51
|
Papazoglou A, Henseler C, Weickhardt S, Teipelke J, Papazoglou P, Daubner J, Schiffer T, Krings D, Broich K, Hescheler J, Sachinidis A, Ehninger D, Scholl C, Haenisch B, Weiergräber M. Sex- and region-specific cortical and hippocampal whole genome transcriptome profiles from control and APP/PS1 Alzheimer's disease mice. PLoS One 2024; 19:e0296959. [PMID: 38324617 PMCID: PMC10849391 DOI: 10.1371/journal.pone.0296959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
A variety of Alzheimer's disease (AD) mouse models has been established and characterized within the last decades. To get an integrative view of the sophisticated etiopathogenesis of AD, whole genome transcriptome studies turned out to be indispensable. Here we carried out microarray data collection based on RNA extracted from the retrosplenial cortex and hippocampus of age-matched, eight months old male and female APP/PS1 AD mice and control animals to perform sex- and brain region specific analysis of transcriptome profiles. The results of our studies reveal novel, detailed insight into differentially expressed signature genes and related fold changes in the individual APP/PS1 subgroups. Gene ontology and Venn analysis unmasked that intersectional, upregulated genes were predominantly involved in, e.g., activation of microglial, astrocytic and neutrophilic cells, innate immune response/immune effector response, neuroinflammation, phagosome/proteasome activation, and synaptic transmission. The number of (intersectional) downregulated genes was substantially less in the different subgroups and related GO categories included, e.g., the synaptic vesicle docking/fusion machinery, synaptic transmission, rRNA processing, ubiquitination, proteasome degradation, histone modification and cellular senescence. Importantly, this is the first study to systematically unravel sex- and brain region-specific transcriptome fingerprints/signature genes in APP/PS1 mice. The latter will be of central relevance in future preclinical and clinical AD related studies, biomarker characterization and personalized medicinal approaches.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Sandra Weickhardt
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Jenni Teipelke
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Panagiota Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Teresa Schiffer
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Damian Krings
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Jürgen Hescheler
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Agapios Sachinidis
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Dan Ehninger
- Translational Biogerontology, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
| | - Catharina Scholl
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
- Center for Translational Medicine, Medical Faculty, University of Bonn, Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
52
|
Xu DD, Hou ZQ, Xu YY, Liang J, Gao YJ, Zhang C, Guo F, Huang DD, Ge JF, Xia QR. Potential Role of Bmal1 in Lipopolysaccharide-Induced Depression-Like Behavior and its Associated "Inflammatory Storm". J Neuroimmune Pharmacol 2024; 19:4. [PMID: 38305948 DOI: 10.1007/s11481-024-10103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Inflammation plays an important role in the pathogenesis of depression; however, the underlying mechanisms remain unclear. Apart from the disordered circadian rhythm in animal models and patients with depression, dysfunction of clock genes has been reported to be involved with the progress of inflammation. This study aimed to investigate the role of circadian clock genes, especially brain and muscle ARNT-like 1 (Bmal1), in the linkage between inflammation and depression. Lipopolysaccharide (LPS)-challenged rats and BV2 cells were used in the present study. Four intraperitoneal LPS injections of 0.5 mg/kg were administered once every other day to the rats, and BV2 cells were challenged with LPS for 24 h at the working concentration of 1 mg/L, with or without the suppression of Bmal1 via small interfering RNA. The results showed that LPS could successfully induce depression-like behaviors and an "inflammatory storm" in rats, as indicated by the increased immobility time in the forced swimming test and the decreased saccharin preference index in the saccharin preference test, together with hyperactivity of the hypothalamic-pituitary-adrenal axis, hyperactivation of astrocyte and microglia, and increased peripheral and central abundance of tumor necrosis factor-α, interleukin 6, and C-reactive protein. Moreover, the protein expression levels of brain-derived neurotrophic factor, triggering receptor expressed on myeloid cells 1, Copine6, and Synaptotagmin1 (Syt-1) decreased in the hippocampus and hypothalamus, whereas the expression of triggering receptor expressed on myeloid cells 2 increased. Interestingly, the fluctuation of temperature and serum concentration of melatonin and corticosterone was significantly different between the groups. Furthermore, protein expression levels of the circadian locomotor output cycles kaput, cryptochrome 2, and period 2 was significantly reduced in the hippocampus of LPS-challenged rats, whereas Bmal1 expression was significantly increased in the hippocampus but decreased in the hypothalamus, where it was co-located with neurons, microglia, and astrocytes. Consistently, apart from the reduced cell viability and increased phagocytic ability, LPS-challenged BV2 cells presented a similar trend with the changed protein expression in the hippocampus of the LPS model rats. However, the pathological changes in BV2 cells induced by LPS were reversed after the suppression of Bmal1. These results indicated that LPS could induce depression-like pathological changes, and the underlying mechanism might be partly associated with the imbalanced expression of Bmal1 and its regulated dysfunction of the circadian rhythm.
Collapse
Affiliation(s)
- Dan-Dan Xu
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Zhi-Qi Hou
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Ya-Yun Xu
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, 81 Mei-Shan Road, Hefei, 230032, People's Republic of China
| | - Jun Liang
- Department of Pharmacy, Hefei Fourth People's Hospital, Anhui Mental Health Center, 316 Huangshan Road, Hefei, 230032, China
- Clinical Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
| | - Ye-Jun Gao
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
- Department of Pharmacy, Hefei Fourth People's Hospital, Anhui Mental Health Center, 316 Huangshan Road, Hefei, 230032, China
- Clinical Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
| | - Chen Zhang
- School of 1, Clinic Medicine, Anhui Medical University, 81 Mei-Shan Road, Hefei, 230032, People's Republic of China
| | - Fan Guo
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Dan-Dan Huang
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| | - Qing-Rong Xia
- Department of Pharmacy, Hefei Fourth People's Hospital, Anhui Mental Health Center, 316 Huangshan Road, Hefei, 230032, China.
- Clinical Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China.
| |
Collapse
|
53
|
Liang H, Liu P, Wang Z, Xiong H, Yin C, Zhao D, Wu C, Chen L. TREM2 gene induces differentiation of induced pluripotent stem cells into dopaminergic neurons and promotes neuronal repair via TGF-β activation in 6-OHDA-lesioned mouse model of Parkinson's disease. CNS Neurosci Ther 2024; 30:e14630. [PMID: 38348765 PMCID: PMC10862187 DOI: 10.1111/cns.14630] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE Induced pluripotent stem cells (iPSCs) hold a promising potential for rescuing dopaminergic neurons in therapy for Parkinson's disease (PD). This study clarifies a TREM2-dependent mechanism explaining the function of iPSC differentiation in neuronal repair of PD. METHODS PD-related differentially expressed genes were screened by bioinformatics analyses and their expression was verified using RT-qPCR in nigral tissues of 6-OHDA-lesioned mice. Following ectopic expression and depletion experiments in iPSCs, cell differentiation into dopaminergic neurons as well as the expression of dopaminergic neuronal markers TH and DAT was measured. Stereotaxic injection of 6-OHDA was used to develop a mouse model of PD, which was injected with iPSC suspension overexpressing TREM2 to verify the effect of TREM2 on neuronal repair. RESULTS TREM2 was poorly expressed in the nigral tissues of 6-OHDA-lesioned mice. In the presence of TREM2 overexpression, the iPSCs showed increased expression of dopaminergic neuronal markers TH and DAT, which facilitated the differentiation of iPSCs into dopaminergic neurons. Mechanistic investigations indicated that TREM2 activated the TGF-β pathway and induced iPSC differentiation into dopaminergic neurons. In vivo data showed that iPSCs overexpressing TREM2 enhanced neuronal repair in 6-OHDA-lesioned mice. CONCLUSION This work identifies a mechanistic insight for TREM2-mediated TGF-β activation in the regulation of neuronal repair in PD and suggests novel strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Hanbai Liang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ping Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zijing Wang
- Department of Gastroenterology and Hepatology, West China HospitalSichuan UniversityChengduChina
| | - Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Cheng Yin
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Dongdong Zhao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Chunhui Wu
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Longyi Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
54
|
Berglund R, Cheng Y, Piket E, Adzemovic MZ, Zeitelhofer M, Olsson T, Guerreiro-Cacais AO, Jagodic M. The aging mouse CNS is protected by an autophagy-dependent microglia population promoted by IL-34. Nat Commun 2024; 15:383. [PMID: 38195627 PMCID: PMC10776874 DOI: 10.1038/s41467-023-44556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
Microglia harness an unutilized health-promoting potential in age-related neurodegenerative and neuroinflammatory diseases, conditions like progressive multiple sclerosis (MS). Our research unveils an microglia population emerging in the cortical brain regions of aging mice, marked by ERK1/2, Akt, and AMPK phosphorylation patterns and a transcriptome indicative of activated autophagy - a process critical for cellular adaptability. By deleting the core autophagy gene Ulk1 in microglia, we reduce this population in the central nervous system of aged mice. Notably, this population is found dependent on IL-34, rather than CSF1, although both are ligands for CSF1R. When aging mice are exposed to autoimmune neuroinflammation, the loss of autophagy-dependent microglia leads to neural and glial cell death and increased mortality. Conversely, microglial expansion mediated by IL-34 exhibits a protective effect. These findings shed light on an autophagy-dependent neuroprotective microglia population as a potential target for treating age-related neuroinflammatory conditions, including progressive MS.
Collapse
Affiliation(s)
- Rasmus Berglund
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| | - Yufei Cheng
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Eliane Piket
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Milena Z Adzemovic
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Manuel Zeitelhofer
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, 171 65, Solna, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Andre Ortlieb Guerreiro-Cacais
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden
| |
Collapse
|
55
|
Batista AF, Khan KA, Papavergi MT, Lemere CA. The Importance of Complement-Mediated Immune Signaling in Alzheimer's Disease Pathogenesis. Int J Mol Sci 2024; 25:817. [PMID: 38255891 PMCID: PMC10815224 DOI: 10.3390/ijms25020817] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
As an essential component of our innate immune system, the complement system is responsible for our defense against pathogens. The complement cascade has complex roles in the central nervous system (CNS), most of what we know about it stems from its role in brain development. However, in recent years, numerous reports have implicated the classical complement cascade in both brain development and decline. More specifically, complement dysfunction has been implicated in neurodegenerative disorders, such as Alzheimer's disease (AD), which is the most common form of dementia. Synapse loss is one of the main pathological hallmarks of AD and correlates with memory impairment. Throughout the course of AD progression, synapses are tagged with complement proteins and are consequently removed by microglia that express complement receptors. Notably, astrocytes are also capable of secreting signals that induce the expression of complement proteins in the CNS. Both astrocytes and microglia are implicated in neuroinflammation, another hallmark of AD pathogenesis. In this review, we provide an overview of previously known and newly established roles for the complement cascade in the CNS and we explore how complement interactions with microglia, astrocytes, and other risk factors such as TREM2 and ApoE4 modulate the processes of neurodegeneration in both amyloid and tau models of AD.
Collapse
Affiliation(s)
- André F. Batista
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.F.B.); (K.A.K.); (M.-T.P.)
| | - Khyrul A. Khan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.F.B.); (K.A.K.); (M.-T.P.)
| | - Maria-Tzousi Papavergi
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.F.B.); (K.A.K.); (M.-T.P.)
- School for Mental Health and Neuroscience (MHeNs), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Cynthia A. Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.F.B.); (K.A.K.); (M.-T.P.)
| |
Collapse
|
56
|
Wu D, Bi X, Chow KHM. Identification of female-enriched and disease-associated microglia (FDAMic) contributes to sexual dimorphism in late-onset Alzheimer's disease. J Neuroinflammation 2024; 21:1. [PMID: 38178204 PMCID: PMC10765928 DOI: 10.1186/s12974-023-02987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Late-onset Alzheimer's disease (LOAD) is the most common form of dementia; it disproportionally affects women in terms of both incidence rates and severity of progression. The cellular and molecular mechanisms underlying this clinical phenomenon remain elusive and ill-defined. METHODS In-depth analyses were performed with multiple human LOAD single-nucleus transcriptome datasets to thoroughly characterize cell populations in the cerebral cortex. ROSMAP bulk human brain tissue transcriptome and DNA methylome datasets were also included for validation. Detailed assessments of microglial cell subpopulations and their relevance to sex-biased changes at the tissue level were performed. Clinical trait associations, cell evolutionary trajectories, and transcription regulon analyses were conducted. RESULTS The relative numbers of functionally defective microglia were aberrantly increased uniquely among affected females. Substratification of the microglia into different subtypes according to their transcriptomic signatures identified a group of female-enriched and disease-associated microglia (FDAMic), the numbers of which were positively associated with disease severity. Phenotypically, these cells exhibit transcriptomic signatures that support active proliferation, MHC class II autoantigen presentation and amyloid-β binding, but they are also likely defective in phagocytosis. FDAMic are likely evolved from female activated response microglia (ARMic) with an APOE4 background and compromised estrogen receptor (ER) signaling that is deemed to be active among most subtypes of microglia. CONCLUSION This study offered important insights at both the cellular and molecular levels into how ER signaling affects microglial heterogeneity and function. FDAMic are associated with more advanced pathologies and severe trends of cognitive decline. Their emergence could, at least in part, explain the phenomenon of greater penetrance of the APOE4 genotype found in females. The biases of FDAMic emergence toward female sex and APOE4 status may also explain why hormone replacement therapy is more effective in APOE4 carriers. The pathologic nature of FDAMic suggests that selective modulations of these cells may help to regain brain neuroimmune homeostasis, serving as a new target for future drug development.
