51
|
Metabolic Modeling and Bidirectional Culturing of Two Gut Microbes Reveal Cross-Feeding Interactions and Protective Effects on Intestinal Cells. mSystems 2022; 7:e0064622. [PMID: 36005398 PMCID: PMC9600892 DOI: 10.1128/msystems.00646-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The gut microbiota is constituted by thousands of microbial interactions, some of which correspond to the exchange of metabolic by-products or cross-feeding. Inulin and xylan are two major dietary polysaccharides that are fermented by members of the human gut microbiota, resulting in different metabolic profiles. Here, we integrated community modeling and bidirectional culturing assays to study the metabolic interactions between two gut microbes, Phocaeicola dorei and Lachnoclostridium symbiosum, growing in inulin or xylan, and how they provide a protective effect in cultured cells. P. dorei (previously belonging to the Bacteroides genus) was able to consume inulin and xylan, while L. symposium only used certain inulin fractions to produce butyrate as a major end product. Constrained-based flux simulations of refined genome-scale metabolic models of both microbes predicted high lactate and succinate cross-feeding fluxes between P. dorei and L. symbiosum when growing in each fiber. Bidirectional culture assays in both substrates revealed that L. symbiosum growth increased in the presence of P. dorei. Carbohydrate consumption analyses showed a faster carbohydrate consumption in cocultures compared to monocultures. Lactate and succinate concentrations in bidirectional cocultures were lower than in monocultures, pointing to cross-feeding as initially suggested by the model. Butyrate concentrations were similar across all conditions. Finally, supernatants from both bacteria cultured in xylan in bioreactors significantly reduced tumor necrosis factor-α-induced inflammation in HT-29 cells and exerted a protective effect against the TcdB toxin in Caco-2 epithelial cells. Surprisingly, this effect was not observed in inulin cocultures. Overall, these results highlight the predictive value of metabolic models integrated with microbial culture assays for probing microbial interactions in the gut microbiota. They also provide an example of how metabolic exchange could lead to potential beneficial effects in the host. IMPORTANCE Microbial interactions represent the inner connections in the gut microbiome. By integrating mathematical modeling tools and microbial bidirectional culturing, we determined how two gut commensals engage in the exchange of cross-feeding metabolites, lactate and succinate, for increased growth in two fibers. These interactions underpinned butyrate production in cocultures, resulting in a significant reduction in cellular inflammation and protection against microbial toxins when applied to cellular models.
Collapse
|
52
|
A Multiscale Spatiotemporal Model Including a Switch from Aerobic to Anaerobic Metabolism Reproduces Succession in the Early Infant Gut Microbiota. mSystems 2022; 7:e0044622. [PMID: 36047700 PMCID: PMC9600552 DOI: 10.1128/msystems.00446-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The human intestinal microbiota starts to form immediately after birth and is important for the health of the host. During the first days, facultatively anaerobic bacterial species generally dominate, such as Enterobacteriaceae. These are succeeded by strictly anaerobic species, particularly Bifidobacterium species. An early transition to Bifidobacterium species is associated with health benefits; for example, Bifidobacterium species repress growth of pathogenic competitors and modulate the immune response. Succession to Bifidobacterium is thought to be due to consumption of intracolonic oxygen present in newborns by facultative anaerobes, including Enterobacteriaceae. To study if oxygen depletion suffices for the transition to Bifidobacterium species, here we introduced a multiscale mathematical model that considers metabolism, spatial bacterial population dynamics, and cross-feeding. Using publicly available metabolic network data from the AGORA collection, the model simulates ab initio the competition of strictly and facultatively anaerobic species in a gut-like environment under the influence of lactose and oxygen. The model predicts that individual differences in intracolonic oxygen in newborn infants can explain the observed individual variation in succession to anaerobic species, in particular Bifidobacterium species. Bifidobacterium species became dominant in the model by their use of the bifid shunt, which allows Bifidobacterium to switch to suboptimal yield metabolism with fast growth at high lactose concentrations, as predicted here using flux balance analysis. The computational model thus allows us to test the internal plausibility of hypotheses for bacterial colonization and succession in the infant colon. IMPORTANCE The composition of the infant microbiota has a great impact on infant health, but its controlling factors are still incompletely understood. The frequently dominant anaerobic Bifidobacterium species benefit health, e.g., they can keep harmful competitors under control and modulate the intestinal immune response. Controlling factors could include nutritional composition and intestinal mucus composition, as well as environmental factors, such as antibiotics. We introduce a modeling framework of a metabolically realistic intestinal microbial ecology in which hypothetical scenarios can be tested and compared. We present simulations that suggest that greater levels of intraintestinal oxygenation more strongly delay the dominance of Bifidobacterium species, explaining the observed variety of microbial composition and demonstrating the use of the model for hypothesis generation. The framework allowed us to test a variety of controlling factors, including intestinal mixing and transit time. Future versions will also include detailed modeling of oligosaccharide and mucin metabolism.
Collapse
|
53
|
Effect of Sodium Nitrate and Cysteamine on In Vitro Ruminal Fermentation, Amino Acid Metabolism and Microbiota in Buffalo. Microorganisms 2022; 10:microorganisms10102038. [PMID: 36296314 PMCID: PMC9609660 DOI: 10.3390/microorganisms10102038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Nitrate is used as a methane inhibitor while cysteamine is considered as a growth promoter in ruminants. The present study evaluated the effect of sodium nitrate and cysteamine on methane (CH4) production, rumen fermentation, amino acid (AA) metabolism, and rumen microbiota in a low protein diet. Four treatments containing a 0.5 g of substrate were supplemented with 1 mg/mL sodium nitrate (SN), 100 ppm cysteamine hydrochloride (CS), and a combination of SN 1 mg/mL and CS 100 ppm (CS+SN), and a control (no additive) were applied in a completely randomized design. Each treatment group had five replicates. Two experimental runs using in vitro batch culture technique were performed for two consecutive weeks. Total gas and CH4 production were measured in each fermentation bottle at 3, 6, 9, 12, 24, 48, and 72 h of incubation. The results showed that SN and CS+SN reduced the production of total gas and CH4, increased the rumen pH, acetate, acetate to propionate ratio (A/P), and microbial protein (MCP) contents (p < 0.05), but decreased other volatile fatty acids (VFA) and total VFA (p = 0.001). The CS had no effect on CH4 production and rumen fermentation parameters except for increasing A/P. The CSN increased the populations of total bacteria, fungi, and methanogens but decreased the diversity and richness of rumen microorganisms. In conclusion, CS+SN exhibited a positive effect on rumen fermentation by increasing the number of fiber degrading and hydrogen-utilizing bacteria, with a desirable impact on rumen fermentation while reducing total gas and CH4 production.
Collapse
|
54
|
Arzamasov AA, Osterman AL. Milk glycan metabolism by intestinal bifidobacteria: insights from comparative genomics. Crit Rev Biochem Mol Biol 2022; 57:562-584. [PMID: 36866565 PMCID: PMC10192226 DOI: 10.1080/10409238.2023.2182272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/11/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023]
Abstract
Bifidobacteria are early colonizers of the human neonatal gut and provide multiple health benefits to the infant, including inhibiting the growth of enteropathogens and modulating the immune system. Certain Bifidobacterium species prevail in the gut of breastfed infants due to the ability of these microorganisms to selectively forage glycans present in human milk, specifically human milk oligosaccharides (HMOs) and N-linked glycans. Therefore, these carbohydrates serve as promising prebiotic dietary supplements to stimulate the growth of bifidobacteria in the guts of children suffering from impaired gut microbiota development. However, the rational formulation of milk glycan-based prebiotics requires a detailed understanding of how bifidobacteria metabolize these carbohydrates. Accumulating biochemical and genomic data suggest that HMO and N-glycan assimilation abilities vary remarkably within the Bifidobacterium genus, both at the species and strain levels. This review focuses on the delineation and genome-based comparative analysis of differences in respective biochemical pathways, transport systems, and associated transcriptional regulatory networks, providing a foundation for genomics-based projection of milk glycan utilization capabilities across a rapidly growing number of sequenced bifidobacterial genomes and metagenomic datasets. This analysis also highlights remaining knowledge gaps and suggests directions for future studies to optimize the formulation of milk-glycan-based prebiotics that target bifidobacteria.
Collapse
Affiliation(s)
- Aleksandr A Arzamasov
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
55
|
Ojima MN, Jiang L, Arzamasov AA, Yoshida K, Odamaki T, Xiao J, Nakajima A, Kitaoka M, Hirose J, Urashima T, Katoh T, Gotoh A, van Sinderen D, Rodionov DA, Osterman AL, Sakanaka M, Katayama T. Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosaccharides. THE ISME JOURNAL 2022; 16:2265-2279. [PMID: 35768643 PMCID: PMC9381805 DOI: 10.1038/s41396-022-01270-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022]
Abstract
Bifidobacteria are among the first colonizers of the infant gut, and human milk oligosaccharides (HMOs) in breastmilk are instrumental for the formation of a bifidobacteria-rich microbiota. However, little is known about the assembly of bifidobacterial communities. Here, by applying assembly theory to a community of four representative infant-gut associated Bifidobacterium species that employ varied strategies for HMO consumption, we show that arrival order and sugar consumption phenotypes significantly affected community formation. Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis, two avid HMO consumers, dominate through inhibitory priority effects. On the other hand, Bifidobacterium breve, a species with limited HMO-utilization ability, can benefit from facilitative priority effects and dominates by utilizing fucose, an HMO degradant not utilized by the other bifidobacterial species. Analysis of publicly available breastfed infant faecal metagenome data showed that the observed trends for B. breve were consistent with our in vitro data, suggesting that priority effects may have contributed to its dominance. Our study highlights the importance and history dependency of initial community assembly and its implications for the maturation trajectory of the infant gut microbiota.
Collapse
Affiliation(s)
- Miriam N Ojima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Keisuke Yoshida
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Toshitaka Odamaki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Jinzhong Xiao
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Aruto Nakajima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Junko Hirose
- School of Human Cultures, The University of Shiga Prefecture, Hikone, Shiga, Japan
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Tadasu Urashima
- Department of Food and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Aina Gotoh
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, Food Science Building, University College Cork, Cork, Ireland
| | - Dmitry A Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrei L Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
56
|
Bai J, Wan Z, Zhang Y, Wang T, Xue Y, Peng Q. Composition and diversity of gut microbiota in diabetic retinopathy. Front Microbiol 2022; 13:926926. [PMID: 36081798 PMCID: PMC9445585 DOI: 10.3389/fmicb.2022.926926] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveDiabetic retinopathy (DR) is one of the most common complications of type 2 diabetes mellitus. The current study investigates the composition, structure, and function of gut microbiota in DR patients and explores the correlation between gut microbiota and clinical characteristics of DR.MethodsA total of 50 stool samples were collected from 50 participants, including 25 DR patients and 25 healthy controls (HCs). 16S ribosomal RNA gene sequencing was used to analyze the gut microbial composition in these two groups. DNA was extracted from the fecal samples using the MiSeq platform.ResultsThe microbial structure and composition of DR patients were different from that of HCs. The microbial richness of gut microbiota in DR was higher than that of normal individuals. The alterations of microbiome of DR patients were associated with disrupted Firmicutes, Bacteroidetes, Synergistota, and Desulfobacterota phyla. In addition, increased levels of Bacteroides, Megamonas, Ruminococcus_torques_group, Lachnoclostridium, and Alistipes, and decreased levels of Blautia, Eubacterium_ hallii_group, Collinsella, Dorea, Romboutsia, Anaerostipes, and Fusicatenibacter genera were observed in the DR groups. Additionally, a stochastic forest model was developed to identify a set of biomarkers with seven bacterial genera that can differentiate patients with DR from those HC. The microbial communities exhibited varied functions in these two groups because of the alterations of the above-mentioned bacterial genera.ConclusionThe altered composition and function of gut microbiota in DR patients indicated that gut microbiome could be used as non-invasive biomarkers, improve clinical diagnostic methods, and identify putative therapeutic targets for DR.
