51
|
Matrix metalloproteinase 14 regulates HSV-1 infection in neuroblastoma cells. Antiviral Res 2021; 192:105116. [PMID: 34107282 DOI: 10.1016/j.antiviral.2021.105116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Growing evidence supports that chronic or latent infection of the central nervous system might be implicated in Alzheimer's disease (AD). Among them, Herpes simplex virus type 1 (HSV-1) has emerged as a major factor in the etiology of the disease. Our group is devoted to the study of the relationship among HSV-1, oxidative stress (OS) and neurodegeneration. We have found that HSV-1 induces the main neuropathological hallmarks of AD, including the accumulation of intracellular amyloid beta (Aβ), hyperphosphorylated tau protein and autophagic vesicles, that OS exacerbates these effects, and that matrix metalloproteinase 14 (MMP-14) participates in the alterations induced by OS. In this work, we focused on the role of MMP-14 in the degenerative markers raised by HSV-1 infection. Interestingly, we found that MMP-14 blockage is a potent inhibitor of HSV-1 infection efficiency, that also reduces the degeneration markers, accumulation of Aβ and hyperphosphorylated tau, induced by the virus. Our results point to MMP-14 as a potent antiviral target to control HSV-1 infection and its associated neurodegenerative effects.
Collapse
|
52
|
Bocharova O, Pandit NP, Molesworth K, Fisher A, Mychko O, Makarava N, Baskakov IV. Alzheimer's disease-associated β-amyloid does not protect against herpes simplex virus 1 infection in the mouse brain. J Biol Chem 2021; 297:100845. [PMID: 34052228 PMCID: PMC8214219 DOI: 10.1016/j.jbc.2021.100845] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating fatal neurodegenerative disease. An alternative to the amyloid cascade hypothesis is that a viral infection is key to the etiology of late-onset AD, with β-amyloid (Aβ) peptides playing a protective role. In the current study, young 5XFAD mice that overexpress mutant human amyloid precursor protein with the Swedish, Florida, and London familial AD mutations were infected with one of two strains of herpes simplex virus 1 (HSV-1), 17syn+ and McKrae, at three different doses. Contrary to previous work, 5XFAD genotype failed to protect mice against HSV-1 infection. The region- and cell-specific tropisms of HSV-1 were not affected by the 5XFAD genotype, indicating that host–pathogen interactions were not altered. Seven- to ten-month-old 5XFAD animals in which extracellular Aβ aggregates were abundant showed slightly better survival rate relative to their wild-type (WT) littermates, although the difference was not statistically significant. In these 5XFAD mice, HSV-1 replication centers were partially excluded from the brain areas with high densities of Aβ aggregates. Aβ aggregates were free of HSV-1 viral particles, and the limited viral invasion to areas with a high density of Aβ aggregates was attributed to phagocytic activity of reactive microglia. In the oldest mice (12–15 months old), the survival rate did not differ between 5XFAD and WT littermates. While the current study questions the antiviral role of Aβ, it neither supports nor refutes the viral etiology hypothesis of late-onset AD.
Collapse
Affiliation(s)
- Olga Bocharova
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Narayan P Pandit
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aidan Fisher
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Olga Mychko
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
53
|
Xia X, Wang Y, Zheng J. COVID-19 and Alzheimer's disease: how one crisis worsens the other. Transl Neurodegener 2021; 10:15. [PMID: 33941272 PMCID: PMC8090526 DOI: 10.1186/s40035-021-00237-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) has emerged as a key comorbidity of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The morbidity and mortality of COVID-19 are elevated in AD due to multiple pathological changes in AD patients such as the excessive expression of viral receptor angiotensin converting enzyme 2 and pro-inflammatory molecules, various AD complications including diabetes, lifestyle alterations in AD, and drug-drug interactions. Meanwhile, COVID-19 has also been reported to cause various neurologic symptoms including cognitive impairment that may ultimately result in AD, probably through the invasion of SARS-CoV-2 into the central nervous system, COVID-19-induced inflammation, long-term hospitalization and delirium, and post-COVID-19 syndrome. In addition, the COVID-19 crisis also worsens behavioral symptoms in uninfected AD patients and poses new challenges for AD prevention. In this review, we first introduce the symptoms and pathogenesis of COVID-19 and AD. Next, we provide a comprehensive discussion on the aggravating effects of AD on COVID-19 and the underlying mechanisms from molecular to social levels. We also highlight the influence of COVID-19 on cognitive function, and propose possible routes of viral invasion into the brain and potential mechanisms underlying the COVID-19-induced cognitive impairment. Last, we summarize the negative impacts of COVID-19 pandemic on uninfected AD patients and dementia prevention.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, 200072, China.
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, China.
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, China
| | - Jialin Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, 200072, China.
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, China.
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA.
| |
Collapse
|
54
|
Network-based analysis on genetic variants reveals the immunological mechanism underlying Alzheimer's disease. J Neural Transm (Vienna) 2021; 128:803-816. [PMID: 33909139 DOI: 10.1007/s00702-021-02337-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/11/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the impairment of cognitive function and loss of memory. Previous studies indicate an essential role of immune response in AD, but the detailed mechanisms remain unclear. In this study, we obtained 1664 credible risk variants (CRVs) based on the most significant SNP detected by International Genomics of Alzheimer's Project, from which 99 genes (CRVs-related genes) were identified. Function analysis revealed that these genes were mainly involved in immune response and amyloid-β and its precursor metabolisms, indicating a potential role of immune response in regulating neurobiological processes in the etiology of neurodegenerative disease. Pathway crosstalk analysis revealed the complicated connections between immune-related pathways. Further, we found that the CRVs-related genes showed temporal-specific expression in the thalamus in adolescence developmental period. Cell type-specific expression analysis found that CRVs-related genes might be specifically expressed in brain cells such as astrocytes and oligodendrocytes. Protein-protein interaction network analysis identified the highly interconnected 'hub' genes, all of which were susceptible loci of AD. These results indicated that the CRVs may exert a potential influence in AD by regulating immune response, thalamus development, astrocytes activities, and amyloid-β binding. Our results provided hints for further experimental verification of AD pathophysiology.
Collapse
|
55
|
Nath A, Johnson TP. Mechanisms of viral persistence in the brain and therapeutic approaches. FEBS J 2021; 289:2145-2161. [PMID: 33844441 DOI: 10.1111/febs.15871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
There is growing recognition of the diversity of viruses that can infect the cells of the central nervous system (CNS). While the majority of CNS infections are successfully cleared by the immune response, some viral infections persist in the CNS. As opposed to resolved infections, persistent viruses can contribute to ongoing tissue damage and neuroinflammatory processes. In this manuscript, we provide an overview of the current understanding of factors that lead to viral persistence in the CNS including how viruses enter the brain, how these pathogens evade antiviral immune system responses, and how viruses survive and transmit within the CNS. Further, as the CNS may serve as a unique viral reservoir, we examine the ways in which persistent viruses in the CNS are being targeted therapeutically.
Collapse
Affiliation(s)
- Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
56
|
Sait A, Angeli C, Doig AJ, Day PJR. Viral Involvement in Alzheimer's Disease. ACS Chem Neurosci 2021; 12:1049-1060. [PMID: 33687205 PMCID: PMC8033564 DOI: 10.1021/acschemneuro.0c00719] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of β-amyloid plaques (Aβ) and neurofibrillary tangles (NFTs) in the brain. The prevalence of the disease is increasing and is expected to reach 141 million cases by 2050. Despite the risk factors associated with the disease, there is no known causative agent for AD. Clinical trials with many drugs have failed over the years, and no therapeutic has been approved for AD. There is increasing evidence that pathogens are found in the brains of AD patients and controls, such as human herpes simplex virus-1 (HSV-1). Given the lack of a human model, the route for pathogen entry into the brain remains open for scrutiny and may include entry via a disturbed blood-brain barrier or the olfactory nasal route. Many factors can contribute to the pathogenicity of HSV-1, such as the ability of HSV-1 to remain latent, tau protein phosphorylation, increased accumulation of Aβ invivo and in vitro, and repeated cycle of reactivation if immunocompromised. Intriguingly, valacyclovir, a widely used drug for the treatment of HSV-1 and HSV-2 infection, has shown patient improvement in cognition compared to controls in AD clinical studies. We discuss the potential role of HSV-1 in AD pathogenesis and argue for further studies to investigate this relationship.
Collapse
Affiliation(s)
- Ahmad Sait
- Division
of Evolution and Genomic Sciences, Faculty of Biology, Medicine and
Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester
Institute of Biotechnology, The University
of Manchester, Manchester M1 7DN, United Kingdom
- Faculty
of Applied Medical Science, Medical Laboratory Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Cristian Angeli
- Division
of Evolution and Genomic Sciences, Faculty of Biology, Medicine and
Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester
Institute of Biotechnology, The University
of Manchester, Manchester M1 7DN, United Kingdom
| | - Andrew J. Doig
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United
Kingdom
| | - Philip J. R. Day
- Division
of Evolution and Genomic Sciences, Faculty of Biology, Medicine and
Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester
Institute of Biotechnology, The University
of Manchester, Manchester M1 7DN, United Kingdom
- Department
of Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
57
|
Diamond G, Molchanova N, Herlan C, Fortkort JA, Lin JS, Figgins E, Bopp N, Ryan LK, Chung D, Adcock RS, Sherman M, Barron AE. Potent Antiviral Activity against HSV-1 and SARS-CoV-2 by Antimicrobial Peptoids. Pharmaceuticals (Basel) 2021; 14:ph14040304. [PMID: 33807248 PMCID: PMC8066833 DOI: 10.3390/ph14040304] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections, such as those caused by Herpes Simplex Virus-1 (HSV-1) and SARS-CoV-2, affect millions of people each year. However, there are few antiviral drugs that can effectively treat these infections. The standard approach in the development of antiviral drugs involves the identification of a unique viral target, followed by the design of an agent that addresses that target. Antimicrobial peptides (AMPs) represent a novel source of potential antiviral drugs. AMPs have been shown to inactivate numerous different enveloped viruses through the disruption of their viral envelopes. However, the clinical development of AMPs as antimicrobial therapeutics has been hampered by a number of factors, especially their enzymatically labile structure as peptides. We have examined the antiviral potential of peptoid mimics of AMPs (sequence-specific N-substituted glycine oligomers). These peptoids have the distinct advantage of being insensitive to proteases, and also exhibit increased bioavailability and stability. Our results demonstrate that several peptoids exhibit potent in vitro antiviral activity against both HSV-1 and SARS-CoV-2 when incubated prior to infection. In other words, they have a direct effect on the viral structure, which appears to render the viral particles non-infective. Visualization by cryo-EM shows viral envelope disruption similar to what has been observed with AMP activity against other viruses. Furthermore, we observed no cytotoxicity against primary cultures of oral epithelial cells. These results suggest a common or biomimetic mechanism, possibly due to the differences between the phospholipid head group makeup of viral envelopes and host cell membranes, thus underscoring the potential of this class of molecules as safe and effective broad-spectrum antiviral agents. We discuss how and why differing molecular features between 10 peptoid candidates may affect both antiviral activity and selectivity.