Collapse
Affiliation(s)
- Deng Wu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xiaoman Bi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
57
|
Han Y, Wang L, Ye X, Gong X, Shao X. FcγRIIb Exacerbates LPS-Induced Neuroinflammation by Binding with the Bridging Protein DAP12 and Promoting the Activation of PI3K/AKT Signaling Pathway in Microglia. J Inflamm Res 2024; 17:41-57. [PMID: 38193040 PMCID: PMC10773454 DOI: 10.2147/jir.s428093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction This paper focuses on the expression and role of FcγRIIb in neuroinflammation, exploring the molecular mechanisms by which FcγRIIb interacts with the bridging protein DAP12 to regulate the PI3K-AKT signaling pathway that promote neuroinflammation and aggravate neuronal injury. Methods LPS-induced neuroinflammation models in vivo and in vitro were constructed to explore the role and mechanism of FcγRIIb in CNS inflammation. Subsequently, FcγRIIb was knocked down or overexpressed to observe the activation of BV2 cell and the effect on PI3K-AKT pathway. Then the PI3K-AKT pathway was blocked to observe its effect on cell activation and FcγRIIb expression. We analyzed the interaction between FcγRIIb and DAP12 by Immunoprecipitation technique. Then FcγRIIb was overexpressed while knocking down DAP12 to observe its effect on PI3K-AKT pathway. Finally, BV2 cell culture supernatant was co-cultured with neuronal cell HT22 to observe its effect on neuronal apoptosis and cell activity. Results In vivo and in vitro, we found that FcγRIIb expression was significantly increased and activated the PI3K-AKT pathway. Contrary to the results of overexpression of FcγRIIb, knockdown of FcγRIIb resulted in a significant low level of relevant inflammatory factors and suppressed the PI3K-AKT pathway. Furthermore, LPS stimulation induced an interaction between FcγRIIb and DAP12. Knockdown of DAP12 suppressed inflammation and activation of the PI3K-AKT pathway in BV2 cells, and meantime overexpression of FcγRIIb suppressed the level of FcγRIIb-induced AKT phosphorylation. Additionally, knockdown of FcγRIIb inhibited microglia activation, which induced neuronal apoptosis. Discussion Altogether, our experiments indicate that FcγRIIb interacts with DAP12 to promote microglia activation by activating the PI3K-AKT pathway while leading to neuronal apoptosis and exacerbating brain tissue injury, which may provide a new target for the treatment of inflammatory diseases in the central nervous system.
Collapse
Affiliation(s)
- YingWen Han
- Department of Immunology, Medical School, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Luyao Wang
- Department of Immunology, Medical School, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Xiaokun Ye
- Department of Immunology, Medical School, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Xue Gong
- Department of Immunology, Medical School, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Xiaoyi Shao
- Department of Immunology, Medical School, Nantong University, Nantong, Jiangsu, People’s Republic of China
| |
Collapse
|
58
|
Bosco DB, Kremen V, Haruwaka K, Zhao S, Wang L, Ebner BA, Zheng J, Dheer A, Perry JF, Xie M, Nguyen AT, Worrell GA, Wu LJ. Impaired microglial phagocytosis promotes seizure development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573794. [PMID: 38260601 PMCID: PMC10802340 DOI: 10.1101/2023.12.31.573794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In the central nervous system, triggering receptor expressed on myeloid cells 2 (TREM2) is exclusively expressed by microglia and is critical for microglial proliferation, migration, and phagocytosis. TREM2 plays an important role in neurodegenerative diseases, such as Alzheimer's disease and amyotrophic lateral sclerosis. However, little is known about the role TREM2 plays in epileptogenesis. To investigate this, we utilized TREM2 knockout (KO) mice within the murine intra-amygdala kainic acid seizure model. Electroencephalographic analysis, immunocytochemistry, and RNA sequencing revealed that TREM2 deficiency significantly promoted seizure-induced pathology. We found that TREM2 KO increased both acute status epilepticus and spontaneous recurrent seizures characteristic of chronic focal epilepsy. Mechanistically, phagocytic clearance of damaged neurons by microglia was impaired in TREM2 KO mice and the reduced phagocytic capacity correlated with increased spontaneous seizures. Analysis of human tissue from patients who underwent surgical resection for drug resistant temporal lobe epilepsy also showed a negative correlation between microglial phagocytic activity and focal to bilateral tonic-clonic generalized seizure history. These results indicate that microglial TREM2 and phagocytic activity may be important to epileptogenesis and the progression of focal temporal lobe epilepsy.
Collapse
Affiliation(s)
- Dale B. Bosco
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | | | - Shunyi Zhao
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Lingxiao Wang
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Blake A. Ebner
- Department of Laboratory Medicine and Pathology, Mayo Clinic; Rochester, MN, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Aastha Dheer
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Jadyn F. Perry
- Department of Immunology, Mayo Clinic; Rochester, MN, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Aivi T. Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic; Rochester, MN, USA
| | | | - Long-Jun Wu
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
- Department of Immunology, Mayo Clinic; Rochester, MN, USA
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, USA
| |
Collapse
|
59
|
Wei W, Zhang L, Xin W, Pan Y, Tatenhorst L, Hao Z, Gerner ST, Huber S, Juenemann M, Butz M, Huttner HB, Bähr M, Fitzner D, Jia F, Doeppner TR. TREM2 regulates microglial lipid droplet formation and represses post-ischemic brain injury. Biomed Pharmacother 2024; 170:115962. [PMID: 38042110 DOI: 10.1016/j.biopha.2023.115962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor protein predominantly expressed in microglia within the central nervous system (CNS). TREM2 regulates multiple microglial functions, including lipid metabolism, immune reaction, inflammation, and microglial phagocytosis. Recent studies have found that TREM2 is highly expressed in activated microglia after ischemic stroke. However, the role of TREM2 in the pathologic response after stroke remains unclear. Herein, TREM2-deficient microglia exhibit an impaired phagocytosis rate and cholesteryl ester (CE) accumulation, leading to lipid droplet formation and upregulation of Perilipin-2 (PLIN2) expression after hypoxia. Knockdown of TREM2 results in increased lipid synthesis (PLIN2, SOAT1) and decreased cholesterol clearance and lipid hydrolysis (LIPA, ApoE, ABCA1, NECH1, and NPC2), further impacting microglial phenotypes. In these lipid droplet-rich microglia, the TGF-β1/Smad2/3 signaling pathway is downregulated, driving microglia towards a pro-inflammatory phenotype. Meanwhile, in a neuron-microglia co-culture system under hypoxic conditions, we found that microglia lost their protective effect against neuronal injury and apoptosis when TREM2 was knocked down. Under in vivo conditions, TREM2 knockdown mice express lower TGF-β1 expression levels and a lower number of anti-inflammatory M2 phenotype microglia, resulting in increased cerebral infarct size, exacerbated neuronal apoptosis, and aggravated neuronal impairment. Our work suggests that TREM2 attenuates stroke-induced neuroinflammation by modulating the TGF-β1/Smad2/3 signaling pathway. TREM2 may play a direct role in the regulation of inflammation and also exert an influence on the post-ischemic inflammation and the stroke pathology progression via regulation of lipid metabolism processes. Thus, underscoring the therapeutic potential of TREM2 agonists in ischemic stroke and making TREM2 an attractive new clinical target for the treatment of ischemic stroke and other inflammation-related diseases.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Lin Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Yongli Pan
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Lars Tatenhorst
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Zhongnan Hao
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan T Gerner
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Sabine Huber
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Martin Juenemann
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Marius Butz
- Heart and Brain Research Group, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany
| | - Hagen B Huttner
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Fitzner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| | - Feng Jia
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurosurgery, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, China.
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Department of Neurology, University of Giessen Medical School, Giessen, Germany; Department of Anatomy and Cell Biology, Medical University of Varna, Varna, Bulgaria; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany; Research Institute for Health Sciences and Technologies (SABITA), Medipol University, Istanbul, Turkey.
| |
Collapse
|
60
|
Awogbindin I, Wanklin M, Verkhratsky A, Tremblay MÈ. Microglia in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 37:497-512. [PMID: 39207709 DOI: 10.1007/978-3-031-55529-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are manifested by a progressive death of neural cells, resulting in the deterioration of central nervous system (CNS) functions, ultimately leading to specific behavioural and cognitive symptoms associated with affected brain regions. Several neurodegenerative disorders are caused by genetic variants or mutations, although the majority of cases are sporadic and linked to various environmental risk factors, with yet an unknown aetiology. Neuroglial changes are fundamental and often lead to the pathophysiology of neurodegenerative diseases. In particular, microglial cells, which are essential for maintaining CNS health, become compromised in their physiological functions with the exposure to environmental risk factors, genetic variants or mutations, as well as disease pathology. In this chapter, we cover the contribution of neuroglia, especially microglia, to several neurodegenerative diseases, including Nasu-Hakola disease, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, infectious disease-associated neurodegeneration, and metal-precipitated neurodegeneration. Future research perspectives for the field pertaining to the therapeutic targeting of microglia across these disease conditions are also discussed.
Collapse
Affiliation(s)
- Ifeoluwa Awogbindin
- Department of Biochemistry, Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Michael Wanklin
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada.
| |
Collapse
|
61
|
García-Alberca JM, de Rojas I, Sanchez-Mejias E, Garrido-Martín D, Gonzalez-Palma L, Jimenez S, Pino-Angeles A, Cruz-Gamero JM, Mendoza S, Alarcón-Martín E, Muñoz-Castro C, Real LM, Tena JJ, Polvillo R, Govantes F, Lopez A, Royo-Aguado JL, Navarro V, Gonzalez I, Ruiz M, Reyes-Engel A, Gris E, Bravo MJ, Lopez-Gutierrez L, Mejias-Ortega M, De la Guía P, López de la Rica M, Ocejo O, Torrecilla J, Zafra C, Nieto MD, Urbano C, Jiménez-Sánchez R, Pareja N, Luque M, García-Peralta M, Carrillejo R, Furniet MDC, Rueda L, Sánchez-Fernández A, Mancilla T, Peña I, García-Casares N, Moreno-Grau S, Hernández I, Montrreal L, Quintela I, González-Pérez A, Calero M, Franco-Macías E, Macías J, Menéndez-González M, Frank-García A, Huerto Vilas R, Diez-Fairen M, Lage C, García-Madrona S, García-González P, Valero S, Sotolongo-Grau O, Pérez-Cordón A, Rábano A, Arias Pastor A, Pastor AB, Espinosa A, Corma-Gómez A, Martín Montes Á, Sanabria Á, Martínez Rodríguez C, Buiza-Rueda D, Rodriguez-Rodriguez E, Ortega G, Alvarez I, Rosas Allende I, Pineda JA, Rosende-Roca M, Bernal Sánchez-Arjona M, Fernández-Fuertes M, Alegret M, Roberto N, Del Ser T, Garcia-Ribas G, Sánchez-Juan P, Pastor P, Piñol-Ripoll G, Bullido MJ, Álvarez V, Mir P, Medina M, Marquié M, Sáez ME, Carracedo Á, Laplana M, Tomas-Gallardo L, Orellana A, Tárraga L, Boada M, Fibla Palazon J, Vitorica J, Ruiz A, et alGarcía-Alberca JM, de Rojas I, Sanchez-Mejias E, Garrido-Martín D, Gonzalez-Palma L, Jimenez S, Pino-Angeles A, Cruz-Gamero JM, Mendoza S, Alarcón-Martín E, Muñoz-Castro C, Real LM, Tena JJ, Polvillo R, Govantes F, Lopez A, Royo-Aguado JL, Navarro V, Gonzalez I, Ruiz M, Reyes-Engel A, Gris E, Bravo MJ, Lopez-Gutierrez L, Mejias-Ortega M, De la Guía P, López de la Rica M, Ocejo O, Torrecilla J, Zafra C, Nieto MD, Urbano C, Jiménez-Sánchez R, Pareja N, Luque M, García-Peralta M, Carrillejo R, Furniet MDC, Rueda L, Sánchez-Fernández A, Mancilla T, Peña I, García-Casares N, Moreno-Grau S, Hernández I, Montrreal L, Quintela I, González-Pérez A, Calero M, Franco-Macías E, Macías J, Menéndez-González M, Frank-García A, Huerto Vilas R, Diez-Fairen M, Lage C, García-Madrona S, García-González P, Valero S, Sotolongo-Grau O, Pérez-Cordón A, Rábano A, Arias Pastor A, Pastor AB, Espinosa A, Corma-Gómez A, Martín Montes Á, Sanabria Á, Martínez Rodríguez C, Buiza-Rueda D, Rodriguez-Rodriguez E, Ortega G, Alvarez I, Rosas Allende I, Pineda JA, Rosende-Roca M, Bernal Sánchez-Arjona M, Fernández-Fuertes M, Alegret M, Roberto N, Del Ser T, Garcia-Ribas G, Sánchez-Juan P, Pastor P, Piñol-Ripoll G, Bullido MJ, Álvarez V, Mir P, Medina M, Marquié M, Sáez ME, Carracedo Á, Laplana M, Tomas-Gallardo L, Orellana A, Tárraga L, Boada M, Fibla Palazon J, Vitorica J, Ruiz A, Guigo R, Gutierrez A, Royo JL. An Insertion Within SIRPβ1 Shows a Dual Effect Over Alzheimer's Disease Cognitive Decline Altering the Microglial Response. J Alzheimers Dis 2024; 98:601-618. [PMID: 38427484 DOI: 10.3233/jad-231150] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Microglial dysfunction plays a causative role in Alzheimer's disease (AD) pathogenesis. Here we focus on a germline insertion/deletion variant mapping SIRPβ1, a surface receptor that triggers amyloid-β(Aβ) phagocytosis via TYROBP. Objective To analyze the impact of this copy-number variant in SIRPβ1 expression and how it affects AD molecular etiology. Methods Copy-number variant proxy rs2209313 was evaluated in GERALD and GR@ACE longitudinal series. Hippocampal specimens of genotyped AD patients were also examined. SIRPβ1 isoform-specific phagocytosis assays were performed in HEK393T cells. Results The insertion alters the SIRPβ1 protein isoform landscape compromising its ability to bind oligomeric Aβ and its affinity for TYROBP. SIRPβ1 Dup/Dup patients with mild cognitive impairment show an increased cerebrospinal fluid t-Tau/Aβ ratio (p = 0.018) and a higher risk to develop AD (OR = 1.678, p = 0.018). MRIs showed that Dup/Dup patients exhibited a worse initial response to AD. At the moment of diagnosis, all patients showed equivalent Mini-Mental State Examination scores. However, AD patients with the duplication had less hippocampal degeneration (p < 0.001) and fewer white matter hyperintensities. In contrast, longitudinal studies indicate that patients bearing the duplication allele show a slower cognitive decline (p = 0.013). Transcriptional analysis also shows that the SIRPβ1 duplication allele correlates with higher TREM2 expression and an increased microglial activation. Conclusions The SIRPβ1 internal duplication has opposite effects over MCI-to-Dementia conversion risk and AD progression, affecting microglial response to Aβ. Given the pharmacological approaches focused on the TREM2-TYROBP axis, we believe that SIRPβ1 structural variant might be considered as a potential modulator of this causative pathway.