Collapse
|
57
|
Pham VT, Greppi A, Chassard C, Braegger C, Lacroix C. Stepwise establishment of functional microbial groups in the infant gut between 6 months and 2 years: A prospective cohort study. Front Nutr 2022; 9:948131. [PMID: 35967780 PMCID: PMC9366138 DOI: 10.3389/fnut.2022.948131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The early intestinal colonization of functional microbial groups plays an essential role in infant gut health, with most studies targeting the initial colonization period from birth to 6 months of age. In a previous report, we demonstrated the metabolic cross-feeding of lactate and identified keystone species specified for lactate utilization in fecal samples of 40 healthy infants. We present here the extension of our longitudinal study for the period from 6 months to 2 years, with a focus on the colonization of functional groups involved in lactate metabolism and butyrate production. We captured the dynamic changes of the gut microbiota and reported a switch in the predominant lactate-producing and lactate-utilizing bacteria, from Veillonella producing propionate in the first year to Anaerobutyrycum hallii producing butyrate in the second year of life. The significant increase in butyrate producers and fecal butyrate concentration was also pinpointed to the weaning period between 6 and 10 months. Correlation analyses further suggested, for the first time, the metabolic cross-feeding of hydrogen in infants. In conclusion, our longitudinal study of 40 Swiss infants provides important insights into the colonization of functional groups involved in lactate metabolism and butyrate production in the first 2 years of life.
Collapse
Affiliation(s)
- Van T Pham
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.,Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, Zurich, Switzerland
| | - Anna Greppi
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Chassard
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christian Braegger
- Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
58
|
van der Vossen EWJ, de Goffau MC, Levin E, Nieuwdorp M. Recent insights into the role of microbiome in the pathogenesis of obesity. Therap Adv Gastroenterol 2022; 15:17562848221115320. [PMID: 35967920 PMCID: PMC9373125 DOI: 10.1177/17562848221115320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity is a risk factor for many chronic diseases and its rising prevalence the last couple of decades is a healthcare concern in many countries. Obesity is a multifactorial problem that is not only limited in its causation by diet and lack of exercise. Genetics but also environmental factors such as the gut microbiome should similarly be taken into account. A plethora of articles have been published, that from various different angles, attempt to disentangle the complex interaction between gut microbiota and obesity. Examples range from the effect of the gut microbiota on the host immune system to the pathophysiological pathways in which microbial-derived metabolites affect obesity. Various discordant gut microbiota findings are a result of this complexity. In this review, in addition to summarizing the classical role of the gut microbiome in the pathogenesis of obesity, we attempt to view both the healthy and obesogenic effects of the gut microbiota as a consequence of the presence or absence of collective guilds/trophic networks. Lastly, we propose avenues and strategies for the future of gut microbiome research concerning obesity.
Collapse
Affiliation(s)
- Eduard W. J. van der Vossen
- Department of Experimental Vascular Medicine,
Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The
Netherlands
| | - Marcus C. de Goffau
- Department of Experimental Vascular Medicine,
Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The
Netherlands
| | - Evgeni Levin
- Department of Experimental Vascular Medicine,
Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The
Netherlands,Horaizon BV, Delft, The Netherlands
| | | |
Collapse
|
59
|
Human Milk Oligosaccharides and Lactose Differentially Affect Infant Gut Microbiota and Intestinal Barrier In Vitro. Nutrients 2022; 14:nu14122546. [PMID: 35745275 PMCID: PMC9227761 DOI: 10.3390/nu14122546] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Background: The infant gut microbiota establishes during a critical window of opportunity when metabolic and immune functions are highly susceptible to environmental changes, such as diet. Human milk oligosaccharides (HMOs) for instance are suggested to be beneficial for infant health and gut microbiota. Infant formulas supplemented with the HMOs 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) reduce infant morbidity and medication use and promote beneficial bacteria in the infant gut ecosystem. To further improve infant formula and achieve closer proximity to human milk composition, more complex HMO mixtures could be added. However, we currently lack knowledge about their effects on infants’ gut ecosystems. Method: We assessed the effect of lactose, 2′-FL, 2′-FL + LNnT, and a mixture of six HMOs (HMO6: consisting of 2′-FL, LNnT, difucosyllactose, lacto-N-tetraose, 3′- and 6′-sialyllactose) on infant gut microbiota and intestinal barrier integrity using a combination of in vitro models to mimic the microbial ecosystem (baby M-SHIME®) and the intestinal epithelium (Caco-2/HT29-MTX co-culture). Results: All the tested products had bifidogenic potential and increased SCFA levels; however, only the HMOs’ fermented media protected against inflammatory intestinal barrier disruption. 2′-FL/LNnT and HMO6 promoted the highest diversification of OTUs within the Bifidobactericeae family, whereas beneficial butyrate-producers were specifically enriched by HMO6. Conclusion: These results suggest that increased complexity in HMO mixture composition may benefit the infant gut ecosystem, promoting different bifidobacterial communities and protecting the gut barrier against pro-inflammatory imbalances.
Collapse
|
60
|
Prebiotics as a Tool for the Prevention and Treatment of Obesity and Diabetes: Classification and Ability to Modulate the Gut Microbiota. Int J Mol Sci 2022; 23:ijms23116097. [PMID: 35682774 PMCID: PMC9181475 DOI: 10.3390/ijms23116097] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes and obesity are metabolic diseases that have become alarming conditions in recent decades. Their rate of increase is becoming a growing concern worldwide. Recent studies have established that the composition and dysfunction of the gut microbiota are associated with the development of diabetes. For this reason, strategies such as the use of prebiotics to improve intestinal microbial structure and function have become popular. Consumption of prebiotics for modulating the gut microbiota results in the production of microbial metabolites such as short-chain fatty acids that play essential roles in reducing blood glucose levels, mitigating insulin resistance, reducing inflammation, and promoting the secretion of glucagon-like peptide 1 in the host, and this accounts for the observed remission of metabolic diseases. Prebiotics can be either naturally extracted from non-digestible carbohydrate materials or synthetically produced. In this review, we discussed current findings on how the gut microbiota and microbial metabolites may influence host metabolism to promote health. We provided evidence from various studies that show the ability of prebiotic consumption to alter gut microbial profile, improve gut microbial metabolism and functions, and improve host physiology to alleviate diabetes and obesity. We conclude among other things that the application of systems biology coupled with bioinformatics could be essential in ascertaining the exact mechanisms behind the prebiotic–gut microbe–host interactions required for diabetes and obesity improvement.
Collapse
|
61
|
Button JE, Autran CA, Reens AL, Cosetta CM, Smriga S, Ericson M, Pierce JV, Cook DN, Lee ML, Sun AK, Alousi AM, Koh AY, Rechtman DJ, Jenq RR, McKenzie GJ. Dosing a synbiotic of human milk oligosaccharides and B. infantis leads to reversible engraftment in healthy adult microbiomes without antibiotics. Cell Host Microbe 2022; 30:712-725.e7. [PMID: 35504279 DOI: 10.1016/j.chom.2022.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
Abstract
Predictable and sustainable engraftment of live biotherapeutic products into the human gut microbiome is being explored as a promising way to modulate the human gut microbiome. We utilize a synbiotic approach pairing the infant gut microbe Bifidobacterium longum subspecies infantis (B. infantis) and human milk oligosaccharides (HMO). B. infantis, which is typically absent in adults, engrafts into healthy adult microbiomes in an HMO-dependent manner at a relative abundance of up to 25% of the bacterial population without antibiotic pretreatment or adverse effects. Corresponding changes in metabolites are detected. Germ-free mice transplanted with dysbiotic human microbiomes also successfully engraft with B. infantis in an HMO-dependent manner, and the synbiotic augments butyrate levels both in this in vivo model and in in vitro cocultures of the synbiotic with specific Firmicutes species. Finally, the synbiotic inhibits the growth of enteropathogens in vitro. Our findings point to a potential safe mechanism for ameliorating dysbioses characteristic of numerous human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Adam K Sun
- Prolacta Bioscience, Duarte, CA 91010, USA
| | - Amin M Alousi
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Y Koh
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Robert R Jenq
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
62
|
Human milk oligosaccharide-sharing by a consortium of infant derived Bifidobacterium species. Sci Rep 2022; 12:4143. [PMID: 35264656 PMCID: PMC8907170 DOI: 10.1038/s41598-022-07904-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/24/2022] [Indexed: 11/08/2022] Open
Abstract
Bifidobacteria are associated with a host of health benefits and are typically dominant in the gut microbiota of healthy, breast-fed infants. A key adaptation, facilitating the establishment of these species, is their ability to consume particular sugars, known as human milk oligosaccharides (HMO), which are abundantly found in breastmilk. In the current study, we aimed to characterise the co-operative metabolism of four commercial infant-derived bifidobacteria (Bifidobacterium bifidum R0071, Bifidobacterium breve M-16V, Bifidobacterium infantis R0033, and Bifidobacterium infantis M-63) when grown on HMO. Three different HMO substrates (2'-fucosyllactose alone and oligosaccharides isolated from human milk representing non-secretor and secretor status) were employed. The four-strain combination resulted in increased bifidobacterial numbers (> 21%) in comparison to single strain cultivation. The relative abundance of B. breve increased by > 30% during co-cultivation with the other strains despite demonstrating limited ability to assimilate HMO in mono-culture. HPLC analysis revealed strain-level variations in HMO consumption. Metabolomics confirmed the production of formate, acetate, 1,2-propanediol, and lactate with an overall increase in such metabolites during co-cultivation. These results support the concept of positive co-operation between multiple bifidobacterial strains during HMO utilisation which may result in higher cell numbers and a potentially healthier balance of metabolites.
