51
|
Li X, Hao Z, Li D, Jin Q, Tang Z, Yao X, Wu T. Brain age prediction via cross-stratified ensemble learning. Neuroimage 2024; 299:120825. [PMID: 39214438 DOI: 10.1016/j.neuroimage.2024.120825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
As an important biomarker of neural aging, the brain age reflects the integrity and health of the human brain. Accurate prediction of brain age could help to understand the underlying mechanism of neural aging. In this study, a cross-stratified ensemble learning algorithm with staking strategy was proposed to obtain brain age and the derived predicted age difference (PAD) using T1-weighted magnetic resonance imaging (MRI) data. The approach was characterized as by implementing two modules: one was three base learners of 3D-DenseNet, 3D-ResNeXt, 3D-Inception-v4; another was 14 secondary learners of liner regressions. To evaluate performance, our method was compared with single base learners, regular ensemble learning algorithms, and state-of-the-art (SOTA) methods. The results demonstrated that our proposed model outperformed others models, with three metrics of mean absolute error (MAE), root mean-squared error (RMSE), and coefficient of determination (R2) of 2.9405 years, 3.9458 years, and 0.9597, respectively. Furthermore, there existed significant differences in PAD among the three groups of normal control (NC), mild cognitive impairment (MCI) and Alzheimer's disease (AD), with an increased trend across NC, MCI, and AD. It was concluded that the proposed algorithm could be effectively used in computing brain aging and PAD, and offering potential for early diagnosis and assessment of normal brain aging and AD.
Collapse
Affiliation(s)
- Xinlin Li
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zezhou Hao
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Di Li
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Qiuye Jin
- Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai 200032, PR China
| | - Zhixian Tang
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Xufeng Yao
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Tao Wu
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| |
Collapse
|
52
|
Yadav N, Gupta NK, Thakar D, Tiwari V. Magnitude and kinetics of a set of neuroanatomic volume and thickness together with white matter hyperintensity is definitive of cognitive status and brain age. Transl Psychiatry 2024; 14:389. [PMID: 39333492 PMCID: PMC11437080 DOI: 10.1038/s41398-024-03097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Even among the subjects classified as cognitively normal, there exists a subset of individuals at a given chronological age (CA) who harbor white matter hyperintensity (WMH) while another subset presents with low or undetectable WMH. Here, we conducted a comprehensive MRI segmentation of neuroanatomic structures along with WMH quantification in groups of cognitively normal (CN), cognitively impaired (CI) individuals, and individuals with an etiological diagnosis of cognitive impairment owing to Alzheimer's Disease (CI-AD) across the early (50-64 years), intermediate (65-79 years), and late (≥80 years) age groups from the NACC cohort. Neuroanatomic volumetry quantification revealed that thinning of the parahippocampal gyrus in the early (p = 0.016) and intermediate age groups (p = 0.0001) along with an increase in CSF (p = 0.0009) delineates between CI and CI-AD subjects. Although, a significant loss of ~5-10% in volume of gray matter (p(CN vs CI) < 0.0001, p(CN vs CI-AD) < 0.0001), white matter (p(CN vs CI) = 0.002, p(CN vs CI-AD) = 0.0003) and hippocampus (p(CN vs CI) = 0.007, p(CN vs CI-AD) < 0.0001) was evident at the early age groups in the CI and CI-AD compared to CN but it was not distinct between CI and CI-AD. Using the neuroanatomic and WMH volume, and the supervised decision tree-based ML modeling, we have established that a minimum set of Three brain quantities; Total brain (GM + WM), CSF, and WMH volume, provide the Optimal quantitative features discriminative of cognitive status as CN, CI, and CI-AD. Furthermore, using the volume/thickness of 178 neuroanatomic structures, periventricular and deep WMH volume quantification for the 819 CN subjects, we have developed a quantitative index as 'Brain Age' (BA) depictive of neuroanatomic health at a given CA. Subjects with elevated WMH load (5-10 ml) had increased BA ( + 0.6 to +4 years) than the CA. Increased BA in the subjects with elevated WMH is suggestive of WMH-induced vascular insult leading to accelerated and early structural loss than expected for a given CA. Henceforth, this study establishes that quantification of WMH together with an optimal number of neuroanatomic features is mandatory to delve into the biological underpinning of aging and aging-associated cognitive disorders.
Collapse
Affiliation(s)
- Neha Yadav
- Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, India
| | - Niraj Kumar Gupta
- Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, India
| | - Darshit Thakar
- Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, India
| | - Vivek Tiwari
- Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, India.
| |
Collapse
|
53
|
Peng YJ, Kuo CY, Chang SW, Lin CP, Tsai YH. Acceleration of brain aging after small-volume infarcts. Front Aging Neurosci 2024; 16:1409166. [PMID: 39391585 PMCID: PMC11464776 DOI: 10.3389/fnagi.2024.1409166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Previous studies have shown that stroke patients exhibit greater neuroimaging-derived biological "brain age" than control subjects. This difference, known as the brain age gap (BAG), is calculated by comparing the chronological age with predicted brain age and is used as an indicator of brain health and aging. However, whether stroke accelerates the process of brain aging in patients with small-volume infarcts has not been established. By utilizing longitudinal data, we aimed to investigate whether small-volume infarctions can significantly increase the BAG, indicating accelerated brain aging. Methods A total of 123 stroke patients presenting with small-volume infarcts were included in this retrospective study. The brain age model was trained via established protocols within the field of machine learning and the structural features of the brain from our previous study. We used t-tests and regression analyses to assess longitudinal brain age changes after stroke and the associations between brain age, acute stroke severity, and poststroke outcome factors. Results Significant brain aging occurred between the initial and 6-month follow-ups, with a mean increase in brain age of 1.04 years (t = 3.066, p < 0.05). Patients under 50 years of age experienced less aging after stroke than those over 50 years of age (p = 0.245). Additionally, patients with a National Institute of Health Stroke Scale score >3 at admission presented more pronounced adverse effects on brain aging, even after adjusting for confounders such as chronological age, sex, and total intracranial volume (F 1,117 = 7.339, p = 0.008, η 2 = 0.059). There were significant differences in the proportional brain age difference at 6 months among the different functional outcome groups defined by the Barthel Index (F 2,118 = 4.637, p = 0.012, η 2 = 0.073). Conclusion Stroke accelerates the brain aging process, even in patients with relatively small-volume infarcts. This phenomenon is particularly accentuated in elderly patients, and both stroke severity and poststroke functional outcomes are closely associated with accelerated brain aging. Further studies are needed to explore the mechanisms underlying the accelerated brain aging observed in stroke patients, with a particular focus on the structural alterations and plasticity of the brain following minor strokes.