Collapse
Affiliation(s)
- José María García-Alberca
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), Málaga, Spain
| | - Itziar de Rojas
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Elisabeth Sanchez-Mejias
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Departamento Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga-IBIMA, Universidad de Málaga, Málaga, Spain
| | - Diego Garrido-Martín
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Section of Statistics, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
| | - Laura Gonzalez-Palma
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Sebastian Jimenez
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio CSIC, Universidad de Sevilla, Seville, Spain
| | - Almudena Pino-Angeles
- Unidad de Lípidos y Arteriosclerosis, Servicio de Medicina Interna, Hospital Universitario Reina Sofia, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba, Spain
- Centro de Investigación Biomédicaen Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Jose Manuel Cruz-Gamero
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Institute of Psychiatry and Neuroscience of Paris, Université de Paris, INSERM U1266, Paris, France
| | - Silvia Mendoza
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), Málaga, Spain
| | - Emilio Alarcón-Martín
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Clara Muñoz-Castro
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio CSIC, Universidad de Sevilla, Seville, Spain
| | - Luis Miguel Real
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Juan Jesus Tena
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
| | - Rocio Polvillo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
| | - Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
| | - Aroa Lopez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
| | | | - Victoria Navarro
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio CSIC, Universidad de Sevilla, Seville, Spain
| | - Irene Gonzalez
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Maximiliano Ruiz
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Armando Reyes-Engel
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Esther Gris
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), Málaga, Spain
| | - Maria Jose Bravo
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Lidia Lopez-Gutierrez
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience, Institute (UNI), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Marina Mejias-Ortega
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Departamento Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga-IBIMA, Universidad de Málaga, Málaga, Spain
| | - Paz De la Guía
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), Málaga, Spain
| | - María López de la Rica
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), Málaga, Spain
| | - Olga Ocejo
- Centro Residencial Almudena, Malaga, Spain
| | | | | | | | | | | | - Nuria Pareja
- Asociación de Familiares de Enfermos de Alzheimer de la Axarquía, Vélez-Málaga, Spain
| | | | | | | | | | - Lourdes Rueda
- Asociación de Familiares de Alzheimer de Archidona, Archidona, Spain
| | | | - Tomás Mancilla
- Residencia DomusViFuentesol, Alhaurín de la Torre, Spain
| | - Isabel Peña
- Residencia DomusViFuentesol, Alhaurín de la Torre, Spain
| | | | - Sonia Moreno-Grau
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Isabel Hernández
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Laura Montrreal
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Inés Quintela
- Fundación Pública Galega de Medicina Xenómica, Centro Nacional de Genotipado, IDIS, Santiago de Compostela, Spain
| | | | - Miguel Calero
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Emilio Franco-Macías
- Unidad de Demencias, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Juan Macías
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Manuel Menéndez-González
- Servicio de Neurología, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Ana Frank-García
- Department of Neurology, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Raquel Huerto Vilas
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Mónica Diez-Fairen
- Department of Neurology, Unit of Neurodegenerative Diseases, Hospital Universitari Germans Triasi Pujol and Germans Triasi Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
- Department of Neurology, Memory Disorders Unit, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain
| | - Carmen Lage
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | | | - Pablo García-González
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sergi Valero
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Oscar Sotolongo-Grau
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Alba Pérez-Cordón
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Alberto Rábano
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Alfonso Arias Pastor
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Ana Belén Pastor
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Ana Espinosa
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Anaïs Corma-Gómez
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Ángel Martín Montes
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Department of Neurology, La Paz University Hospital, Madrid, Spain
| | - Ángela Sanabria
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | | | - Dolores Buiza-Rueda
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Eloy Rodriguez-Rodriguez
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Gemma Ortega
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Ignacio Alvarez
- Department of Neurology, Unit of Neurodegenerative Diseases, Hospital Universitari Germans Triasi Pujol and Germans Triasi Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Irene Rosas Allende
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan A Pineda
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Maitée Rosende-Roca
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - María Bernal Sánchez-Arjona
- Unidad de Demencias, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Marta Fernández-Fuertes
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Montserrat Alegret
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Natalia Roberto
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Teodoro Del Ser
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | | | | | - Pau Pastor
- Department of Neurology, Unit of Neurodegenerative Diseases, Hospital Universitari Germans Triasi Pujol and Germans Triasi Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
| | - María José Bullido
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - Victoria Álvarez
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Pablo Mir
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Miguel Medina
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Marta Marquié
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | | | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica, Centro Nacional de Genotipado, IDIS, Santiago de Compostela, Spain
- Grupo de Medicina Xenómica CIBERER-CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marina Laplana
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
- Departament de Ciencies Mediques Basiques, Universitat de Lleida, Lleida, Spain
| | - Laura Tomas-Gallardo
- Proteomics and Biochemistry Unit, Andalusian Centre for Developmental Biology, CSIC-Pablo de Olavide University, Seville, Spain
| | - Adelina Orellana
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Lluís Tárraga
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Joan Fibla Palazon
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
- Departament de Ciencies Mediques Basiques, Universitat de Lleida, Lleida, Spain
| | - Javier Vitorica
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio CSIC, Universidad de Sevilla, Seville, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antonia Gutierrez
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Departamento Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga-IBIMA, Universidad de Málaga, Málaga, Spain
| | - Jose Luis Royo
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
62
|
Augusto-Oliveira M, Tremblay MÈ, Verkhratsky A. Receptors on Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:83-121. [PMID: 39207688 DOI: 10.1007/978-3-031-55529-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglial cells are the most receptive cells in the central nervous system (CNS), expressing several classes of receptors reflecting their immune heritage and newly acquired neural specialisation. Microglia possess, depending on the particular context, receptors to neurotransmitters and neuromodulators as well as immunocompetent receptors. This rich complement allows microglial cells to monitor the functional status of the nervous system, contribute actively to the regulation of neural activity and plasticity and homeostasis, and guard against pathogens as well as other challenges to the CNS's integrity and function.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
63
|
Sharma H, Sharma N, An SSA. Unique Bioactives from Zombie Fungus ( Cordyceps) as Promising Multitargeted Neuroprotective Agents. Nutrients 2023; 16:102. [PMID: 38201932 PMCID: PMC10780653 DOI: 10.3390/nu16010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Cordyceps, also known as "zombie fungus", is a non-poisonous mushroom that parasitizes insects for growth and development by manipulating the host system in a way that makes the victim behave like a "zombie". These species produce promising bioactive metabolites, like adenosine, β-glucans, cordycepin, and ergosterol. Cordyceps has been used in traditional medicine due to its immense health benefits, as it boosts stamina, appetite, immunity, longevity, libido, memory, and sleep. Neuronal loss is the typical feature of neurodegenerative diseases (NDs) (Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS)) and neurotrauma. Both these conditions share common pathophysiological features, like oxidative stress, neuroinflammation, and glutamatergic excitotoxicity. Cordyceps bioactives (adenosine, N6-(2-hydroxyethyl)-adenosine, ergosta-7, 9 (11), 22-trien-3β-ol, active peptides, and polysaccharides) exert potential antioxidant, anti-inflammatory, and anti-apoptotic activities and display beneficial effects in the management and/or treatment of neurodegenerative disorders in vitro and in vivo. Although a considerable list of compounds is available from Cordyceps, only a few have been evaluated for their neuroprotective potential and still lack information for clinical trials. In this review, the neuroprotective mechanisms and safety profile of Cordyceps extracts/bioactives have been discussed, which might be helpful in the identification of novel potential therapeutic entities in the future.
Collapse
Affiliation(s)
| | - Niti Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
64
|
Min Y, Wang X, İş Ö, Patel TA, Gao J, Reddy JS, Quicksall ZS, Nguyen T, Lin S, Tutor-New FQ, Chalk JL, Mitchell AO, Crook JE, Nelson PT, Van Eldik LJ, Golde TE, Carrasquillo MM, Dickson DW, Zhang K, Allen M, Ertekin-Taner N. Cross species systems biology discovers glial DDR2, STOM, and KANK2 as therapeutic targets in progressive supranuclear palsy. Nat Commun 2023; 14:6801. [PMID: 37919278 PMCID: PMC10622416 DOI: 10.1038/s41467-023-42626-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative parkinsonian disorder characterized by cell-type-specific tau lesions in neurons and glia. Prior work uncovered transcriptome changes in human PSP brains, although their cell-specificity is unknown. Further, systematic data integration and experimental validation platforms to prioritize brain transcriptional perturbations as therapeutic targets in PSP are currently lacking. In this study, we combine bulk tissue (n = 408) and single nucleus RNAseq (n = 34) data from PSP and control brains with transcriptome data from a mouse tauopathy and experimental validations in Drosophila tau models for systematic discovery of high-confidence expression changes in PSP with therapeutic potential. We discover, replicate, and annotate thousands of differentially expressed genes in PSP, many of which reside in glia-enriched co-expression modules and cells. We prioritize DDR2, STOM, and KANK2 as promising therapeutic targets in PSP with striking cross-species validations. We share our findings and data via our interactive application tool PSP RNAseq Atlas ( https://rtools.mayo.edu/PSP_RNAseq_Atlas/ ). Our findings reveal robust glial transcriptome changes in PSP, provide a cross-species systems biology approach, and a tool for therapeutic target discoveries in PSP with potential application in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuhao Min
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Tulsi A Patel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Junli Gao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Joseph S Reddy
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Zachary S Quicksall
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Thuy Nguyen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Shu Lin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jessica L Chalk
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Julia E Crook
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Todd E Golde
- Department of Pharmacology and Chemical Biology, Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | | | - Ke Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
65
|
Xu D, Xu Y, Gao X, Yan M, Zhang C, Wu X, Xia Q, Ge J. Potential value of Interleukin-6 as a diagnostic biomarker in human MDD and the antidepressant effect of its receptor antagonist tocilizumab in lipopolysaccharide-challenged rats. Int Immunopharmacol 2023; 124:110903. [PMID: 37717319 DOI: 10.1016/j.intimp.2023.110903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
Depression is a common mental disease with disastrous effect on the health and wealth globally. Focusing on the role for inflammation and immune activation in the pathogenesis of depression, many tries have been taken into effect targeting at the blockage of inflammatory cytokines, among which interleukin- 6 (IL-6) and its receptor antagonist tocilizumab attracts more attention, with inconsistent findings. Moderate to severe depressive disorder (MSDD) patients were enrolled and the serum concentrations of IL-6 and tumor necrosis factor-α (TNF-α) measured, their correlation with the Hamilton Depression Rating Scale-24 (HAMD-24) scores was analyzed, and their role in discriminating MSDD patients from the health controls were evaluated. Meanwhile, a depression rat model was established by intraperitoneal injection of LPS, and tocilizumab was administrated doing 50 mg/kg via intravenous injection. The behavioral performance was observed, the serum concentration of IL-6, TNF-α, and C-reactive protein (CRP) was measured, and the protein expression of IL-6 and TNF-α in the hippocampus were also detected. The activity of the Hypothalamic-pituitary-adrenal (HPA) axis was observed, and the protein expression levels in the hippocampus were detected via western blot. Moreover, the immunofluorescence staining (IF) technique was used to investigate the co-location of IL-6 and neuron (MAP2), astrocyte (GFAP), or microglial (IBA-1). The results showed that the serum IL-6 level was significantly increased in the MSDD patients and lipopolysaccharide (LPS)-challenged rats, with a significant correlation with the HAMD-24 scores or struggling time in the FST and corticosterone (CORT) abundance. Results of ROC analysis showed a significant diagnosis value of IL-6 in discriminating MSDD patients or depression rats from the controls in the present study. Tocilizumab could relieve the depression-like behaviors induced by LPS, together with a normal abundance of serum CORT and hypothalamic CRH expression. Moreover, tocilizumab could alleviate the "inflammatory storm" and impaired hippocampal synaptic plasticity in LPS-challenged depression rats, inhibiting the hyperactivation of astrocyte and microglia, decreasing the peripheral and central abundance of IL-6, CRP, and TNF-α, and balancing the hippocampal expression levels of synaptic plasticity-associated proteins and key molecular in Wnt/β-catenin signaling pathway. These results indicated a predictive role of IL-6 in discriminating depression from controls, and demonstrated an antidepressant effect of tocilizumab in LPS-challenged rats, targeting at the inflammatory storm and the subsequent impairments of hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Dandan Xu
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| | - Yayun Xu
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China; School of Public Health, Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China.