Collapse
|
63
|
Nogacka AM, Arboleya S, Nikpoor N, Auger J, Salazar N, Cuesta I, Alvarez-Buylla JR, Mantecón L, Solís G, Gueimonde M, Tompkins TA, de los Reyes-Gavilán CG. In Vitro Probiotic Modulation of the Intestinal Microbiota and 2′Fucosyllactose Consumption in Fecal Cultures from Infants at Two Months of Age. Microorganisms 2022; 10:microorganisms10020318. [PMID: 35208773 PMCID: PMC8876326 DOI: 10.3390/microorganisms10020318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 01/17/2023] Open
Abstract
2′-fucosyllactose (2′FL) is one of the most abundant oligosaccharides in human milk, with benefits on neonatal health. Previous results point to the inability of the fecal microbiota from some infants to ferment 2′FL. We evaluated a probiotic formulation, including the strains Lactobacillus helveticus Rosell®-52 (R0052), Bifidobacterium longum subsp. infantis Rosell®-33 (R0033), and Bifidobacterium bifidum Rosell®-71 (R0071), individually or in an 80:10:10 combination on the microbiota and 2′FL degradation. Independent batch fermentations were performed with feces from six full-term infant donors of two months of age (three breastfed and three formula-fed) with added probiotic formulation or the constituent strains in the presence of 2′FL. Microbiota composition was analyzed by 16S rRNA gene sequencing. Gas accumulation, pH decrease and 2′FL consumption, and levels of different metabolites were determined by chromatography. B. bifidum R0071 was the sole microorganism promoting a partial increase of 2′FL degradation during fermentation in fecal cultures of 2′FL slow-degrading donors. However, major changes in microbiota composition and metabolic activity occurred with L. helveticus R0052 or the probiotic formulation in cultures of slow degraders. Further studies are needed to decipher the role of the host intestinal microbiota in the efficacy of these strains.
Collapse
Affiliation(s)
- Alicja M. Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
- Correspondence: (A.M.N.); (C.G.d.l.R.-G.); Tel.: +34-985-89-21-31 (A.M.N.)
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
| | - Naghmeh Nikpoor
- Rosell Institute for Microbiome and Probiotics, Montreal, QC H4P 2R2, Canada; (N.N.); (J.A.); (T.A.T.)
| | - Jeremie Auger
- Rosell Institute for Microbiome and Probiotics, Montreal, QC H4P 2R2, Canada; (N.N.); (J.A.); (T.A.T.)
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
| | - Isabel Cuesta
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
| | - Jorge R. Alvarez-Buylla
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
| | - Laura Mantecón
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Asturias, Spain
| | - Gonzalo Solís
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
| | - Thomas A. Tompkins
- Rosell Institute for Microbiome and Probiotics, Montreal, QC H4P 2R2, Canada; (N.N.); (J.A.); (T.A.T.)
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
- Correspondence: (A.M.N.); (C.G.d.l.R.-G.); Tel.: +34-985-89-21-31 (A.M.N.)
| |
Collapse
|
64
|
Singh RP, Niharika J, Kondepudi KK, Bishnoi M, Tingirikari JMR. Recent understanding of human milk oligosaccharides in establishing infant gut microbiome and roles in immune system. Food Res Int 2022; 151:110884. [PMID: 34980411 DOI: 10.1016/j.foodres.2021.110884] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Human milk oligosaccharides (HMOs) are complex sugars with distinctive structural diversity present in breast milk. HMOs have various functional roles to play in infant development starting from establishing the gut microbiome and immune system to take it up to the mature phase. It has been a major energy source for human gut microbes that confer positive benefits on infant health by directly interacting through intestinal cells and generating short-chain fatty acids. It has recently become evident that each species of Bifidobacterium and other genera which are resident of the infant gut employ distinct molecular mechanisms to capture and digest diverse structural HMOs to avoid competition among themselves and successfully maintain gut homeostasis. HMOs also directly modulate gut immune responses and can decoy receptors of pathogenic bacteria and viruses, inhibiting their binding on intestinal cells, thus preventing the emergence of a disease. This review provides a critical understanding of how different gut bacteria capture and utilize selective sugars from the HMO pool and how different structural HMOs protect infants from infectious diseases.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Laboratory of Gut Glycobiology, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India.
| | - Jayashree Niharika
- Laboratory of Gut Glycobiology, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Jagan Mohan Rao Tingirikari
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh 534101, India
| |
Collapse
|
65
|
Kumari M, Singh P, Nataraj BH, Kokkiligadda A, Naithani H, Azmal Ali S, Behare PV, Nagpal R. Fostering next-generation probiotics in human gut by targeted dietary modulation: An emerging perspective. Food Res Int 2021; 150:110716. [PMID: 34865747 DOI: 10.1016/j.foodres.2021.110716] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/07/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022]
Abstract
Emerging evidence and an in-depth understanding of the microbiome have helped in identifying beneficial commensals and their therapeutic potentials. Specific commensal taxa/ strains of the human gut microbiome have been positively associated with human health and recently termed as next-generation probiotics (NGPs). Of these, Akkermansia muciniphila, Ruminococcus bromii, Faecalibacterium prausnitzii, Anaerobutyricum hallii, and Roseburia intestinalis are the five most relevant gut-derived NGPs that have demonstrated therapeutic potential in managing metabolic diseases. Specific and natural dietary interventions can modulate the abundance and activity of these beneficial bacteria in the gut. Hence, the understanding of targeted stimulation of specific NGP by specific probiotic-targeted diets (PTD) is indispensable for the rational application of their combination. The supplementation of NGP with its specific PTD will help the strain(s) to compete with harmful microbes and acquire its niche. This combination would enhance the effectiveness of NGPs to be used as "live biotherapeutic products" or food nutraceuticals. Under the current milieu, we review various PTDs that influence the abundance of specific potential NGPs, and contemplates potential interactions between diet, microbes, and their effects on host health. Taking into account the study mentioned, we propose that combining NGPs will provide an alternate solution for developing the new diet in conjunction with PTD.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Parul Singh
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Basavaprabhu H Nataraj
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Anusha Kokkiligadda
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Harshita Naithani
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Pradip V Behare
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India.
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
66
|
Abstract
The neonatal body provides a range of potential habitats, such as the gut, for microbes. These sites eventually harbor microbial communities (microbiotas). A "complete" (adult) gut microbiota is not acquired by the neonate immediately after birth. Rather, the exclusive, milk-based nutrition of the infant encourages the assemblage of a gut microbiota of low diversity, usually dominated by bifidobacterial species. The maternal fecal microbiota is an important source of bacterial species that colonize the gut of infants, at least in the short-term. However, development of the microbiota is influenced by the use of human milk (breast feeding), infant formula, preterm delivery of infants, caesarean delivery, antibiotic administration, family details and other environmental factors. Following the introduction of weaning (complementary) foods, the gut microbiota develops in complexity due to the availability of a diversity of plant glycans in fruits and vegetables. These glycans provide growth substrates for the bacterial families (such as members of the Ruminococcaceae and Lachnospiraceae) that, in due course, will dominate the gut microbiota of the adult. Although current data are often fragmentary and observational, it can be concluded that the nutrition that a child receives in early life is likely to impinge not only on the development of the microbiota at that time but also on the subsequent lifelong, functional relationships between the microbiota and the human host. The purpose of this review, therefore, is to discuss the importance of promoting the assemblage of functionally robust gut microbiotas at appropriate times in early life.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
67
|
Tungsten enzymes play a role in detoxifying food and antimicrobial aldehydes in the human gut microbiome. Proc Natl Acad Sci U S A 2021; 118:2109008118. [PMID: 34686601 DOI: 10.1073/pnas.2109008118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
Tungsten (W) is a metal that is generally thought to be seldom used in biology. We show here that a W-containing oxidoreductase (WOR) family is diverse and widespread in the microbial world. Surprisingly, WORs, along with the tungstate-specific transporter Tup, are abundant in the human gut microbiome, which contains 24 phylogenetically distinct WOR types. Two model gut microbes containing six types of WOR and Tup were shown to assimilate W. Two of the WORs were natively purified and found to contain W. The enzymes catalyzed the conversion of toxic aldehydes to the corresponding acid, with one WOR carrying out an electron bifurcation reaction coupling aldehyde oxidation to the simultaneous reduction of NAD+ and of the redox protein ferredoxin. Such aldehydes are present in cooked foods and are produced as antimicrobials by gut microbiome metabolism. This aldehyde detoxification strategy is dependent on the availability of W to the microbe. The functions of other WORs in the gut microbiome that do not oxidize aldehydes remain unknown. W is generally beyond detection (<6 parts per billion) in common foods and at picomolar concentrations in drinking water, suggesting that W availability could limit some gut microbial functions and might be an overlooked micronutrient.
Collapse
|
68
|
Conta G, Del Chierico F, Reddel S, Marini F, Sciubba F, Capuani G, Tomassini A, Di Cocco ME, Laforgia N, Baldassarre ME, Putignani L, Miccheli A. Longitudinal Multi-Omics Study of a Mother-Infant Dyad from Breastfeeding to Weaning: An Individualized Approach to Understand the Interactions Among Diet, Fecal Metabolome and Microbiota Composition. Front Mol Biosci 2021; 8:688440. [PMID: 34671642 PMCID: PMC8520934 DOI: 10.3389/fmolb.2021.688440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023] Open
Abstract
The development of the human gut microbiota is characterized by a dynamic sequence of events from birth to adulthood, which make the gut microbiota unique for everyone. Its composition and metabolism may play a critical role in the intestinal homeostasis and health. We propose a study on a single mother-infant dyad to follow the dynamics of an infant fecal microbiota and metabolome changes in relation to breast milk composition during the lactation period and evaluate the changes induced by introduction of complementary food during the weaning period. Nuclear Magnetic Resonance (NMR)-based metabolomics was performed on breast milk and, together with 16S RNA targeted-metagenomics analysis, also on infant stool samples of a mother-infant dyad collected over a period running from the exclusive breastfeeding diet to weaning. Breast milk samples and neonatal stool samples were collected from the 4th to the 10th month of life. Both specimens were collected from day 103 to day 175, while from day 219-268 only stool samples were examined. An exploratory and a predictive analysis were carried out by means of Common component and specific weight analysis and multi-block partial least squares discriminant analysis, respectively. Stools collected during breastfeeding and during a mixed fruit/breastfeeding diet were characterized by high levels of fucosyl-oligosaccharides and glycolysis intermediates, including succinate and formate. The transition to a semi-solid food diet was characterized by several changes in fecal parameters: increase in short-chain fatty acids (SCFAs) levels, including acetate, propionate and butyrate, dissapearance of HMOs and the shift in the community composition, mainly occurring within the Firmicutes phylum. The variations in the fecal metabolome reflected the infant's diet transition, while the composition of the microbiota followed a more complex and still unstable behavior.
