, such as isolevuglandins (isoLGs), are generated from lipid peroxidation and form covalent adducts with amine-containing macromolecules. We have shown high levels of adducts of isoLGs in colonic epithelial cells of patients with CRC. We thus investigated the role of these reactive aldehydes in colorectal cancer development. We found that 2-hydroxybenzylamine (2-HOBA), a natural compound derived from buckwheat seeds that acts as a potent scavenger of electrophiles, is bioavailable in the colon of mice after supplementation in the drinking water and does not affect the colonic microbiome. 2-HOBA reduced the level of isoLG adducts to lysine as well as tumorigenesis in models of colitis-associated carcinogenesis and of sporadic CRC driven by specific deletion of the adenomatous polyposis coli gene in colonic epithelial cells. In parallel, we found that oncogenic NRF2 activation and signaling were decreased in the colon of 2-HOBA-treated mice. Additionally, the growth of xenografted human HCT116 CRC cells in nude mice was significantly attenuated by 2-HOBA supplementation. In conclusion, 2-HOBA represents a promising natural compound for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thaddeus M Smith
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kamery J Williams
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel P Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kara M McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caroline V Hawkins
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - John A Rathmacher
- MTI BioTech Inc., Iowa State University Research Park, Ames, IA, USA
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
79
|
Awosile B, Crasto C, Rahman MK, Daniel I, Boggan S, Steuer A, Fritzler J. Fecal Microbial Diversity of Coyotes and Wild Hogs in Texas Panhandle, USA. Microorganisms 2023; 11:1137. [PMID: 37317111 DOI: 10.3390/microorganisms11051137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
The ecology of infectious diseases involves wildlife, yet the wildlife interface is often neglected and understudied. Pathogens related to infectious diseases are often maintained within wildlife populations and can spread to livestock and humans. In this study, we explored the fecal microbiome of coyotes and wild hogs in the Texas panhandle using polymerase chain reactions and 16S sequencing methods. The fecal microbiota of coyotes was dominated by members of the phyla Bacteroidetes, Firmicutes, and Proteobacteria. At the genus taxonomic level, Odoribacter, Allobaculum, Coprobacillus, and Alloprevotella were the dominant genera of the core fecal microbiota of coyotes. While for wild hogs, the fecal microbiota was dominated by bacterial members of the phyla Bacteroidetes, Spirochaetes, Firmicutes, and Proteobacteria. Five genera, Treponema, Prevotella, Alloprevotella, Vampirovibrio, and Sphaerochaeta, constitute the most abundant genera of the core microbiota of wild hogs in this study. Functional profile of the microbiota of coyotes and wild hogs identified 13 and 17 human-related diseases that were statistically associated with the fecal microbiota, respectively (p < 0.05). Our study is a unique investigation of the microbiota using free-living wildlife in the Texas Panhandle and contributes to awareness of the role played by gastrointestinal microbiota of wild canids and hogs in infectious disease reservoir and transmission risk. This report will contribute to the lacking information on coyote and wild hog microbial communities by providing insights into their composition and ecology which may likely be different from those of captive species or domesticated animals. This study will contribute to baseline knowledge for future studies on wildlife gut microbiomes.
Collapse
Affiliation(s)
- Babafela Awosile
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Chiquito Crasto
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA
| | - Md Kaisar Rahman
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Ian Daniel
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - SaraBeth Boggan
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Ashley Steuer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Jason Fritzler
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
80
|
Maryam S, Krukiewicz K, Haq IU, Khan AA, Yahya G, Cavalu S. Interleukins (Cytokines) as Biomarkers in Colorectal Cancer: Progression, Detection, and Monitoring. J Clin Med 2023; 12:jcm12093127. [PMID: 37176567 PMCID: PMC10179696 DOI: 10.3390/jcm12093127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is the primary cause of death in economically developed countries and the second leading cause in developing countries. Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. Risk factors for CRC include obesity, a diet low in fruits and vegetables, physical inactivity, and smoking. CRC has a poor prognosis, and there is a critical need for new diagnostic and prognostic biomarkers to reduce related deaths. Recently, studies have focused more on molecular testing to guide targeted treatments for CRC patients. The most crucial feature of activated immune cells is the production and release of growth factors and cytokines that modulate the inflammatory conditions in tumor tissues. The cytokine network is valuable for the prognosis and pathogenesis of colorectal cancer as they can aid in the cost-effective and non-invasive detection of cancer. A large number of interleukins (IL) released by the immune system at various stages of CRC can act as "biomarkers". They play diverse functions in colorectal cancer, and include IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-β, and vascular endothelial growth factor (VEGF), which are pro-tumorigenic genes. However, there are an inadequate number of studies in this area considering its correlation with cytokine profiles that are clinically useful in diagnosing cancer. A better understanding of cytokine levels to establish diagnostic pathways entails an understanding of cytokine interactions and the regulation of their various biochemical signaling pathways in healthy individuals. This review provides a comprehensive summary of some interleukins as immunological biomarkers of CRC.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Ihtisham Ul Haq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Awal Ayaz Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Al Sharqia, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
81
|
Xia C, Su J, Liu C, Mai Z, Yin S, Yang C, Fu L. Human microbiomes in cancer development and therapy. MedComm (Beijing) 2023; 4:e221. [PMID: 36860568 PMCID: PMC9969057 DOI: 10.1002/mco2.221] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
Colonies formed by bacteria, archaea, fungi, and viral groups and their genomes, metabolites, and expressed proteins constitute complex human microbiomes. An increasing evidences showed that carcinogenesis and disease progression were link to microbiomes. Different organ sources, their microbial species, and their metabolites are different; the mechanisms of carcinogenic or procancerous are also different. Here, we summarize how microbiomes contribute to carcinogenesis and disease progression in cancers of the skin, mouth, esophagus, lung, gastrointestinal, genital, blood, and lymph malignancy. We also insight into the molecular mechanisms of triggering, promoting, or inhibiting carcinogenesis and disease progress induced by microbiomes or/and their secretions of bioactive metabolites. And then, the strategies of application of microorganisms in cancer treatment were discussed in detail. However, the mechanisms by which human microbiomes function are still poorly understood. The bidirectional interactions between microbiotas and endocrine systems need to be clarified. Probiotics and prebiotics are believed to benefit human health via a variety of mechanisms, in particular, in tumor inhibition. It is largely unknown how microbial agents cause cancer or how cancer progresses. We expect this review may open new perspectives on possible therapeutic approaches of patients with cancer.