| | - Xinran Gao
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| | - Mengyu Yan
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China.
| | - Chen Zhang
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; School of 1st Clinic Medicine, Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China.
| | - Xian Wu
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| | - Qingrong Xia
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230032, China; Clinical Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China.
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| |
Collapse
|
66
|
Canepa E, Parodi-Rullan R, Vazquez-Torres R, Gamallo-Lana B, Guzman-Hernandez R, Lemon NL, Angiulli F, Debure L, Ilies MA, Østergaard L, Wisniewski T, Gutiérrez-Jiménez E, Mar AC, Fossati S. FDA-approved carbonic anhydrase inhibitors reduce amyloid β pathology and improve cognition, by ameliorating cerebrovascular health and glial fitness. Alzheimers Dement 2023; 19:5048-5073. [PMID: 37186121 PMCID: PMC10600328 DOI: 10.1002/alz.13063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Cerebrovascular pathology is an early and causal hallmark of Alzheimer's disease (AD), in need of effective therapies. METHODS Based on the success of our previous in vitro studies, we tested for the first time in a model of AD and cerebral amyloid angiopathy (CAA), the carbonic anhydrase inhibitors (CAIs) methazolamide and acetazolamide, Food and Drug Administration-approved against glaucoma and high-altitude sickness. RESULTS Both CAIs reduced cerebral, vascular, and glial amyloid beta (Aβ) accumulation and caspase activation, diminished gliosis, and ameliorated cognition in TgSwDI mice. The CAIs also improved microvascular fitness and induced protective glial pro-clearance pathways, resulting in the reduction of Aβ deposition. Notably, we unveiled that the mitochondrial carbonic anhydrase-VB (CA-VB) is upregulated in TgSwDI brains, CAA and AD+CAA human subjects, and in endothelial cells upon Aβ treatment. Strikingly, CA-VB silencing specifically reduces Aβ-mediated endothelial apoptosis. DISCUSSION This work substantiates the potential application of CAIs in clinical trials for AD and CAA.
Collapse
Affiliation(s)
- Elisa Canepa
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Rebecca Parodi-Rullan
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Rafael Vazquez-Torres
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Begona Gamallo-Lana
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Roberto Guzman-Hernandez
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Nicole L. Lemon
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Federica Angiulli
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Ludovic Debure
- Department on Neurology, Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Marc A. Ilies
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Thomas Wisniewski
- Department on Neurology, Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Eugenio Gutiérrez-Jiménez
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Adam C. Mar
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Silvia Fossati
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
67
|
Hong S, Weerasinghe-Mudiyanselage PDE, Kang S, Moon C, Shin T. Retinal transcriptome profiling identifies novel candidate genes associated with visual impairment in a mouse model of multiple sclerosis. Anim Cells Syst (Seoul) 2023; 27:219-233. [PMID: 37808551 PMCID: PMC10552570 DOI: 10.1080/19768354.2023.2264354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Visual impairment is occasionally observed in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Although uveitis and optic neuritis have been reported in MS and EAE, the precise mechanisms underlying the pathogenesis of these visual impairments remain poorly understood. This study aims to identify differentially expressed genes (DEGs) in the retinas of mice with EAE to identify genes that may be implicated in EAE-induced visual impairment. Fourteen adult mice were injected with myelin oligodendrocyte glycoprotein35-55 to induce the EAE model. Transcriptomes of retinas with EAE were analyzed by RNA-sequencing. Gene expression analysis revealed 347 DEGs in the retinas of mice with EAE: 345 were upregulated, and 2 were downregulated (adjusted p-value < 0.05 and absolute log2 fold change > 1). Gene ontology (GO) analysis showed that the upregulated genes in the retinas of mice with EAE were primarily related to immune responses, responses to external biotic stimuli, defense responses, and leukocyte-mediated immunity in the GO biological process. The expression of six upregulated hub genes (c1qb, ctss, itgam, itgb2, syk, and tyrobp) from the STRING analysis and the two significantly downregulated DEGs (hapln1 and ndst4) were validated by reverse transcription-quantitative polymerase chain reaction. In addition, gene set enrichment analysis showed that the negatively enriched gene sets in EAE-affected retinas were associated with the neuronal system and phototransduction cascade. This study provides novel molecular evidence for visual impairments in EAE and indicates directions for further research to elucidate the mechanisms of these visual impairments in MS.
Collapse
Affiliation(s)
- Sungmoo Hong
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
68
|
Lau SF, Wu W, Wong HY, Ouyang L, Qiao Y, Xu J, Lau JHY, Wong C, Jiang Y, Holtzman DM, Fu AKY, Ip NY. The VCAM1-ApoE pathway directs microglial chemotaxis and alleviates Alzheimer's disease pathology. NATURE AGING 2023; 3:1219-1236. [PMID: 37735240 PMCID: PMC10570140 DOI: 10.1038/s43587-023-00491-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
In Alzheimer's disease (AD), sensome receptor dysfunction impairs microglial danger-associated molecular pattern (DAMP) clearance and exacerbates disease pathology. Although extrinsic signals, including interleukin-33 (IL-33), can restore microglial DAMP clearance, it remains largely unclear how the sensome receptor is regulated and interacts with DAMP during phagocytic clearance. Here, we show that IL-33 induces VCAM1 in microglia, which promotes microglial chemotaxis toward amyloid-beta (Aβ) plaque-associated ApoE, and leads to Aβ clearance. We show that IL-33 stimulates a chemotactic state in microglia, characterized by Aβ-directed migration. Functional screening identified that VCAM1 directs microglial Aβ chemotaxis by sensing Aβ plaque-associated ApoE. Moreover, we found that disrupting VCAM1-ApoE interaction abolishes microglial Aβ chemotaxis, resulting in decreased microglial clearance of Aβ. In patients with AD, higher cerebrospinal fluid levels of soluble VCAM1 were correlated with impaired microglial Aβ chemotaxis. Together, our findings demonstrate that promoting VCAM1-ApoE-dependent microglial functions ameliorates AD pathology.
Collapse
Grants
- This work was supported in part by the National Key R&D Program of China (2021YFE0203000), the Research Grants Council of Hong Kong (the Collaborative Research Fund [C6027-19GF], the Theme-Based Research Scheme [T13-605/18W], and the General Research Fund [HKUST16103122]), the Areas of Excellence Scheme of the University Grants Committee (AoE/M-604/16), the Innovation and Technology Commission (InnoHK, and ITCPD/17-9), the Guangdong Provincial Key S&T Program Grant (2018B030336001); the Guangdong Provincial Fund for Basic and Applied Basic Research (2019B1515130004), the NSFC-RGC Joint Research Scheme (32061160472), the Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence Fund (2019001 and 2019003), and the Fundamental Research Program of Shenzhen Virtual University Park (2021Szvup137).
- S.-F.L. is a recipient of the Hong Kong Postdoctoral Fellowship Award from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKUST PDFS2122-6S02).
- W.W. is a recipient of the Hong Kong PhD Fellowship Award.
Collapse
Affiliation(s)
- Shun-Fat Lau
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Wei Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Hiu Yi Wong
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Li Ouyang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Yi Qiao
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jiahui Xu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jessica Hiu-Yan Lau
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Carlton Wong
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Yuanbing Jiang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy K Y Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong, China.
| |
Collapse
|
69
|
Olufunmilayo EO, Holsinger RMD. INPP5D/SHIP1: Expression, Regulation and Roles in Alzheimer's Disease Pathophysiology. Genes (Basel) 2023; 14:1845. [PMID: 37895194 PMCID: PMC10606568 DOI: 10.3390/genes14101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, accounting for approximately 38.5 million cases of all-cause dementia. Over 60% of these individuals live in low- and middle-income countries and are the worst affected, especially by its deleterious effects on the productivity of both patients and caregivers. Numerous risk factors for the disease have been identified and our understanding of gene-environment interactions have shed light on several gene variants that contribute to the most common, sporadic form of AD. Microglial cells, the innate immune cells of the central nervous system (CNS), have long been established as guardians of the brain by providing neuroprotection and maintaining cellular homeostasis. A protein with a myriad of effects on various important signaling pathways that is expressed in microglia is the Src Homology 2 (SH2) domain-containing Inositol 5' Phosphatase 1 (SHIP1) protein. Encoded by the INPP5D (Inositol Polyphosphate-5-Phosphatase D) gene, SHIP1 has diminutive effects on most microglia signaling processes. Polymorphisms of the INPP5D gene have been found to be associated with a significantly increased risk of AD. Several studies have elucidated mechanistic processes by which SHIP1 exerts its perturbations on signaling processes in peripheral immune cells. However, current knowledge of the controllers of INPP5D/SHIP1 expression and the idiosyncrasies of its influences on signaling processes in microglia and their relevance to AD pathophysiology is limited. In this review, we summarize these discoveries and discuss the potential of leveraging INPP5D/SHIP1 as a therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 2002012, Nigeria
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
70
|
Lau SF, Fu AKY, Ip NY. Receptor-ligand interaction controls microglial chemotaxis and amelioration of Alzheimer's disease pathology. J Neurochem 2023; 166:891-903. [PMID: 37603311 DOI: 10.1111/jnc.15933] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
Microglia maintain brain homeostasis through their ability to survey and phagocytose danger-associated molecular patterns (DAMPs). In Alzheimer's disease (AD), microglial phagocytic clearance regulates the turnover of neurotoxic DAMPs including amyloid beta (Aβ) and hyperphosphorylated tau. To mediate DAMP clearance, microglia express a repertoire of surface receptors to sense DAMPs; the activation of these receptors subsequently triggers a chemotaxis-to-phagocytosis functional transition in microglia. Therefore, the interaction between microglial receptors and DAMPs plays a critical role in controlling microglial DAMP clearance and AD pathogenesis. However, there is no comprehensive overview on how microglial sensome receptors interact with DAMPs and regulate various microglial functions, including chemotaxis and phagocytosis. In this review, we discuss the important axes of receptor-ligand interaction that control different microglial functions and their roles in AD pathogenesis. First, we summarize how the accumulation and structural changes of DAMPs trigger microglial functional impairment, including impaired DAMP clearance and aberrant synaptic pruning, in AD. Then, we discuss the important receptor-ligand axes that restore microglial DAMP clearance in AD and aging. These findings suggest that targeting microglial chemotaxis-the first critical step of the microglial chemotaxis-to-phagocytosis state transition-can promote microglial DAMP clearance in AD. Thus, our review highlights the importance of microglial chemotaxis in promoting microglial clearance activity in AD. Further detailed investigations are essential to identify the molecular machinery that controls microglial chemotaxis in AD.