Collapse
Affiliation(s)
- Ying-Ju Peng
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Department of Diagnostic Radiology, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Yuan Kuo
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Wei Chang
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Department of Diagnostic Radiology, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Yuan-Hsiung Tsai
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Department of Diagnostic Radiology, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
54
|
Sarisik E, Popovic D, Keeser D, Khuntia A, Schiltz K, Falkai P, Pogarell O, Koutsouleris N. EEG-based Signatures of Schizophrenia, Depression, and Aberrant Aging: A Supervised Machine Learning Investigation. Schizophr Bull 2024:sbae150. [PMID: 39248267 DOI: 10.1093/schbul/sbae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
BACKGROUND Electroencephalography (EEG) is a noninvasive, cost-effective, and robust tool, which directly measures in vivo neuronal mass activity with high temporal resolution. Combined with state-of-the-art machine learning (ML) techniques, EEG recordings could potentially yield in silico biomarkers of severe mental disorders. HYPOTHESIS Pathological and physiological aging processes influence the electrophysiological signatures of schizophrenia (SCZ) and major depressive disorder (MDD). STUDY DESIGN From a single-center cohort (N = 735, 51.6% male) comprising healthy control individuals (HC, N = 245) and inpatients suffering from SCZ (N = 250) or MDD (N = 240), we acquired resting-state 19 channel-EEG recordings. Using repeated nested cross-validation, support vector machine models were trained to (1) classify patients with SCZ or MDD and HC individuals and (2) predict age in HC individuals. The age model was applied to patient groups to calculate Electrophysiological Age Gap Estimation (EphysAGE) as the difference between predicted and chronological age. The links between EphysAGE, diagnosis, and medication were then further explored. STUDY RESULTS The classification models robustly discriminated SCZ from HC (balanced accuracy, BAC = 72.7%, P < .001), MDD from HC (BAC = 67.0%, P < .001), and SCZ from MDD individuals (BAC = 63.2%, P < .001). Notably, central alpha (8-11 Hz) power decrease was the most consistently predictive feature for SCZ and MDD. Higher EphysAGE was associated with an increased likelihood of being misclassified as SCZ in HC and MDD (ρHC = 0.23, P < .001; ρMDD = 0.17, P = .01). CONCLUSIONS ML models can extract electrophysiological signatures of MDD and SCZ for potential clinical use. However, the impact of aging processes on diagnostic separability calls for timely application of such models, possibly in early recognition settings.
Collapse
Affiliation(s)
- Elif Sarisik
- Max Planck Fellow Group Precision Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - David Popovic
- Max Planck Fellow Group Precision Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- German Center for Mental Health (DZPG), Partner Site Munich, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Mental Health (DZPG), Partner Site Munich, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), LMU University Hospital, LMU Munich, Munich, Germany
- Munich Center for Neurosciences, LMU Munich, Munich, Germany
| | - Adyasha Khuntia
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Kolja Schiltz
- Max Planck Fellow Group Precision Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Peter Falkai
- Max Planck Fellow Group Precision Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Mental Health (DZPG), Partner Site Munich, Munich, Germany
| | - Oliver Pogarell
- Max Planck Fellow Group Precision Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nikolaos Koutsouleris
- Max Planck Fellow Group Precision Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Mental Health (DZPG), Partner Site Munich, Munich, Germany
- Munich Center for Neurosciences, LMU Munich, Munich, Germany
- Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| |
Collapse
|
55
|
Bischoff-Grethe A, Stoner SA, Riley EP, Moore EM. Subcortical volume in middle-aged adults with fetal alcohol spectrum disorders. Brain Commun 2024; 6:fcae273. [PMID: 39229493 PMCID: PMC11369821 DOI: 10.1093/braincomms/fcae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/06/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
Studies of youth and young adults with prenatal alcohol exposure (PAE) have most consistently reported reduced volumes of the corpus callosum, cerebellum and subcortical structures. However, it is unknown whether this continues into middle adulthood or if individuals with PAE may experience premature volumetric decline with aging. Forty-eight individuals with fetal alcohol spectrum disorders (FASD) and 28 healthy comparison participants aged 30 to 65 participated in a 3T MRI session that resulted in usable T1-weighted and T2-weighted structural images. Primary analyses included volumetric measurements of the caudate, putamen, pallidum, cerebellum and corpus callosum using FreeSurfer software. Analyses were conducted examining both raw volumetric measurements and subcortical volumes adjusted for overall intracranial volume (ICV). Models tested for main effects of age, sex and group, as well as interactions of group with age and group with sex. We found the main effects for group; all regions were significantly smaller in participants with FASD for models using raw volumes (P's < 0.001) as well as for models using volumes adjusted for ICV (P's < 0.046). Although there were no significant interactions of group with age, females with FASD had smaller corpus callosum volumes relative to both healthy comparison females and males with FASD (P's < 0.001). As seen in children and adolescents, adults aged 30 to 65 with FASD showed reduced volumes of subcortical structures relative to healthy comparison adults, suggesting persistent impact of PAE. Moreover, the observed volumetric reduction of the corpus callosum in females with FASD could suggest more rapid degeneration, which may have implications for cognition as these individuals continue to age.