Collapse
Affiliation(s)
- Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Jiyan Su
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Chuansheng Yang
- Department of Head‐Neck and Breast SurgeryYuebei People's Hospital of Shantou UniversityShaoguanChina
| | - Liwu Fu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| |
Collapse
|
82
|
Lozenov S, Krastev B, Nikolaev G, Peshevska-Sekulovska M, Peruhova M, Velikova T. Gut Microbiome Composition and Its Metabolites Are a Key Regulating Factor for Malignant Transformation, Metastasis and Antitumor Immunity. Int J Mol Sci 2023; 24:5978. [PMID: 36983053 PMCID: PMC10054493 DOI: 10.3390/ijms24065978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The genetic and metabolomic abundance of the microbiome exemplifies that the microbiome comprises a more extensive set of genes than the entire human genome, which justifies the numerous metabolic and immunological interactions between the gut microbiota, macroorganisms and immune processes. These interactions have local and systemic impacts that can influence the pathological process of carcinogenesis. The latter can be promoted, enhanced or inhibited by the interactions between the microbiota and the host. This review aimed to present evidence that interactions between the host and the gut microbiota might be a significant exogenic factor for cancer predisposition. It is beyond doubt that the cross-talk between microbiota and the host cells in terms of epigenetic modifications can regulate gene expression patterns and influence cell fate in both beneficial and adverse directions for the host's health. Furthermore, bacterial metabolites could shift pro- and anti-tumor processes in one direction or another. However, the exact mechanisms behind these interactions are elusive and require large-scale omics studies to better understand and possibly discover new therapeutic approaches for cancer.
Collapse
Affiliation(s)
- Stefan Lozenov
- Laboratory for Control and Monitoring of the Antibiotic Resistance, National Centre for Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd, 1504 Sofia, Bulgaria;
| | - Boris Krastev
- Nadezhda Paradise Medical Center, 1330 Sofia, Bulgaria;
| | - Georgi Nikolaev
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria
| | - Monika Peshevska-Sekulovska
- Department of Gastroenterology, University Hospital Lozenetz, Sofia, Medical Faculty, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
| | - Milena Peruhova
- Department of Gastroenterology, University Hospital Heart and Brain, 5804 Pleven, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Kozyak 1 str., 1407 Sofia, Bulgaria
| |
Collapse
|
83
|
Senchukova MA. Genetic heterogeneity of colorectal cancer and the microbiome. World J Gastrointest Oncol 2023; 15:443-463. [PMID: 37009315 PMCID: PMC10052667 DOI: 10.4251/wjgo.v15.i3.443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
In 2020, the International Agency for Research on Cancer and the World Health Organization's GLOBOCAN database ranked colorectal cancer (CRC) as the third most common cancer in the world. Most cases of CRC (> 95%) are sporadic and develop from colorectal polyps that can progress to intramucosal carcinoma and CRC. Increasing evidence is accumulating that the gut microbiota can play a key role in the initiation and progression of CRC, as well as in the treatment of CRC, acting as an important metabolic and immunological regulator. Factors that may determine the microbiota role in CRC carcinogenesis include inflammation, changes in intestinal stem cell function, impact of bacterial metabolites on gut mucosa, accumulation of genetic mutations and other factors. In this review, I discuss the major mechanisms of the development of sporadic CRC, provide detailed characteristics of the bacteria that are most often associated with CRC, and analyze the role of the microbiome and microbial metabolites in inflammation initiation, activation of proliferative activity in intestinal epithelial and stem cells, and the development of genetic and epigenetic changes in CRC. I consider long-term studies in this direction to be very important, as they open up new opportunities for the treatment and prevention of CRC.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
84
|
Yang S, Hao S, Ye H, Zhang X. Global research on the crosstalk between intestinal microbiome and colorectal cancer: A visualization analysis. Front Cell Infect Microbiol 2023; 13:1083987. [PMID: 37009513 PMCID: PMC10050574 DOI: 10.3389/fcimb.2023.1083987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundIncreasing evidence has shown that the intestinal microbiome (IM) is highly linked to colorectal cancer (CRC). To investigate scientific output, identify highly cited papers, and explore research hotspots and trends in the field of IM/CRC, we conducted a bibliometric and visualized analysis.MethodsA bibliographic search regarding IM/CRC research (2012-2021) was implemented on October 17, 2022. The terms attached to IM and CRC were searched for in the titles (TI), abstracts (AB), and author keywords (AK). The main information was extracted from the Web of Science Core Collection (WoSCC). Biblioshiny from R packages and VOSviewer were used for data visualization.ResultsA