Collapse
Affiliation(s)
- Gill Diamond
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA;
- Correspondence: (G.D.); (A.E.B.)
| | - Natalia Molchanova
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.M.); (C.H.); (J.A.F.); (J.S.L.)
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Claudine Herlan
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.M.); (C.H.); (J.A.F.); (J.S.L.)
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - John A. Fortkort
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.M.); (C.H.); (J.A.F.); (J.S.L.)
| | - Jennifer S. Lin
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.M.); (C.H.); (J.A.F.); (J.S.L.)
| | - Erika Figgins
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA;
| | - Nathen Bopp
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Lisa K. Ryan
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida School of Medicine, Gainesville, FL 32601, USA;
| | - Donghoon Chung
- Center for Predictive Medicine, Department of Microbiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (D.C.); (R.S.A.)
| | - Robert Scott Adcock
- Center for Predictive Medicine, Department of Microbiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (D.C.); (R.S.A.)
| | - Michael Sherman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Annelise E. Barron
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.M.); (C.H.); (J.A.F.); (J.S.L.)
- Correspondence: (G.D.); (A.E.B.)
| |
Collapse
|
58
|
Baxter BD, Larson ED, Merle L, Feinstein P, Polese AG, Bubak AN, Niemeyer CS, Hassell J, Shepherd D, Ramakrishnan VR, Nagel MA, Restrepo D. Transcriptional profiling reveals potential involvement of microvillous TRPM5-expressing cells in viral infection of the olfactory epithelium. BMC Genomics 2021; 22:224. [PMID: 33781205 PMCID: PMC8007386 DOI: 10.1186/s12864-021-07528-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background Understanding viral infection of the olfactory epithelium is essential because the olfactory nerve is an important route of entry for viruses to the central nervous system. Specialized chemosensory epithelial cells that express the transient receptor potential cation channel subfamily M member 5 (TRPM5) are found throughout the airways and intestinal epithelium and are involved in responses to viral infection. Results Herein we performed deep transcriptional profiling of olfactory epithelial cells sorted by flow cytometry based on the expression of mCherry as a marker for olfactory sensory neurons and for eGFP in OMP-H2B::mCherry/TRPM5-eGFP transgenic mice (Mus musculus). We find profuse expression of transcripts involved in inflammation, immunity and viral infection in TRPM5-expressing microvillous cells compared to olfactory sensory neurons. Conclusion Our study provides new insights into a potential role for TRPM5-expressing microvillous cells in viral infection of the olfactory epithelium. We find that, as found for solitary chemosensory cells (SCCs) and brush cells in the airway epithelium, and for tuft cells in the intestine, the transcriptome of TRPM5-expressing microvillous cells indicates that they are likely involved in the inflammatory response elicited by viral infection of the olfactory epithelium. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07528-y.
Collapse
Affiliation(s)
- B Dnate' Baxter
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Eric D Larson
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Laetitia Merle
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Paul Feinstein
- The Graduate Center Biochemistry, Biology and CUNY-Neuroscience-Collaborative Programs and Biological Sciences Department, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Arianna Gentile Polese
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Andrew N Bubak
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christy S Niemeyer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - James Hassell
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Doug Shepherd
- Department of Pharmacology, University of Colorado Anschutz Medical Campus and Center for Biological Physics and Department of Physics, Arizona State University, Tempe, USA
| | - Vijay R Ramakrishnan
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Maria A Nagel
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Diego Restrepo
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
59
|
Salihoğlu R, Önal-Süzek T. Tissue Microbiome Associated With Human Diseases by Whole Transcriptome Sequencing and 16S Metagenomics. Front Genet 2021; 12:585556. [PMID: 33747035 PMCID: PMC7970108 DOI: 10.3389/fgene.2021.585556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/12/2021] [Indexed: 11/25/2022] Open
Abstract
In recent years, a substantial number of tissue microbiome studies have been published, mainly due to the recent improvements in the minimization of microbial contamination during whole transcriptome analysis. Another reason for this trend is due to the capability of next-generation sequencing (NGS) to detect microbiome composition even in low biomass samples. Several recent studies demonstrate a significant role for the tissue microbiome in the development and progression of cancer and other diseases. For example, the increase of the abundance of Proteobacteria in tumor tissues of the breast has been revealed by gene expression analysis. The link between human papillomavirus infection and cervical cancer has been known for some time, but the relationship between the microbiome and breast cancer (BC) is more novel. There are also recent attempts to investigate the possible link between the brain microbiome and the cognitive dysfunction caused by neurological diseases. Such studies pointing to the role of the brain microbiome in Huntington’s disease (HD) and Alzheimer’s disease (AD) suggest that microbial colonization is a risk factor. In this review, we aim to summarize the studies that associate the tissue microbiome, rather than gut microbiome, with cancer and other diseases using whole-transcriptome analysis, along with 16S rRNA analysis. After providing several case studies for each relationship, we will discuss the potential role of transcriptome analysis on the broader portrayal of the pathophysiology of the breast, brain, and vaginal microbiome.
Collapse
Affiliation(s)
- Rana Salihoğlu
- Bioinformatics Department, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Tuğba Önal-Süzek
- Bioinformatics Department, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey.,Computer Engineering Department, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
60
|
Mangold CA, Rathbun MM, Renner DW, Kuny CV, Szpara ML. Viral infection of human neurons triggers strain-specific differences in host neuronal and viral transcriptomes. PLoS Pathog 2021; 17:e1009441. [PMID: 33750985 PMCID: PMC8016332 DOI: 10.1371/journal.ppat.1009441] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/01/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Infection with herpes simplex virus 1 (HSV-1) occurs in over half the global population, causing recurrent orofacial and/or genital lesions. Individual strains of HSV-1 demonstrate differences in neurovirulence in vivo, suggesting that viral genetic differences may impact phenotype. Here differentiated SH-SY5Y human neuronal cells were infected with one of three HSV-1 strains known to differ in neurovirulence in vivo. Host and viral RNA were sequenced simultaneously, revealing strain-specific differences in both viral and host transcription in infected neurons. Neuronal morphology and immunofluorescence data highlight the pathological changes in neuronal cytoarchitecture induced by HSV-1 infection, which may reflect host transcriptional changes in pathways associated with adherens junctions, integrin signaling, and others. Comparison of viral protein levels in neurons and epithelial cells demonstrated that a number of differences were neuron-specific, suggesting that strain-to-strain variations in host and virus transcription are cell type-dependent. Together, these data demonstrate the importance of studying virus strain- and cell-type-specific factors that may contribute to neurovirulence in vivo, and highlight the specificity of HSV-1-host interactions.
Collapse
Affiliation(s)
- Colleen A. Mangold
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Molly M. Rathbun
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Daniel W. Renner
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Chad V. Kuny
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Moriah L. Szpara
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
61
|
Acuña-Hinrichsen F, Covarrubias-Pinto A, Ishizuka Y, Stolzenbach MF, Martin C, Salazar P, Castro MA, Bramham CR, Otth C. Herpes Simplex Virus Type 1 Neuronal Infection Triggers the Disassembly of Key Structural Components of Dendritic Spines. Front Cell Neurosci 2021; 15:580717. [PMID: 33708072 PMCID: PMC7940845 DOI: 10.3389/fncel.2021.580717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a widespread neurotropic virus. Primary infection of HSV-1 in facial epithelium leads to retrograde axonal transport to the central nervous system (CNS) where it establishes latency. Under stressful conditions, the virus reactivates, and new progeny are transported anterogradely to the primary site of infection. During the late stages of neuronal infection, axonal damage can occur, however, the impact of HSV-1 infection on the morphology and functional integrity of neuronal dendrites during the early stages of infection is unknown. We previously demonstrated that acute HSV-1 infection in neuronal cell lines selectively enhances Arc protein expression - a major regulator of long-term synaptic plasticity and memory consolidation, known for being a protein-interaction hub in the postsynaptic dendritic compartment. Thus, HSV-1 induced Arc expression may alter the functionality of infected neurons and negatively impact dendritic spine dynamics. In this study we demonstrated that HSV-1 infection induces structural disassembly and functional deregulation in cultured cortical neurons, an altered glutamate response, Arc accumulation within the somata, and decreased expression of spine scaffolding-like proteins such as PSD-95, Drebrin and CaMKIIβ. However, whether these alterations are specific to the HSV-1 infection mechanism or reflect a secondary neurodegenerative process remains to be determined.
Collapse
Affiliation(s)
- Francisca Acuña-Hinrichsen
- Institute of Clinical Microbiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Post-graduate Program, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Adriana Covarrubias-Pinto
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Post-graduate Program, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
- Institute of Biochemistry and Microbiology, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile
| | - Yuta Ishizuka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Carolina Martin
- School of Medical Technology, Austral University of Chile, Puerto Montt, Chile
| | - Paula Salazar
- Institute of Clinical Microbiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Maite A. Castro
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Institute of Biochemistry and Microbiology, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile
- Janelia Research Campus, HHMI, VA, United States
| | | | - Carola Otth
- Institute of Clinical Microbiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
62
|
Goldschmidt-Clermont PJ, Volinsky FG, LaRosa SP, Gilbert JR, Periçak-Vance MA. Time for Well-Powered Controlled Prospective Studies to Test a Causal Role for Herpes Viruses in Alzheimer's Disease Using Antiherpetic Drugs. J Gerontol A Biol Sci Med Sci 2021; 75:1058-1060. [PMID: 31175818 DOI: 10.1093/gerona/glz150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
Twenty-six phase III studies on Alzheimer's disease are ongoing or have been completed in 2018. Most of these studies are targeting amyloid-beta, its production, polymerization, and/or multiple interactions. None of the amyloid-beta studies seem to affect positively the clinical outcome of patients with Alzheimer's disease thus far, no matter the advancement of disease. It is time to consider other hypotheses for the pathogenesis of Alzheimer's disease, including the potential role of human herpes viruses (HHV), and especially HHV1 (herpes simplex virus type 1), HHV3 (varicella zoster virus), HHV6A, and HHV7. With this perspective, we review the scientific evidence and make the case for appropriately powered, prospective, randomized, and controlled studies using an anti-HHV drug, to establish a causal role for HHV in Alzheimer's disease.