Collapse
Affiliation(s)
| | - Susan A Stoner
- Department of Psychiatry and Behavioral Sciences, Fetal Alcohol and Drug Unit, University of Washington School of Medicine, Seattle, Washington 98105, USA
| | - Edward P Riley
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA, 92120, USA
| | - Eileen M Moore
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA, 92120, USA
| |
Collapse
|
56
|
Gustavson DE, Elman JA, Reynolds CA, Eyler LT, Fennema-Notestine C, Puckett OK, Panizzon MS, Gillespie NA, Neale MC, Lyons MJ, Franz CE, Kremen WS. Brain reserve in midlife is associated with executive function changes across 12 years. Neurobiol Aging 2024; 141:113-120. [PMID: 38852544 PMCID: PMC11246793 DOI: 10.1016/j.neurobiolaging.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
We examined how brain reserve in midlife, measured by brain-predicted age difference scores (Brain-PADs), predicted executive function concurrently and longitudinally into early old age, and whether these associations were moderated by young adult cognitive reserve or APOE genotype. 508 men in the Vietnam Era Twin Study of Aging (VETSA) completed neuroimaging assessments at mean age 56 and six executive function tasks at mean ages 56, 62, and 68 years. Results indicated that greater brain reserve at age 56 was associated with better concurrent executive function (r=.10, p=.040) and less decline in executive function over 12 years (r=.34, p=.001). These associations were not moderated by cognitive reserve or APOE genotype. Twin analysis suggested associations with executive function slopes were driven by genetic influences. Our findings suggest that greater brain reserve allowed for better cognitive maintenance from middle- to old age, driven by a genetic association. The results are consistent with differential preservation of executive function based on brain reserve that is independent of young adult cognitive reserve or APOE genotype.
Collapse
Affiliation(s)
- Daniel E Gustavson
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA.
| | - Jeremy A Elman
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA
| | - Chandra A Reynolds
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Lisa T Eyler
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA; Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Olivia K Puckett
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA; Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
57
|
Hua JPY, Abram SV, Loewy RL, Stuart B, Fryer SL, Vinogradov S, Mathalon DH. Brain Age Gap in Early Illness Schizophrenia and the Clinical High-Risk Syndrome: Associations With Experiential Negative Symptoms and Conversion to Psychosis. Schizophr Bull 2024; 50:1159-1170. [PMID: 38815987 PMCID: PMC11349027 DOI: 10.1093/schbul/sbae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
BACKGROUND AND HYPOTHESIS Brain development/aging is not uniform across individuals, spawning efforts to characterize brain age from a biological perspective to model the effects of disease and maladaptive life processes on the brain. The brain age gap represents the discrepancy between estimated brain biological age and chronological age (in this case, based on structural magnetic resonance imaging, MRI). Structural MRI studies report an increased brain age gap (biological age > chronological age) in schizophrenia, with a greater brain age gap related to greater negative symptom severity. Less is known regarding the nature of this gap early in schizophrenia (ESZ), if this gap represents a psychosis conversion biomarker in clinical high-risk (CHR-P) individuals, and how altered brain development and/or aging map onto specific symptom facets. STUDY DESIGN Using structural MRI, we compared the brain age gap among CHR-P (n = 51), ESZ (n = 78), and unaffected comparison participants (UCP; n = 90), and examined associations with CHR-P psychosis conversion (CHR-P converters n = 10; CHR-P non-converters; n = 23) and positive and negative symptoms. STUDY RESULTS ESZ showed a greater brain age gap relative to UCP and CHR-P (Ps < .010). CHR-P individuals who converted to psychosis showed a greater brain age gap (P = .043) relative to CHR-P non-converters. A larger brain age gap in ESZ was associated with increased experiential (P = .008), but not expressive negative symptom severity. CONCLUSIONS Consistent with schizophrenia pathophysiological models positing abnormal brain maturation, results suggest abnormal brain development is present early in psychosis. An increased brain age gap may be especially relevant to motivational and functional deficits in schizophrenia.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco VA Medical Center, University of California, San Francisco, CA, USA
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Samantha V Abram
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Barbara Stuart
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Susanna L Fryer
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Daniel H Mathalon
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
58
|
Li J, Lam LCW, Lu H. Decoding MRI-informed brain age using mutual information. Insights Imaging 2024; 15:216. [PMID: 39186199 PMCID: PMC11347523 DOI: 10.1186/s13244-024-01791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE We aimed to develop a standardized method to investigate the relationship between estimated brain age and regional morphometric features, meeting the criteria for simplicity, generalization, and intuitive interpretability. METHODS We utilized T1-weighted magnetic resonance imaging (MRI) data from the Cambridge Centre for Ageing and Neuroscience project (N = 609) and employed a support vector regression method to train a brain age model. The pre-trained brain age model was applied to the dataset of the brain development project (N = 547). Kraskov (KSG) estimator was used to compute the mutual information (MI) value between brain age and regional morphometric features, including gray matter volume (GMV), white matter volume (WMV), cerebrospinal fluid (CSF) volume, and cortical thickness (CT). RESULTS Among four types of brain features, GMV had the highest MI value (8.71), peaking in the pre-central gyrus (0.69). CSF volume was ranked second (7.76), with the highest MI value in the cingulate (0.87). CT was ranked third (6.22), with the highest MI value in superior temporal gyrus (0.53). WMV had the lowest MI value (4.59), with the insula showing the highest MI value (0.53). For brain parenchyma, the volume of the superior frontal gyrus exhibited the highest MI value (0.80). CONCLUSION This is the first demonstration that MI value between estimated brain age and morphometric features may serve as a benchmark for assessing the regional contributions to estimated brain age. Our findings highlighted that both GMV and CSF are the key features that determined the estimated brain age, which may add value to existing computational models of brain age. CRITICAL RELEVANCE STATEMENT Mutual information (MI) analysis reveals gray matter volume (GMV) and cerebrospinal fluid (CSF) volume as pivotal in computing individuals' brain age. KEY POINTS Mutual information (MI) interprets estimated brain age with morphometric features. Gray matter volume in the pre-central gyrus has the highest MI value for estimated brain age. Cerebrospinal fluid volume in the cingulate has the highest MI value. Regarding brain parenchymal volume, the superior frontal gyrus has the highest MI value. The value of mutual information underscores the key brain regions related to brain age.
Collapse
Affiliation(s)
- Jing Li
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Linda Chiu Wa Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hanna Lu
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China.