total of 1725 papers related to IM/CRC were retrieved. Publications on IM/CRC have grown rapidly from 2012 to 2021. China and the United States were in the leading position for publications in this field and made the most significant contributions to IM/CRC research. Shanghai Jiao Tong University and Harvard University were the most productive institutions. The high-yield authors were Yu Jun and Fang Jing Yuan. The International Journal of Molecular Sciences published the most papers, whereas Gut had the most citations. Historical citation analysis showed the evolution of IM/CRC research. Current status and hotspots were highlighted using keyword cluster analysis. The hot topics include the effect of IM on tumorigenesis, the effect of IM on CRC treatment, the role of IM in CRC screening, the mechanisms of IM involvement in CRC, and IM modulation for CRC management. Some topics, such as chemotherapy, immunotherapy, Fusobacterium nucleatum and short-chain fatty acids could be the focus of IM/CRC research in the coming years.ConclusionThis research evaluated the global scientific output of IM/CRC research and its quantitative features, identified some significant papers, and gathered information on the status and trends of IM/CRC research, which may shape future paths for academics and practitioners.
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shaodong Hao
- Spleen-Stomach Department, Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Ye
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
- *Correspondence: Xuezhi Zhang, ; Hui Ye,
| | - Xuezhi Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
- *Correspondence: Xuezhi Zhang, ; Hui Ye,
| |
Collapse
|
85
|
Al Bitar S, El-Sabban M, Doughan S, Abou-Kheir W. Molecular mechanisms targeting drug-resistance and metastasis in colorectal cancer: Updates and beyond. World J Gastroenterol 2023; 29:1395-1426. [PMID: 36998426 PMCID: PMC10044855 DOI: 10.3748/wjg.v29.i9.1395] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 03/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed malignancy and a major leading cause of cancer-related deaths worldwide. Despite advances in therapeutic regimens, the number of patients presenting with metastatic CRC (mCRC) is increasing due to resistance to therapy, conferred by a small population of cancer cells, known as cancer stem cells. Targeted therapies have been highly successful in prolonging the overall survival of patients with mCRC. Agents are being developed to target key molecules involved in drug-resistance and metastasis of CRC, and these include vascular endothelial growth factor, epidermal growth factor receptor, human epidermal growth factor receptor-2, mitogen-activated extracellular signal-regulated kinase, in addition to immune checkpoints. Currently, there are several ongoing clinical trials of newly developed targeted agents, which have shown considerable clinical efficacy and have improved the prognosis of patients who do not benefit from conventional chemotherapy. In this review, we highlight recent developments in the use of existing and novel targeted agents against drug-resistant CRC and mCRC. Furthermore, we discuss limitations and challenges associated with targeted therapy and strategies to combat intrinsic and acquired resistance to these therapies, in addition to the importance of implementing better preclinical models and the application of personalized therapy based on predictive biomarkers for treatment selection.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
86
|
Cell Surface Fibroblast Activation Protein-2 (Fap2) of Fusobacterium nucleatum as a Vaccine Candidate for Therapeutic Intervention of Human Colorectal Cancer: An Immunoinformatics Approach. Vaccines (Basel) 2023; 11:vaccines11030525. [PMID: 36992108 DOI: 10.3390/vaccines11030525] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and is the second-highest in cancer-related deaths worldwide. The changes in gut homeostasis and microbial dysbiosis lead to the initiation of the tumorigenesis process. Several pathogenic gram-negative bacteria including Fusobacterium nucleatum are the principal contributors to the induction and pathogenesis of CRC. Thus, inhibiting the growth and survival of these pathogens can be a useful intervention strategy. Fibroblast activation protein-2 (Fap2) is an essential membrane protein of F. nucleatum that promotes the adherence of the bacterium to the colon cells, recruitment of immune cells, and induction of tumorigenesis. The present study depicts the design of an in silico vaccine candidate comprising the B-cell and T-cell epitopes of Fap2 for improving cell-mediated and humoral immune responses against CRC. Notably, this vaccine participates in significant protein–protein interactions with human Toll-like receptors, especially with TLR6 reveals, which is most likely to be correlated with its efficacy in eliciting potential immune responses. The immunogenic trait of the designed vaccine was verified by immune simulation approach. The cDNA of the vaccine construct was cloned in silico within the expression vector pET30ax for protein expression. Collectively, the proposed vaccine construct may serve as a promising therapeutic in intervening F. nucleatum-induced human CRC.