Collapse
Affiliation(s)
- Pascal J Goldschmidt-Clermont
- ALZADY International LLC, Miami, Florida.,Leonard M. Miller School of Medicine, University of Miami, Florida.,Epiphany Biosciences Inc., San Francisco, California
| | | | | | - John R Gilbert
- Leonard M. Miller School of Medicine, University of Miami, Florida.,The John P. Hussman Institute for Human Genomics, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Florida
| | - Margaret A Periçak-Vance
- Leonard M. Miller School of Medicine, University of Miami, Florida.,The John P. Hussman Institute for Human Genomics, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Florida
| |
Collapse
|
63
|
Leblhuber F, Ehrlich D, Steiner K, Geisler S, Fuchs D, Lanser L, Kurz K. The Immunopathogenesis of Alzheimer's Disease Is Related to the Composition of Gut Microbiota. Nutrients 2021; 13:361. [PMID: 33504065 PMCID: PMC7912578 DOI: 10.3390/nu13020361] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
The microbiota-gut-brain axis plays an important role in the development of neurodegenerative diseases. Commensal and pathogenic enteric bacteria can influence brain and immune system function by the production of lipopolysaccharides and amyloid. Dysbiosis of the intestinal microbiome induces local and consecutively systemic immune-mediated inflammation. Proinflammatory cytokines then trigger neuroinflammation and finally neurodegeneration. Immune-mediated oxidative stress can lead to a deficiency of vitamins and essential micronutrients. Furthermore, the wrong composition of gut microbiota might impair the intake and metabolization of nutrients. In patients with Alzheimer's disease (AD) significant alterations of the gut microbiota have been demonstrated. Standard Western diet, infections, decreased physical activity and chronic stress impact the composition and diversity of gut microbiota. A higher abundancy of "pro-inflammatory" gut microbiota goes along with enhanced systemic inflammation and neuroinflammatory processes. Thus, AD beginning in the gut is closely related to the imbalance of gut microbiota. Modulation of gut microbiota by Mediterranean diet, probiotics and curcumin can slow down cognitive decline and alter the gut microbiome significantly. A multi-domain intervention approach addressing underlying causes of AD (inflammation, infections, metabolic alterations like insulin resistance and nutrient deficiency, stress) appears very promising to reduce or even reverse cognitive decline by exerting positive effects on the gut microbiota.
Collapse
Affiliation(s)
- Friedrich Leblhuber
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Daniela Ehrlich
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Kostja Steiner
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Simon Geisler
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck A-6020, Austria; (S.G.); (D.F.)
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck A-6020, Austria; (S.G.); (D.F.)
| | - Lukas Lanser
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck A-6020, Austria;
| | - Katharina Kurz
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck A-6020, Austria;
| |
Collapse
|
64
|
Role of Melatonin on Virus-Induced Neuropathogenesis-A Concomitant Therapeutic Strategy to Understand SARS-CoV-2 Infection. Antioxidants (Basel) 2021; 10:antiox10010047. [PMID: 33401749 PMCID: PMC7823793 DOI: 10.3390/antiox10010047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Viral infections may cause neurological disorders by directly inducing oxidative stress and interrupting immune system function, both of which contribute to neuronal death. Several reports have described the neurological manifestations in Covid-19 patients where, in severe cases of the infection, brain inflammation and encephalitis are common. Recently, extensive research-based studies have revealed and acknowledged the clinical and preventive roles of melatonin in some viral diseases. Melatonin has been shown to have antiviral properties against several viral infections which are accompanied by neurological symptoms. The beneficial properties of melatonin relate to its properties as a potent antioxidant, anti-inflammatory, and immunoregulatory molecule and its neuroprotective effects. In this review, what is known about the therapeutic role of melatonin in virus-induced neuropathogenesis is summarized and discussed.
Collapse
|
65
|
Baxter BD, Larson ED, Merle L, Feinstein P, Polese AG, Bubak AN, Niemeyer CS, Hassell J, Shepherd D, Ramakrishnan VR, Nagel MA, Restrepo D. Transcriptional profiling reveals potential involvement of microvillous TRPM5-expressing cells in viral infection of the olfactory epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511400 DOI: 10.1101/2020.05.14.096016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Understanding viral infection of the olfactory epithelium is essential because the olfactory nerve is an important route of entry for viruses to the central nervous system. Specialized chemosensory epithelial cells that express the transient receptor potential cation channel subfamily M member 5 (TRPM5) are found throughout the airways and intestinal epithelium and are involved in responses to viral infection. Results Herein we performed deep transcriptional profiling of olfactory epithelial cells sorted by flow cytometry based on the expression of mCherry as a marker for olfactory sensory neurons and for eGFP in OMP-H2B::mCherry/TRPM5-eGFP transgenic mice ( Mus musculus ). We find profuse expression of transcripts involved in inflammation, immunity and viral infection in TRPM5-expressing microvillous cells. Conclusion Our study provides new insights into a potential role for TRPM5-expressing microvillous cells in viral infection of the olfactory epithelium. We find that, as found for solitary chemosensory cells (SCCs) and brush cells in the airway epithelium, and for tuft cells in the intestine, the transcriptome of TRPM5-expressing microvillous cells indicates that they are likely involved in the inflammatory response elicited by viral infection of the olfactory epithelium.
Collapse
|
66
|
Khokale R, Kang A, Buchanan-Peart KAR, Nelson ML, Awolumate OJ, Cancarevic I. Alzheimer's Gone Viral: Could Herpes Simplex Virus Type-1 Be Stealing Your Memories? Cureus 2020; 12:e11726. [PMID: 33403161 PMCID: PMC7772174 DOI: 10.7759/cureus.11726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/26/2020] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is one of the principal causes of disability and morbidity. It is one of the most expensive illnesses. Despite this, there are no significant data regarding its etiology and optimal treatment. This review concentrates on the viral hypothesis of AD. After a comprehensive PubMed literature search, we analyzed the studies associating herpes simplex virus type-1 (HSV1) infection to AD from the previous 10 years. Molecular mechanisms whereby HSV1 induces AD-related pathophysiology, including neuronal production and accumulation of amyloid-beta (amyloid-β), abnormal phosphorylation of tau proteins, impaired calcium homeostasis, and autophagy, are addressed. The virus also imitates the disease in other ways, showing increased neuroinflammation, oxidative stress, synaptic dysfunction, and neuronal apoptosis. Serological studies correlate HSV1 infection with AD and cognitive impairment. A causal link between HSV1 and AD raises the concept of a simple, efficient, and preventive treatment alternative. Anti-viral agents impede brain degeneration by preventing HSV1 spread and its replication, decreasing hyperphosphorylated tau and amyloid-β; thus providing an efficacious treatment for AD. We also mention brown algae, intravenous immunoglobulin (IVIG), and a synthetic drug, BAY57-1293, with anti-viral properties, as options for treating AD. We want to recommend future researchers to look for more affordable, non-invasive, and swifter techniques to identify HSV1 in the brain and assist in the early detection and prevention of AD.
Collapse
Affiliation(s)
- Rhutuja Khokale
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ayesha Kang
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Maxine L Nelson
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Oluwatayo J Awolumate
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ivan Cancarevic
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
67
|
Mielcarska MB, Gregorczyk-Zboroch KP, Szulc-Da̧browska L, Bossowska-Nowicka M, Wyżewski Z, Cymerys J, Chodkowski M, Kiełbik P, Godlewski MM, Gieryńska M, Toka FN. Participation of Endosomes in Toll-Like Receptor 3 Transportation Pathway in Murine Astrocytes. Front Cell Neurosci 2020; 14:544612. [PMID: 33281554 PMCID: PMC7705377 DOI: 10.3389/fncel.2020.544612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
TLR3 provides immediate type I IFN response following entry of stimulatory PAMPs into the CNS, as it is in HSV infection. The receptor plays a vital role in astrocytes, contributing to rapid infection sensing and suppression of viral replication, precluding the spread of virus beyond neurons. The route of TLR3 mobilization culminating in the receptor activation remains unexplained. In this research, we investigated the involvement of various types of endosomes in the regulation of the TLR3 mobility in C8-D1A murine astrocyte cell line. TLR3 was transported rapidly to early EEA1-positive endosomes as well as LAMP1-lysosomes following stimulation with the poly(I:C). Later, TLR3 largely associated with late Rab7-positive endosomes. Twenty-four hours after stimulation, TLR3 co-localized with LAMP1 abundantly in lysosomes of astrocytes. TLR3 interacted with poly(I:C) intracellularly from 1 min to 8 h following cell stimulation. We detected TLR3 on the surface of astrocytes indicating constitutive expression, which increased after poly(I:C) stimulation. Our findings contribute to the understanding of cellular modulation of TLR3 trafficking. Detailed analysis of the TLR3 transportation pathway is an important component in disclosing the fate of the receptor in HSV-infected CNS and may help in the search for rationale therapeutics to control the replication of neuropathic viruses.
Collapse
Affiliation(s)
- Matylda B Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Karolina P Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Lidia Szulc-Da̧browska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin Chodkowski
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Paula Kiełbik
- Division of Physiology, Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Michał M Godlewski
- Division of Physiology, Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Gieryńska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.,Center for Integrative Mammalian Research, Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
68
|
Kanmogne M, Klein RS. Neuroprotective versus Neuroinflammatory Roles of Complement: From Development to Disease. Trends Neurosci 2020; 44:97-109. [PMID: 33190930 DOI: 10.1016/j.tins.2020.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Complement proteins are ancient components of innate immunity that have emerged as crucial regulators of neural networks. We discuss these roles in the context of the CNS development, acute CNS viral infections, and post-infectious and noninfectious CNS disorders, with an emphasis on microglia-mediated loss of synapses. Despite extensive examples that implicate classical complement proteins and their receptors in CNS dysfunction, recent data suggest that they exert neuroprotective roles in CNS homeostasis through continued refinement of synaptic connections. Thorough understanding of the mechanisms involved in these processes may lead to novel targets for the treatment of CNS diseases involving aberrant complement-mediated synapse loss.
Collapse
Affiliation(s)
- Marlene Kanmogne
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
69
|
Affiliation(s)
- Charles E. Seaks
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Donna M. Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
70
|
The association between herpes simplex virus type 1 infection and Alzheimer's disease. J Clin Neurosci 2020; 82:63-70. [PMID: 33317741 DOI: 10.1016/j.jocn.2020.10.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/19/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
There is growing evidence demonstrating the relationship between herpes simplex virus type 1 (HSV-1) infection and Alzheimer's disease (AD). We searched PubMed, Embase, and Cochrane databases for relevant articles. The Newcastle-Ottawa Scale (NOS) was used to evaluate the qualities of these studies. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated using random-effects models. We also performed subgroup analyses stratified by apolipoprotein ε4 (APOE ε4), NOS score, and the method of confirming AD. A total of 21 studies between 1990 and 2020 were identified. The pooled OR suggested that HSV-1 infection is a risk factor of AD: pooled OR 1.40 (95% CI: 1.13-1.75; I2 = 3%, P = 0.42). In the subgroup analyses, the pooled ORs of HSV-1 infection associated with AD were 0.75 (95% CI: 0.24-2.37) among the APOE ε4-positive individuals; 0.85 (95% CI: 0.61-1.17) among the APOE ε4-negative individuals; 1.51 (95% CI: 1.10-2.06) in the high NOS score studies; 1.23 (95% CI: 0.85-1.76) in the moderate NOS score studies; 1.47 (95% CI: 1.16-1.87) in the clinical diagnosis group, and 1.20 (95% CI: 0.77-1.87) in the autopsy group. Our up-to-date systematic review and meta-analysis suggest that HSV-1 infection is a risk factor of AD.