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
59
|
Feng Y, Villalón-Reina JE, Nir TM, Chandio BQ, Jahanshad N, Thompson PM. BundleAGE: Predicting White Matter Age using Along-Tract Microstructural Profiles from Diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608347. [PMID: 39229061 PMCID: PMC11370403 DOI: 10.1101/2024.08.16.608347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Brain Age Gap Estimation (BrainAGE) is an estimate of the gap between a person's chronological age (CA) and a measure of their brain's 'biological age' (BA). This metric is often used as a marker of accelerated aging, albeit with some caveats. Age prediction models trained on brain structural and functional MRI have been employed to derive BrainAGE biomarkers, for predicting the risk of neurodegeneration. While voxel-based and along-tract microstructural maps from diffusion MRI have been used to study brain aging, no studies have evaluated along-tract microstructure for computing BrainAGE. In this study, we train machine learning models to predict a person's age using along-tract microstructural profiles from diffusion tensor imaging. We were able to demonstrate differential aging patterns across different white matter bundles and microstructural measures. The novel Bundle Age Gap Estimation (BundleAGE) biomarker shows potential in quantifying risk factors for neurodegenerative diseases and aging, while incorporating finer scale information throughout white matter bundles.
Collapse
Affiliation(s)
- Yixue Feng
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Julio E Villalón-Reina
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Talia M Nir
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Bramsh Q Chandio
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| |
Collapse
|
60
|
La Rosa F, Dos Santos Silva J, Dereskewicz E, Invernizzi A, Cahan N, Galasso J, Garcia N, Graney R, Levy S, Verma G, Balchandani P, Reich DS, Horton M, Greenspan H, Sumowski J, Cuadra MB, Beck ES. BrainAgeNeXt: Advancing Brain Age Modeling for Individuals with Multiple Sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.10.24311686. [PMID: 39148818 PMCID: PMC11326330 DOI: 10.1101/2024.08.10.24311686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Aging is associated with structural brain changes, cognitive decline, and neurodegenerative diseases. Brain age, an imaging biomarker sensitive to deviations from healthy aging, offers insights into structural aging variations and is a potential prognostic biomarker in neurodegenerative conditions. This study introduces BrainAgeNeXt, a novel convolutional neural network inspired by the MedNeXt framework, designed to predict brain age from T1-weighted magnetic resonance imaging (MRI) scans. BrainAgeNeXt was trained and validated on 11,574 MRI scans from 33 private and publicly available datasets of healthy volunteers, aged 5 to 95 years, imaged with 3T and 7T MRI. Performance was compared against three state-of-the-art brain age prediction methods. BrainAgeNeXt achieved a mean absolute error (MAE) of 2.78 ± 3.64 years, lower than the compared methods (MAE = 3.55, 3.59, and 4.16 years, respectively). We tested all methods also across different levels of image quality, and BrainAgeNeXt performed well even with motion artifacts and less common 7T MRI data. In three longitudinal multiple sclerosis (MS) cohorts (273 individuals), brain age was, on average, 4.21 ± 6.51 years greater than chronological age. Longitudinal analysis indicated that brain age increased by 1.15 years per chronological year in individuals with MS (95% CI = [1.05, 1.26]). Moreover, in early MS, individuals with worsening disability had a higher annual increase in brain age compared to those with stable clinical assessments (1.24 vs. 0.75, p < 0.01). These findings suggest that brain age is a promising prognostic biomarker for MS progression and potentially a valuable endpoint for clinical trials.
Collapse
Affiliation(s)
- Francesco La Rosa
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Emma Dereskewicz
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Azzurra Invernizzi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Noa Cahan
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia Galasso
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nadia Garcia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robin Graney
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah Levy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gaurav Verma
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Priti Balchandani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hayit Greenspan
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Sumowski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Merixtell Bach Cuadra
- CIBM Center for Biomedical Imaging, Switzerland
- Radiology Department, University of Lausanne and Lausanne University Hospital, Switzerland
| | - Erin S Beck
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
61
|
Stripelis D, Gupta U, Saleem H, Dhinagar N, Ghai T, Anastasiou C, Sánchez R, Steeg GV, Ravi S, Naveed M, Thompson PM, Ambite JL. A federated learning architecture for secure and private neuroimaging analysis. PATTERNS (NEW YORK, N.Y.) 2024; 5:101031. [PMID: 39233693 PMCID: PMC11368680 DOI: 10.1016/j.patter.2024.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/04/2024] [Accepted: 06/06/2024] [Indexed: 09/06/2024]
Abstract
The amount of biomedical data continues to grow rapidly. However, collecting data from multiple sites for joint analysis remains challenging due to security, privacy, and regulatory concerns. To overcome this challenge, we use federated learning, which enables distributed training of neural network models over multiple data sources without sharing data. Each site trains the neural network over its private data for some time and then shares the neural network parameters (i.e., weights and/or gradients) with a federation controller, which in turn aggregates the local models and sends the resulting community model back to each site, and the process repeats. Our federated learning architecture, MetisFL, provides strong security and privacy. First, sample data never leave a site. Second, neural network parameters are encrypted before transmission and the global neural model is computed under fully homomorphic encryption. Finally, we use information-theoretic methods to limit information leakage from the neural model to prevent a "curious" site from performing model inversion or membership attacks. We present a thorough evaluation of the performance of secure, private federated learning in neuroimaging tasks, including for predicting Alzheimer's disease and for brain age gap estimation (BrainAGE) from magnetic resonance imaging (MRI) studies in challenging, heterogeneous federated environments where sites have different amounts of data and statistical distributions.