Collapse
Affiliation(s)
- Giorgia Conta
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.,NMR-Based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| | - Federica Del Chierico
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sofia Reddel
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.,NMR-Based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| | - Fabio Sciubba
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.,NMR-Based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| | - Giorgio Capuani
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.,NMR-Based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| | | | | | - Nicola Laforgia
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | | | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alfredo Miccheli
- NMR-Based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy.,Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
69
|
Berkhout MD, Plugge CM, Belzer C. How microbial glycosyl hydrolase activity in the gut mucosa initiates microbial cross-feeding. Glycobiology 2021; 32:182-200. [PMID: 34939101 PMCID: PMC8966484 DOI: 10.1093/glycob/cwab105] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/12/2022] Open
Abstract
The intestinal epithelium is protected from direct contact with gut microbes by a mucus layer. This mucus layer consists of secreted mucin glycoproteins. The outer mucus layer in the large intestine forms a niche that attracts specific gut microbiota members of which several gut commensals can degrade mucin. Mucin glycan degradation is a complex process that requires a broad range of glycan degrading enzymes, as mucin glycans are intricate and diverse molecules. Consequently, it is hypothesised that microbial mucin breakdown requires concerted action of various enzymes in a network of multiple resident microbes at the gut mucosa. This review investigates the evolutionary relationships of microbial CAZymes that are potentially involved in mucin glycan degradation and focuses on the role that microbial enzymes play in the degradation of gut mucin glycans in microbial cross-feeding and syntrophic interactions.
Collapse
Affiliation(s)
- Maryse D Berkhout
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
70
|
Human Milk Oligosaccharides Modulate Fecal Microbiota and Are Safe for Use in Children With Overweight: A Randomized Controlled Trial. J Pediatr Gastroenterol Nutr 2021; 73:408-414. [PMID: 34139746 DOI: 10.1097/mpg.0000000000003205] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Human milk oligosaccharides (HMOs) impact the intestinal microbiota by increasing beneficial bacteria in infants and adults, and are safe and well tolerated in these age groups. Effects on intestinal microbiota, safety, and digestive tolerance in children have not been, however, assessed. The aims of this trial were to evaluate if HMOs are able to specifically modulate the intestinal microbiota in children, and to assess safety and digestive tolerance. METHODS In this randomized, double-blinded, placebo-controlled trial, 75 children with overweight (including obesity) ages 6 to 12 years were randomized to receive 2'-fucosyllactose (2'FL), a mix of 2'FL and lacto-N-neotetraose (Mix), or a glucose placebo orally administrated once per day for 8 weeks. RESULTS The relative abundance of bifidobacteria increased significantly after 4 (P < 0.001) and 8 (P = 0.025) weeks of intervention in the 2'FL-group and after 4 weeks (P = 0.033) in the Mix-group, whereas no change was observed in the placebo group. Compared with placebo, the 2'FL-group had a significant increase in bifidobacteria abundance after 4 weeks (P < 0.001) and 8 weeks (P = 0.010) and the Mix-group showed a tendency to increased bifidobacteria abundance after 4 (P = 0.071) and 8 weeks (P = 0.071). Bifidobacterium adolescentis drove the bifidogenic effect in the 2 groups. Biochemical markers indicated no safety concerns, and the products did not induce digestive tolerance issues as assessed by Gastrointestinal Symptoms Rating Scale and Bristol Stool Form Scale. CONCLUSIONS Both 2'FL and the Mix beneficially modulate intestinal microbiota by increasing bifidobacteria. Furthermore, supplementation with either 2'FL alone or a Mix is safe and well tolerated in children.
Collapse
|
71
|
Turroni F, Milani C, Ventura M, van Sinderen D. The human gut microbiota during the initial stages of life: insights from bifidobacteria. Curr Opin Biotechnol 2021; 73:81-87. [PMID: 34333445 DOI: 10.1016/j.copbio.2021.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022]
Abstract
Current scientific literature has identified the infant gut microbiota as a multifaceted organ influencing a range of aspects of host-health and development. Many scientific studies have focused on characterizing the main microbial taxa that constitute the resident bacterial population of the infant gut. This has generated a wealth of information on the bacterial composition of the infant gut microbiota, and on the functional role/s exerted by their key microbial members. In this context, one of the most prevalent, abundant and investigated microbial taxon in the human infant gut is the genus Bifidobacterium, due to the purported beneficial activities is bestows upon its host. This review discusses the most recent findings regarding the infant gut microbiota with a particular focus on the molecular mechanisms by which bifidobacteria impact on host health and well-being.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy.
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland.
| |
Collapse
|
72
|
Fei Y, Chen Z, Han S, Zhang S, Zhang T, Lu Y, Berglund B, Xiao H, Li L, Yao M. Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota. Crit Rev Food Sci Nutr 2021; 63:1037-1054. [PMID: 34323634 DOI: 10.1080/10408398.2021.1958744] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the development of high-throughput DNA sequencing and molecular analysis technologies, next-generation probiotics (NGPs) are increasingly gaining attention as live bacterial therapeutics for treatment of diseases. However, compared to traditional probiotics, NGPs are much more vulnerable to the harsh conditions in the human gastrointestinal tract, and their functional mechanisms in the gut are more complex. Prebiotics have been confirmed to play a critical role in improving the function and viability of traditional probiotics. Defined as substrates that are selectively utilized by host microorganisms conferring a health benefit, prebiotics are also important for NGPs. This review summarizes potential prebiotics for use with NGPs and clarifies their characteristics and functional mechanisms. Then we particularly focus on illustrating the protective effects of various prebiotics by enhancing the antioxidant capacity and their resistance to digestive fluids. We also elucidate the role of prebiotics in regulating anti-bacterial effects, intestinal barrier maintenance, and cross-feeding mechanisms of NPGs. With the expanding range of candidate NGPs and prebiotic substrates, more studies need to be conducted to comprehensively elucidate the interactions between prebiotics and NGPs outside and inside hosts, in order to boost their nutritional and healthcare applications.
Collapse
Affiliation(s)
- Yiqiu Fei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zuobing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuobo Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tianfang Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanmeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Björn Berglund
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
73
|
Zhang S, Li T, Xie J, Zhang D, Pi C, Zhou L, Yang W. Gold standard for nutrition: a review of human milk oligosaccharide and its effects on infant gut microbiota. Microb Cell Fact 2021; 20:108. [PMID: 34049536 PMCID: PMC8162007 DOI: 10.1186/s12934-021-01599-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/21/2021] [Indexed: 02/08/2023] Open
Abstract
Human milk is the gold standard for nutrition of infant growth, whose nutritional value is mainly attributed to human milk oligosaccharides (HMOs). HMOs, the third most abundant component of human milk after lactose and lipids, are complex sugars with unique structural diversity which are indigestible by the infant. Acting as prebiotics, multiple beneficial functions of HMO are believed to be exerted through interactions with the gut microbiota either directly or indirectly, such as supporting beneficial bacteria growth, anti-pathogenic effects, and modulation of intestinal epithelial cell response. Recent studies have highlighted that HMOs can boost infants health and reduce disease risk, revealing potential of HMOs in food additive and therapeutics. The present paper discusses recent research in respect to the impact of HMO on the infant gut microbiome, with emphasis on the molecular basis of mechanism underlying beneficial effects of HMOs.
Collapse
Affiliation(s)
- Shunhao Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tianle Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Xie
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Demao Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Caixia Pi
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, China.
| | - Wenbin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, Department of Medical Affairs, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
74
|
Ioannou A, Knol J, Belzer C. Microbial Glycoside Hydrolases in the First Year of Life: An Analysis Review on Their Presence and Importance in Infant Gut. Front Microbiol 2021; 12:631282. [PMID: 34122357 PMCID: PMC8194493 DOI: 10.3389/fmicb.2021.631282] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
The first year of life is a crucial period during which the composition and functionality of the gut microbiota develop to stabilize and resemble that of adults. Throughout this process, the gut microbiota has been found to contribute to the maturation of the immune system, in gastrointestinal physiology, in cognitive advancement and in metabolic regulation. Breastfeeding, the “golden standard of infant nutrition,” is a cornerstone during this period, not only for its direct effect but also due to its indirect effect through the modulation of gut microbiota. Human milk is known to contain indigestible carbohydrates, termed human milk oligosaccharides (HMOs), that are utilized by intestinal microorganisms. Bacteria that degrade HMOs like Bifidobacterium longum subsp. infantis, Bifidobacterium bifidum, and Bifidobacterium breve dominate the infant gut microbiota during breastfeeding. A number of carbohydrate active enzymes have been found and identified in the infant gut, thus supporting the hypothesis that these bacteria are able to degrade HMOs. It is suggested that via resource-sharing and cross-feeding, the initial utilization of HMOs drives the interplay within the intestinal microbial communities. This is of pronounced importance since these communities promote healthy development and some of their species also persist in the adult microbiome. The emerging production and accessibility to metagenomic data make it increasingly possible to unravel the metabolic capacity of entire ecosystems. Such insights can increase understanding of how the gut microbiota in infants is assembled and makes it a possible target to support healthy growth. In this manuscript, we discuss the co-occurrence and function of carbohydrate active enzymes relevant to HMO utilization in the first year of life, based on publicly available metagenomic data. We compare the enzyme profiles of breastfed children throughout the first year of life to those of formula-fed infants.
Collapse
Affiliation(s)
- Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Danone Nutricia Research, Utrecht, Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
75
|
Engevik MA, Danhof HA, Hall A, Engevik KA, Horvath TD, Haidacher SJ, Hoch KM, Endres BT, Bajaj M, Garey KW, Britton RA, Spinler JK, Haag AM, Versalovic J. The metabolic profile of Bifidobacterium dentium reflects its status as a human gut commensal. BMC Microbiol 2021; 21:154. [PMID: 34030655 PMCID: PMC8145834 DOI: 10.1186/s12866-021-02166-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Bifidobacteria are commensal microbes of the mammalian gastrointestinal tract. In this study, we aimed to identify the intestinal colonization mechanisms and key metabolic pathways implemented by Bifidobacterium dentium. RESULTS B. dentium displayed acid resistance, with high viability over a pH range from 4 to 7; findings that correlated to the expression of Na+/H+ antiporters within the B. dentium genome. B. dentium was found to adhere to human MUC2+ mucus and harbor mucin-binding proteins. Using microbial phenotyping microarrays and fully-defined media, we demonstrated that in the absence of glucose, B. dentium could metabolize a variety of nutrient sources. Many of these nutrient sources were plant-based, suggesting that B. dentium can consume dietary substances. In contrast to other bifidobacteria, B. dentium was largely unable to grow on compounds found in human mucus; a finding that was supported by its glycosyl hydrolase (GH) profile. Of the proteins identified in B. dentium by proteomic analysis, a large cohort of proteins were associated with diverse metabolic pathways, indicating metabolic plasticity which supports colonization of the dynamic gastrointestinal environment. CONCLUSIONS Taken together, we conclude that B. dentium is well adapted for commensalism in the gastrointestinal tract.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA.