Collapse
|
71
|
Linard M, Letenneur L, Garrigue I, Doize A, Dartigues JF, Helmer C. Interaction between APOE4 and herpes simplex virus type 1 in Alzheimer's disease. Alzheimers Dement 2020; 16:200-208. [PMID: 31914220 DOI: 10.1002/alz.12008] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/28/2019] [Accepted: 11/18/2019] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Numerous results suggest the implication of infectious agents in the onset of Alzheimer's disease (AD). METHODS In the Bordeaux-3C prospective cohort, we assessed the impact of herpes simplex virus type 1 (HSV-1) infection on the incidence of AD according to apolipoprotein E (APOE) status, a genetic susceptibility factor. Cox models were performed to estimate the 10-year risk of AD associated with anti-HSV antibodies in 1037 participants according to APOE4 status. RESULTS Among APOE4 carriers, subjects for whom the frequency of HSV-1 reactivation is supposed to be high, that is, immunoglobulin M (IgM) positive or elevated levels of IgG, had an increased risk of AD with adjusted hazard ratios (HRs) of 3.68 (1.08-12.55) and 3.28 (1.19-9.03), respectively. No significant association was found in APOE4-negative subjects. DISCUSSION These results, in accordance with a solid pathophysiological rationale, suggest a role for HSV-1 in AD development among subjects with a genetic susceptibility factor, the APOE4 allele.
Collapse
Affiliation(s)
- Morgane Linard
- INSERM, Bordeaux Population Health Research Center, University of Bordeaux, UMR U1219, Bordeaux, France
| | - Luc Letenneur
- INSERM, Bordeaux Population Health Research Center, University of Bordeaux, UMR U1219, Bordeaux, France
| | - Isabelle Garrigue
- CNRS-UMR 5234 and CHU Bordeaux, Virology Department, University of Bordeaux, Bordeaux, France
| | - Angélique Doize
- CNRS-UMR 5234 and CHU Bordeaux, Virology Department, University of Bordeaux, Bordeaux, France
| | - Jean-François Dartigues
- INSERM, Bordeaux Population Health Research Center, University of Bordeaux, UMR U1219, Bordeaux, France
| | - Catherine Helmer
- INSERM, Bordeaux Population Health Research Center, University of Bordeaux, UMR U1219, Bordeaux, France.,CIC1401-EC, Center for Clinical Investigation-Clinical Epidemiology, F-33000, Bordeaux, France
| |
Collapse
|
72
|
Marinescu I, Marinescu D, Mogoantă L, Efrem IC, Stovicek PO. SARS-CoV-2 infection in patients with serious mental illness and possible benefits of prophylaxis with Memantine and Amantadine. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:1007-1022. [PMID: 34171050 PMCID: PMC8343601 DOI: 10.47162/rjme.61.4.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Patients with serious mental illness are a high-risk category of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Patients with schizophrenia are not participatory and have increased mortality and morbidity, patients with dementia cannot be cared for while depression, anxiety, bipolar tubing are associated with low immune status. Social stress is amplified by social isolation, amplifying depression and the mechanisms of decreased immunity. Hygiene measures and prophylactic behavior are impossible to put into practice in conditions of chronic mental illness. In coronavirus disease 2019 (COVID-19), the risk for severe development is associated with the presence of comorbidities and immune system deficiency. Prothrombotic status, cytokine storm and alveolar destruction are mechanisms that aggravate the evolution of patients, especially in the context in which they have dysfunction of the autonomic system. The activity of proinflammatory cytokines is accentuated by hyperglutamatergia, which potentiates oxidative stress and triggers the mechanisms of neural apoptosis by stimulating microglial activation. Activation of M1-type microglia has an important role in pathogenesis of major psychiatric disorders, such as major depression, schizophrenia or bipolar disorder, and may associate hippocampal atrophy and disconnection of cognitive structures. Memantine and Amantadine, N-methyl-D-aspartate (NMDA) glutamate receptor inhibitors, have demonstrated, through their pharmacological profile, psychotropic effects but also antiviral properties. In the conditions of the COVID-19 pandemic, based on these arguments, we suggest that they can be associated with the therapy with the basic psychotropics, Memantine or Amantadine, for the control of neuropsychiatric symptoms but also as adjuvants with antiviral action.
Collapse
Affiliation(s)
- Ileana Marinescu
- Doctoral School, Department of Internal Medicine, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, Romania; ,
| | | | | | | | | |
Collapse
|
73
|
Vavougios GD, Nday C, Pelidou SH, Zarogiannis SG, Gourgoulianis KI, Stamoulis G, Doskas T. Double hit viral parasitism, polymicrobial CNS residency and perturbed proteostasis in Alzheimer's disease: A data driven, in silico analysis of gene expression data. Mol Immunol 2020; 127:124-135. [PMID: 32971399 DOI: 10.1016/j.molimm.2020.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/25/2020] [Accepted: 08/30/2020] [Indexed: 01/04/2023]
Abstract
The aim of this study was to determine the interaction of peripheral immunity vs. the CNS in the setting of AD pathogenesis at the transcriptomic level in a data driven manner. For this purpose, publicly available gene expression data from the GEO Datasets repository. We performed differential gene expression and functional enrichment analyses were performed on the five retrieved studies: (a) three hippocampal cortex (HC) studies (b) one study of peripheral blood mononuclear cells (PBMC) and (c) one involving neurofibrillary tangle - containing neurons of the entorhinal cortex (NFT EC). Subsequently, BLAST was used to determine protein conservation between human proteins vs. microbial, whereas putative protein / oligopeptide antigenicity were determined via RANKPep. Gene ontology and pathway analyses revealed significantly enriched viral parasitism pathways in both PBMC and NFT - EC datasets, mediated by ribosomal protein families and epigenetic regulators. Among these, a salient viral pathway referred to Influenza A infection. NFT - EC annotations included leukocyte chemotaxis and immune response pathways. All datasets were significantly enriched for infectious pathways, as well as pathways involved in impaired proteostasis and non - phagocytic cell phagosomal cascades. In conclusion, our in silico analysis outlined an ad hoc model of AD pathophysiology in which double hit (PBMC and NFT-EC) viral parasitism is mediated by eukaryotic translational hijacking, and may be further implicated by impaired immune responses. Overall, our results overlap with the antimicrobial protection hypothesis of AD pathogenesis and support the notion of a pathogen - driven etiology.
Collapse
Affiliation(s)
- George D Vavougios
- Department of Neurology, Athens Naval Hospital, P.C. 115 21, Athens, Greece; Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, P.C, 41500, Larissa, Greece; Department of Computer Science and Telecommunications, University of Thessaly, Papasiopoulou 2 - 4, P.C. 35 131 Galaneika, Lamia, Greece.
| | - Christiane Nday
- Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, P.C. 5414, Thessaloniki, Greece
| | | | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, P.C, 41500, Larissa, Greece
| | - George Stamoulis
- Department of Electrical and Computer Engineering, University of Thessaly, 37 Glavani - 28th October Str, Deligiorgi Building, 4th floor, P.C. 382 21, Volos, Greece
| | | |
Collapse
|
74
|
Dickerson F, Schroeder JR, Nimgaonkar V, Gold J, Yolken R. The association between exposure to herpes simplex virus type 1 (HSV-1) and cognitive functioning in schizophrenia: A meta-analysis. Psychiatry Res 2020; 291:113157. [PMID: 32593064 DOI: 10.1016/j.psychres.2020.113157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Cognitive deficits are characteristic of schizophrenia but their etiology is not understood. Previous studies show an association between viral exposures and cognitive impairment. This meta-analysis was undertaken to determine the relationship of herpes simplex virus type 1 (HSV-1) exposure and cognitive functioning in schizophrenia. A systematic search was performed for studies comparing the cognitive functioning of HSV-1 seropositive vs. seronegative persons with schizophrenia. The primary outcome was the standardized mean difference (SMD) in composite cognitive score using Hedges' g. Secondary outcomes were SMDs in 9cognitive domains. Study heterogeneity was estimated using the I2 index and formal tests of heterogeneity using Cochran's Q. In a sample of 3516 individuals from 9 studies the SMD was negative for the composite score and all 9 domains indicating a significant deficit for seropositive individuals in 8 domains. The SMDs ranged from -0.11 (Working Memory) to -0.36 (Visual Spatial). Cochran's Q test indicated heterogeneity for one domain. The I2 index of heterogeneity was in the low -moderate range for all but one domain. Exposure to HSV-1 is associated with decreased cognitive functioning in schizophrenia. An increased understanding of HSV-1 exposure might lead to improved methods for the prevention and treatment of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Faith Dickerson
- Sheppard Pratt Health System, 6501 North Charles Street, Baltimore, MD 21204.
| | | | - Viswajit Nimgaonkar
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara St., Pittsburgh, PA 15213
| | - James Gold
- Maryland Psychiatric Research Center, 55 Wade Ave, Catonsville, MD 21228
| | - Robert Yolken
- Johns Hopkins School of Medicine, 600 North Wolfe St., Baltimore, MD 21287
| |
Collapse
|
75
|
Costa AS, Agostini S, Guerini FR, Mancuso R, Clerici M, Pandey JP. Relation between FCGRIIB rs1050501 and HSV-1 specific IgG antibodies in Alzheimer's disease. J Transl Med 2020; 18:325. [PMID: 32859213 PMCID: PMC7455989 DOI: 10.1186/s12967-020-02495-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/20/2020] [Indexed: 01/08/2023] Open
Abstract
Background Alzheimer’s Disease (AD) is a chronic neurodegenerative disorder characterized by extracellular plaques, intracellular neurofibrillary tangles and neuronal loss in the central nervous system (CNS). Pathogens are suspected to have a role in the development of AD; herpes simplex virus type 1 (HSV-1), in particular, is suggested to be a risk factor for the disease. The gamma receptor for the Fc portion of IgG molecules (FCGRs) plays a crucial role in regulating immune responses, and among FCGRs, FCGRIIB is endowed with an inhibitory function. Notably, the rs1050501 polymorphism of FCGRIIB gene associates with autoimmune diseases and with neuronal uptake and interneuronal accumulation of amyloid beta in animal AD models. Methods Genotype and allelic distribution of ApoE4 and FCGRIIB rs1050501 were evaluated in a case–control population of 225 AD patients, 93 MCI individuals and 201 sex and age matched healthy controls (HC). HSV-1 total IgG titers and IgG subclasses were detected and quantified in a subgroup of the main study population by ELISA. Results Genotype and allelic distribution of FCGRIIB was comparable in the study population. HSV-1-specific antibody titers were significantly higher in AD and MCI compared to HC (p < 0.01 for both); IgG3 titers, in particular, were increased in MCI compared to AD (p = 0.04). Analyses of possible correlations between the FCGRIIB rs1050501 genotype polymorphism and IgG subclasses showed that the presence of IgG3 was more frequent in MCI carrying the FCGRIIB TT (94.1%) compared to those carrying the CT genotype (63.6%) (p = 0.03). Conclusion Results herein show an association between humoral immune response against HSV-1 and FCGRIIB rs1050501 genetic variation in the first stage of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Janardan P Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
76
|
Zhang LN, Li MJ, Shang YH, Zhao FF, Huang HC, Lao FX. Independent and Correlated Role of Apolipoprotein E ɛ4 Genotype and Herpes Simplex Virus Type 1 in Alzheimer's Disease. J Alzheimers Dis 2020; 77:15-31. [PMID: 32804091 DOI: 10.3233/jad-200607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ɛ4 allele of the Apolipoprotein E (APOE) gene in individuals infected by Herpes simplex virus type 1 (HSV-1) has been demonstrated to be a risk factor in Alzheimer's disease (AD). APOE-ɛ4 reduces the levels of neuronal cholesterol, interferes with the transportation of cholesterol, impairs repair of synapses, decreases the clearance of neurotoxic peptide amyloid-β (Aβ), and promotes the deposition of amyloid plaque, and eventually may cause development of AD. HSV-1 enters host cells and can infect the olfactory system, trigeminal ganglia, entorhinal cortex, and hippocampus, and may cause AD-like pathological changes. The lifecycle of HSV-1 goes through a long latent phase. HSV-1 induces neurotropic cytokine expression with pro-inflammatory action and inhibits antiviral cytokine production in AD. It should be noted that interferons display antiviral activity in HSV-1-infected AD patients. Reactivated HSV-1 is associated with infectious burden in cognitive decline and AD. Finally, HSV-1 DNA has been confirmed as present in human brains and is associated with APOEɛ4 in AD. HSV-1 and APOEɛ4 increase the risk of AD and relate to abnormal autophagy, higher concentrations of HSV-1 DNA in AD, and formation of Aβ plaques and neurofibrillary tangles.