Collapse
Affiliation(s)
- Dimitris Stripelis
- University of Southern California, Information Sciences Institute, Marina del Rey, CA 90292, USA
- University of Southern California, Computer Science Department, Los Angeles, CA 90089, USA
| | - Umang Gupta
- University of Southern California, Information Sciences Institute, Marina del Rey, CA 90292, USA
- University of Southern California, Computer Science Department, Los Angeles, CA 90089, USA
| | - Hamza Saleem
- University of Southern California, Computer Science Department, Los Angeles, CA 90089, USA
| | - Nikhil Dhinagar
- University of Southern California, Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, Marina del Rey, CA 90292, USA
| | - Tanmay Ghai
- University of Southern California, Information Sciences Institute, Marina del Rey, CA 90292, USA
- University of Southern California, Computer Science Department, Los Angeles, CA 90089, USA
| | | | - Rafael Sánchez
- University of Southern California, Information Sciences Institute, Marina del Rey, CA 90292, USA
- University of Southern California, Computer Science Department, Los Angeles, CA 90089, USA
| | - Greg Ver Steeg
- University of California, Riverside, Riverside, CA 92521, USA
| | - Srivatsan Ravi
- University of Southern California, Information Sciences Institute, Marina del Rey, CA 90292, USA
- University of Southern California, Computer Science Department, Los Angeles, CA 90089, USA
| | - Muhammad Naveed
- University of Southern California, Computer Science Department, Los Angeles, CA 90089, USA
| | - Paul M. Thompson
- University of Southern California, Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, Marina del Rey, CA 90292, USA
| | - José Luis Ambite
- University of Southern California, Information Sciences Institute, Marina del Rey, CA 90292, USA
- University of Southern California, Computer Science Department, Los Angeles, CA 90089, USA
| |
Collapse
|
62
|
Kapogiannis D, Manolopoulos A, Mullins R, Avgerinos K, Delgado-Peraza F, Mustapic M, Nogueras-Ortiz C, Yao PJ, Pucha KA, Brooks J, Chen Q, Haas SS, Ge R, Hartnell LM, Cookson MR, Egan JM, Frangou S, Mattson MP. Brain responses to intermittent fasting and the healthy living diet in older adults. Cell Metab 2024; 36:1668-1678.e5. [PMID: 38901423 PMCID: PMC11305918 DOI: 10.1016/j.cmet.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
Diet may promote brain health in metabolically impaired older individuals. In an 8-week randomized clinical trial involving 40 cognitively intact older adults with insulin resistance, we examined the effects of 5:2 intermittent fasting and the healthy living diet on brain health. Although intermittent fasting induced greater weight loss, the two diets had comparable effects in improving insulin signaling biomarkers in neuron-derived extracellular vesicles, decreasing the brain-age-gap estimate (reflecting the pace of biological aging of the brain) on magnetic resonance imaging, reducing brain glucose on magnetic resonance spectroscopy, and improving blood biomarkers of carbohydrate and lipid metabolism, with minimal changes in cerebrospinal fluid biomarkers for Alzheimer's disease. Intermittent fasting and healthy living improved executive function and memory, with intermittent fasting benefiting more certain cognitive measures. In exploratory analyses, sex, body mass index, and apolipoprotein E and SLC16A7 genotypes modulated diet effects. The study provides a blueprint for assessing brain effects of dietary interventions and motivates further research on intermittent fasting and continuous diets for brain health optimization. For further information, please see ClinicalTrials.gov registration: NCT02460783.
Collapse
Affiliation(s)
- Dimitrios Kapogiannis
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Roger Mullins
- Morgan State University, Core Lab, Baltimore, MD, USA
| | | | - Francheska Delgado-Peraza
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Maja Mustapic
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Carlos Nogueras-Ortiz
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Pamela J Yao
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Krishna A Pucha
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Janet Brooks
- Intramural Research Program, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Qinghua Chen
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Shalaila S Haas
- Mt. Sinai School of Medicine, Department of Psychiatry, New York, NY, USA
| | - Ruiyang Ge
- Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Lisa M Hartnell
- Intramural Research Program, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Mark R Cookson
- Intramural Research Program, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Josephine M Egan
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Sophia Frangou
- Mt. Sinai School of Medicine, Department of Psychiatry, New York, NY, USA; Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
63
|
Casanova R, Walker KA, Justice JN, Anderson A, Duggan MR, Cordon J, Barnard RT, Lu L, Hsu FC, Sedaghat S, Prizment A, Kritchevsky SB, Wagenknecht LE, Hughes TM. Associations of plasma proteomics and age-related outcomes with brain age in a diverse cohort. GeroScience 2024; 46:3861-3873. [PMID: 38438772 PMCID: PMC11226584 DOI: 10.1007/s11357-024-01112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
Machine learning models are increasingly being used to estimate "brain age" from neuroimaging data. The gap between chronological age and the estimated brain age gap (BAG) is potentially a measure of accelerated and resilient brain aging. Brain age calculated in this fashion has been shown to be associated with mortality, measures of physical function, health, and disease. Here, we estimate the BAG using a voxel-based elastic net regression approach, and then, we investigate its associations with mortality, cognitive status, and measures of health and disease in participants from Atherosclerosis Risk in Communities (ARIC) study who had a brain MRI at visit 5 of the study. Finally, we used the SOMAscan assay containing 4877 proteins to examine the proteomic associations with the MRI-defined BAG. Among N = 1849 participants (age, 76.4 (SD 5.6)), we found that increased values of BAG were strongly associated with increased mortality and increased severity of the cognitive status. Strong associations with mortality persisted when the analyses were performed in cognitively normal participants. In addition, it was strongly associated with BMI, diabetes, measures of physical function, hypertension, prevalent heart disease, and stroke. Finally, we found 33 proteins associated with BAG after a correction for multiple comparisons. The top proteins with positive associations to brain age were growth/differentiation factor 15 (GDF-15), Sushi, von Willebrand factor type A, EGF, and pentraxin domain-containing protein 1 (SEVP 1), matrilysin (MMP7), ADAMTS-like protein 2 (ADAMTS), and heat shock 70 kDa protein 1B (HSPA1B) while EGF-receptor (EGFR), mast/stem-cell-growth-factor-receptor (KIT), coagulation-factor-VII, and cGMP-dependent-protein-kinase-1 (PRKG1) were negatively associated to brain age. Several of these proteins were previously associated with dementia in ARIC. These results suggest that circulating proteins implicated in biological aging, cellular senescence, angiogenesis, and coagulation are associated with a neuroimaging measure of brain aging.