Collapse
Affiliation(s)
- Shun-Fat Lau
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Amy K Y Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| |
Collapse
|
71
|
Li Y, Xu H, Wang H, Yang K, Luan J, Wang S. TREM2: Potential therapeutic targeting of microglia for Alzheimer's disease. Biomed Pharmacother 2023; 165:115218. [PMID: 37517293 DOI: 10.1016/j.biopha.2023.115218] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, resulting in the loss of cognitive ability and memory. However, there is no specific treatment to mechanistically inhibit the progression of Alzheimer's disease, and most drugs only provide symptom relief and do not fundamentally reverse AD. Current studies show that triggering receptor expressed on myeloid cells 2 (TREM2) is predominantly expressed in microglia of the central nervous system (CNS) and is involved in microglia proliferation, survival, migration and phagocytosis. The current academic view suggests that TREM2 and its ligands have CNS protective effects in AD. Specifically, TREM2 acts by regulating the function of microglia and promoting the clearance of neuronal toxic substances and abnormal proteins by microglia. In addition, TREM2 is also involved in regulating inflammatory response and cell signaling pathways, affecting the immune response and regulatory role of microglia. Although the relationship between TREM2 and Alzheimer's disease has been extensively studied, its specific mechanism of action is not fully understood. The purpose of this review is to provide a comprehensive analysis of the research of TREM2, including its regulation of the inflammatory response, lipid metabolism and phagocytosis in microglia of CNS in AD, and to explore the potential application prospects as well as limitations of targeting TREM2 for the treatment of AD.
Collapse
Affiliation(s)
- Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Huifang Xu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Huifang Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Kui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China.
| |
Collapse
|
72
|
Biundo F, Chitu V, Gökhan Ş, Chen E, Oppong-Asare J, Stanley ER. Trem2 Enhances Demyelination in the Csf1r+/- Mouse Model of Leukoencephalopathy. Biomedicines 2023; 11:2094. [PMID: 37626591 PMCID: PMC10452898 DOI: 10.3390/biomedicines11082094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Colony-stimulating factor-1 receptor (CSF-1R)-related leukoencephalopathy (CRL) is a neurodegenerative disease that triggers early demyelination, leading to an adult-onset dementia. Triggering receptor expressed on myeloid cells-2 (TREM2) is a microglial receptor that promotes the activation of microglia and phagocytic clearance of apoptotic neurons and myelin debris. We investigated the role of Trem2 in the demyelination observed in the Csf1r+/- mouse model of CRL. We show that elevation of Trem2 expression and callosal demyelination occur in 4-5-month-old Csf1r+/- mice, prior to the development of symptoms. Absence of Trem2 in the Csf1r+/- mouse attenuated myelin pathology and normalized microglial densities and morphology in the corpus callosum. Trem2 absence also prevented axonal degeneration and the loss of cortical layer V neurons observed in Csf1r+/- mice. Furthermore, the absence of Trem2 prevented the accumulation of myelin-derived lipids in Csf1r+/- macrophages and reduced the production of TNF-α after myelin engulfment. These data suggest that TREM2 contributes to microglial dyshomeostasis in CRL.
Collapse
Affiliation(s)
- Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Şölen Gökhan
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Edward Chen
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jude Oppong-Asare
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
73
|
Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 2023; 8:267. [PMID: 37433768 PMCID: PMC10336149 DOI: 10.1038/s41392-023-01486-5] [Citation(s) in RCA: 410] [Impact Index Per Article: 205.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 07/13/2023] Open
Abstract
Studies in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis, Huntington's disease, and so on, have suggested that inflammation is not only a result of neurodegeneration but also a crucial player in this process. Protein aggregates which are very common pathological phenomenon in neurodegeneration can induce neuroinflammation which further aggravates protein aggregation and neurodegeneration. Actually, inflammation even happens earlier than protein aggregation. Neuroinflammation induced by genetic variations in CNS cells or by peripheral immune cells may induce protein deposition in some susceptible population. Numerous signaling pathways and a range of CNS cells have been suggested to be involved in the pathogenesis of neurodegeneration, although they are still far from being completely understood. Due to the limited success of traditional treatment methods, blocking or enhancing inflammatory signaling pathways involved in neurodegeneration are considered to be promising strategies for the therapy of neurodegenerative diseases, and many of them have got exciting results in animal models or clinical trials. Some of them, although very few, have been approved by FDA for clinical usage. Here we comprehensively review the factors affecting neuroinflammation and the major inflammatory signaling pathways involved in the pathogenicity of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. We also summarize the current strategies, both in animal models and in the clinic, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China
| | - Dan Xiao
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, P.R. China
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China.
| |
Collapse
|
74
|
Sunna S, Bowen CA, Ramelow CC, Santiago JV, Kumar P, Rangaraju S. Advances in proteomic phenotyping of microglia in neurodegeneration. Proteomics 2023; 23:e2200183. [PMID: 37060300 PMCID: PMC10528430 DOI: 10.1002/pmic.202200183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Microglia are dynamic resident immune cells of the central nervous system (CNS) that sense, survey, and respond to changes in their environment. In disease states, microglia transform from homeostatic to diverse molecular phenotypic states that play complex and causal roles in neurologic disease pathogenesis, as evidenced by the identification of microglial genes as genetic risk factors for neurodegenerative disease. While advances in transcriptomic profiling of microglia from the CNS of humans and animal models have provided transformative insights, the transcriptome is only modestly reflective of the proteome. Proteomic profiling of microglia is therefore more likely to provide functionally and therapeutically relevant targets. In this review, we discuss molecular insights gained from transcriptomic studies of microglia in the context of Alzheimer's disease as a prototypic neurodegenerative disease, and highlight existing and emerging approaches for proteomic profiling of microglia derived from in vivo model systems and human brain.
Collapse
Affiliation(s)
- Sydney Sunna
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Christine A. Bowen
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Christina C. Ramelow
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Juliet V. Santiago
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Prateek Kumar
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
75
|
Sun M, Yang L, Zong Q, Ying L, Liu X, Lin R. Serum soluble triggering receptor levels expressed on myeloid cells2 identify early acute kidney injury in infants and young children after pediatric cardiopulmonary bypass. Front Pediatr 2023; 11:1185151. [PMID: 37435171 PMCID: PMC10330694 DOI: 10.3389/fped.2023.1185151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Background Acute kidney injury (AKI) is a potential complication after cardiopulmonary bypass (CPB) of pediatric cardiac surgery and contributes to a certain amount of perioperative mortality. Serum soluble triggering receptor expressed on myeloid cells2 (sTREM2) is an inflammation-associated cytokine in circulation. Alterations of sTREM2 level have been reported in Alzheimer's disease, sepsis, and some other pathologic conditions. This study aimed to investigate the role of sTREM2 as a forecasting factor for AKI in infants and young children and other factors associated with early renal injury after pediatric CPB. Methods A prospective cohort study with consecutive infants and young children ≤ 3 years old undergoing CPB from September 2021 to August 2022 was conducted in an affiliated university children's hospital. These patients were divided into an AKI group (n = 10) and a non-AKI group (n = 60). Children's characteristics and clinical data were measured. Perioperative sTREM2 levels were analyzed with enzyme-linked immunosorbent assay (ELISA). Results In children developing AKI, the sTREM2 levels significantly decreased at the beginning of CPB compared to the non-AKI group. Based on binary logistic regression analysis and multivariable regression analysis, risk-adjusted classification for congenital heart surgery (RACHS-1), operation time, and the s-TREM2 level at the beginning of CPB (AUC = 0.839, p = 0.001, optimal cut-off value: 716.0 pg/ml) had predictive value for post-CPB AKI. When combining the sTREM2 level at the beginning of CPB and other indicators together, the area under the ROC curve enlarged. Conclusions Operation time, RACHS-1 score, and sTREM2 level at the beginning of CPB were independent prognosis factors of post-CPB AKI in infants and young children ≤ 3 years old. Decreased sTREM2 identified post-CPB AKI, and ultimately hampered the outcomes. Our findings indicated that sTREM2 may be a protective factor for AKI after CPB in infants and young children ≤ 3 years old.
Collapse
Affiliation(s)
- Mingwei Sun
- Department of CPB/ECMO, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Heart Center, National Clinical Research Center for Child Health, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lijun Yang
- Department of CPB/ECMO, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Heart Center, National Clinical Research Center for Child Health, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Zong
- Department of CPB/ECMO, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Heart Center, National Clinical Research Center for Child Health, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Liyang Ying
- Department of Heart Center, National Clinical Research Center for Child Health, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiwang Liu
- Department of Heart Center, National Clinical Research Center for Child Health, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ru Lin
- Department of CPB/ECMO, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Heart Center, National Clinical Research Center for Child Health, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
76
|
Cruchaga C, Western D, Timsina J, Wang L, Wang C, Yang C, Ali M, Beric A, Gorijala P, Kohlfeld P, Budde J, Levey A, Morris J, Perrin R, Ruiz A, Marquié M, Boada M, de Rojas I, Rutledge J, Oh H, Wilson E, Guen YL, Alvarez I, Aguilar M, Greicius M, Pastor P, Pulford D, Ibanez L, Wyss-Coray T, Sung YJ, Phillips B. Proteogenomic analysis of human cerebrospinal fluid identifies neurologically relevant regulation and informs causal proteins for Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-2814616. [PMID: 37333337 PMCID: PMC10275048 DOI: 10.21203/rs.3.rs-2814616/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The integration of quantitative trait loci (QTL) with disease genome-wide association studies (GWAS) has proven successful at prioritizing candidate genes at disease-associated loci. QTL mapping has mainly been focused on multi-tissue expression QTL or plasma protein QTL (pQTL). Here we generated the largest-to-date cerebrospinal fluid (CSF) pQTL atlas by analyzing 7,028 proteins in 3,107 samples. We identified 3,373 independent study-wide associations for 1,961 proteins, including 2,448 novel pQTLs of which 1,585 are unique to CSF, demonstrating unique genetic regulation of the CSF proteome. In addition to the established chr6p22.2-21.32 HLA region, we identified pleiotropic regions on chr3q28 near OSTN and chr19q13.32 near APOE that were enriched for neuron-specificity and neurological development. We also integrated this pQTL atlas with the latest Alzheimer's disease (AD) GWAS through PWAS, colocalization and Mendelian Randomization and identified 42 putative causal proteins for AD, 15 of which have drugs available. Finally, we developed a proteomics-based risk score for AD that outperforms genetics-based polygenic risk scores. These findings will be instrumental to further understand the biology and identify causal and druggable proteins for brain and neurological traits.
Collapse
Affiliation(s)
| | - Dan Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lihua Wang
- Washington University School of Medicine
| | | | | | | | | | | | - Patsy Kohlfeld
- Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | | - Mercè Boada
- Memory Clinic of Fundaciò ACE, Catalan Institute of Applied Neurosciences
| | | | | | | | | | | | - Ignacio Alvarez
- Fundació Docència i Recerca Mútua Terrassa, Terrassa, Barcelona, Spain
| | | | | | - Pau Pastor
- University Hospital Germans Trias i Pujol
| | | | | | | | | | | |
Collapse
|
77
|
Tateishi H, Matsushima J, Kunitake H, Imamura Y, Kunitake Y, Murakawa T, Mawatari S, Kojima R, Fujii Y, Kikuchi J, Fukuchi J, Sakemura Y, Shiraishi T, Nagahama C, Maekawa T, Asami T, Mizoguchi Y, Monji A. Serum soluble triggering receptor expressed on myeloid cells-2 was not altered by rTMS in patients with treatment-resistant depression. Neuropsychopharmacol Rep 2023; 43:222-227. [PMID: 36907597 PMCID: PMC10275288 DOI: 10.1002/npr2.12332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
AIM Repetitive transcranial magnetic stimulation (rTMS) is one of the most effective and minimally invasive treatments for treatment-resistant depression (TRD). However, the mechanism underlying the therapeutic effects of rTMS in patients with TRD remains unclear. In recent years, the pathogenesis of depression has been closely associated with chronic inflammation and microglia are believed to play an important role in chronic inflammation. Triggering receptor expressed on myeloid cells-2 (TREM2) plays an important role in microglial neuroinflammatory regulation. In this study, we investigated the changes in peripheral soluble TREM2 (sTREM2) before and after rTMS treatment in patients with TRD. METHODS Twenty-six patients with TRD were enrolled in this frequency (10 Hz) rTMS study. Depressive symptoms, cognitive function, and serum sTREM2 concentrations were measured at baseline and the end of the 6-week rTMS treatment. RESULTS This study showed that rTMS ameliorated depressive symptoms and partially improved cognitive dysfunction in TRD. However, rTMS treatment did not alter serum sTREM2 levels. CONCLUSIONS This is the first sTREM2 study in patients with TRD who underwent rTMS treatment. These results suggest that serum sTREM2 may not be relevant for the mechanism underlying the therapeutic effect of rTMS in patients with TRD. Future studies should confirm the present findings using a larger patient sample and a sham rTMS procedure, as well as CSF sTREM2. Furthermore, a longitudinal study should be conducted to clarify the effects of rTMS on sTREM2 levels.