Collapse
Affiliation(s)
- Li-Na Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Meng-Jie Li
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Ying-Hui Shang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Fan-Fan Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Feng-Xue Lao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| |
Collapse
|
77
|
Induction of Rod-Shaped Structures by Herpes Simplex Virus Glycoprotein I. J Virol 2020; 94:JVI.00231-20. [PMID: 32581097 DOI: 10.1128/jvi.00231-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/15/2020] [Indexed: 02/05/2023] Open
Abstract
The envelope glycoprotein I (gI) of herpes simplex virus 1 (HSV-1) is a critical mediator of virus-induced cell-to-cell spread and cell-cell fusion. Here, we report a previously unrecognized property of this molecule. In transfected cells, the HSV-1 gI was discovered to induce rod-shaped structures that were uniform in width but variable in length. Moreover, the gI within these structures was conformationally different from the typical form of gI, as a previously used monoclonal antibody mAb3104 and a newly made peptide antibody to the gI extracellular domain (ECD) (amino acids [aa] 110 to 202) both failed to stain the long rod-shaped structures, suggesting the formation of a higher-order form. Consistent with this observation, we found that gI could self-interact and that the rod-shaped structures failed to recognize glycoprotein E, the well-known binding partner of gI. Further analyses by deletion mutagenesis and construction of chimeric mutants between gI and gD revealed that the gI ECD is the critical determinant, whereas the transmembrane domain served merely as an anchor. The critical amino acids were subsequently mapped to proline residues 184 and 188 within a conserved PXXXP motif. Reverse genetics analyses showed that the ability to induce a rod-shaped structure was not required for viral replication and spread in cell culture but rather correlated positively with the capability of the virus to induce cell fusion in the UL24syn background. Together, this work discovered a novel feature of HSV-1 gI that may have important implications in understanding gI function in viral spread and pathogenesis.IMPORTANCE The HSV-1 gI is required for viral cell-to-cell spread within the host, but the molecular mechanisms of how gI exactly works have remained poorly understood. Here, we report a novel property of this molecule, namely, induction of rod-shaped structures, which appeared to represent a higher-order form of gI. We further mapped the critical residues and showed that the ability of gI to induce rod-shaped structures correlated well with the capability of HSV-1 to induce cell fusion in the UL24syn background, suggesting that the two events may have an intrinsic link. Our results shed light on the biological properties of HSV-1 gI and may have important implications in understanding viral pathogenesis.
Collapse
|
78
|
Wang Y, Song X, Wang Y, Huang L, Luo W, Li F, Qin S, Wang Y, Xiao J, Wu Y, Jin F, Kitazato K, Wang Y. Dysregulation of cofilin-1 activity-the missing link between herpes simplex virus type-1 infection and Alzheimer's disease. Crit Rev Microbiol 2020; 46:381-396. [PMID: 32715819 DOI: 10.1080/1040841x.2020.1794789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial disease triggered by environmental factors in combination with genetic predisposition. Infectious agents, in particular herpes simplex virus type 1 (HSV-1), are gradually being recognised as important factors affecting the development of AD. However, the mechanism linking HSV-1 and AD remains unknown. Of note, HSV-1 manipulates the activity of cofilin-1 to ensure their efficient infection in neuron cells. Cofilin-1, the main regulator of actin cytoskeleton reorganization, is implicating for the plastic of dendritic spines and axon regeneration of neuronal cells. Moreover, dysfunction of cofilin-1 is observed in most AD patients, as well as in mice with AD and ageing. Further, inhibition of cofilin-1 activity ameliorates the host cognitive impairment in an animal model of AD. Together, dysregulation of cofilin-1 led by HSV-1 infection is a potential link between HSV-1 and AD. Herein, we critically summarize the role of cofilin-1-mediated actin dynamics in both HSV-1 infection and AD, respectively. We also propose several hypotheses regarding the connecting roles of cofilin-1 dysregulation in HSV-1 infection and AD. Our review provides a foundation for future studies targeting individuals carrying HSV-1 in combination with cofilin-1 to promote a more individualised approach for treatment and prevention of AD.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Yun Wang
- Department of Obstetrics and gynecology, The First affiliated hospital of Jinan University, Guangzhou, PR China
| | - Lianzhou Huang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Weisheng Luo
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Shurong Qin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Yuan Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Ji Xiao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Kaio Kitazato
- Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| |
Collapse
|
79
|
Sundermann EE, Panizzon MS, Chen X, Andrews M, Galasko D, Banks SJ. Sex differences in Alzheimer's-related Tau biomarkers and a mediating effect of testosterone. Biol Sex Differ 2020; 11:33. [PMID: 32560743 PMCID: PMC7304096 DOI: 10.1186/s13293-020-00310-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Women show greater pathological Tau biomarkers than men along the Alzheimer's disease (AD) continuum, particularly among apolipoprotein ε-E4 (APOE4) carriers; however, the reason for this sex difference in unknown. Sex differences often indicate an underlying role of sex hormones. We examined whether testosterone levels might influence this sex difference and the modifying role of APOE4 status. Analyses included 172 participants (25 cognitively normal, 97 mild cognitive impairment, 50 AD participants) from the Alzheimer's Disease Neuroimaging Initiative (34% female, 54% APOE4 carriers, aged 55-90). We examined the separate and interactive effects of plasma testosterone levels and APOE4 on cerebrospinal fluid phosphorylated-tau181 (p-Tau) levels in the overall sample and the sex difference in p-Tau levels before and after adjusting for testosterone. A significant APOE4-by-testosterone interaction revealed that lower testosterone levels related to higher p-Tau levels among APOE4 carriers regardless of sex. As expected, women had higher p-Tau levels than men among APOE4 carriers only, yet this difference was eliminated upon adjustment for testosterone. Results suggest that testosterone is protective against p-Tau particularly among APOE4 carriers. The lower testosterone levels that typically characterize women may predispose them to pathological Tau, particularly among female APOE4 carriers.
Collapse
Affiliation(s)
- Erin E. Sundermann
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Matthew S. Panizzon
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Xu Chen
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Murray Andrews
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | - Douglas Galasko
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | - Sarah J. Banks
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | - for the Alzheimer’s Disease Neuroimaging Initiative
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| |
Collapse
|
80
|
Panza F, Lozupone M, Solfrizzi V, Watling M, Imbimbo BP. Time to test antibacterial therapy in Alzheimer's disease. Brain 2020; 142:2905-2929. [PMID: 31532495 DOI: 10.1093/brain/awz244] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease is associated with cerebral accumulation of amyloid-β peptide and hyperphosphorylated tau. In the past 28 years, huge efforts have been made in attempting to treat the disease by reducing brain accumulation of amyloid-β in patients with Alzheimer's disease, with no success. While anti-amyloid-β therapies continue to be tested in prodromal patients with Alzheimer's disease and in subjects at risk of developing Alzheimer's disease, there is an urgent need to provide therapeutic support to patients with established Alzheimer's disease for whom current symptomatic treatment (acetylcholinesterase inhibitors and N-methyl d-aspartate antagonist) provide limited help. The possibility of an infectious aetiology for Alzheimer's disease has been repeatedly postulated over the past three decades. Infiltration of the brain by pathogens may act as a trigger or co-factor for Alzheimer's disease, with Herpes simplex virus type 1, Chlamydia pneumoniae, and Porphyromonas gingivalis being most frequently implicated. These pathogens may directly cross a weakened blood-brain barrier, reach the CNS and cause neurological damage by eliciting neuroinflammation. Alternatively, pathogens may cross a weakened intestinal barrier, reach vascular circulation and then cross blood-brain barrier or cause low grade chronic inflammation and subsequent neuroinflammation from the periphery. The gut microbiota comprises a complex community of microorganisms. Increased permeability of the gut and blood-brain barrier induced by microbiota dysbiosis may impact Alzheimer's disease pathogenesis. Inflammatory microorganisms in gut microbiota are associated with peripheral inflammation and brain amyloid-β deposition in subjects with cognitive impairment. Oral microbiota may also influence Alzheimer's disease risk through circulatory or neural access to the brain. At least two possibilities can be envisaged to explain the association of suspected pathogens and Alzheimer's disease. One is that patients with Alzheimer's disease are particularly prone to microbial infections. The other is that microbial infection is a contributing cause of Alzheimer's disease. Therapeutic trials with antivirals and/or antibacterials could resolve this dilemma. Indeed, antiviral agents are being tested in patients with Alzheimer's disease in double-blind placebo-controlled studies. Although combined antibiotic therapy was found to be effective in animal models of Alzheimer's disease, antibacterial drugs are not being widely investigated in patients with Alzheimer's disease. This is because it is not clear which bacterial populations in the gut of patients with Alzheimer's disease are overexpressed and if safe, selective antibacterials are available for them. On the other hand, a bacterial protease inhibitor targeting P. gingivalis toxins is now being tested in patients with Alzheimer's disease. Clinical studies are needed to test if countering bacterial infection may be beneficial in patients with established Alzheimer's disease.