Collapse
Affiliation(s)
- Ramon Casanova
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC, USA.
| | | | - Jamie N Justice
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Andrea Anderson
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC, USA
| | | | | | - Ryan T Barnard
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC, USA
| | - Lingyi Lu
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC, USA
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC, USA
| | - Sanaz Sedaghat
- School of Public Health, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Anna Prizment
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Timothy M Hughes
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
64
|
Dennis EL, Vervoordt S, Adamson MM, Houshang A, Bigler ED, Caeyenberghs K, Cole JH, Dams-O'Connor K, Deutscher EM, Dobryakova E, Genova HM, Grafman JH, Håberg AK, Hellstrøm T, Irimia A, Koliatsos VE, Lindsey HM, Livny A, Menon DK, Merkley TL, Mohamed AZ, Mondello S, Monti MM, Newcombe VF, Newsome MR, Ponsford J, Rabinowitz A, Smevik H, Spitz G, Venkatesan UM, Westlye LT, Zafonte R, Thompson PM, Wilde EA, Olsen A, Hillary FG. Accelerated Aging after Traumatic Brain Injury: An ENIGMA Multi-Cohort Mega-Analysis. Ann Neurol 2024; 96:365-377. [PMID: 38845484 DOI: 10.1002/ana.26952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE The long-term consequences of traumatic brain injury (TBI) on brain structure remain uncertain. Given evidence that a single significant brain injury event increases the risk of dementia, brain-age estimation could provide a novel and efficient indexing of the long-term consequences of TBI. Brain-age procedures use predictive modeling to calculate brain-age scores for an individual using structural magnetic resonance imaging (MRI) data. Complicated mild, moderate, and severe TBI (cmsTBI) is associated with a higher predicted age difference (PAD), but the progression of PAD over time remains unclear. We sought to examine whether PAD increases as a function of time since injury (TSI) and if injury severity and sex interacted to influence this progression. METHODS Through the ENIGMA Adult Moderate and Severe (AMS)-TBI working group, we examine the largest TBI sample to date (n = 343), along with controls, for a total sample size of n = 540, to replicate and extend prior findings in the study of TBI brain age. Cross-sectional T1w-MRI data were aggregated across 7 cohorts, and brain age was established using a similar brain age algorithm to prior work in TBI. RESULTS Findings show that PAD widens with longer TSI, and there was evidence for differences between sexes in PAD, with men showing more advanced brain age. We did not find strong evidence supporting a link between PAD and cognitive performance. INTERPRETATION This work provides evidence that changes in brain structure after cmsTBI are dynamic, with an initial period of change, followed by relative stability in brain morphometry, eventually leading to further changes in the decades after a single cmsTBI. ANN NEUROL 2024;96:365-377.
Collapse
Affiliation(s)
- Emily L Dennis
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | | | - Maheen M Adamson
- Women's Operational Military Exposure Network (WOMEN) & Rehabilitation, VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Amiri Houshang
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Erin D Bigler
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - James H Cole
- Centre for Medical Image Computing, Computer Science, University College London, London, UK
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evelyn M Deutscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Helen M Genova
- Rutgers New Jersey Medical School, Newark, NJ, USA
- Center for Neuropsychology and Neuroscience Research, Kessler Foundation, East Hanover, NJ, USA
| | | | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Torgeir Hellstrøm
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, Dornsife College of Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Vassilis E Koliatsos
- Departments of Pathology (Neuropathology), Neurology, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Neuropsychiatry Program, Sheppard and Enoch Pratt Hospital, Baltimore, MD, USA
| | - Hannah M Lindsey
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Abigail Livny
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Aviv, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sagol Neuroscience School, Tel-Aviv University, Tel-Aviv, Israel
| | - David K Menon
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Tricia L Merkley
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Abdalla Z Mohamed
- Thompson Institute, University of the Sunshine Coast, Birtinya, Australia
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Martin M Monti
- Department of Psychology, UCLA, Los Angeles, CA, USA
- Brain Injury Research Center (BIRC), Department of Neurosurgery, UCLA, Los Angeles, CA, USA
| | | | - Mary R Newsome
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Australia
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Amanda Rabinowitz
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
- Department of Rehabilitation Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hanne Smevik
- Department of Psychology, NTNU, Trondheim, Norway
- NorHEAD - Norwegian Centre for Headache Research, NTNU, Trondheim, Norway
| | - Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Australia
- School of Psychological Sciences, Monash University, Melbourne, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Umesh M Venkatesan
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
- Department of Rehabilitation Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital/Brigham & Women's Hospital, Boston, MA, USA
- Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Alexander Olsen
- Department of Psychology, NTNU, Trondheim, Norway
- NorHEAD - Norwegian Centre for Headache Research, NTNU, Trondheim, Norway
- Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Frank G Hillary
- Department of Psychology, Penn State University, State College, PA, USA
| |
Collapse
|
65
|
Chen YS, Kuo CY, Lu CH, Wang YW, Chou KH, Lin WC. Multiscale brain age prediction reveals region-specific accelerated brain aging in Parkinson's disease. Neurobiol Aging 2024; 140:122-129. [PMID: 38776615 DOI: 10.1016/j.neurobiolaging.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/20/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Brain biological age, which measures the aging process in the brain using neuroimaging data, has been used to assess advanced brain aging in neurodegenerative diseases, including Parkinson disease (PD). However, assuming that whole brain degeneration is uniform may not be sufficient for assessing the complex neurodegenerative processes in PD. In this study we constructed a multiscale brain age prediction models based on structural MRI of 1240 healthy participants. To assess the brain aging patterns using the brain age prediction model, 93 PD patients and 91 healthy controls matching for sex and age were included. We found increased global and regional brain age in PD patients. The advanced aging regions were predominantly noted in the frontal and temporal cortices, limbic system, basal ganglia, thalamus, and cerebellum. Furthermore, region-level rather than global brain age in PD patients was associated with disease severity. Our multiscale brain age prediction model could aid in the development of objective image-based biomarkers to detect advanced brain aging in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yueh-Sheng Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Yuan Kuo
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yuan-Wei Wang
- The Science & Technology Policy Research and Information Center, National Applied Research Laboratories(NARLabs), Taipei, Taiwan
| | - Kun-Hsien Chou
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
66
|
Petersen M, Link MA, Mayer C, Nägele FL, Schell M, Fiehler J, Gallinat J, Kühn S, Twerenbold R, Omidvarnia A, Hoffstaedter F, Patil KR, Eickhoff SB, Thomalla G, Cheng B. Markers of Biological Brain Aging Mediate Effects of Vascular Risk Factors on Cognitive and Motor Functions: A Multivariate Imaging Analysis of 40,579 Individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.24.24310926. [PMID: 39108518 PMCID: PMC11302623 DOI: 10.1101/2024.07.24.24310926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The increasing global life expectancy brings forth challenges associated with age-related cognitive and motor declines. To better understand underlying mechanisms, we investigated the connection between markers of biological brain aging based on magnetic resonance imaging (MRI), cognitive and motor performance, as well as modifiable vascular risk factors, using a large-scale neuroimaging analysis in 40,579 individuals of the population-based UK Biobank and Hamburg City Health Study. Employing partial least squares correlation analysis (PLS), we investigated multivariate associative effects between three imaging markers of biological brain aging - relative brain age, white matter hyperintensities of presumed vascular origin, and peak-width of skeletonized mean diffusivity - and multi-domain cognitive test performances and motor test results. The PLS identified a latent dimension linking higher markers of biological brain aging to poorer cognitive and motor performances, accounting for 94.7% of shared variance. Furthermore, a mediation analysis revealed that biological brain aging mediated the relationship of vascular risk factors - including hypertension, glucose, obesity, and smoking - to cognitive and motor function. These results were replicable in both cohorts. By integrating multi-domain data with a comprehensive methodological approach, our study contributes evidence of a direct association between vascular health, biological brain aging, and functional cognitive as well as motor performance, emphasizing the need for early and targeted preventive strategies to maintain cognitive and motor independence in aging populations.