Collapse
Affiliation(s)
- Hiroshi Tateishi
- Department of Psychiatry, Faculty of MedicineSaga UniversitySagaJapan
| | - Jun Matsushima
- Department of Psychiatry, Faculty of MedicineSaga UniversitySagaJapan
| | - Hiroko Kunitake
- Department of Psychiatry, Faculty of MedicineSaga UniversitySagaJapan
| | - Yoshiomi Imamura
- Department of Psychiatry, Faculty of MedicineSaga UniversitySagaJapan
| | - Yutaka Kunitake
- Department of Psychiatry, Faculty of MedicineSaga UniversitySagaJapan
| | - Toru Murakawa
- Department of Psychiatry, Faculty of MedicineSaga UniversitySagaJapan
| | - Seiji Mawatari
- Department of Psychiatry, Faculty of MedicineSaga UniversitySagaJapan
| | - Ryohei Kojima
- Department of Psychiatry, Faculty of MedicineSaga UniversitySagaJapan
| | - Yuka Fujii
- Department of Psychiatry, Faculty of MedicineSaga UniversitySagaJapan
| | - Jun Kikuchi
- Department of Psychiatry, Faculty of MedicineSaga UniversitySagaJapan
| | - Junko Fukuchi
- Department of Psychiatry, Faculty of MedicineSaga UniversitySagaJapan
| | - Yuta Sakemura
- Department of Psychiatry, Faculty of MedicineSaga UniversitySagaJapan
| | - Takumi Shiraishi
- Department of Psychiatry, Faculty of MedicineSaga UniversitySagaJapan
| | - Chika Nagahama
- Department of Psychiatry, Faculty of MedicineSaga UniversitySagaJapan
| | - Toshihiko Maekawa
- Department of Neuropsychiatry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Toyoko Asami
- Department of Rehabilitation MedicineSaga University HospitalSagaJapan
| | - Yoshito Mizoguchi
- Department of Psychiatry, Faculty of MedicineSaga UniversitySagaJapan
| | - Akira Monji
- Department of Psychiatry, Faculty of MedicineSaga UniversitySagaJapan
| |
Collapse
|
78
|
Yang F, Yang L, Fang X, Deng Y, Mao R, Yan A, Wei W. Increased Cerebrospinal Fluid Levels of Soluble Triggering Receptor Expressed on Myeloid Cells 2 and Chitinase-3-Like Protein 1 in Idiopathic Normal-Pressure Hydrocephalus. J Alzheimers Dis 2023:JAD221180. [PMID: 37182875 DOI: 10.3233/jad-221180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Neurodegenerative disease pathology is associated with neuroinflammation, but evidence on idiopathic normal pressure hydrocephalus (iNPH) remains limited and cerebrospinal fluid (CSF) biomarker profiles need to be elucidated. OBJECTIVE To investigate whether iNPH pathological mechanisms are associated with greater CSF markers of core Alzheimer's disease pathology (amyloid-β42 (Aβ 42), phosphorylated tau (P-tau)), neurodegeneration (total tau (T-tau)), and neuroinflammation (soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase-3-like protein 1 (YKL-40)). METHODS The study analyzed lumbar CSF samples from 63 patients with iNPH and 20 age-matched orthopedic surgery patients who had no preoperative gait or cognitive impairment (control group). Aβ 42, T-tau, P-tau, sTREM2, and YKL-40 in different subgroups were investigated. RESULTS CSF sTREM2 levels were significantly higher in the iNPH group than in the control group, but no significant between-group difference was noted in YKL-40. Moreover, YKL-40 levels were significantly higher in the tap test non-responders than in the tap test responders (p = 0.021). At the 1-year follow-up after shunt surgery, the CSF P-tau levels were significantly lower (p = 0.020) in those with gait improvement and the CSF sTREM2 levels were significantly lower (p = 0.041) in those with cognitive improvement. In subgroup analysis, CSF sTREM2 levels were strongly correlated with CSF YKL-40 in the iNPH group (r = 0.443, p < 0.001), especially in the tap test non-responders (r = 0.653, p = 0.002). CONCLUSION YKL-40 and sTREM2 are disease-specific markers of neuroinflammation, showing higher CSF levels in iNPH. In addition, sTREM2 is positively associated with YKL-40, indicating that interactions of glial cells play an important role in iNPH pathogenesis.
Collapse
Affiliation(s)
- Fuxia Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lu Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xuhao Fang
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yao Deng
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Renling Mao
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Aijuan Yan
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
79
|
CD33 isoforms in microglia and Alzheimer's disease: Friend and foe. Mol Aspects Med 2023; 90:101111. [PMID: 35940942 DOI: 10.1016/j.mam.2022.101111] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease and is considered the main cause of dementia worldwide. Genome-wide association studies combined with integrated analysis of functional datasets support a critical role for microglia in AD pathogenesis, identifying them as important potential therapeutic targets. The ability of immunomodulatory receptors on microglia to control the response to pathogenic amyloid-β aggregates has gained significant interest. Siglec-3, also known as CD33, is one of these immunomodulatory receptors expressed on microglia that has been identified as an AD susceptibility factor. Here, we review recent advances made in understanding the multifaceted roles that CD33 plays in microglia with emphasis on two human-specific CD33 isoforms that differentially correlate with AD susceptibility. We also describe several different therapeutic approaches for targeting CD33 that have been advanced for the purpose of skewing microglial cell responses.
Collapse
|
80
|
Abstract
Alzheimer's disease (AD) is a debilitating age-related neurodegenerative condition. Unbiased genetic studies have implicated a central role for microglia, the resident innate immune cells of the central nervous system, in AD pathogenesis. On-going efforts are clarifying the biology underlying these associations and the microglial pathways that are dysfunctional in AD. Several genetic risk factors converge to decrease the function of activating microglial receptors and increase the function of inhibitory receptors, resulting in a seemingly dampened microglial phenotype in AD. Moreover, many of these microglial proteins that are genetically associated with AD appear to interact and share pathways or regulatory mechanisms, presenting several points of convergence that may be strategic targets for therapeutic intervention. Here, we review some of these studies and their implications for microglial participation in AD pathogenesis.
Collapse
|
81
|
Buthut M, Reber P, Siebert E, Eisenhut K, Thaler F, Finck J, Soekadar SR, Prüss H. Letter to the Editor: Novel TREM2 frameshift mutation in a 30-year-old woman with suspected frontotemporal dementia. Neurol Sci 2023:10.1007/s10072-023-06726-8. [PMID: 36897463 DOI: 10.1007/s10072-023-06726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023]
Affiliation(s)
- Maria Buthut
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany. .,Department of Psychiatry and Neurosciences, Clinical Neurotechnology Laboratory, Neuroscience Research Center, Campus Charité Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Philipp Reber
- Department of Psychiatry and Neurosciences, Clinical Neurotechnology Laboratory, Neuroscience Research Center, Campus Charité Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eberhard Siebert
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Eisenhut
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franziska Thaler
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians-Universität, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Josefine Finck
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Surjo R Soekadar
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.,Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
82
|
Morrison VE, Bix GJ. The meal Maketh the Microglia: Why studying microglial phagocytosis is critical to stroke research. Neurochem Int 2023; 164:105488. [PMID: 36707032 DOI: 10.1016/j.neuint.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/25/2023]
Affiliation(s)
- Vivianne E Morrison
- Tulane University School of Medicine Center for Clinical Neuroscience Research Center, United States
| | - Gregory J Bix
- Tulane University School of Medicine Center for Clinical Neuroscience Research Center, United States.
| |
Collapse
|
83
|
Cho YE, Kwon YS, Hwang S. Heterogeneous population of macrophages in the development of non-alcoholic fatty liver disease. LIVER RESEARCH 2023; 7:16-25. [PMID: 39959694 PMCID: PMC11791820 DOI: 10.1016/j.livres.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by a spectrum of hepatic diseases, including fatty liver, non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. NAFLD is a hepatic manifestation of metabolic syndrome and has become the leading cause of liver transplantation, necessitating an in-depth understanding of its underlying pathogenic mechanisms and the identification of viable drug targets. Although fatty liver is benign and does not exert marked liver damage or inflammation, NAFLD progression involves inflammatory processes facilitated by immune cells. Macrophages and monocytes constitute the pool of innate immune cells that contribute to NAFLD development in association with other cell types, such as neutrophils, T cells, and natural killer cells. The concept that macrophages contribute to the inflammatory processes in NAFLD development has long been debated; however, the remarkable advances in experimental techniques have rapidly uncovered new subpopulations of macrophages and monocytes, whose functions need to be comprehensively elucidated. The current review focuses on the recent expansion of our knowledge of the heterogeneous population of macrophages crucially involved in NAFLD development. In addition, the present paper discusses ongoing efforts to target macrophages and inflammatory processes to develop optimal therapeutic agents against non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Ye Eun Cho
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Yong Seong Kwon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Seonghwan Hwang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
84
|
Xu J, Farsad HL, Hou Y, Barclay K, Lopez BA, Yamada S, Saliu IO, Shi Y, Knight WC, Bateman RJ, Benzinger TLS, Yi JJ, Li Q, Wang T, Perlmutter JS, Morris JC, Zhao G. Human striatal glia differentially contribute to AD- and PD-specific neurodegeneration. NATURE AGING 2023; 3:346-365. [PMID: 36993867 PMCID: PMC10046522 DOI: 10.1038/s43587-023-00363-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/09/2023] [Indexed: 02/11/2023]
Abstract
The commonalities and differences in cell-type-specific pathways that lead to Alzheimer disease (AD) and Parkinson disease (PD) remain unknown. Here, we performed a single-nucleus transcriptome comparison of control, AD and PD striata. We describe three astrocyte subpopulations shared across different brain regions and evolutionarily conserved between humans and mice. We reveal common features between AD and PD astrocytes and regional differences that contribute toward amyloid pathology and neurodegeneration. In contrast, we found that transcriptomic changes in microglia are largely unique to each disorder. Our analysis identified a population of activated microglia that shared molecular signatures with murine disease-associated microglia (DAM) as well as disease-associated and regional differences in microglia transcriptomic changes linking microglia to disease-specific amyloid pathology, tauopathy and neuronal death. Finally, we delineate undescribed subpopulations of medium spiny neurons (MSNs) in the striatum and provide neuronal transcriptomic profiles suggesting disease-specific changes and selective neuronal vulnerability.
Collapse
Affiliation(s)
- Jinbin Xu
- The Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Huifangjie L Farsad
- The Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yiran Hou
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Kia Barclay
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Ben Anthony Lopez
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- MD-PhD in Molecular Medicine Program, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Shinnosuke Yamada
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Yiming Shi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - William C Knight
- The Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L S Benzinger
- The Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason J Yi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Qingyun Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joel S Perlmutter
- The Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
85
|
Phosphatidylserine in the Nervous System: Cytoplasmic Regulator of the AKT and PKC Signaling Pathways and Extracellular "Eat-Me" Signal in Microglial Phagocytosis. Mol Neurobiol 2023; 60:1050-1066. [PMID: 36401705 DOI: 10.1007/s12035-022-03133-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Phosphatidylserine (PtdSer) is an important anionic phospholipid found in eukaryotic cells and has been proven to serve as a beneficial factor in the treatment of neurodegenerative diseases. PtdSer resides in the inner leaflet of the plasma membrane, where it is involved in regulating the AKT and PKC signaling pathways; however, it becomes exposed to the extracellular leaflet during neurodevelopmental processes and neurodegenerative diseases, participating in microglia-mediated synaptic and neuronal phagocytosis. In this paper, we review several characteristics of PtdSer, including the synthesis and translocation of PtdSer, the functions of cytoplasmic and exposed PtdSer, and different PtdSer-detection materials used to further understand the role of PtdSer in the nervous system.