Collapse
|
87
|
Microbiome and One Health: Potential of Novel Metabolites from the Gut Microbiome of Unique Species for Human Health. Microorganisms 2023; 11:microorganisms11020481. [PMID: 36838446 PMCID: PMC9958914 DOI: 10.3390/microorganisms11020481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
For thousands of years, the notion that human health and performance are concomitant with the health and diversity of the microbiome has been deliberated upon [...].
Collapse
|
88
|
The Pleiotropic Effects of Gut Microbiota in Colorectal Cancer Progression: How to Turn Foes into Friends. Cancers (Basel) 2023; 15:cancers15030916. [PMID: 36765873 PMCID: PMC9913371 DOI: 10.3390/cancers15030916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Colorectal Cancer (CRC) is one of most frequent malignant cancers, showing high lethality worldwide [...].
Collapse
|
89
|
Huynh M, Crane MJ, Jamieson AM. The lung, the niche, and the microbe: Exploring the lung microbiome in cancer and immunity. Front Immunol 2023; 13:1094110. [PMID: 36733391 PMCID: PMC9888758 DOI: 10.3389/fimmu.2022.1094110] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
The lung is a complex and unique organ system whose biology is strongly influenced by environmental exposure, oxygen abundance, connection to extrapulmonary systems via a dense capillary network, and an array of immune cells that reside in the tissue at steady state. The lung also harbors a low biomass community of commensal microorganisms that are dynamic during both health and disease with the capacity to modulate regulatory immune responses during diseases such as cancer. Lung cancer is the third most common cancer worldwide with the highest mortality rate amongst cancers due to the difficulty of an early diagnosis. This review discusses the current body of work addressing the interactions between the lung microbiota and the immune system, and how these two components of the pulmonary system are linked to lung cancer development and outcomes. Bringing in lessons from broader studies examining the effects of the gut microbiota on cancer outcomes, we highlight many challenges and gaps in this nascent field.
Collapse
Affiliation(s)
| | | | - Amanda M. Jamieson
- Department of Molecular Microbiology & Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
90
|
Fu Z, Zhang H, Zeng Z, Ning F, Xu Z, Liu C, Zhang M, Hu P. A pre-column derivatization high-performance liquid chromatography method for simultaneous determination of short-chain and medium-chain fatty acids in a fecal sample. J Sep Sci 2023; 46:e2200671. [PMID: 36285380 DOI: 10.1002/jssc.202200671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 01/11/2023]
Abstract
Short-chain and medium-chain fatty acids have plentiful biological functions, which play a crucial role in the diagnosis and therapy of many diseases. Herein, a new method for simultaneous quantifying 17 short-chain and medium-chain fatty acids with high-performance liquid chromatography coupled with an ultraviolet detector was developed and the pre-column derivatization by indole-3-acetic acid hydrazide was performed to improve the separation and detection. The conditions of the derivatization reaction were systematically investigated. Subsequently, the method was validated and the results showed a satisfactory linearity (linear regression coefficients > 0.9969), the limit of detection (4.0×10-3 -1.9×10-2 μmol/L), precision (0.9%-7.3% for intra-day and 2.0%-9.8% for inter-day), recovery (90.0%-109.1% with relative standard deviation <7.7%) and stability (0.1%-3.3% for standard solution and 0.2%-3.9% for fecal sample). Finally, the established method was successfully applied to quantify short-chain and medium-chain fatty acids in the feces of healthy control and diabetic rats. Eleven kinds of short-chain and medium-chain fatty acids were detected and six of them showed a significant difference between the control group and the model group.