Collapse
Affiliation(s)
- Francesco Panza
- Unit of Epidemiological Research on Aging, National Institute of Gastroenterology 'Saverio de Bellis', Research Hospital, Castellana Grotte, Bari, Italy
| | - Madia Lozupone
- Unit of Epidemiological Research on Aging, National Institute of Gastroenterology 'Saverio de Bellis', Research Hospital, Castellana Grotte, Bari, Italy
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Solfrizzi
- 'C. Frugoni' Internal and Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | - Mark Watling
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| |
Collapse
|
81
|
Hui Z, Zhijun Y, Yushan Y, Liping C, Yiying Z, Difan Z, Chunglit CT, Wei C. The combination of acyclovir and dexamethasone protects against Alzheimer's disease-related cognitive impairments in mice. Psychopharmacology (Berl) 2020; 237:1851-1860. [PMID: 32221697 DOI: 10.1007/s00213-020-05503-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. However, effective drugs for this disease have not yet been developed. The analysis of big data indicated that childhood herpes virus infection may be associated with the incidence of AD, suggesting that anti-herpetic drugs, such as acyclovir, may have preventive and suppressive effects in AD therapy. Moreover, short-term use of dexamethasone (DXMT), a clinical used synthetic corticosteroid, could effectively inhibit AD-related neuroinflammation. In this study, we have found that the combination of acyclovir and DXMT, but not acyclovir or DXMT alone, could protect against AD causing β-amyloid (Aβ) oligomer-induced spatial cognitive impairments. Moreover, acyclovir and DXMT could prevent Aβ oligomer-induced over-activation of microglia and astrocytes, and over-expression of pro-inflammatory cytokines, indicating that anti-AD effects of drug combination might be at least partially via neuroinflammation inhibition and immunomodulation. Furthermore, Aβ oligomer-induced decrease of PSD-95 and increase of pTau expression was prevented by the combination of acyclovir and DXMT, suggesting the involvement of synaptic protective effects of the drug combination. Taken together, our studies indicated that the combination of acyclovir and DXMT might be an alternative therapy for the treatment of AD.
Collapse
Affiliation(s)
- Zhang Hui
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yuan Zhijun
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yan Yushan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Chen Liping
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Zhou Yiying
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Zhang Difan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | | | - Cui Wei
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
82
|
Dhanavade MJ, Sonawane KD. Amyloid beta peptide-degrading microbial enzymes and its implication in drug design. 3 Biotech 2020; 10:247. [PMID: 32411571 PMCID: PMC7214582 DOI: 10.1007/s13205-020-02240-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurological brain disorder. AD pathophysiology is mainly represented by formation of neuritic plaques and neurofibrillary tangles (NFTs). Neuritic plaques are made up of amyloid beta (Aβ) peptides, which play a central role in AD pathogenesis. In AD brain, Aβ peptide accumulates due to overproduction, insufficient clearance and defective proteolytic degradation. The degradation and cleavage mechanism of Aβ peptides by several human enzymes have been discussed previously. In the mean time, numerous experimental and bioinformatics reports indicated the significance of microbial enzymes having potential to degrade Aβ peptides. Thus, there is a need to shift the focus toward the substrate specificity and structure-function relationship of Aβ peptide-degrading microbial enzymes. Hence, in this review, we discussed in vitro and in silico studies of microbial enzymes viz. cysteine protease and zinc metallopeptidases having ability to degrade Aβ peptides. In silico study showed that cysteine protease can cleave Aβ peptide between Lys16-Cys17; similarly, several other enzymes also showed capability to degrade Aβ peptide at different sites. Thus, this review paves the way to explore the role of microbial enzymes in Aβ peptide degradation and to design new lead compounds for AD treatment.
Collapse
Affiliation(s)
- Maruti J. Dhanavade
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004 India
| | - Kailas D. Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra 416004 India
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004 India
| |
Collapse
|
83
|
Rizzo R, Bortolotti D, Gentili V, Rotola A, Bolzani S, Caselli E, Tola MR, Di Luca D. KIR2DS2/KIR2DL2/HLA-C1 Haplotype Is Associated with Alzheimer's Disease: Implication for the Role of Herpesvirus Infections. J Alzheimers Dis 2020; 67:1379-1389. [PMID: 30689576 DOI: 10.3233/jad-180777] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, where neuroinflammation and immune cells are key pathological factors. Recently, it was suggested a possible association between AD and human herpesvirus 6 (HHV-6) infection. Since we recently observed that multiple sclerosis patients with KIR2DL2 expression on natural killer (NK) cells are more susceptible to herpesvirus infection, we tested the possible implication of KIR/HLA genetic for HHV-6A infection. We identified, for the first time, a possible implication of a specific KIR/HLA subset in AD. The combination KIR2DS2/KIR2DL2/C1 correlated with a lower MMSEDi score, representative of a severe AD status and an increased susceptibility to HHV-6A infection. Therefore, the results seem to converge on the hypothesis that herpesvirus infection might play a role in AD. If this hypothesis finds experimental confirmation, a new therapeutic strategy, modulating KIR2DL2 expression on NK cells, for AD might be envisaged.
Collapse
Affiliation(s)
- Roberta Rizzo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Daria Bortolotti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Valentina Gentili
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonella Rotola
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Silvia Bolzani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Maria Rosaria Tola
- Department of Neurosciences and Rehabilitation, University Hospital, Arcispedale S. Anna, Ferrara, Italy
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
84
|
Epstein AL. [Alzheimer's disease, neuro-inflammation, and herpes viruses, a path that traces its way]. Med Sci (Paris) 2020; 36:479-486. [PMID: 32452370 DOI: 10.1051/medsci/2020090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Infection of the brain with various types of pathogens, and the resulting inflammatory response, is becoming increasingly important in our understanding of the etiology of Alzheimer's disease (AD). The fact that several genes identified as risk factors are actually involved in the modulation of the immune response, as well as the very diversity of the infectious agents identified as possible actors in the evolution of this disease, argue in favor of the neuro-inflammatory hypothesis, as does the demonstration that the protein Aβ, one of the most important markers of AD, is an antimicrobial peptide. Among others, herpes viruses (mainly, but not only, HSV-1), which can establish latent infections in brain neurons, especially in the elder population, punctuated by episodes of reactivation following stress or immunosuppression, appear as very strong candidates to play an etiological role, if only as cofactors, of AD. Recent results show that, in human and rat neurons, infection with HSV-1 increases the formation of Aβ along the amyloidogenic pathway, as well as the phosphorylation of Tau proteins, another essential marker of AD. The growing evidence that chronic infections and defense mechanisms, including inflammatory processes, are at the heart of AD, warrants reviewing antiviral drugs such as acyclovir, and possibly vaccination, as potential avenues for AD control.
Collapse
Affiliation(s)
- Alberto L Epstein
- UMR Inserm U1179 - UVSQ - UFR des sciences de la santé Simone Veil, Université de Versailles-Saint-Quentin-en-Yvelines, 2 avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| |
Collapse
|
85
|
Carrasco L, Pisa D, Alonso R. Polymicrobial Infections and Neurodegenerative Diseases. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00139-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
86
|
Marcocci ME, Napoletani G, Protto V, Kolesova O, Piacentini R, Li Puma DD, Lomonte P, Grassi C, Palamara AT, De Chiara G. Herpes Simplex Virus-1 in the Brain: The Dark Side of a Sneaky Infection. Trends Microbiol 2020; 28:808-820. [PMID: 32386801 DOI: 10.1016/j.tim.2020.03.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022]
Abstract
Herpes simplex virus-1 (HSV-1) establishes latency preferentially in sensory neurons of peripheral ganglia. A variety of stresses can induce recurrent reactivations of the virus, which spreads and then actively replicates to the site of primary infection (usually the lips or eyes). Viral particles produced following reactivation can also reach the brain, causing a rare but severe form of diffuse acute infection, namely herpes simplex encephalitis. Most of the time, this infection is clinically asymptomatic. However, it was recently correlated with the production and accumulation of neuropathological biomarkers of Alzheimer's disease. In this review we discuss the different cellular and molecular mechanisms underlying the acute and long-term damage caused by HSV-1 infection in the brain.
Collapse
Affiliation(s)
- Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Giorgia Napoletani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Virginia Protto
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Olga Kolesova
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Patrick Lomonte
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), Lyon, France
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; San Raffaele Pisana, IRCCS, Telematic University, Rome, Italy.
| | - Giovanna De Chiara
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| |
Collapse
|
87
|
Berman MH, Nichols TW. Treatment of Neurodegeneration: Integrating Photobiomodulation and Neurofeedback in Alzheimer's Dementia and Parkinson's: A Review. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 37:623-634. [PMID: 31647776 DOI: 10.1089/photob.2019.4685] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective: A review of photobiomodulation (PBM) in Alzheimer's dementia is submitted. The addition of PBM in neurodegenerative diseases is a dual modality that is at present gaining traction as it is safe, antiviral, and anti-inflammatory for treating neurodegeneration with photons that stimulate mitochondria increasing adenosine triphosphate and proteasomes increasing misfolded protein removal. Neurofeedback provides neural plasticity with an increase in brain-derived nerve factor mRNA and an increase in dendrite production and density in the hippocampus coupled with overall growth in dendrites, density, and neuronal survival. Background: Alzheimer's disease pathophysiology is the accumulation of hyperphosphorylated tau protein neurofibrillary tangles and subsequently amyloid-beta (Aβ) plaques. PBM and neurobiofeedback (NBF)address the multiple gene expression and upregulation of multiple pathogenic pathway inflammation, reactive oxidative stress, mitochondrial disorders, insulin resistance, methylation defects, regulation of neuroprotective factors, and regional hypoperfusion of the brain. There is no human evidence to suggest a clinical therapeutic benefit from using consistent light sources while significantly increasing safety concerns. Methods: A PBM test with early- to mid-Alzheimer's was reported in 2017, consisting of a double-blind, placebo-controlled trial in a small pilot group of early- to mid-dementia subjects under Institutional Review Board (IRB)-approved Food and Drug Administration (FDA) Clinical Trial. Results: PBM-treated subjects showed that active treatment subjects tended to show greater improvement in the functioning of the executive: clock drawing, immediate recall, practical memory, and visual attention and task switching (Trails A&B). A larger study using the CerebroLite helmet in Temple Texas again of subjects in a double-blind, placebo-controlled IRB-approved FDA Clinical Trial demonstrated gain in memory and cognition by increased clock drawing. Conclusions: Next-generation trials with the Cognitolite for Parkinson's disease subjects will incorporate the insights regarding significant bilateral occipital hypocoherence deficits gained from the quantitative EEG analyses. Future applications will integrate noninvasive stimulation delivery, including full-body and transcranial and infrared light with pulsed electromagnetic frequencies.
Collapse
|
88
|
Powell-Doherty RD, Abbott ARN, Nelson LA, Bertke AS. Amyloid-β and p-Tau Anti-Threat Response to Herpes Simplex Virus 1 Infection in Primary Adult Murine Hippocampal Neurons. J Virol 2020; 94:e01874-19. [PMID: 32075924 PMCID: PMC7163132 DOI: 10.1128/jvi.01874-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's Disease (AD) is the sixth leading cause of death in the United States. Recent studies have established a potential link between herpes simplex virus 1 (HSV-1) infection and the development of AD. HSV-1 DNA has been detected in AD amyloid plaques in human brains, and treatment with the antiviral acyclovir (ACV) was reported to block the accumulation of the AD-associated proteins beta-amyloid (Aβ) and hyper-phosphorylated tau (p-tau) in Vero and glioblastoma cells. Our goal was to determine whether the accumulation of AD-related proteins is attributable to acute and/or latent HSV-1 infection in mature hippocampal neurons, a region of the brain severely impacted by AD. Primary adult murine hippocampal neuronal cultures infected with HSV-1, with or without antivirals, were assessed for Aβ and p-tau expression over 7 days postinfection. P-tau expression was transiently elevated in HSV-1-infected neurons, as well as in the presence of antivirals alone. Infected neurons, as well as uninfected neurons treated with antivirals, had a greater accumulation of Aβ42 than uninfected untreated neurons. Furthermore, Aβ42 colocalized with HSV-1 latency-associated transcript (LAT) expression. These studies suggest that p-tau potentially acts as an acute response to any perceived danger-associated molecular pattern (DAMP) in primary adult hippocampal neurons, while Aβ aggregation is a long-term response to persistent threats, including HSV-1 infection.IMPORTANCE Growing evidence supports a link between HSV-1 infection and Alzheimer's disease (AD). Although AD is clearly a complex multifactorial disorder, an infectious disease etiology provides alternative therapy opportunities for this devastating disease. Understanding the impact that HSV-1 has on mature neurons and the proteins most strongly associated with AD pathology may identify specific mechanisms that could be manipulated to prevent progression of neurodegeneration and dementia.