Collapse
Affiliation(s)
- Marvin Petersen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz A Link
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carola Mayer
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix L Nägele
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Schell
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Raphael Twerenbold
- Department of General and Interventional Cardiology, University Heart and Vascular Center, Hamburg, Germany
- Epidemiological Study Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Luebeck, Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center, Hamburg, Germany
| | - Amir Omidvarnia
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jullich, Jullich, Germany
| | - Felix Hoffstaedter
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jullich, Jullich, Germany
| | - Kaustubh R Patil
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jullich, Jullich, Germany
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jullich, Jullich, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
67
|
Huang H, Wang J, Dunk MM, Guo J, Dove A, Ma J, Bennett DA, Xu W. Association of Cardiovascular Health With Brain Age Estimated Using Machine Learning Methods in Middle-Aged and Older Adults. Neurology 2024; 103:e209530. [PMID: 38889383 PMCID: PMC11226327 DOI: 10.1212/wnl.0000000000209530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Cardiovascular health (CVH) has been associated with cognitive decline and dementia, but the extent to which CVH affects brain health remains unclear. We investigated the association of CVH, assessed using Life's Essential 8 (LE8), with neuroimaging-based brain age and brain-predicted age difference (brain-PAD). METHODS This longitudinal community-based study was based on UK Biobank participants aged 40-69 years who were free from dementia and other neurologic diseases at baseline. LE8 score at baseline was assessed with 8 measures and tertiled as low, moderate, and high CVH. Structural and functional brain MRI scans were performed approximately 9 years after baseline, and 1,079 measures from 6 neuroimaging modalities were used to model brain age. A Least Absolute Shrinkage and Selection Operator regression model was trained in 4,355 healthy participants and then used to calculate brain age and brain-PAD in the whole population. Data were analyzed using linear regression models. RESULTS The study included 32,646 participants (mean age at baseline 54.74 years; 53.44% female; mean LE8 score: 71.90). In multivariable-adjusted linear regression, higher LE8 score was associated with younger brain age (β [95% CI] -0.037 [-0.043 to -0.031]) and more negative brain-PAD (β [95% CI] -0.043 [-0.048 to -0.038]) (brain looks younger for chronological age). Compared with high CVH, low/moderate CVH was associated with older brain age (β [95% CI] 1.030 [0.852-1.208]/0.475 [0.303-0.647]) and increased brain-PAD (β [95% CI] 1.193 [1.029-1.357]/0.528 [0.370-0.686]). The associations between low CVH and older brain age/brain-PAD remained similar and significant in both middle-aged (β [95% CI] 1.199 [0.992-1.405]/1.351 [1.159-1.542]) and older adults (β [95% CI] 0.764 [0.417-1.110]/0.948 [0.632-1.263]). DISCUSSION Low CVH is associated with older brain age and greater brain-PAD, even among middle-aged adults. Our findings suggest that optimizing CVH could support brain health. The main limitation of our study is that the study sample was healthier than the general population, thus caution is required when generalizing our findings to other populations.