Collapse
Affiliation(s)
- Zhibo Fu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Zhijun Zeng
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, P. R. China
| | - Fanghong Ning
- Department of Biotechnology, School of Biotechnology, East China University of Science and Technology, Shanghai, P. R. China
| | - Ziwei Xu
- Department of Pharmacology, School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, P. R. China
| | - Chenyu Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Min Zhang
- China Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
91
|
Zhang Z, Bahaji Azami NL, Liu N, Sun M. Research Progress of Intestinal Microecology in the Pathogenesis of Colorectal Adenoma and Carcinogenesis. Technol Cancer Res Treat 2023; 22:15330338221135938. [PMID: 36740990 PMCID: PMC9903042 DOI: 10.1177/15330338221135938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal adenoma is a precancerous lesion that may progress to colorectal cancer. Patients with colorectal adenoma had a 4-fold higher risk of developing colorectal malignancy than the rest of the population, with approximately 80% of colorectal cancer originating from colorectal adenoma. Therefore, preventing the occurrence and progression of colorectal adenoma is crucial in reducing the risk for colorectal cancer. The human intestinal microecology is a complex system consisting of numerous microbial communities with a sophisticated structure. Interactions among intestinal microorganisms play crucial roles in maintaining normal intestinal structure, digestion, absorption, metabolism, and other functions. The colorectal system is the largest microbial bank or fermentation system in the human body. Studies suggest that intestinal microecological imbalance, one of the most important environmental factors, may play an essential role in the occurrence and development of colorectal adenoma and colorectal cancer. Based on the complexity of studying the gut microbiota ecosystem, its specific role in the occurrence and development of colorectal adenoma is yet to be elucidated. In addition, further studies are expected to provide new insights regarding the prevention and treatment of colorectal adenoma. This article reviews the relationship and mechanism of the diversity of the gut microbiota, the relevant inflammatory response, immune regulation, and metabolic changes in the presence of colorectal adenomas.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nisma Lena Bahaji Azami
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningning Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyu Sun
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
92
|
Park JY. Extragastric Manifestations of H. pylori Infection: Lower GI Disorders. HELICOBACTER PYLORI 2023:447-456. [DOI: 10.1007/978-981-97-0013-4_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
93
|
Chen H, Jiao J, Wei M, Jiang X, Yang R, Yu X, Zhang G, Zhou X. Metagenomic analysis of the interaction between the gut microbiota and colorectal cancer: a paired-sample study based on the GMrepo database. Gut Pathog 2022; 14:48. [PMID: 36564826 PMCID: PMC9784093 DOI: 10.1186/s13099-022-00527-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous evidence has shown that the gut microbiota plays a role in the development and progression of colorectal cancer (CRC). This study aimed to provide quantitative analysis and visualization of the interaction between the gut microbiota and CRC in order to establish a more precise microbiota panel for CRC diagnosis. METHOD A paired-sample study was designed by retrieving original metagenomic data from the GMrepo database. The differences in the distribution of the gut microbiota between CRCs and controls were analysed at the species level. A co-occurrence network was established, and the microbial interactions with environmental factors were assessed. Random forest models were used to determine significant biomarkers for differentiating CRC and control samples. RESULTS A total of 709 metagenomic samples from 6 projects were identified. After matching, 86 CRC patients and 86 matched healthy controls from six countries were enrolled. A total of 484 microbial species and 166 related genera were analysed. In addition to previously recognized associations between Fusobacterium nucleatum and species belonging to the genera Peptostreptococcus, Porphyromonas, and Prevotella and CRC, we found new associations with the novel species of Parvimonas micra and Collinsella tanakaei. In CRC patients, Bacteroides uniformis and Collinsella tanakaei were positively correlated with age, whereas Dorea longicatena, Adlercreutzia equolifaciens, and Eubacterium hallii had positive associations with body mass index (BMI). Finally, a random forest model was established by integrating different numbers of species with the highest model-building importance and lowest inner subcategory bias. The median value of the area under the receiver operating characteristic curve (AUC) was 0.812 in the training cohort and 0.790 in the validation set. CONCLUSIONS Our study provides a novel bioinformatics approach for investigating the interaction between the gut microbiota and CRC using an online free database. The identification of key species and their associated genes should be further emphasized to determine the relative causality of microbial organisms in the development of CRC.
Collapse
Affiliation(s)
- Han Chen
- grid.412676.00000 0004 1799 0784Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical, University300# Guangzhou Road, Nanjing, 210029 People’s Republic of China ,grid.89957.3a0000 0000 9255 8984The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Jianhua Jiao
- grid.412676.00000 0004 1799 0784Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical, University300# Guangzhou Road, Nanjing, 210029 People’s Republic of China ,grid.89957.3a0000 0000 9255 8984The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Min Wei
- grid.459788.fDepartment of Gastroenterology, Nanjing Jiangning Hospital, Nanjing, China
| | - Xingzhou Jiang
- grid.412676.00000 0004 1799 0784Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical, University300# Guangzhou Road, Nanjing, 210029 People’s Republic of China ,grid.89957.3a0000 0000 9255 8984The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Ruoyun Yang
- grid.412676.00000 0004 1799 0784Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical, University300# Guangzhou Road, Nanjing, 210029 People’s Republic of China ,grid.89957.3a0000 0000 9255 8984The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xin Yu
- grid.412676.00000 0004 1799 0784Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical, University300# Guangzhou Road, Nanjing, 210029 People’s Republic of China ,grid.89957.3a0000 0000 9255 8984The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Guoxin Zhang
- grid.412676.00000 0004 1799 0784Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical, University300# Guangzhou Road, Nanjing, 210029 People’s Republic of China ,grid.89957.3a0000 0000 9255 8984The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xiaoying Zhou
- grid.412676.00000 0004 1799 0784Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical, University300# Guangzhou Road, Nanjing, 210029 People’s Republic of China ,grid.89957.3a0000 0000 9255 8984The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| |
Collapse
|
94
|
Flavonoids' Dual Benefits in Gastrointestinal Cancer and Diabetes: A Potential Treatment on the Horizon? Cancers (Basel) 2022; 14:cancers14246073. [PMID: 36551558 PMCID: PMC9776408 DOI: 10.3390/cancers14246073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetes and gastrointestinal cancers (GI) are global health conditions with a massive burden on patients' lives worldwide. The development of both conditions is influenced by several factors, such as diet, genetics, environment, and infection, which shows a potential link between them. Flavonoids are naturally occurring phenolic compounds present in fruits and vegetables. Once ingested, unabsorbed flavonoids reaching the colon undergo enzymatic modification by the gut microbiome to facilitate absorption and produce ring fission products. The metabolized flavonoids exert antidiabetic and anti-GI cancer properties, targeting major impaired pathways such as apoptosis and cellular proliferation in both conditions, suggesting the potentially dual effects of flavonoids on diabetes and GI cancers. This review summarizes the current knowledge on the impact of flavonoids on diabetes and GI cancers in four significant pathways. It also addresses the synergistic effects of selected flavonoids on both conditions. While this is an intriguing approach, more studies are required to better understand the mechanism of how flavonoids can influence the same impaired pathways with different outcomes depending on the disease.