- Department of Regernative Medicine & Cell Biology, Medical University of South Carolina, SC, Charleston, USA.
| | - Heather A Danhof
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Anne Hall
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Kristen A Engevik
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Thomas D Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Sigmund J Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Kathleen M Hoch
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Bradley T Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Meghna Bajaj
- Department of Chemistry and Physics, and Department of Biotechnology, Alcorn State University, Lorman, MS, 39096, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Robert A Britton
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer K Spinler
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Anthony M Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
76
|
Liu X, Cheng YW, Shao L, Sun SH, Wu J, Song QH, Zou HS, Ling ZX. Gut microbiota dysbiosis in Chinese children with type 1 diabetes mellitus: An observational study. World J Gastroenterol 2021; 27:2394-2414. [PMID: 34040330 PMCID: PMC8130045 DOI: 10.3748/wjg.v27.i19.2394] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/17/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut microbiota dysbiosis is reportedly actively involved in autoimmune diseases such as type 1 diabetes mellitus (T1DM). However, the alterations in the gut microbiota and their correlation with fasting blood glucose (FBG) in Chinese children with T1DM remain unclear. AIM To investigate alterations in the gut microbiota in Chinese children with T1DM and their associations with clinical indicators. METHODS Samples from 51 children with T1DM and 47 age-matched and gender-matched healthy controls were obtained, to explore the structural and functional alterations in the fecal microbiota. The V3-V4 regions of the 16S rRNA gene were sequenced on a MiSeq instrument, and the association with FBG were analyzed. RESULTS We found that the bacterial diversity was significantly increased in the T1DM-associated fecal microbiota, and changes in the microbial composition were observed at different taxonomic levels. The T1DM-reduced differential taxa, such as Bacteroides vulgatus ATCC8482, Bacteroides ovatus, Bacteroides xylanisolvens, and Flavonifractor plautii, were negatively correlated with FBG, while the T1DM-enriched taxa, such as Blautia, Eubacterium hallii group, Anaerostipes hadrus, and Dorea longicatena, were positively correlated with FBG. Bacteroides vulgatus ATCC8482, Bacteroides ovatus, the Eubacterium hallii group, and Anaerostipes hadrus, either alone or in combination, could be used as noninvasive diagnostic biomarkers to discriminate children with T1DM from healthy controls. In addition, the functional changes in the T1DM-associated fecal microbiota also suggest that these fecal microbes were associated with altered functions and metabolic activities, such as glycan biosynthesis and metabolism and lipid metabolism, which might play vital roles in the pathogenesis and development of T1DM. CONCLUSION Our present comprehensive investigation of the T1DM-associated fecal microbiota provides novel insights into the pathogenesis of the disease and sheds light on the diagnosis and treatment of T1DM.
Collapse
Affiliation(s)
- Xia Liu
- Department of Intensive Care Unit, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yi-Wen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Li Shao
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou 310000, Zhejiang Province, China
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310000, Zhejiang Province, China
| | - Shu-Hong Sun
- Department of Laboratory Medicine, Linyi People’s Hospital, Linyi 276000, Shandong Province, China
| | - Jian Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Qing-Hai Song
- Department of Geriatrics, Lishui Second People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Hong-Sheng Zou
- Department of Intensive Care Unit, People’s Hospital of Rongcheng, Rongcheng 264300, Shandong Province, China
| | - Zong-Xin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
77
|
Moubareck CA. Human Milk Microbiota and Oligosaccharides: A Glimpse into Benefits, Diversity, and Correlations. Nutrients 2021; 13:1123. [PMID: 33805503 PMCID: PMC8067037 DOI: 10.3390/nu13041123] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Human milk represents a cornerstone for growth and development of infants, with extensive array of benefits. In addition to exceptionally nutritive and bioactive components, human milk encompasses a complex community of signature bacteria that helps establish infant gut microbiota, contributes to maturation of infant immune system, and competitively interferes with pathogens. Among bioactive constituents of milk, human milk oligosaccharides (HMOs) are particularly significant. These are non-digestible carbohydrates forming the third largest solid component in human milk. Valuable effects of HMOs include shaping intestinal microbiota, imparting antimicrobial effects, developing intestinal barrier, and modulating immune response. Moreover, recent investigations suggest correlations between HMOs and milk microbiota, with complex links possibly existing with environmental factors, genetics, geographical location, and other factors. In this review, and from a physiological and health implications perspective, milk benefits for newborns and mothers are highlighted. From a microbiological perspective, a focused insight into milk microbiota, including origins, diversity, benefits, and effect of maternal diet is presented. From a metabolic perspective, biochemical, physiological, and genetic significance of HMOs, and their probable relations to milk microbiota, are addressed. Ongoing research into mechanistic processes through which the rich biological assets of milk promote development, shaping of microbiota, and immunity is tackled.
Collapse
Affiliation(s)
- Carole Ayoub Moubareck
- College of Natural and Health Sciences, Zayed University, Dubai 19282, United Arab Emirates
| |
Collapse
|
78
|
CODY enables quantitatively spatiotemporal predictions on in vivo gut microbial variability induced by diet intervention. Proc Natl Acad Sci U S A 2021; 118:2019336118. [PMID: 33753486 PMCID: PMC8020746 DOI: 10.1073/pnas.2019336118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Quantitatively understanding and predicting spatiotemporal dynamics of microbiota is imperative for development of tailored microbiome-directed therapeutics treatments. However, the complexity of microbial variations, due to interactions with the host, other microbes, and environmental factors, makes it challenging to identify how microbiota colonize in the human gut. Here, we describe a novel multiscale framework for COmputing the DYnamics of the gut microbiota (CODY), which enables the quantification of spatiotemporal-specific variations of gut microbiome abundance profiles, without a prior knowledge of microbiome interactions. Importantly, the predictive power of CODY is demonstrated using cross-sectional data from two longitudinal metagenomics studies—the microbiota development during early infancy and during short-term diet intervention of obese adults. Microbial variations in the human gut are harbored in temporal and spatial heterogeneity, and quantitative prediction of spatiotemporal dynamic changes in the gut microbiota is imperative for development of tailored microbiome-directed therapeutics treatments, e.g. precision nutrition. Given the high-degree complexity of microbial variations, subject to the dynamic interactions among host, microbial, and environmental factors, identifying how microbiota colonize in the gut represents an important challenge. Here we present COmputing the DYnamics of microbiota (CODY), a multiscale framework that integrates species-level modeling of microbial dynamics and ecosystem-level interactions into a mathematical model that characterizes spatial-specific in vivo microbial residence in the colon as impacted by host physiology. The framework quantifies spatiotemporal resolution of microbial variations on species-level abundance profiles across site-specific colon regions and in feces, independent of a priori knowledge. We demonstrated the effectiveness of CODY using cross-sectional data from two longitudinal metagenomics studies—the microbiota development during early infancy and during short-term diet intervention of obese adults. For each cohort, CODY correctly predicts the microbial variations in response to diet intervention, as validated by available metagenomics and metabolomics data. Model simulations provide insight into the biogeographical heterogeneity among lumen, mucus, and feces, which provides insight into how host physical forces and spatial structure are shaping microbial structure and functionality.
Collapse
|
79
|
Ramirez Garcia A, Zhang J, Greppi A, Constancias F, Wortmann E, Wandres M, Hurley K, Pascual-García A, Ruscheweyh HJ, Sturla SJ, Lacroix C, Schwab C. Impact of manipulation of glycerol/diol dehydratase activity on intestinal microbiota ecology and metabolism. Environ Microbiol 2021; 23:1765-1779. [PMID: 33587772 DOI: 10.1111/1462-2920.15431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
Glycerol/diol dehydratases (GDH) are enzymes that catalyse the production of propionate from 1,2-propanediol, and acrolein from glycerol. Acrolein reacts with dietary carcinogenic heterocyclic amines (HCA), reducing HCA mutagenicity, but is itself also an antimicrobial agent and toxicant. Gut microbial GDH activity has been suggested as an endogenous acrolein source; however, there is limited information on the potential of the intestinal microbiota to have GDH activity, and what impact it can have on the intestinal ecosystem and host health. We hypothesized that GDH activity of gut microbiota is determined by the abundance and distribution of GDH-active taxa and can be enhanced by supplementation of the GDH active Anaerobutyricum hallii, and tested this hypothesis combining quantitative profiling of gdh, model batch fermentations, microbiota manipulation, and kinetic modelling of acrolein formation. Our results suggest that GDH activity is a common trait of intestinal microbiota shared by a few taxa, which was dependent on overall gdh abundance. Anaerobutyricum hallii was identified as a key taxon in GDH metabolism, and its supplementation increased the rate of GDH activity and acrolein release, which enhanced the transformation of HCA and reduced fermentation activity. The findings of this first systematic study on acrolein release by intestinal microbiota indicate that dietary and microbial modulation might impact GDH activity, which may influence host health.
Collapse
Affiliation(s)
- Alejandro Ramirez Garcia
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.,Laboratory of Toxicology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Jianbo Zhang
- Laboratory of Toxicology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Greppi
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Florentin Constancias
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Esther Wortmann
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Muriel Wandres
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Katherine Hurley
- Laboratory of Toxicology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | | | - Hans-Joachim Ruscheweyh
- Institute of Microbiology, Department of Biology, and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Shana J Sturla
- Laboratory of Toxicology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.,Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
80
|
Impact of 2'-Fucosyllactose on Gut Microbiota Composition in Adults with Chronic Gastrointestinal Conditions: Batch Culture Fermentation Model and Pilot Clinical Trial Findings. Nutrients 2021; 13:nu13030938. [PMID: 33799455 PMCID: PMC7998190 DOI: 10.3390/nu13030938] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Intestinal dysbiosis has been described in patients with certain gastrointestinal conditions including irritable bowel syndrome (IBS) and ulcerative colitis. 2′-fucosyllactose (2′-FL), a prebiotic human milk oligosaccharide, is considered bifidogenic and butyrogenic. To assess prebiotic effects of 2′-FL, alone or in combination with probiotic strains (potential synbiotics), in vitro experiments were conducted on stool from healthy, IBS, and ulcerative colitis adult donors. In anaerobic batch culture fermenters, Bifidobacterium and Eubacterium rectale-Clostridium coccoides counts, and short-chain fatty acids (SCFAs) including butyrate increased during fermentation with 2′-FL and some of the 2′-FL/probiotic combinations. In a subsequent open-label pilot trial, the effect of a 2′-FL-containing nutritional formula was evaluated in twelve adults with IBS or ulcerative colitis. Gastrointestinal Quality of Life Index (GIQLI) total and gastrointestinal symptoms domain scores, stool counts of Bifidobacterium and Faecalibacterium prausnitzii, and stool SCFAs including butyrate, increased after six weeks of intervention. Consistent with documented effects of 2′-FL, the batch culture fermentation experiments demonstrated bifidogenic and butyrogenic effects of 2′-FL during fermentation with human stool samples. Consumption of the 2′-FL-containing nutritional formula by adults with IBS or ulcerative colitis was associated with improvements in intra- and extra-intestinal symptoms, and bifidogenic and butyrogenic effects.