Collapse
Affiliation(s)
- Rebecca D Powell-Doherty
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Amber R N Abbott
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Laura A Nelson
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Andrea S Bertke
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
89
|
Fossel M. A unified model of dementias and age-related neurodegeneration. Alzheimers Dement 2020; 16:365-383. [PMID: 31943780 DOI: 10.1002/alz.12012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/09/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
90
|
Gold Nanoparticles Crossing Blood-Brain Barrier Prevent HSV-1 Infection and Reduce Herpes Associated Amyloid-βsecretion. J Clin Med 2020; 9:jcm9010155. [PMID: 31935998 PMCID: PMC7019340 DOI: 10.3390/jcm9010155] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/27/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023] Open
Abstract
Infections caused by HSV-1 and their typical outbreaks invading the nervous system have been related to neurodegenerative diseases. HSV-1 infection may deregulate the balance between the amyloidogenic and non-amyloidogenic pathways, raising the accumulation of amyloid-β peptides, one of the hallmarks in the neurodegenerative diseases. An effective treatment against both, HSV-1 infections and neurodegeneration, is a major therapeutic target. Therefore, gold nanoparticles (NPAus) have been previously studied in immunotherapy, cancer and cellular disruptions with very promising results. Our study demonstrates that a new NPAus family inhibits the HSV-1 infection in a neural-derived SK-N-MC cell line model and that this new NPAus reduces the HSV-1-induced β-secretase activity, as well as amyloid-β accumulation in SK-APP-D1 modifies cell line. We demonstrated that NPAuG3-S8 crosses the blood-brain barrier (BBB) and does not generate cerebral damage to in vivo CD1 mice model. The NPAuG3-S8 could be a promising treatment against neuronal HSV-1 infections and neuronal disorders related to the Aβ peptides.
Collapse
|
91
|
Wu J, Gu J, Shen L, Fang D, Zou X, Cao Y, Wang S, Mao L. Exosomal MicroRNA-155 Inhibits Enterovirus A71 Infection by Targeting PICALM. Int J Biol Sci 2019; 15:2925-2935. [PMID: 31853228 PMCID: PMC6909958 DOI: 10.7150/ijbs.36388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Enterovirus A71 (EV-A71) causes hand, foot, and mouth disease (HFMD) that is associated with neurological complications. Researchers have shown that exosomes containing host cellular microRNA (miRNA) can modulate the recipient's cellular response during viral infection. However, it is unclear how exosomal miRNAs regulate this response during EV-A71 infection. In this study, we used an exosomal miRNA chip to show that microRNA-155 (miR-155) was markedly enriched in exosomes after EV-A71 infection. Moreover, exosomal miR-155 efficaciously inhibited EV-A71 infection by targeting phosphatidylinositol clathrin assembly protein (PICALM) in recipient cells. Importantly, we confirmed that exosomal miR-155 reduced EV-A71 infection severity in vivo. Additionally, miR-155 levels in throat swabs from EV-A71-infected patients were higher than in those from healthy individuals. Collectively, our findings provide evidence that exosomal miR-155 plays a role in host-pathogen interactions by mediating EV-A71 infection via the repression of PICALM; these results provide insights into the regulatory mechanisms of viral infection.
Collapse
Affiliation(s)
- Jing Wu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaqi Gu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Shen
- Clinical Laboratory, Zhenjiang Center for Disease Control and Prevention, Jiangsu, China
| | - Daihua Fang
- Clinical Laboratory, Xuzhou Children's Hospital, Xuzhou, China
| | - Xinran Zou
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuwen Cao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
92
|
Lopatko Lindman K, Weidung B, Olsson J, Josefsson M, Kok E, Johansson A, Eriksson S, Hallmans G, Elgh F, Lövheim H. A genetic signature including apolipoprotein Eε4 potentiates the risk of herpes simplex-associated Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:697-704. [PMID: 31921962 PMCID: PMC6944738 DOI: 10.1016/j.trci.2019.09.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction Herpes simplex virus type 1 (HSV1) in combination with genetic susceptibility has previously been implicated in Alzheimer's disease (AD) pathogenesis. Methods Plasma from 360 AD cases, obtained on average 9.6 years before diagnosis, and their age- and sex-matched controls, were analyzed for anti-HSV1 immunoglobulin (Ig) G with enzyme-linked immunosorbent assays (ELISAs). A POE genotype and nine other selected risk genes for AD were extracted from a genome-wide association study analysis by deCODE genetics, Reykjavik, Iceland. Results The interaction between APOEε4 heterozygosity (APOEε2/ε4 or ε3/ε4) and anti-HSV1 IgG carriage increased the risk of AD (OR 4.55, P = .02). A genetic risk score based on the nine AD risk genes also interacted with anti-HSV1 IgG for the risk of developing AD (OR 2.35, P = .01). Discussion The present findings suggest that the APOEε4 allele and other AD genetic risk factors might potentiate the risk of HSV1-associated AD.
Collapse
Affiliation(s)
- Karin Lopatko Lindman
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden
| | - Bodil Weidung
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden.,Department of Public Health and Caring Sciences, Geriatric Medicine, Uppsala University, Uppsala, Sweden
| | - Jan Olsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Section of Virology, Umeå University, Umeå, Sweden
| | - Maria Josefsson
- Centre for Demographic and Ageing Research, Umeå University, Umeå, Sweden
| | - Eloise Kok
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anders Johansson
- Department of Odontology, Umeå University, Umeå, Sweden.,Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | - Sture Eriksson
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden.,Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | - Fredrik Elgh
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Section of Virology, Umeå University, Umeå, Sweden
| | - Hugo Lövheim
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden.,Wallenberg Centre for molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| |
Collapse
|
93
|
Agostini S, Costa AS, Mancuso R, Guerini FR, Nemni R, Clerici M. The PILRA G78R Variant Correlates with Higher HSV-1-Specific IgG Titers in Alzheimer's Disease. Cell Mol Neurobiol 2019; 39:1217-1221. [PMID: 31297637 PMCID: PMC11452220 DOI: 10.1007/s10571-019-00712-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive decline in cognitive performance; Mild Cognitive Impairment (MCI) is instead an objective decline in cognitive performance that does not reach pathology. Paired immunoglobulin-like type 2 receptor alpha (PILRA) is a cell surface inhibitory receptor that was recently suggested to be involved in AD pathogenesis. In particular, the arginine-to-glycine substitution in position 78 (R78, rs1859788) was shown to be protective against AD. Herpes simplex virus type 1 (HSV-1) infection is suspected as well to be involved in AD. Interestingly, HSV-1 uses PILRA to infect cells, and HSV-1 infects more efficiently PIRLA G78 compared to R78 macrophages. We analyzed PILRA rs1859788 polymorphism and HSV-1 humoral immune responses in AD (n = 61) and MCI patients (n = 48), and in sex and age matched healthy controls (HC; n = 57). The rs1859788 PILRA genotype distribution was similar among AD, MCI and HC; HSV-1 antibody (Ab) titers were increased in AD and MCI compared to HC (p < 0.05 for both comparisons). Notably, HSV-1-specific IgG1 were significantly increased in AD patients carrying PILRA R78 rs1859788 AA than in those carrying G78 AG or GG (p = 0.01 for both comparisons), and the lowest titers of HSV-1-specific IgG1 were observed in rs1859788 GG AD. HSV-1 IgG are increased in AD patients with the protective R78 PILRA genotype. Because in AD patients brain atrophy is inversely correlated with HSV-1-specific IgG titers, results herein suggest a possible link between two important genetic and infective factors suspected to be involved in AD pathogenesis.
Collapse
Affiliation(s)
- Simone Agostini
- IRCCS Fondazione Don Carlo Gnocchi, P.zza Morandi, 3, 20100, Milan, Italy.
| | - Andrea Saul Costa
- IRCCS Fondazione Don Carlo Gnocchi, P.zza Morandi, 3, 20100, Milan, Italy
| | - Roberta Mancuso
- IRCCS Fondazione Don Carlo Gnocchi, P.zza Morandi, 3, 20100, Milan, Italy
| | | | - Raffaello Nemni
- IRCCS Fondazione Don Carlo Gnocchi, P.zza Morandi, 3, 20100, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, P.zza Morandi, 3, 20100, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
94
|
Wang N, Qiu P, Cui W, Yan X, Zhang B, He S. Recent Advances in Multi-target Anti-Alzheimer Disease Compounds (2013 Up to the Present). Curr Med Chem 2019; 26:5684-5710. [DOI: 10.2174/0929867326666181203124102] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/03/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022]
Abstract
:
Since the last century, when scientists proposed the lock-and-key model, the discovery of
drugs has focused on the development of drugs acting on single target. However, single-target drug
therapies are not effective to complex diseases with multi-factorial pathogenesis. Moreover, the
combination of single-target drugs readily causes drug resistance and side effects. In recent years,
multi-target drugs have increasingly been represented among FDA-approved drugs. Alzheimer’s
Disease (AD) is a complex and multi-factorial disease for which the precise molecular mechanisms
are still not fully understood. In recent years, rational multi-target drug design methods, which combine
the pharmacophores of multiple drugs, have been increasingly applied in the development of
anti-AD drugs. In this review, we give a brief description of the pathogenesis of AD and provide
detailed discussions about the recent development of chemical structures of anti-AD agents (2013 up
to present) that have multiple targets, such as amyloid-β peptide, Tau protein, cholinesterases,
monoamine oxidase, β-site amyloid-precursor protein-cleaving enzyme 1, free radicals, metal ions
(Fe2+, Cu2+, Zn2+) and so on. In this paper, we also added some novel targets or possible pathogenesis
which have been reported in recent years for AD therapy. We hope that these findings may provide
new perspectives for the pharmacological treatment of AD.