Collapse
|
95
|
Pal S, Saini AK, Kaushal A, Gupta S, Gaur NA, Chhillar AK, Sharma AK, Gupta VK, Saini RV. The Colloquy between Microbiota and the Immune System in Colon Cancer: Repercussions on the Cancer Therapy. Curr Pharm Des 2022; 28:3478-3485. [PMID: 36415093 DOI: 10.2174/1381612829666221122115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022]
Abstract
Colorectal cancer is the second leading cause of cancer deaths worldwide and has engrossed researchers' attention toward its detection and prevention at early stages. Primarily associated with genetic and environmental risk factors, the disease has also shown its emergence due to dysbiosis in microbiota. The microbiota not only plays a role in modulating the metabolisms of metastatic tissue but also has a keen role in cancer therapy. The immune cells are responsible for secreting various chemokines and cytokines, and activating pattern recognition receptors by different microbes can lead to the trail by which these cells regulate cancer. Furthermore, mixed immune reactions involving NK cells, tumor-associated macrophages, and lymphocytes have shown their connection with the microbial counterpart of the disease. The microbes like Bacteroides fragilis, Fusobacterium nucleatum, and Enterococcus faecalis and their metabolites have engendered inflammatory reactions in the tumor microenvironment. Hence the interplay between immune cells and various microbes is utilized to study the changing metastasis stage. Targeting either immune cells or microbiota could not serve as a key to tackling this deadly disorder. However, harnessing their complementation towards the disease can be a powerful weapon for developing therapy and diagnostic/prognostic markers. In this review, we have discussed various immune reactions and microbiome interplay in CRC, intending to evaluate the effectiveness of chemotherapy and immunotherapy and their parallel relationship.
Collapse
Affiliation(s)
- Soumya Pal
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Adesh K Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India.,Central Research Cell, MMIMSR, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Ankur Kaushal
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Shagun Gupta
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Naseem A Gaur
- Department of Yeast Biofuel, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Anil K Chhillar
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak, India
| | - Anil K Sharma
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, UK
| | - Reena V Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India.,Central Research Cell, MMIMSR, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| |
Collapse
|
96
|
Wang X, Xiong K, Huang F, Huang J, Liu Q, Duan N, Ruan H, Jiang H, Zhu Y, Lin L, Song Y, Zhao M, Zheng L, Ye P, Qian Y, Hu Q, Yan F, Wang W. A metagenome-wide association study of the gut microbiota in recurrent aphthous ulcer and regulation by thalidomide. Front Immunol 2022; 13:1018567. [PMID: 36341405 PMCID: PMC9626999 DOI: 10.3389/fimmu.2022.1018567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/30/2022] [Indexed: 12/04/2022] Open
Abstract
Recurrent aphthous ulcer (RAU), one of the most common diseases in humans, has an unknown etiology and is difficult to treat. Thalidomide is an important immunomodulatory and antitumor drug and its effects on the gut microbiota still remain unclear. We conducted a metagenomic sequencing study of fecal samples from a cohort of individuals with RAU, performed biochemical assays of cytokines, immunoglobulins and antimicrobial peptides in serum and saliva, and investigated the regulation effects of thalidomide administration and withdrawal. Meanwhile we constructed the corresponding prediction models. Our metagenome-wide association results indicated that gut dysbacteriosis, microbial dysfunction and immune imbalance occurred in RAU patients. Thalidomide regulated gut dysbacteriosis in a species-specific manner and had different sustainable effects on various probiotics and pathogens. A previously unknown association between gut microbiota alterations and RAU was found, and the specific roles of thalidomide in modulating the gut microbiota and immunity were determined, suggesting that RAU may be affected by targeting gut dysbacteriosis and modifying immune imbalance. In-depth insights into sophisticated networks consisting of the gut microbiota and host cells may lead to the development of emerging treatments, including prebiotics, probiotics, synbiotics, and postbiotics.