Collapse
|
81
|
Alessandri G, van Sinderen D, Ventura M. The genus bifidobacterium: From genomics to functionality of an important component of the mammalian gut microbiota running title: Bifidobacterial adaptation to and interaction with the host. Comput Struct Biotechnol J 2021; 19:1472-1487. [PMID: 33777340 PMCID: PMC7979991 DOI: 10.1016/j.csbj.2021.03.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Members of the genus Bifidobacterium are dominant and symbiotic inhabitants of the mammalian gastrointestinal tract. Being vertically transmitted, bifidobacterial host colonization commences immediately after birth and leads to a phase of host infancy during which bifidobacteria are highly prevalent and abundant to then transit to a reduced, yet stable abundance phase during host adulthood. However, in order to reach and stably colonize their elective niche, i.e. the large intestine, bifidobacteria have to cope with a multitude of oxidative, osmotic and bile salt/acid stress challenges that occur along the gastrointestinal tract (GIT). Concurrently, bifidobacteria not only have to compete with the myriad of other gut commensals for nutrient acquisition, but they also require protection against bacterial viruses. In this context, Next-Generation Sequencing (NGS) techniques, allowing large-scale comparative and functional genome analyses have helped to identify the genetic strategies that bifidobacteria have developed in order to colonize, survive and adopt to the highly competitive mammalian gastrointestinal environment. The current review is aimed at providing a comprehensive overview concerning the molecular strategies on which bifidobacteria rely to stably and successfully colonize the mammalian gut.
Collapse
Affiliation(s)
- Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
82
|
Determination of Bifidobacterial Carbohydrate Utilization Abilities and Associated Metabolic End Products. Methods Mol Biol 2021. [PMID: 33649952 DOI: 10.1007/978-1-0716-1274-3_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Bifidobacteria are able to utilize a diverse range of host-derived and dietary carbohydrates, the latter of which include many plant-derived oligo- and polysaccharides. Different bifidobacterial strains may possess different carbohydrate utilization abilities. These metabolic abilities can be studied using classical bacterial growth assessment methods, such as measurement of changes in optical density or acidity of the culture in the presence of the particular carbohydrate to generate growth and acidification curves, respectively. Scientists may also be interested in the growth rate during the exponential growth phase, and the maximum OD that is reached on a particular sugar, or the length of the lag phase. Furthermore, high-performance liquid chromatography (HPLC) and high-performance anion exchange chromatography coupled to pulsed amperometric detection (HPAEC-PAD) are extensively used in carbohydrate and metabolic end-product analysis due to their versatility and separation capabilities.
Collapse
|
83
|
Liang D, Li N, Dai X, Zhang H, Hu H. Effects of different types of potato resistant starches on intestinal microbiota and short‐chain fatty acids under
in vitro
fermentation. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dan Liang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Comprehensive Key Laboratory of Agro‐products Processing Ministry of Agriculture and Rural Affairs Beijing100193China
| | - Nan Li
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Comprehensive Key Laboratory of Agro‐products Processing Ministry of Agriculture and Rural Affairs Beijing100193China
| | - Xiaofeng Dai
- Feed Research Institute Chinese Academy of Agricultural Sciences Ministry of Agriculture and Rural Affairs Beijing100193China
| | - Hong Zhang
- Hefei CAAS Nutridoer Co. Ltd.Academy of Food Nutrition and Health InnovationChinese Academy of Agricultural Sciences Hefei238000China
| | - Honghai Hu
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Comprehensive Key Laboratory of Agro‐products Processing Ministry of Agriculture and Rural Affairs Beijing100193China
| |
Collapse
|
84
|
Sitkin S, Vakhitov T, Kononova S, Skalinskaya M, Pokrotnieks J. Gut Microbiota-Mediated Pleiotropic Effects of Fucose Can Improve Inflammatory Bowel Disease by Modulating Bile Acid Metabolism and Enhancing Propionate Production. Inflamm Bowel Dis 2021; 27:e10-e11. [PMID: 32879958 DOI: 10.1093/ibd/izaa233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Stanislav Sitkin
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, St. Petersburg, Russia
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Timur Vakhitov
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, St. Petersburg, Russia
| | - Svetlana Kononova
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, St. Petersburg, Russia
| | - Maria Skalinskaya
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, St. Petersburg, Russia
| | - Juris Pokrotnieks
- Department of Internal Diseases, Rīga Stradiņš University, Riga, Latvia
- Centre of Gastroenterology, Hepatology and Nutrition, Pauls Stradiņš Clinical University Hospital, Riga, Latvia
| |
Collapse
|
85
|
Chen M, Liu S, Imam KMSU, Sun L, Wang Y, Gu T, Wen B, Xin F. The Effect of Xylooligosaccharide, Xylan, and Whole Wheat Bran on the Human Gut Bacteria. Front Microbiol 2021; 11:568457. [PMID: 33424778 PMCID: PMC7794011 DOI: 10.3389/fmicb.2020.568457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022] Open
Abstract
Wheat bran is a cereal rich in dietary fibers that have high levels of ferulic acid, which has prebiotic effects on the intestinal microbiota and the host. Herein we explored the effect of xylooligosaccharide, xylan, and whole wheat bran on the human gut bacteria and screened for potential ferulic acid esterase genes. Using in vitro fermentation, we analyzed the air pressure, pH-value, and short-chain fatty acid levels. We also performed 16S rRNA gene and metagenomic sequencing. A Venn diagram analysis revealed that 80% of the core operational taxonomic units (OTUs) were shared among the samples, and most of the xylooligosaccharide treatment core OTUs (319/333 OTUs) were shared with the other two treatments’ core OTUs. A significant difference analysis revealed that the relative abundance of Dorea, Bilophila, and Sulfurovum in wheat bran treatment was higher than that in xylan and xylooligosaccharide treatments. The clusters of orthologous groups of proteins functional composition of all samples was similar to the microbiota composition of the control. Using metagenomic sequencing, we revealed seven genes containing the conserved residues, Gly-X-Ser-X-Gly, and the catalytic triad, Ser-His-Asp, which are thus potential ferulic acid esterase genes. All the results indicate that xylan and/or xylooligosaccharide, the main dietary fibers in wheat bran, plays a major role in in vitro fermentation by the human gut microbiota.
Collapse
Affiliation(s)
- Miao Chen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Khandaker Md Sharif Uddin Imam
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lichao Sun
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyi Gu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
86
|
Laursen MF, Bahl MI, Licht TR. Settlers of our inner surface - Factors shaping the gut microbiota from birth to toddlerhood. FEMS Microbiol Rev 2021; 45:6081092. [PMID: 33428723 PMCID: PMC8371275 DOI: 10.1093/femsre/fuab001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
During the first 3 years of life, the microbial ecosystem within the human gut undergoes a process that is unlike what happens in this ecosystem at any other time of our life. This period in time is considered a highly important developmental window, where the gut microbiota is much less resilient and much more responsive to external and environmental factors than seen in the adult gut. While advanced bioinformatics and clinical correlation studies have received extensive focus within studies of the human microbiome, basic microbial growth physiology has attracted much less attention, although it plays a pivotal role to understand the developing gut microbiota during early life. In this review, we will thus take a microbial ecology perspective on the analysis of factors that influence the temporal development of the infant gut microbiota. Such factors include sources of microbes that seed the intestinal environment, physico-chemical (abiotic) conditions influencing microbial growth and the availability of nutrients needed by the intestinal microbes.
Collapse
Affiliation(s)
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby
| |
Collapse
|
87
|
Ke A, Parreira VR, Goodridge L, Farber JM. Current and Future Perspectives on the Role of Probiotics, Prebiotics, and Synbiotics in Controlling Pathogenic Cronobacter Spp. in Infants. Front Microbiol 2021; 12:755083. [PMID: 34745060 PMCID: PMC8567173 DOI: 10.3389/fmicb.2021.755083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Cronobacter species, in particular C. sakazakii, is an opportunistic bacterial pathogen implicated in the development of potentially debilitating illnesses in infants (<12months old). The combination of a poorly developed immune system and gut microbiota put infants at a higher risk of infection compared to other age groups. Probiotics and prebiotics are incorporated in powdered infant formula and, in addition to strengthening gut physiology and stimulating the growth of commensal gut microbiota, have proven antimicrobial capabilities. Postbiotics in the cell-free supernatant of a microbial culture are derived from probiotics and can also exert health benefits. Synbiotics, a mixture of probiotics and prebiotics, may provide further advantages as probiotics and gut commensals degrade prebiotics into short-chain fatty acids that can provide benefits to the host. Cell-culture and animal models have been widely used to study foodborne pathogens, but sophisticated gut models have been recently developed to better mimic the gut conditions, thus giving a more accurate representation of how various treatments can affect the survival and pathogenicity of foodborne pathogens. This review aims to summarize the current understanding on the connection between Cronobacter infections and infants, as well as highlight the potential efficacy of probiotics, prebiotics, and synbiotics in reducing invasive Cronobacter infections during early infancy.
Collapse
|
88
|
Vu K, Lou W, Tun HM, Konya TB, Morales-Lizcano N, Chari RS, Field CJ, Guttman DS, Mandal R, Wishart DS, Azad MB, Becker AB, Mandhane PJ, Moraes TJ, Lefebvre DL, Sears MR, Turvey SE, Subbarao P, Scott JA, Kozyrskyj AL. From Birth to Overweight and Atopic Disease: Multiple and Common Pathways of the Infant Gut Microbiome. Gastroenterology 2021; 160:128-144.e10. [PMID: 32946900 DOI: 10.1053/j.gastro.2020.08.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Few studies, even those with cohort designs, test the mediating effects of infant gut microbes and metabolites on the onset of disease. We undertook such a study. METHODS Using structural equation modeling path analysis, we tested directional relationships between first pregnancy, birth mode, prolonged labor and breastfeeding; infant gut microbiota, metabolites, and IgA; and childhood body mass index and atopy in 1667 infants. RESULTS After both cesarean birth and prolonged labor with a first pregnancy, a higher Enterobacteriaceae/Bacteroidaceae ratio at 3 months was the dominant path to overweight; higher Enterobacteriaceae/Bacteroidaceae ratios and Clostridioides difficile colonization at 12 months were the main pathway to atopic sensitization. Depletion of Bifidobacterium after prolonged labor was a secondary pathway to overweight. Influenced by C difficile colonization at 3 months, metabolites propionate and formate were secondary pathways to child outcomes, with a key finding that formate was at the intersection of several paths. CONCLUSIONS Pathways from cesarean section and first pregnancy to child overweight and atopy share many common mediators of the infant gut microbiome, notably C difficile colonization.