Collapse
|
86
|
Ayyubova G. TREM2 signalling as a multifaceted player in brain homoeostasis and a potential target for Alzheimer's disease treatment. Eur J Neurosci 2023; 57:718-733. [PMID: 36637116 DOI: 10.1111/ejn.15914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) has crucial roles in microglial physiology, differentiation, metabolism and survival. Genome-wide association studies (GWAS) show that genetic mutations of the TREM2 increase the risk of late-onset Alzheimer's disease (AD) by two to four times, disrupting the microglial function in reducing the progression of the disease. Accumulating data show that TREM2 function in AD is related primarily to the clearance of soluble and insoluble amyloid beta (Aβ42) aggregates from the brain. TREM2 also ameliorates the pathological effects of activated microglia on neuronal tau pathology, demonstrating its protective anti-inflammatory effects. However, since the excessive activation of TREM2 signalling can inhibit pro-inflammatory reactions and suppress the role of microglia in immune surveillance, at the late stages of the disease, it might promote immune tolerance, which is detrimental. The contradictory effects of TREM2 mutations on brain amyloidopathy and tauopathy in multiple mouse models, as well as studies revealing various effects of TREM2 overexpression, complicate the understanding of the role that TREM2 plays in AD aetiopathogenesis. In this review, we summarize the latest developments regarding the significance of TREM2 signalling in the stability of microglial pro- and anti-inflammatory activations and propose the mechanisms that should be targeted in the future to treat AD.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku, Azerbaijan
| |
Collapse
|
87
|
Maurya SK, Gupta S, Mishra R. Transcriptional and epigenetic regulation of microglia in maintenance of brain homeostasis and neurodegeneration. Front Mol Neurosci 2023; 15:1072046. [PMID: 36698776 PMCID: PMC9870594 DOI: 10.3389/fnmol.2022.1072046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
The emerging role of microglia in brain homeostasis, neurodegeneration, and neurodevelopmental disorders has attracted considerable interest. In addition, recent developments in microglial functions and associated pathways have shed new light on their fundamental role in the immunological surveillance of the brain. Understanding the interconnections between microglia, neurons, and non-neuronal cells have opened up additional avenues for research in this evolving field. Furthermore, the study of microglia at the transcriptional and epigenetic levels has enhanced our knowledge of these native brain immune cells. Moreover, exploring various facets of microglia biology will facilitate the early detection, treatment, and management of neurological disorders. Consequently, the present review aimed to provide comprehensive insight on microglia biology and its influence on brain development, homeostasis, management of disease, and highlights microglia as potential therapeutic targets in neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India,*Correspondence: Shashank Kumar Maurya, ;
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
88
|
Basha SKC, Ramaiah MJ, Kosagisharaf JR. Untangling the Role of TREM2 in Conjugation with Microglia in Neuronal Dysfunction: A Hypothesis on a Novel Pathway in the Pathophysiology of Alzheimer's Disease. J Alzheimers Dis 2023; 94:S319-S333. [PMID: 36683512 PMCID: PMC10473115 DOI: 10.3233/jad-221070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2022] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder involving heterogenous pathophysiological characteristics, which has become a challenge to therapeutics. The major pathophysiology of AD comprises amyloid-β (Aβ), tau, oxidative stress, and apoptosis. Recent studies indicate the significance of Triggering receptor expressed on myeloid cells 2 (TREM2) and its mutant variants in AD. TREM2 are the transmembrane receptors of microglial cells that performs a broad range of physiological cell processes. Phagocytosis of Aβ is one of the physiological roles of TREM2, which plays a pivotal role in AD progression. R47H, a mutant variant of TREM2, increases the risk of AD by impairing TREM2-Aβ binding. Inconclusive evidence regarding the TREM2 signaling cascade mechanism of Aβ phagocytosis motivates the current review to propose a new hypothesis. The review systematically assesses the cross talk between TREM2 and other AD pathological domains and the influence of TREM2 on amyloid and tau seeding. Disease associated microglia (DAM), a novel state of microglia with unique transcriptional and functional signatures reported in neurodegenerative conditions, also depend on the TREM2 pathway for its differentiation. DAM is suggested to have a neuroprotective role. We hypothesize that TREM2, along with its signaling adaptors and endogenous proteins, play a key role in ameliorating Aβ clearance. We indicate that TREM2 has the potential to ameliorate the Aβ burden, though with differential clearance ability and may act as a potential therapeutic target.
Collapse
Affiliation(s)
- SK Chand Basha
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Mekala Janaki Ramaiah
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Jagannatha Rao Kosagisharaf
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
- National Science System (SENACYT), INDICASAT – AIP, Panama
| |
Collapse
|
89
|
Raas Q, Tawbeh A, Tahri-Joutey M, Gondcaille C, Keime C, Kaiser R, Trompier D, Nasser B, Leoni V, Bellanger E, Boussand M, Hamon Y, Benani A, Di Cara F, Truntzer C, Cherkaoui-Malki M, Andreoletti P, Savary S. Peroxisomal defects in microglial cells induce a disease-associated microglial signature. Front Mol Neurosci 2023; 16:1170313. [PMID: 37138705 PMCID: PMC10149961 DOI: 10.3389/fnmol.2023.1170313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Microglial cells ensure essential roles in brain homeostasis. In pathological condition, microglia adopt a common signature, called disease-associated microglial (DAM) signature, characterized by the loss of homeostatic genes and the induction of disease-associated genes. In X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disease, microglial defect has been shown to precede myelin degradation and may actively contribute to the neurodegenerative process. We previously established BV-2 microglial cell models bearing mutations in peroxisomal genes that recapitulate some of the hallmarks of the peroxisomal β-oxidation defects such as very long-chain fatty acid (VLCFA) accumulation. In these cell lines, we used RNA-sequencing and identified large-scale reprogramming for genes involved in lipid metabolism, immune response, cell signaling, lysosome and autophagy, as well as a DAM-like signature. We highlighted cholesterol accumulation in plasma membranes and observed autophagy patterns in the cell mutants. We confirmed the upregulation or downregulation at the protein level for a few selected genes that mostly corroborated our observations and clearly demonstrated increased expression and secretion of DAM proteins in the BV-2 mutant cells. In conclusion, the peroxisomal defects in microglial cells not only impact on VLCFA metabolism but also force microglial cells to adopt a pathological phenotype likely representing a key contributor to the pathogenesis of peroxisomal disorders.
Collapse
Affiliation(s)
- Quentin Raas
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Ali Tawbeh
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Mounia Tahri-Joutey
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | | | - Céline Keime
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Romain Kaiser
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Doriane Trompier
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | - Valerio Leoni
- Laboratory of Clinical Biochemistry, Hospital of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Emma Bellanger
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Maud Boussand
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Yannick Hamon
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro Dijon, University of Bourgogne Franche-Comté, Dijon, France
| | - Francesca Di Cara
- Department of Microbiology and Immunology, IWK Health Centre, Dalhousie University, Halifax, NS, Canada
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center–Unicancer, Dijon, France
| | | | | | - Stéphane Savary
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
- *Correspondence: Stéphane Savary,
| |
Collapse
|
90
|
Mahjoub Y, Martino D. Immunology and microbiome: Implications for motor systems. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:135-157. [PMID: 37562867 DOI: 10.1016/b978-0-323-98818-6.00001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Immune-inflammatory mechanisms seem to play a relevant role in neurodegenerative disorders affecting motor systems, particularly Parkinson's disease, where activity changes in inflammatory cells and evidence of neuroinflammation in experimental models and patients is available. Amyotrophic lateral sclerosis is also characterized by neuroinflammatory changes that involve primarily glial cells, both microglia and astrocytes, as well as systemic immune dysregulation associated with more rapid progression. Similarly, the exploration of gut dysbiosis in these two prototypical neurodegenerative motor disorders is advancing rapidly. Altered composition of gut microbial constituents and related metabolic and putative functional pathways is supporting a pathophysiological link that is currently explored in preclinical, germ-free animal models. Less compelling, but still intriguing, evidence suggests that motor neurodevelopmental disorders, e.g., Tourette syndrome, are associated with abnormal trajectories of maturation that include also immune system development. Microglia has a key role also in these disorders, and new therapeutic avenues aiming at its modulation are exciting prospects. Preclinical and clinical research on the role of gut dysbiosis in Tourette syndrome and related behavioral disorders is still in its infancy, but early findings support the rationale to delve deeper into its contribution to neural and immune maturation abnormalities in its spectrum.
Collapse
Affiliation(s)
- Yasamin Mahjoub
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
91
|
Fracassi A, Marcatti M, Tumurbaatar B, Woltjer R, Moreno S, Taglialatela G. TREM2-induced activation of microglia contributes to synaptic integrity in cognitively intact aged individuals with Alzheimer's neuropathology. Brain Pathol 2023; 33:e13108. [PMID: 35816404 PMCID: PMC9836373 DOI: 10.1111/bpa.13108] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/16/2022] [Indexed: 01/21/2023] Open
Abstract
The existence of individuals who remain cognitively intact despite presenting histopathological signs of Alzheimer's disease (AD), here referred to as "Nondemented with AD neuropathology" (NDAN), suggests that some mechanisms are triggered to resist cognitive impairment. Exposed phosphatidylserine (ePS) represents a neuronal "eat-me" signal involved in microglial-mediated phagocytosis of damaged synapses. A possible mediator of this process is TREM2, a microglial surface receptor activated by ligands including PS. Based on TREM2 role in the scavenging function of microglia, we hypothesize that an efficient microglial phagocytosis of damaged synapses underlies synaptic resilience in NDAN, thus protecting from memory deficits. Using immunofluorescence microscopy, we performed a comparative study of human post-mortem frontal cortices of aged-matched, AD and NDAN individuals. We studied the distribution of activated microglia (IBA1, IBA1+ /CD68+ cells) and phagocytic microglia-related proteins (TREM2, DAP12), demonstrating higher microglial activation and TREM2 expression in NDAN versus AD. A study of the preservation of synapses around plaques, assessed using MAP2 and βIII tubulin as dendritic and axonal markers, respectively, and PSD95 as a postsynaptic marker, revealed preserved axonal/dendritic structure around plaques in NDAN versus AD. Moreover, high levels of PSD95 around NDAN plaques and the colocalization of PSD95 with CD68 indicated a prompt removal of damaged synapses by phagocytic microglia. Furthermore, Annexin V assay on aged-matched, AD and NDAN individuals synaptosomes revealed increased levels of ePS in NDAN, confirming damaged synapses engulfment. Our results suggest a higher efficiency of TREM2-induced phagocytic microglia in removing damaged synapses, underlying synaptic resilience in NDAN individuals.
Collapse
Affiliation(s)
- Anna Fracassi
- Mitchell Center for Neurodegenerative Diseases, Department of NeurologyUniversity of Texas Medical Branch (UTMB)GalvestonTexasUSA
| | - Michela Marcatti
- Mitchell Center for Neurodegenerative Diseases, Department of NeurologyUniversity of Texas Medical Branch (UTMB)GalvestonTexasUSA
| | - Batbayar Tumurbaatar
- Mitchell Center for Neurodegenerative Diseases, Department of NeurologyUniversity of Texas Medical Branch (UTMB)GalvestonTexasUSA
| | - Randall Woltjer
- Department of PathologyOregon Health and Science UniversityPortlandOregonUSA
| | - Sandra Moreno
- Department of Science, LIMEUniversity Roma TreRomeItaly
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative Diseases, Department of NeurologyUniversity of Texas Medical Branch (UTMB)GalvestonTexasUSA
| |
Collapse
|
92
|
Liu Y, Si ZZ, Zou CJ, Mei X, Li XF, Luo H, Shen Y, Hu J, Li XX, Wu L. Targeting neuroinflammation in Alzheimer’s disease: from mechanisms to clinical applications. Neural Regen Res 2023; 18:708-715. [DOI: 10.4103/1673-5374.353484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
93
|
Khezri MR, Yousefi K, Esmaeili A, Ghasemnejad-Berenji M. The Role of ERK1/2 Pathway in the Pathophysiology of Alzheimer's Disease: An Overview and Update on New Developments. Cell Mol Neurobiol 2023; 43:177-191. [PMID: 35038057 PMCID: PMC11415193 DOI: 10.1007/s10571-022-01191-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/06/2022] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Several findings suggest that correcting the dysregulated signaling pathways may offer a potential therapeutic approach in this disease. Extracellular signal-regulated kinase 1/2 (ERK1/2), a member of the mitogen-activated protein kinase family, plays a major role in regulation of cell proliferation, autophagy process, and protein synthesis. The available literature suggests dysregulated ERK1/2 in AD patients with potential implications in the multifaceted underlying pathologies of AD, including amyloid-β plaque formation, tau phosphorylation, and neuroinflammation. In this regard, in the current review, we aim to summarize the reports on the potential roles of ERK1/2 in AD pathophysiology.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Keyvan Yousefi
- Department of Molecular and Cellular Pharmacology, University of Miami-Miller School of Medicine, Miami, FL, USA.
| | - Ayda Esmaeili
- Clinical Pharmacy Department, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, PO Box: 5715799313, Urmia, Iran.
| |
Collapse
|
94
|
Zhao N, Qiao W, Li F, Ren Y, Zheng J, Martens YA, Wang X, Li L, Liu CC, Chen K, Zhu Y, Ikezu TC, Li Z, Meneses AD, Jin Y, Knight JA, Chen Y, Bastea L, Linares C, Sonustun B, Job L, Smith ML, Xie M, Liu YU, Umpierre AD, Haruwaka K, Quicksall ZS, Storz P, Asmann YW, Wu LJ, Bu G. Elevating microglia TREM2 reduces amyloid seeding and suppresses disease-associated microglia. J Exp Med 2022; 219:e20212479. [PMID: 36107206 PMCID: PMC9481739 DOI: 10.1084/jem.20212479] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 11/04/2022] Open
Abstract
TREM2 is exclusively expressed by microglia in the brain and is strongly linked to the risk for Alzheimer's disease (AD). As microglial responses modulated by TREM2 are central to AD pathogenesis, enhancing TREM2 signaling has been explored as an AD therapeutic strategy. However, the effective therapeutic window targeting TREM2 is unclear. Here, by using microglia-specific inducible mouse models overexpressing human wild-type TREM2 (TREM2-WT) or R47H risk variant (TREM2-R47H), we show that TREM2-WT expression reduces amyloid deposition and neuritic dystrophy only during the early amyloid seeding stage, whereas TREM2-R47H exacerbates amyloid burden during the middle amyloid rapid growth stage. Single-cell RNA sequencing reveals suppressed disease-associated microglia (DAM) signature and reduced DAM population upon TREM2-WT expression in the early stage, whereas upregulated antigen presentation pathway is detected with TREM2-R47H expression in the middle stage. Together, our findings highlight the dynamic effects of TREM2 in modulating AD pathogenesis and emphasize the beneficial effect of enhancing TREM2 function in the early stage of AD development.