Collapse
Affiliation(s)
- Xiang Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kexu Xiong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fan Huang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jinqun Huang
- Beijing Genomics Institute (BGI)-genomics, BGI-Shenzhen, Shenzhen, China
| | - Qin Liu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ning Duan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huanhuan Ruan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongliu Jiang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanan Zhu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lin Lin
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuefeng Song
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Maomao Zhao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lichun Zheng
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Pei Ye
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yajie Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qingang Hu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
97
|
Sakai SA, Aoshima M, Sawada K, Horasawa S, Yoshikawa A, Fujisawa T, Kadowaki S, Denda T, Matsuhashi N, Yasui H, Goto M, Yamazaki K, Komatsu Y, Nakanishi R, Nakamura Y, Bando H, Hamaya Y, Kageyama SI, Yoshino T, Tsuchihara K, Yamashita R. Fecal microbiota in patients with a stoma decreases anaerobic bacteria and alters taxonomic and functional diversities. Front Cell Infect Microbiol 2022; 12:925444. [PMID: 36189350 PMCID: PMC9515963 DOI: 10.3389/fcimb.2022.925444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant diseases. Generally, stoma construction is performed following surgery for the resection of the primary tumor in patients with CRC. The association of CRC with the gut microbiota has been widely reported, and the gut microbiota is known to play an important role in the carcinogenesis, progression, and treatment of CRC. In this study, we compared the microbiota of patients with CRC between with and without a stoma using fecal metagenomic sequencing data from SCRUM-Japan MONSTAR-SCREEN, a joint industry-academia cancer research project in Japan. We found that the composition of anaerobes was reduced in patients with a stoma. In particular, the abundance of Alistipes, Akkermansia, Intestinimonas, and methane-producing archaea decreased. We also compared gene function (e.g., KEGG Orthology and KEGG pathway) and found that gene function for methane and short-chain fatty acids (SCFAs) production was underrepresented in patients with a stoma. Furthermore, a stoma decreased Shannon diversity based on taxonomic composition but increased that of the KEGG pathway. These results suggest that the feces of patients with a stoma have a reduced abundance of favorable microbes for cancer immunotherapy. In conclusion, we showed that a stoma alters the taxonomic and functional profiles in feces and may be a confounding factor in fecal microbiota analysis.
Collapse
Affiliation(s)
- Shunsuke A. Sakai
- Graduate School of Frontier Science, Department of Integrated Biosciences, University of Tokyo, Kashiwa, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Masato Aoshima
- Graduate School of Frontier Science, Department of Integrated Biosciences, University of Tokyo, Kashiwa, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Kentaro Sawada
- Department of Medical Oncology, Kushiro Rosai Hospital, Kushiro, Japan
| | - Satoshi Horasawa
- Translational Research Support Section, National Cancer Center Hospital East, National Cancer Center Hospital East, Kashiwa, Japan
| | - Ayumu Yoshikawa
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takao Fujisawa
- Department Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shigenori Kadowaki
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Tadamichi Denda
- Divisioin of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological surgery Pediatric surgery, Gifu University Hospital, Gifu, Japan
| | - Hisateru Yasui
- Department of Medical Oncology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Masahiro Goto
- Cancer Chemotherapy Center, Osaka Medical and Pharmaceutical University Hospital, Takatsuki, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yoshito Komatsu
- Department of Cancer Center, Hokkaido University Hospital, Hokkaido, Japan
| | - Ryota Nakanishi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiaki Nakamura
- Translational Research Support Section, National Cancer Center Hospital East, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Translational Research Support Section, National Cancer Center Hospital East, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yamato Hamaya
- Graduate School of Frontier Science, Department of Integrated Biosciences, University of Tokyo, Kashiwa, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shun-Ichiro Kageyama
- Department of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Katsuya Tsuchihara
- Graduate School of Frontier Science, Department of Integrated Biosciences, University of Tokyo, Kashiwa, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Riu Yamashita
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, University of Tokyo, Kashiwa, Japan
- *Correspondence: Riu Yamashita,
| |
Collapse
|
98
|
Yang S, Zhao S, Ye Y, Jia L, Lou Y. Global research trends on the links between gut microbiota and cancer immunotherapy: A bibliometric analysis (2012-2021). Front Immunol 2022; 13:952546. [PMID: 36090978 PMCID: PMC9449151 DOI: 10.3389/fimmu.2022.952546] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background There is a crosstalk between gut microbiota (GM) and cancer immunotherapy (CI). The purpose of this study is to use bibliometric analysis to identify the highly cited papers relating to GM/CI and explore the research status and development trends of the GM/CI research. Methods A literature search regarding GM/CI publications from 2012 to 2021 was undertaken on July 4, 2022. The article titles, journals, authors, institutions, countries, total citations, keywords, and other information were extracted from the Science Citation Index Expanded (SCIE) of Web of Science Core Collection (WoSCC). The Bibliometrix of R package and VOSviewer were used for bibliometric analysis. Results A total of 665 papers were extracted. The number of papers has increased rapidly over the past decade, especially after 2018. The United States and China had the most publications and made great contributions to this field. Th5e Univ Texas MD Anderson Canc Ctr and Univ Paris Saclay were absolutely in the leading position in GM/CI. The most influential authors were Zitvogel L and Routy B. Frontiers in Immunology had the most publications and Science had the most total citations. Historical direct citation analysis explained the historical evolution in GM/CI. Highly cited papers and high-frequency keywords illustrated the current status and trends of GM/CI. Four clusters were identified and the important topics included the role of GM and antibiotics in CI, the methods of targeting GM to improve CI outcomes, the mechanism by which GM affects CI and the application of ICIs in melanoma. “Tumor microbiome”, “proton pump inhibitors” and “prognosis” may be the new focus of attention in the next few years. Conclusion This study filtered global publications on GM/CI correlation and analyzed their bibliometric characteristics, identified the most cited papers in GM/CI, and gained insight into the status, hotspots and trends of global GM/CI research, which may inform researchers and practitioners of future directions.