Collapse
Affiliation(s)
- Khanh Vu
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Wendy Lou
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Hein M Tun
- School of Public Health, University of Hong Kong, Hong Kong
| | - Theodore B Konya
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | | | - Radha S Chari
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Rupasri Mandal
- The Metabolomics Innovation Centre, Edmonton, Alberta, Canada
| | - David S Wishart
- The Metabolomics Innovation Centre, Edmonton, Alberta, Canada
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Allan B Becker
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Piush J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Theo J Moraes
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Diana L Lefebvre
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Malcolm R Sears
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stuart E Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - James A Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Anita L Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada; School of Public Health, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
89
|
He Z, Yang B, Liu X, Ross RP, Stanton C, Zhao J, Zhang H, Chen W. Short communication: Genotype-phenotype association analysis revealed different utilization ability of 2'-fucosyllactose in Bifidobacterium genus. J Dairy Sci 2020; 104:1518-1523. [PMID: 33358168 DOI: 10.3168/jds.2020-19013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/23/2020] [Indexed: 01/13/2023]
Abstract
The oligosaccharide 2'-fucosyllactose (2'FL) in human breast milk selectively promotes the proliferation of bifidobacteria. One hundred fifty-one Bifidobacterium strains were evaluated for their capacity to utilize 2'FL based on the combination of phenotype and genotype association analysis. Through genotype analysis, 37 strains were predicted to have the ability to use 2'FL, including Bifidobacteriumbifidum, Bifidobacteriumbreve, Bifidobacteriumlongum ssp. longum, Bifidobacteriumlongum ssp. infantis, and Bifidobacteriumdentium, whereas Bifidobacteriumadolescentis, Bifidobacteriumanimalis, Bifidobacteriumpseudocatenulatum, and Bifidobacteriumangulatum could not use 2'FL. For in vitro utilization, there were noteworthy differences for 2'FL usage among different species, which were 100% consistent with genotype prediction. The results indicated that 2'FL utilization ability differed even within the same species, and Bifidobacterium followed the currently well-known pathway to utilize 2'FL, which could provide guidance to develop personalized prebiotics for different bifidobacteria via gene-trait matching analysis.
Collapse
Affiliation(s)
- Zhujun He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - R Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu 214122, China; APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu 214122, China; Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
90
|
Li L, Ryan J, Ning Z, Zhang X, Mayne J, Lavallée-Adam M, Stintzi A, Figeys D. A functional ecological network based on metaproteomics responses of individual gut microbiomes to resistant starches. Comput Struct Biotechnol J 2020; 18:3833-3842. [PMID: 33335682 PMCID: PMC7720074 DOI: 10.1016/j.csbj.2020.10.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 12/16/2022] Open
Abstract
Resistant starches (RS) are dietary compounds processed by the gut microbiota into metabolites, such as butyrate, that are beneficial to the host. The production of butyrate by the microbiome appears to be affected by the plant source and type of RS as well as the individual's microbiota. In this study, we used in vitro culture and metaproteomic methods to explore individual microbiome's functional responses to RS2 (enzymatically-resistant starch), RS3 (retrograded starch) and RS4 (chemically-modified starch). Results showed that RS2 and RS3 significantly altered the protein expressions in the individual gut microbiomes, while RS4 did not result in significant protein changes. Significantly elevated protein groups were enriched in carbohydrate metabolism and transport functions of families Eubacteriaceae, Lachnospiraceae and Ruminococcaceae. In addition, Bifidobacteriaceae was significantly increased in response to RS3. We also observed taxon-specific enrichments of starch metabolism and pentose phosphate pathways corresponding to this family. Functions related to starch utilization, ABC transporters and pyruvate metabolism pathways were consistently increased in the individual microbiomes in response to RS2 and RS3. Given that these taxon-specific responses depended on the type of carbohydrate sources, we constructed a functional ecological network to gain a system-level insight of functional organization. Our results suggest that while some microbes tend to be functionally independent, there are subsets of microbes that are functionally co-regulated by environmental changes, potentially by alterations of trophic interactions.
Collapse
Affiliation(s)
- Leyuan Li
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - James Ryan
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Xu Zhang
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Janice Mayne
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
91
|
Kumar H, Collado MC, Wopereis H, Salminen S, Knol J, Roeselers G. The Bifidogenic Effect Revisited-Ecology and Health Perspectives of Bifidobacterial Colonization in Early Life. Microorganisms 2020; 8:E1855. [PMID: 33255636 PMCID: PMC7760687 DOI: 10.3390/microorganisms8121855] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Extensive microbial colonization of the infant gastrointestinal tract starts after parturition. There are several parallel mechanisms by which early life microbiome acquisition may proceed, including early exposure to maternal vaginal and fecal microbiota, transmission of skin associated microbes, and ingestion of microorganisms present in breast milk. The crucial role of vertical transmission from the maternal microbial reservoir during vaginal delivery is supported by the shared microbial strains observed among mothers and their babies and the distinctly different gut microbiome composition of caesarean-section born infants. The healthy infant colon is often dominated by members of the keystone genus Bifidobacterium that have evolved complex genetic pathways to metabolize different glycans present in human milk. In exchange for these host-derived nutrients, bifidobacteria's saccharolytic activity results in an anaerobic and acidic gut environment that is protective against enteropathogenic infection. Interference with early-life microbiota acquisition and development could result in adverse health outcomes. Compromised microbiota development, often characterized by decreased abundance of Bifidobacterium species has been reported in infants delivered prematurely, delivered by caesarean section, early life antibiotic exposure and in the case of early life allergies. Various microbiome modulation strategies such as probiotic, prebiotics, synbiotics and postbiotics have been developed that are able to generate a bifidogenic shift and help to restore the microbiota development. This review explores the evolutionary ecology of early-life type Bifidobacterium strains and their symbiotic relationship with humans and discusses examples of compromised microbiota development in which stimulating the abundance and activity of Bifidobacterium has demonstrated beneficial associations with health.
Collapse
Affiliation(s)
- Himanshu Kumar
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (H.K.); (H.W.); (J.K.)
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Paterna, 46980 Valencia, Spain;
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20500 Turku, Finland;
| | - Harm Wopereis
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (H.K.); (H.W.); (J.K.)
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20500 Turku, Finland;
| | - Jan Knol
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (H.K.); (H.W.); (J.K.)
- Laboratory for Microbiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Guus Roeselers
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (H.K.); (H.W.); (J.K.)
| |
Collapse
|
92
|
Dedon LR, Özcan E, Rani A, Sela DA. Bifidobacterium infantis Metabolizes 2'Fucosyllactose-Derived and Free Fucose Through a Common Catabolic Pathway Resulting in 1,2-Propanediol Secretion. Front Nutr 2020; 7:583397. [PMID: 33330584 PMCID: PMC7732495 DOI: 10.3389/fnut.2020.583397] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/09/2020] [Indexed: 01/11/2023] Open
Abstract
Human milk oligosaccharides (HMOs) enrich beneficial bifidobacteria in the infant gut microbiome which produce molecules that impact development and physiology. 2′fucosyllactose (2′FL) is a highly abundant fucosylated HMO which is utilized by Bifidobacterium longum subsp. infantis, despite limited scientific understanding of the underlying mechanism. Moreover, there is not a current consensus on whether free fucose could be metabolized when not incorporated in a larger oligosaccharide structure. Based on metabolic and genomic analyses, we hypothesize that B. infantis catabolizes both free fucose and fucosyl oligosaccharide residues to produce 1,2-propanediol (1,2-PD). Accordingly, systems-level approaches including transcriptomics and proteomics support this metabolic path. Co-fermentation of fucose and limiting lactose or glucose was found to promote significantly higher biomass and 1,2-PD concentrations than individual substrates, suggesting a synergistic effect. In addition, and during growth on 2′FL, B. infantis achieves significantly higher biomass corresponding to increased 1,2-PD. These findings support a singular fucose catabolic pathway in B. infantis that is active on both free and HMO-derived fucose and intimately linked with central metabolism. The impact of fucose and 2′FL metabolism on B. infantis physiology provides insight into the role of fucosylated HMOs in influencing host- and microbe-microbe interactions within the infant gut microbiome.
Collapse
Affiliation(s)
- Liv R Dedon
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - Ezgi Özcan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - Asha Rani
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - David A Sela
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States.,Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States.,Department of Microbiology and Physiological Systems and Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
93
|
Chia LW, Mank M, Blijenberg B, Bongers RS, van Limpt K, Wopereis H, Tims S, Stahl B, Belzer C, Knol J. Cross-feeding between Bifidobacterium infantis and Anaerostipes caccae on lactose and human milk oligosaccharides. Benef Microbes 2020; 12:69-83. [PMID: 33191780 DOI: 10.3920/bm2020.0005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The establishment of the gut microbiota immediately after birth is a dynamic process that may impact lifelong health. At this important developmental stage in early life, human milk oligosaccharides (HMOs) serve as specific substrates to shape the gut microbiota of the nursling. The well-orchestrated transition is important as an aberrant microbial composition and bacterial-derived metabolites are associated with colicky symptoms and atopic diseases in infants. Here, we study the trophic interactions between an HMO-degrader, Bifidobacterium infantis and the butyrogenic Anaerostipes caccae using carbohydrate substrates that are relevant in the early life period including lactose and total human milk carbohydrates. Mono- and co-cultures of these bacterial species were grown at pH 6.5 in anaerobic bioreactors supplemented with lactose or total human milk carbohydrates. A. caccae was not able to grow on these substrates except when grown in co-culture with B. infantis, leading to growth and concomitant butyrate production. Two levels of cross-feeding were observed, in which A. caccae utilised the liberated monosaccharides as well as lactate and acetate produced by B. infantis. This microbial cross-feeding points towards the key ecological role of bifidobacteria in providing substrates for other important species that will colonise the infant gut. The progressive shift of the gut microbiota composition that contributes to the gradual production of butyrate could be important for host-microbial crosstalk and gut maturation.
Collapse
Affiliation(s)
- L W Chia
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - M Mank
- Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands
| | - B Blijenberg
- Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands
| | - R S Bongers
- Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands
| | - K van Limpt
- Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands
| | - H Wopereis
- Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands
| | - S Tims
- Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands
| | - B Stahl
- Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
| | - C Belzer
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - J Knol
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.,Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
94
|
Mukherjee A, Lordan C, Ross RP, Cotter PD. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes 2020; 12:1802866. [PMID: 32835590 PMCID: PMC7524325 DOI: 10.1080/19490976.2020.1802866] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Over the last two decades our understanding of the gut microbiota and its contribution to health and disease has been transformed. Among a new 'generation' of potentially beneficial microbes to have been recognized are members of the genus Eubacterium, who form a part of the core human gut microbiome. The genus consists of phylogenetically, and quite frequently phenotypically, diverse species, making Eubacterium a taxonomically unique and challenging genus. Several members of the genus produce butyrate, which plays a critical role in energy homeostasis, colonic motility, immunomodulation and suppression of inflammation in the gut. Eubacterium spp. also carry out bile acid and cholesterol transformations in the gut, thereby contributing to their homeostasis. Gut dysbiosis and a consequently modified representation of Eubacterium spp. in the gut, have been linked with various human disease states. This review provides an overview of Eubacterium species from a phylogenetic perspective, describes how they alter with diet and age and summarizes its association with the human gut and various health conditions.