Collapse
Affiliation(s)
- Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | - Fuyao Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL
| | | | - Xusheng Wang
- Department of Biology, University of North Dakota, Grand Forks, ND
| | - Ling Li
- Department of Biology, University of North Dakota, Grand Forks, ND
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | - Kai Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | - Yiyang Zhu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | | | - Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | | | - Yunjung Jin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | | | - Yixing Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | - Ligia Bastea
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL
| | | | | | - Lucy Job
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | | | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL
| | - Yong U. Liu
- Department of Neurology, Mayo Clinic, Rochester, MN
| | | | | | | | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL
| | - Yan W. Asmann
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | - Long-Jun Wu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
- Department of Neurology, Mayo Clinic, Rochester, MN
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
95
|
Bandow K, Smith A, Garlick J. Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) positively regulates lipopolysaccharide-induced expression of CXC chemokine ligand 10 and 11 in mouse macrophages. Biochem Biophys Res Commun 2022; 635:227-235. [DOI: 10.1016/j.bbrc.2022.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022]
|
96
|
Lee HL, Jung KM, Fotio Y, Squire E, Palese F, Lin L, Torrens A, Ahmed F, Mabou Tagne A, Ramirez J, Su S, Wong CR, Jung DH, Scarfone VM, Nguyen PU, Wood M, Green K, Piomelli D. Frequent Low-Dose Δ 9-Tetrahydrocannabinol in Adolescence Disrupts Microglia Homeostasis and Disables Responses to Microbial Infection and Social Stress in Young Adulthood. Biol Psychiatry 2022; 92:845-860. [PMID: 35750512 PMCID: PMC10629396 DOI: 10.1016/j.biopsych.2022.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND During adolescence, microglia are actively involved in neocortical maturation while concomitantly undergoing profound phenotypic changes. Because the teenage years are also a time of experimentation with cannabis, we evaluated whether adolescent exposure to the drug's psychotropic constituent, Δ9-tetrahydrocannabinol (THC), might persistently alter microglia function. METHODS We administered THC (5 mg/kg, intraperitoneal) once daily to male and female mice from postnatal day (PND) 30 to PND44 and examined the transcriptome of purified microglia in adult animals (PND70 and PND120) under baseline conditions or following either of two interventions known to recruit microglia: lipopolysaccharide injection and repeated social defeat. We used high-dimensional mass cytometry by time-of-flight to map brain immune cell populations after lipopolysaccharide challenge. RESULTS Adolescent THC exposure produced in mice of both sexes a state of microglial dyshomeostasis that persisted until young adulthood (PND70) but receded with further aging (PND120). Key features of this state included broad alterations in genes involved in microglia homeostasis and innate immunity along with marked impairments in the responses to lipopolysaccharide- and repeated social defeat-induced psychosocial stress. The endocannabinoid system was also dysfunctional. The effects of THC were prevented by coadministration of either a global CB1 receptor inverse agonist or a peripheral CB1 neutral antagonist and were not replicated when THC was administered in young adulthood (PND70-84). CONCLUSIONS Daily low-intensity CB1 receptor activation by THC during adolescence may disable critical functions served by microglia until young adulthood with potentially wide-ranging consequences for brain and mental health.
Collapse
Affiliation(s)
- Hye-Lim Lee
- Departments of Anatomy and Neurobiology, University of California Irvine, Irvine, California
| | - Kwang-Mook Jung
- Departments of Anatomy and Neurobiology, University of California Irvine, Irvine, California
| | - Yannick Fotio
- Departments of Anatomy and Neurobiology, University of California Irvine, Irvine, California
| | - Erica Squire
- Departments of Anatomy and Neurobiology, University of California Irvine, Irvine, California
| | - Francesca Palese
- Departments of Anatomy and Neurobiology, University of California Irvine, Irvine, California
| | - Lin Lin
- Departments of Anatomy and Neurobiology, University of California Irvine, Irvine, California
| | - Alexa Torrens
- Departments of Anatomy and Neurobiology, University of California Irvine, Irvine, California
| | - Faizy Ahmed
- Departments of Anatomy and Neurobiology, University of California Irvine, Irvine, California
| | - Alex Mabou Tagne
- Departments of Anatomy and Neurobiology, University of California Irvine, Irvine, California
| | - Jade Ramirez
- Departments of Anatomy and Neurobiology, University of California Irvine, Irvine, California
| | - Shiqi Su
- Departments of Anatomy and Neurobiology, University of California Irvine, Irvine, California
| | - Christina Renee Wong
- Departments of Anatomy and Neurobiology, University of California Irvine, Irvine, California
| | - Daniel Hojin Jung
- Departments of Anatomy and Neurobiology, University of California Irvine, Irvine, California
| | - Vanessa M Scarfone
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California
| | - Pauline U Nguyen
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California
| | - Marcelo Wood
- Neurobiology and Behavior, University of California Irvine, Irvine, California
| | - Kim Green
- Neurobiology and Behavior, University of California Irvine, Irvine, California
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology, University of California Irvine, Irvine, California; Biological Chemistry, University of California Irvine, Irvine, California; Pharmaceutical Sciences, University of California Irvine, Irvine, California.
| |
Collapse
|
97
|
Hwang M, Savarin C, Kim J, Powers J, Towne N, Oh H, Bergmann CC. Trem2 deficiency impairs recovery and phagocytosis and dysregulates myeloid gene expression during virus-induced demyelination. J Neuroinflammation 2022; 19:267. [PMID: 36333761 PMCID: PMC9635103 DOI: 10.1186/s12974-022-02629-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Background Triggering receptor expressed on myeloid cells 2 (Trem2) plays a protective role in neurodegenerative diseases. By contrast, Trem2 functions can exacerbate tissue damage during respiratory viral or liver infections. We, therefore, investigated the role of Trem2 in a viral encephalomyelitis model associated with prominent Th1 mediated antiviral immunity leading to demyelination. Methods Wild-type (WT) and Trem2 deficient (Trem2−/−) mice were infected with a sublethal glia tropic murine coronavirus (MHV–JHM) intracranially. Disease progression and survival were monitored daily. Leukocyte accumulation and pathological features including demyelination and axonal damage in spinal cords (SC) were determined by flow cytometry and tissue section immunofluorescence analysis. Expression of select inflammatory cytokines and chemokines was measured by RT-PCR and global myeloid cell gene expression in SC-derived microglia and infiltrated bone-marrow-derived macrophages (BMDM) were determined using the Nanostring nCounter platform. Results BMDM recruited to SCs in response to infection highly upregulated Trem2 mRNA compared to microglia coincident with viral control. Trem2 deficiency did not alter disease onset or severity, but impaired clinical recovery after onset of demyelination. Disease progression in Trem2−/− mice could not be attributed to altered virus control or an elevated proinflammatory response. A prominent difference was increased degenerated myelin not associated with the myeloid cell markers IBA1 and/or CD68. Gene expression profiles of SC-derived microglia and BMDM further revealed that Trem2 deficiency resulted in impaired upregulation of phagocytosis associated genes Lpl and Cd36 in microglia, but a more complex pattern in BMDM. Conclusions Trem2 deficiency during viral-induced demyelination dysregulates expression of other select genes regulating phagocytic pathways and lipid metabolism, with distinct effects on microglia and BMDM. The ultimate failure to remove damaged myelin is reminiscent of toxin or autoimmune cell-induced demyelination models and supports that Trem2 function is regulated by sensing tissue damage including a dysregulated lipid environment in very distinct inflammatory environments. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02629-1.
Collapse
|
98
|
Preeti K, Sood A, Fernandes V. Metabolic Regulation of Glia and Their Neuroinflammatory Role in Alzheimer's Disease. Cell Mol Neurobiol 2022; 42:2527-2551. [PMID: 34515874 PMCID: PMC11421648 DOI: 10.1007/s10571-021-01147-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disorder. It is characterized clinically by progressive memory loss and impaired cognitive function. Its progression occurs from neuronal synapse loss to amyloid pathology and Tau deposit which eventually leads to the compromised neuronal function. Neurons in central nervous tissue work in a composite and intricate network with the glia and vascular cells. Microglia and astrocytes are becoming the prime focus due to their involvement in various aspects of neurophysiology, such as trophic support to neurons, synaptic modulation, and brain surveillance. AD is also often considered as the sequela of prolonged metabolic dyshomeostasis. The neuron and glia have different metabolic profiles as cytosolic glycolysis and mitochondrial-dependent oxidative phosphorylation (OXPHOS), especially under dyshomeostasis or with aging pertaining to their unique genetic built-up. Various efforts are being put in to decipher the role of mitochondrial dynamics regarding their trafficking, fission/fusion imbalance, and mitophagy spanning over both neurons and glia to improve aging-related brain health. The mitochondrial dysfunction may lead to activation in various signaling mechanisms causing metabolic reprogramming in glia cells, further accelerating AD-related pathogenic events. The glycolytic-dominant astrocytes switch to the neurotoxic phenotype, i.e., disease-associated astrocyte under metabolic stress. The microglia also transform from resting to reactive phenotype, i.e., disease-associated microglia. It may also exist in otherwise a misconception an M1, glycolytic, or M2, an OXPHOS-dependent phenotype. Further, glial transformation plays a vital role in regulating hallmarks of AD pathologies like synapse maintenance, amyloid, and Tau clearance. In this updated review, we have tried to emphasize the metabolic regulation of glial reactivity, mitochondrial quality control mechanisms, and their neuroinflammatory response in Alzheimer's progression.
Collapse
Affiliation(s)
- Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | - Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
99
|
Vorselen D. Dynamics of phagocytosis mediated by phosphatidylserine. Biochem Soc Trans 2022; 50:1281-1291. [PMID: 36281986 PMCID: PMC9704538 DOI: 10.1042/bst20211254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 10/13/2023]
Abstract
Phagocytosis triggered by the phospholipid phosphatidylserine (PS) is key for the removal of apoptotic cells in development, tissue homeostasis and infection. Modulation of PS-mediated phagocytosis is an attractive target for therapeutic intervention in the context of atherosclerosis, neurodegenerative disease, and cancer. Whereas the mechanisms of target recognition, lipid and protein signalling, and cytoskeletal remodelling in opsonin-driven modes of phagocytosis are increasingly well understood, PS-mediated phagocytosis has remained more elusive. This is partially due to the involvement of a multitude of receptors with at least some redundancy in functioning, which complicates dissecting their contributions and results in complex downstream signalling networks. This review focusses on the receptors involved in PS-recognition, the signalling cascades that connect receptors to cytoskeletal remodelling required for phagocytosis, and recent progress in our understanding of how phagocytic cup formation is coordinated during PS-mediated phagocytosis.
Collapse
Affiliation(s)
- Daan Vorselen
- Department of Biology, University of Washington, Seattle, WA 98105, U.S.A
| |
Collapse
|
100
|
Yerlikaya EI, Toro AL, Sunilkumar S, VanCleave AM, Leung M, Kawasawa YI, Kimball SR, Dennis MD. Spleen Tyrosine Kinase Contributes to Müller Glial Expression of Proangiogenic Cytokines in Diabetes. Invest Ophthalmol Vis Sci 2022; 63:25. [PMID: 36306144 PMCID: PMC9624266 DOI: 10.1167/iovs.63.11.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Purpose Neuroglial dysfunction occurs early in the progression of diabetic retinopathy. In response to diabetes or hypoxia, Müller glia secrete cytokines and growth factors that contribute to disease progression. This study was designed to examine common signaling pathways activated in Müller glia by both type 1 and pre-/type 2 diabetes. Methods RiboTag (Pdgfra-cre;HA-Rpl22) mice were used to compare the impact of streptozotocin (STZ) and a high-fat, high-sucrose (HFHS) diet on ribosome association of mRNAs in Müller glia by RNA sequencing analysis. Human MIO-M1 Müller cells were exposed to either hyperglycemic or hypoxic culture conditions. Genetic manipulation and pharmacologic inhibition were used to interrogate signaling pathways. Results Association of mRNAs encoding triggering receptor expressed on myeloid cells 2 (TREM2), DNAX-activating protein 12 kDa (DAP12), and colony stimulating factor 1 receptor (CSF1R) with ribosomes isolated from Müller glia was upregulated in both STZ diabetic mice and mice fed an HFHS diet. The TREM2/DAP12 receptor-adaptor complex signals in coordination with CSF1R to activate spleen tyrosine kinase (SYK). SYK activation was enhanced in the retina of diabetic mice and in human MIO-M1 Müller cell cultures exposed to hyperglycemic or hypoxic culture conditions. DAP12 knockdown reduced SYK autophosphorylation in Müller cells exposed to hyperglycemic or hypoxic conditions. SYK inhibition or DAP12 knockdown suppressed hypoxia-induced expression of the transcription factor hypoxia-inducible factor 1⍺ (HIF1⍺), as well as expression of vascular endothelial growth factor and angiopoietin-like 4. Conclusions The findings support TREM2/DAP12 receptor-adaptor complex signaling via SYK to promote HIF1α stabilization and increased angiogenic cytokine production by Müller glia.
Collapse
Affiliation(s)
- Esma I. Yerlikaya
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Allyson L. Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Ashley M. VanCleave
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Ming Leung
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States,Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|