Collapse
Affiliation(s)
- Shanshan Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Suya Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yixiang Ye
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Liqun Jia
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia, ; Yanni Lou,
| | - Yanni Lou
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia, ; Yanni Lou,
| |
Collapse
|
99
|
Lawrence GW, McCarthy N, Walsh CJ, Kunyoshi TM, Lawton EM, O’Connor PM, Begley M, Cotter PD, Guinane CM. Effect of a bacteriocin-producing Streptococcus salivarius on the pathogen Fusobacterium nucleatum in a model of the human distal colon. Gut Microbes 2022; 14:2100203. [PMID: 35877697 PMCID: PMC9318236 DOI: 10.1080/19490976.2022.2100203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome is a vast reservoir of microbes, some of which produce antimicrobial peptides called bacteriocins that may inhibit specific bacteria associated with disease. Fusobacterium nucleatum is an emerging human bacterial pathogen associated with gastrointestinal diseases including colorectal cancer (CRC). In this study, fecal samples of healthy donors were screened for potential bacteriocin-producing probiotics with antimicrobial activity against F. nucleatum. A novel isolate, designated as Streptococcus salivarius DPC6993 demonstrated a narrow-spectrum of antimicrobial activity against F. nucleatum in vitro. In silico analysis of the S. salivarius DPC6993 genome revealed the presence of genes involved in the production of the bacteriocins salivaricin A5 and salivaricin B. After 6 h in a colon fermentation model, there was a significant drop in the number of F. nucleatum in samples that had been simultaneously inoculated with S. salivarius DPC6993 + F. nucleatum DSM15643 compared to those inoculated with F. nucleatum DSM15643 alone (mean ± SD: 9243.3 ± 3408.4 vs 29688.9 ± 4993.9 copies/μl). Furthermore, 16S rRNA amplicon analysis revealed a significant difference in the mean relative abundances of Fusobacterium between samples inoculated with both S. salivarius DPC6993 and F. nucleatum DSM15643 (0.05%) and F. nucleatum DSM15643 only (0.32%). Diversity analysis indicated minimal impact exerted by S. salivarius DPC6993 on the surrounding microbiota. Overall, this study highlights the ability of a natural gut bacterium to target a bacterial pathogen associated with CRC. The specific targeting of CRC-associated pathogens by biotherapeutics may ultimately reduce the risk of CRC development and positively impact CRC outcomes.
Collapse
Affiliation(s)
- Garreth W. Lawrence
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Niamh McCarthy
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Calum J. Walsh
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland,VistaMilk SFI Research Centre, Moorepark, Fermoy, Cork, Ireland
| | | | | | - Paula M. O’Connor
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland,VistaMilk SFI Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Paul D. Cotter
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland,VistaMilk SFI Research Centre, Moorepark, Fermoy, Cork, Ireland,Paul D. Cotter Food Biosciences, Teagasc Food Research Centre Moorepark, APC Microbiome Ireland, Cork, Ireland
| | - Caitriona M. Guinane
- Department of Biological Sciences, Munster Technological University, Cork, Ireland,CONTACT Caitriona M. Guinane Department of Biological Sciences, Munster Technological University, Cork, Ireland
| |
Collapse
|
100
|
Guo Q, Qin H, Liu X, Zhang X, Chen Z, Qin T, Chang L, Zhang W. The Emerging Roles of Human Gut Microbiota in Gastrointestinal Cancer. Front Immunol 2022; 13:915047. [PMID: 35784372 PMCID: PMC9240199 DOI: 10.3389/fimmu.2022.915047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
The gut microbiota is composed of a large number of microorganisms with a complex structure. It participates in the decomposition, digestion, and absorption of nutrients; promotes the development of the immune system; inhibits the colonization of pathogens; and thus modulates human health. In particular, the relationship between gut microbiota and gastrointestinal tumor progression has attracted widespread concern. It was found that the gut microbiota can influence gastrointestinal tumor progression in independent ways. Here, we focused on the distribution of gut microbiota in gastrointestinal tumors and further elaborated on the impact of gut microbiota metabolites, especially short-chain fatty acids, on colorectal cancer progression. Additionally, the effects of gut microbiota on gastrointestinal tumor therapy are outlined. Finally, we put forward the possible problems in gut microbiota and the gastrointestinal oncology field and the efforts we need to make.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Qianqian Guo, ; Wenzhou Zhang,
| | - Hai Qin
- Department of Clinical Laboratory, Guizhou Provincial Orthopedic Hospital, Guiyang City, China
| | - Xueling Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xinxin Zhang
- The Second Clinical Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Province Engineering Research Center of Artificial Intelligence and Internet of Things Wise Medical, Zhengzhou, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Linlin Chang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Qianqian Guo, ; Wenzhou Zhang,
| |
Collapse
|