Collapse
Affiliation(s)
- Arghya Mukherjee
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Cathy Lordan
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R. Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
95
|
Al-Khafaji AH, Jepsen SD, Christensen KR, Vigsnæs LK. The potential of human milk oligosaccharides to impact the microbiota-gut-brain axis through modulation of the gut microbiota. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
96
|
Bell A, Juge N. Mucosal glycan degradation of the host by the gut microbiota. Glycobiology 2020; 31:691-696. [PMID: 33043970 PMCID: PMC8252862 DOI: 10.1093/glycob/cwaa097] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota plays a major role in human health and an alteration in gut microbiota structure and function has been implicated in several diseases. In the colon, mucus covering the epithelium is critical to maintain a homeostatic relationship with the gut microbiota by harboring a microbial community at safe distance from the epithelium surface. The mucin glycans composing the mucus layer provide binding sites and a sustainable source of nutrients to the bacteria inhabiting the mucus niche. Access to these glycan chains requires a complement of glycoside hydrolases (GHs) produced by bacteria across the phyla constituting the human gut microbiota. Due to the increased recognition of the role of mucus-associated microbes in human health, how commensal bacteria breakdown and utilize host mucin glycans has become of increased interest and is reviewed here. This short review provides an overview of the strategies evolved by gut commensal bacteria to access this rich source of the nutrient with a focus on the GHs involved in mucin degradation.
Collapse
Affiliation(s)
- Andrew Bell
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Rosalind Franklin Road Norwich Research Park, Norwich NR4 7UQ, UK
| | - Nathalie Juge
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Rosalind Franklin Road Norwich Research Park, Norwich NR4 7UQ, UK
| |
Collapse
|
97
|
Chia LW, Mank M, Blijenberg B, Aalvink S, Bongers RS, Stahl B, Knol J, Belzer C. Bacteroides thetaiotaomicron Fosters the Growth of Butyrate-Producing Anaerostipes caccae in the Presence of Lactose and Total Human Milk Carbohydrates. Microorganisms 2020; 8:E1513. [PMID: 33019531 PMCID: PMC7601031 DOI: 10.3390/microorganisms8101513] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
The development of infant gut microbiota is strongly influenced by nutrition. Human milk oligosaccharides (HMOSs) in breast milk selectively promote the growth of glycan-degrading microbes, which lays the basis of the microbial network. In this study, we investigated the trophic interaction between Bacteroides thetaiotaomicron and the butyrate-producing Anaerostipes caccae in the presence of early-life carbohydrates. Anaerobic bioreactors were set up to study the monocultures of B. thetaiotaomicron and the co-cultures of B. thetaiotaomicron with A. caccae in minimal media supplemented with lactose or a total human milk carbohydrate fraction. Bacterial growth (qPCR), metabolites (HPLC), and HMOS utilization (LC-ESI-MS2) were monitored. B. thetaiotaomicron displayed potent glycan catabolic capability with differential preference in degrading specific low molecular weight HMOSs, including the neutral trioses (2'-FL and 3-FL), neutral tetraoses (DFL, LNT, LNnT), neutral pentaoses (LNFP I, II, III, V), and acidic trioses (3'-SL and 6'-SL). In contrast, A. caccae was not able to utilize lactose and HMOSs. However, the signature metabolite of A. caccae, butyrate, was detected in co-culture with B. thetaiotaomicron. As such, A. caccae cross-fed on B. thetaiotaomicron-derived monosaccharides, acetate, and d-lactate for growth and concomitant butyrate production. This study provides a proof of concept that B. thetaiotaomicron could drive the butyrogenic metabolic network in the infant gut.
Collapse
Affiliation(s)
- Loo Wee Chia
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (L.W.C.); (S.A.); (J.K.)
| | - Marko Mank
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (M.M.); (B.B.); (R.S.B.); (B.S.)
| | - Bernadet Blijenberg
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (M.M.); (B.B.); (R.S.B.); (B.S.)
| | - Steven Aalvink
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (L.W.C.); (S.A.); (J.K.)
| | - Roger S. Bongers
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (M.M.); (B.B.); (R.S.B.); (B.S.)
| | - Bernd Stahl
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (M.M.); (B.B.); (R.S.B.); (B.S.)
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (L.W.C.); (S.A.); (J.K.)
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (M.M.); (B.B.); (R.S.B.); (B.S.)
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (L.W.C.); (S.A.); (J.K.)
| |
Collapse
|
98
|
Iribarren C, Törnblom H, Aziz I, Magnusson MK, Sundin J, Vigsnaes LK, Amundsen ID, McConnell B, Seitzberg D, Öhman L, Simrén M. Human milk oligosaccharide supplementation in irritable bowel syndrome patients: A parallel, randomized, double-blind, placebo-controlled study. Neurogastroenterol Motil 2020; 32:e13920. [PMID: 32536023 DOI: 10.1111/nmo.13920] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Human milk oligosaccharides safely and beneficially impact bifidobacteria abundance in healthy adults, while their effects in patients with irritable bowel syndrome (IBS) are unknown. Hence, we aimed to determine the dose of 4:1 mix of 2'-O-fucosyllactose and Lacto-N-neotetraose (2'FL/LNnT) that increases fecal bifidobacteria abundance without aggravating overall gastrointestinal symptoms in IBS patients in a randomized, double-blind, controlled study. Additionally, the impact of 2'FL/LNnT on the fecal bacterial profile was assessed. METHODS Irritable bowel syndrome patients diagnosed according to the Rome IV criteria received placebo (glucose), or 5 g or 10 g 2'FL/LNnT for 4 weeks followed by a four-week follow-up period. Gastrointestinal Symptom Rating Scale-IBS was used to assess gastrointestinal symptom severity; fecal microbiota composition was evaluated by GA-map™ Dysbiosis Test. RESULTS Of the included 60 patients, two (one placebo and one 10 g) discontinued prematurely. Fecal bifidobacteria abundance was increased at week 4, but not at week 8, in the 10 g group compared to the other groups. Severity of overall or individual gastrointestinal symptoms did not differ between the groups at week 4 or 8, and no symptom deterioration was seen in any of the groups. The 10 g dose influenced overall fecal microbiota composition, and responders-defined as bifidobacteria increase ≥50%-could be discriminated from non-responders based on fecal microbiota modulation. CONCLUSIONS The 10 g dose of 2'FL/LNnT induced an increase in the beneficial Bifidobacterium spp. without aggravating gastrointestinal symptoms in patients with IBS. This approach may be worthwhile to modulate gut microbiota of IBS patients toward a healthier profile.
Collapse
Affiliation(s)
- Cristina Iribarren
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans Törnblom
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Imran Aziz
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Academic Department of Gastroenterology, Sheffield Teaching Hospital, Sheffield, UK
| | - Maria K Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Sundin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Simrén
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Center for Functional GI and Motility Disorders, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
99
|
Zabel BE, Gerdes S, Evans KC, Nedveck D, Singles SK, Volk B, Budinoff C. Strain-specific strategies of 2'-fucosyllactose, 3-fucosyllactose, and difucosyllactose assimilation by Bifidobacterium longum subsp. infantis Bi-26 and ATCC 15697. Sci Rep 2020; 10:15919. [PMID: 32985563 PMCID: PMC7522266 DOI: 10.1038/s41598-020-72792-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Human milk provides essential nutrients for infant nutrition. A large proportion of human milk is composed of human milk oligosaccharides (HMOs), which are resistant to digestion by the infant. Instead, HMOs act as a bioactive and prebiotic enriching HMO-utilizing bacteria and cause systematic changes in the host. Several species of Bifidobacterium have been shown to utilize HMOs by conserved, as well as species-specific pathways, but less work has been done to study variation within species or sub-species. B. longum subsp. infantis is a prevalent species in the breast-fed infant gut and the molecular mechanisms of HMO utilization for the type strain B. longum subsp. infantis ATCC 15697 (type strain) have been well characterized. We used growth, transcriptomic, and metabolite analysis to characterize key differences in the utilization of 2'FL, 3FL and DFL (FLs) between B. longum subsp. infantis Bi-26 (Bi-26) and the type strain. Bi-26 grows faster, produces unique metabolites, and has a distinct global gene transcription response to FLs compared to the type strain. Taken together the findings demonstrate major strain specific adaptations in Bi-26 to efficient utilization of FLs.
Collapse
Affiliation(s)
- Bryan E Zabel
- Genomics and Microbiome Science, DuPont Nutrition and Biosciences, Madison, WI, USA.
| | - Svetlana Gerdes
- Genomics and Microbiome Science, DuPont Nutrition and Biosciences, Madison, WI, USA
| | - Kara C Evans
- Genomics and Microbiome Science, DuPont Nutrition and Biosciences, Madison, WI, USA
| | - Derek Nedveck
- Genomics and Microbiome Science, DuPont Nutrition and Biosciences, Madison, WI, USA
| | | | - Barbara Volk
- Advanced Analytical, DuPont Nutrition and Biosciences, Wilmington, DE, USA
| | - Charles Budinoff
- Genomics and Microbiome Science, DuPont Nutrition and Biosciences, Madison, WI, USA
| |
Collapse
|
100
|
Šuligoj T, Vigsnæs LK, den Abbeele PV, Apostolou A, Karalis K, Savva GM, McConnell B, Juge N. Effects of Human Milk Oligosaccharides on the Adult Gut Microbiota and Barrier Function. Nutrients 2020; 12:E2808. [PMID: 32933181 PMCID: PMC7551690 DOI: 10.3390/nu12092808] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Human milk oligosaccharides (HMOs) shape the gut microbiota in infants by selectively stimulating the growth of bifidobacteria. Here, we investigated the impact of HMOs on adult gut microbiota and gut barrier function using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), Caco2 cell lines, and human intestinal gut organoid-on-chips. We showed that fermentation of 2'-O-fucosyllactose (2'FL), lacto-N-neotetraose (LNnT), and combinations thereof (MIX) led to an increase of bifidobacteria, accompanied by an increase of short chain fatty acid (SCFA), in particular butyrate with 2'FL. A significant reduction in paracellular permeability of FITC-dextran probe was observed using Caco2 cell monolayers with fermented 2'FL and MIX, which was accompanied by an increase in claudin-8 gene expression as shown by qPCR, and a reduction in IL-6 as determined by multiplex ELISA. Using gut-on-chips generated from human organoids derived from proximal, transverse, and distal colon biopsies (Colon Intestine Chips), we showed that claudin-5 was significantly upregulated across all three gut-on-chips following treatment with fermented 2'FL under microfluidic conditions. Taken together, these data show that, in addition to their bifidogenic activity, HMOs have the capacity to modulate immune function and the gut barrier, supporting the potential of HMOs to provide health benefits in adults.
Collapse
Affiliation(s)
- Tanja Šuligoj
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich Research Park, Norwich NR4 7UQ, UK;
| | | | | | - Athanasia Apostolou
- Emulate Inc., 27 Drydock Ave, Boston, MA 02210, USA; (A.A.); (K.K.)
- Graduate Program, Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Katia Karalis
- Emulate Inc., 27 Drydock Ave, Boston, MA 02210, USA; (A.A.); (K.K.)
| | - George M. Savva
- Quadram Institute Bioscience, Core Sciences Resources, Norwich Research Park, Norwich NR5 7UQ, UK;
| | - Bruce McConnell
- Glycom A/S, Kogle Allé 4, DK-2970 Hørsholm, Denmark; (L.K.V.); (B.M.)
| | - Nathalie Juge
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich Research Park, Norwich NR4 7UQ, UK;
| |
Collapse
|