Collapse
Affiliation(s)
- Ning Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Panpan Qiu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Wei Cui
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
95
|
Persistent Infection with Herpes Simplex Virus 1 and Alzheimer's Disease-A Call to Study How Variability in Both Virus and Host may Impact Disease. Viruses 2019; 11:v11100966. [PMID: 31635156 PMCID: PMC6833100 DOI: 10.3390/v11100966] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing attention has focused on the contributions of persistent microbial infections with the manifestation of disease later in life, including neurodegenerative conditions such as Alzheimer’s disease (AD). Current data has shown the presence of herpes simplex virus 1 (HSV-1) in regions of the brain that are impacted by AD in elderly individuals. Additionally, neuronal infection with HSV-1 triggers the accumulation of amyloid beta deposits and hyperphosphorylated tau, and results in oxidative stress and synaptic dysfunction. All of these factors are implicated in the development of AD. These data highlight the fact that persistent viral infection is likely a contributing factor, rather than a sole cause of disease. Details of the correlations between HSV-1 infection and AD development are still just beginning to emerge. Future research should investigate the relative impacts of virus strain- and host-specific factors on the induction of neurodegenerative processes over time, using models such as infected neurons in vitro, and animal models in vivo, to begin to understand their relationship with cognitive dysfunction.
Collapse
|
96
|
Wang Y, Jia J, Wang Y, Li F, Song X, Qin S, Wang Z, Kitazato K, Wang Y. Roles of HSV-1 infection-induced microglial immune responses in CNS diseases: friends or foes? Crit Rev Microbiol 2019; 45:581-594. [PMID: 31512533 DOI: 10.1080/1040841x.2019.1660615] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microglia, as brain-resident macrophages, are the first line of defense against brain invading pathogens. Further, their dysfunction has been recognized to be closely associated with mounting CNS diseases. Of note, chronic HSV-1 infection leads to the persistent activation of microglia, which elicit a comprehensive response by generating certain factors with neurotoxic and neuroprotective effects. CNS infection with HSV-1 results in herpes simplex encephalitis and herpes simplex keratitis. Microglial immune response plays a crucial role in the development of these diseases. Moreover, HSV-1 infection is strongly associated with several CNS diseases, especially Alzheimer's disease and schizophrenia. These CNS diseases can be effectively ameliorated by eliciting an appropriate immune response, such as inhibition of microglial proliferation and activation. Therefore, it is crucial to reassess the positive and negative roles of microglia in HSV-1 CNS infection for a more comprehensive and detailed understanding of the relationship between microglia and CNS diseases. Hence, the present review focuses on the dual roles of microglia in mediating HSV-1 CNS infection, as well as on the strategy of targeting microglia to ameliorate CNS diseases. Further research in this field can help comprehensively elucidate the dual role of the microglial immune response in HSV-1 CNS infection, providing a theoretical basis for identifying therapeutic targets against overactive microglia in CNS diseases and HSV-1 infection.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Jiaoyan Jia
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Shurong Qin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhaoyang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Kaio Kitazato
- Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| |
Collapse
|
97
|
La Rosa F, Agostini S, Bianchi A, Nemni R, Piancone F, Marventano I, Mancuso R, Saresella M, Clerici M. Herpes simplex virus-1 (HSV-1) infection induces a potent but ineffective IFN-λ production in immune cells of AD and PD patients. J Transl Med 2019; 17:286. [PMID: 31455413 PMCID: PMC6712644 DOI: 10.1186/s12967-019-2034-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/18/2019] [Indexed: 11/23/2022] Open
Abstract
Background The sequential activation of immediate early (IE), early (E) and late (L) genes is required to allow productive herpes simplex virus type 1 (HSV-1) infection. Several evidences suggest that, together with inflammation, an immunological response incapable to counteract HSV-1 reactivation plays a role in the pathogenesis of Alzheimer’s (AD) and Parkinson’s (PD) diseases. IFN-lambda (IFN-λ), a cytokine endowed with a robust antiviral activity, contains HSV-1 reactivation. HSV-1-induced IFN-λ, IL-10 and IL-1β as well as the expression of viral IE, E and L genes were analyzed in vitro in peripheral blood mononuclear cells (PBMC) of AD and PD patients as well as of healthy controls (HC). Methods PBMC of AD, PD and HC were in vitro infected with one multiplicity of infection (1 MOI) HSV-1. IE, E, and L viral genes transcription as well as IFN-λ, IL-10 and IL-1β production were analyzed. Results In HSV-1-infected cells of AD and PD patients compared to HC: (1) transcription of IE (ICP0, ICP27) genes was reduced whereas that of E (UL41, UL29) and L (UL48, LAT) genes was increased; (2) IFN-λ mRNA expression was increased. IL-1β was augmented and IL-10 was reduced in unstimulated cells of AD and PD compared to HC; HSV-1 infection significantly increased IL-10 production in HC alone. Conclusions Data herein show that a proinflammatory condition is present in AD and PD, in whom attempts to obstacle viral replication via an initial, possibly more potent IFN-λ-mediated control of IE viral genes is unsuccessful.
Collapse
Affiliation(s)
- Francesca La Rosa
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro, 66, 20148, Milan, Italy.
| | - Simone Agostini
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro, 66, 20148, Milan, Italy
| | - Anna Bianchi
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro, 66, 20148, Milan, Italy
| | - Raffaello Nemni
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro, 66, 20148, Milan, Italy
| | - Federica Piancone
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro, 66, 20148, Milan, Italy
| | - Ivana Marventano
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro, 66, 20148, Milan, Italy
| | - Roberta Mancuso
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro, 66, 20148, Milan, Italy
| | - Marina Saresella
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro, 66, 20148, Milan, Italy
| | - Mario Clerici
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro, 66, 20148, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
98
|
Talwar P, Gupta R, Kushwaha S, Agarwal R, Saso L, Kukreti S, Kukreti R. Viral Induced Oxidative and Inflammatory Response in Alzheimer's Disease Pathogenesis with Identification of Potential Drug Candidates: A Systematic Review using Systems Biology Approach. Curr Neuropharmacol 2019; 17:352-365. [PMID: 29676229 PMCID: PMC6482477 DOI: 10.2174/1570159x16666180419124508] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is genetically complex with multifactorial etiology. Here, we aim to identify the potential viral pathogens leading to aberrant inflammatory and oxidative stress response in AD along with potential drug candidates using systems biology approach. We retrieved protein interactions of amyloid precursor protein (APP) and tau protein (MAPT) from NCBI and genes for oxidative stress from NetAge, for inflammation from NetAge and InnateDB databases. Genes implicated in aging were retrieved from GenAge database and two GEO expression datasets. These genes were individually used to create protein-protein interaction network using STRING database (score≥0.7). The interactions of candidate genes with known viruses were mapped using virhostnet v2.0 database. Drug molecules targeting candidate genes were retrieved using the Drug- Gene Interaction Database (DGIdb). Data mining resulted in 2095 APP, 116 MAPT, 214 oxidative stress, 1269 inflammatory genes. After STRING PPIN analysis, 404 APP, 109 MAPT, 204 oxidative stress and 1014 inflammation related high confidence proteins were identified. The overlap among all datasets yielded eight common markers (AKT1, GSK3B, APP, APOE, EGFR, PIN1, CASP8 and SNCA). These genes showed association with hepatitis C virus (HCV), Epstein- Barr virus (EBV), human herpes virus 8 and Human papillomavirus (HPV). Further, screening of drugs targeting candidate genes, and possessing anti-inflammatory property, antiviral activity along with a suggested role in AD pathophysiology yielded 12 potential drug candidates. Our study demonstrated the role of viral etiology in AD pathogenesis by elucidating interaction of oxidative stress and inflammation causing candidate genes with common viruses along with the identification of potential AD drug candidates.
Collapse
Affiliation(s)
- Puneet Talwar
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Renu Gupta
- Institute of Human Behaviour & Allied Sciences (IHBAS), Dilshad Garden, Delhi 110 095, India
| | - Suman Kushwaha
- Institute of Human Behaviour & Allied Sciences (IHBAS), Dilshad Garden, Delhi 110 095, India
| | - Rachna Agarwal
- Institute of Human Behaviour & Allied Sciences (IHBAS), Dilshad Garden, Delhi 110 095, India
| | - Luciano Saso
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | | | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| |
Collapse
|
99
|
Qin Q, Li Y. Herpesviral infections and antimicrobial protection for Alzheimer's disease: Implications for prevention and treatment. J Med Virol 2019; 91:1368-1377. [PMID: 30997676 DOI: 10.1002/jmv.25481] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/04/2019] [Indexed: 02/05/2023]
Abstract
Accumulating evidence suggests that infections by herpesviruses might be closely linked to Alzheimer's disease (AD). Pathological hallmarks of AD brains include senile plaques induced by amyloid β peptide (Aβ) in the extracellular space and intracellular neurofibrillary tangles (NFTs) consisting of phosphorylated tau protein. The prevailing hypothesis for the mechanism of AD is amyloid cascade reaction. Recent studies revealed that infections by herpesviruses induce the similar pathological hallmarks of AD, including Aβ production, phosphorylation of tau (P-tau), oxidative stress, neuroinflammation, etc. Aβ peptide is regarded as one of the antimicrobial peptides, which inhibits HSV-1 replication. In the elderly, reactivation of herpesviruses might act as an initiator for amyloid cascade reaction in vulnerable individuals, triggering the neurofibrillary formation of phosphorylated tau and inducing oxidative stress and neuroinflammation, which can further contribute to the accumulation of Aβ and P-tau by impairing mitochondria and autophagosome. Epidemiological studies have shown AD susceptibility genes, such as APOE-ε4 allele, are highly linked to infections by herpesviruses. Interestingly, anti-herpesviral therapy significantly reduced the risk of AD in a large population study. Given that herpesviruses are arguably the most prevalent opportunistic pathogens and often reactivate in the elderly, it is reasonable to argue reactivation of herpesviruses might be major culprits for initiating AD in individuals carrying AD susceptibility genes. In this review, we summarize epidemiological and molecular evidence that support for a hypothesis of herpesviral infections and antimicrobial protection in the development of AD, and discuss the implications for future prevention and treatment of the disease.
Collapse
Affiliation(s)
- Qingsong Qin
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yun Li
- Sleep Medicine Center, Shantou University Medical College, Shantou, Guangdong, China
- Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
100
|
Inyushin M, Zayas-Santiago A, Rojas L, Kucheryavykh Y, Kucheryavykh L. Platelet-generated amyloid beta peptides in Alzheimer's disease and glaucoma. Histol Histopathol 2019; 34:843-856. [PMID: 30945258 PMCID: PMC6667289 DOI: 10.14670/hh-18-111] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloid beta (Aβ) peptides have been implicated in both Alzheimer's disease (AD) and glaucoma and have been shown to be the key etiological factor in these dangerous health complications. On the other hand, it is well known that Aβ peptide can be generated from its precursor protein and massively released from the blood to nearby tissue upon the activation of platelets due to their involvement in innate immunity and inflammation processes. Here we review evidence about the development of AD and glaucoma neuronal damage showing their dependence on platelet count and activation. The correlation between the effect on platelet count and the effectiveness of anti-AD and anti-glaucoma therapies suggest that platelets may be an important player in these diseases.
Collapse
Affiliation(s)
- Mikhail Inyushin
- School of Medicine, Universidad Central del Caribe (UCC), PR, USA.
| | | | - Legier Rojas
- School of Medicine, Universidad Central del Caribe (UCC), PR, USA
| | | | | |
Collapse
|