Collapse
Affiliation(s)
- Huijie Huang
- From the Department of Epidemiology and Biostatistics (H.H., J.M., W.X.), School of Public Health, Tianjin Medical University; Department of Epidemiology (J.W.), College of Preventive Medicine, Third Military Medical University, China; Aging Research Center (M.M.D., J.G., A.D., W.X.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Nutrition and Health (J.G.), China Agricultural University, Beijing, China; and Rush Alzheimer's Disease Center (D.A.B.), Rush University Medical Center, Chicago, IL
| | - Jiao Wang
- From the Department of Epidemiology and Biostatistics (H.H., J.M., W.X.), School of Public Health, Tianjin Medical University; Department of Epidemiology (J.W.), College of Preventive Medicine, Third Military Medical University, China; Aging Research Center (M.M.D., J.G., A.D., W.X.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Nutrition and Health (J.G.), China Agricultural University, Beijing, China; and Rush Alzheimer's Disease Center (D.A.B.), Rush University Medical Center, Chicago, IL
| | - Michelle M Dunk
- From the Department of Epidemiology and Biostatistics (H.H., J.M., W.X.), School of Public Health, Tianjin Medical University; Department of Epidemiology (J.W.), College of Preventive Medicine, Third Military Medical University, China; Aging Research Center (M.M.D., J.G., A.D., W.X.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Nutrition and Health (J.G.), China Agricultural University, Beijing, China; and Rush Alzheimer's Disease Center (D.A.B.), Rush University Medical Center, Chicago, IL
| | - Jie Guo
- From the Department of Epidemiology and Biostatistics (H.H., J.M., W.X.), School of Public Health, Tianjin Medical University; Department of Epidemiology (J.W.), College of Preventive Medicine, Third Military Medical University, China; Aging Research Center (M.M.D., J.G., A.D., W.X.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Nutrition and Health (J.G.), China Agricultural University, Beijing, China; and Rush Alzheimer's Disease Center (D.A.B.), Rush University Medical Center, Chicago, IL
| | - Abigail Dove
- From the Department of Epidemiology and Biostatistics (H.H., J.M., W.X.), School of Public Health, Tianjin Medical University; Department of Epidemiology (J.W.), College of Preventive Medicine, Third Military Medical University, China; Aging Research Center (M.M.D., J.G., A.D., W.X.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Nutrition and Health (J.G.), China Agricultural University, Beijing, China; and Rush Alzheimer's Disease Center (D.A.B.), Rush University Medical Center, Chicago, IL
| | - Jun Ma
- From the Department of Epidemiology and Biostatistics (H.H., J.M., W.X.), School of Public Health, Tianjin Medical University; Department of Epidemiology (J.W.), College of Preventive Medicine, Third Military Medical University, China; Aging Research Center (M.M.D., J.G., A.D., W.X.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Nutrition and Health (J.G.), China Agricultural University, Beijing, China; and Rush Alzheimer's Disease Center (D.A.B.), Rush University Medical Center, Chicago, IL
| | - David A Bennett
- From the Department of Epidemiology and Biostatistics (H.H., J.M., W.X.), School of Public Health, Tianjin Medical University; Department of Epidemiology (J.W.), College of Preventive Medicine, Third Military Medical University, China; Aging Research Center (M.M.D., J.G., A.D., W.X.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Nutrition and Health (J.G.), China Agricultural University, Beijing, China; and Rush Alzheimer's Disease Center (D.A.B.), Rush University Medical Center, Chicago, IL
| | - Weili Xu
- From the Department of Epidemiology and Biostatistics (H.H., J.M., W.X.), School of Public Health, Tianjin Medical University; Department of Epidemiology (J.W.), College of Preventive Medicine, Third Military Medical University, China; Aging Research Center (M.M.D., J.G., A.D., W.X.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Nutrition and Health (J.G.), China Agricultural University, Beijing, China; and Rush Alzheimer's Disease Center (D.A.B.), Rush University Medical Center, Chicago, IL
| |
Collapse
|
68
|
Yu Y, Cui H, Haas SS, New F, Sanford N, Yu K, Zhan D, Yang G, Gao J, Wei D, Qiu J, Banaj N, Boomsma DI, Breier A, Brodaty H, Buckner RL, Buitelaar JK, Cannon DM, Caseras X, Clark VP, Conrod PJ, Crivello F, Crone EA, Dannlowski U, Davey CG, de Haan L, de Zubicaray GI, Di Giorgio A, Fisch L, Fisher SE, Franke B, Glahn DC, Grotegerd D, Gruber O, Gur RE, Gur RC, Hahn T, Harrison BJ, Hatton S, Hickie IB, Hulshoff Pol HE, Jamieson AJ, Jernigan TL, Jiang J, Kalnin AJ, Kang S, Kochan NA, Kraus A, Lagopoulos J, Lazaro L, McDonald BC, McDonald C, McMahon KL, Mwangi B, Piras F, Rodriguez‐Cruces R, Royer J, Sachdev PS, Satterthwaite TD, Saykin AJ, Schumann G, Sevaggi P, Smoller JW, Soares JC, Spalletta G, Tamnes CK, Trollor JN, Van't Ent D, Vecchio D, Walter H, Wang Y, Weber B, Wen W, Wierenga LM, Williams SCR, Wu M, Zunta‐Soares GB, Bernhardt B, Thompson P, Frangou S, Ge R. Brain-age prediction: Systematic evaluation of site effects, and sample age range and size. Hum Brain Mapp 2024; 45:e26768. [PMID: 38949537 PMCID: PMC11215839 DOI: 10.1002/hbm.26768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5-90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8-80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9-25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5-40 and 40-90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science, web-based platform for individualized neuroimaging metrics.
Collapse
Affiliation(s)
- Yuetong Yu
- Djavad Mowafaghian Centre for Brain Health, Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Hao‐Qi Cui
- Djavad Mowafaghian Centre for Brain Health, Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Shalaila S. Haas
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Faye New
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Nicole Sanford
- Djavad Mowafaghian Centre for Brain Health, Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kevin Yu
- Djavad Mowafaghian Centre for Brain Health, Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Denghuang Zhan
- School of Population and Public HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Guoyuan Yang
- Advanced Research Institute of Multidisciplinary Sciences, School of Medical Technology, School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Jia‐Hong Gao
- Center for MRI ResearchPeking UniversityBeijingChina
| | - Dongtao Wei
- School of PsychologySouthwest UniversityChongqingChina
| | - Jiang Qiu
- School of PsychologySouthwest UniversityChongqingChina
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | - Dorret I. Boomsma
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Alan Breier
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Randy L. Buckner
- Department of Psychology, Center for Brain ScienceHarvard UniversityBostonMassachusettsUSA
- Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jan K. Buitelaar
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Dara M. Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience CentreCollege of Medicine Nursing and Health Sciences, University of GalwayGalwayIreland
| | - Xavier Caseras
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Vincent P. Clark
- Psychology Clinical Neuroscience Center, Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Patricia J. Conrod
- Department of Psychiatry and AddictionUniversité de Montréal, CHU Ste JustineMontrealQuebecCanada
| | - Fabrice Crivello
- Institut des Maladies NeurodégénérativesUniversité de BordeauxBordeauxFrance
| | - Eveline A. Crone
- Department of Psychology, Faculty of Social SciencesLeiden UniversityLeidenThe Netherlands
- Erasmus School of Social and Behavioral SciencesErasmus University RotterdamRotterdamThe Netherlands
| | - Udo Dannlowski
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | | | - Lieuwe de Haan
- Department of PsychiatryAmsterdam UMCAmsterdamThe Netherlands
| | - Greig I. de Zubicaray
- Faculty of Health, School of Psychology & CounsellingQueensland University of TechnologyBrisbaneQueenslandAustralia
| | | | - Lukas Fisch
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Simon E. Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Barbara Franke
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - David C. Glahn
- Department of Psychiatry, Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Dominik Grotegerd
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General PsychiatryHeidelberg UniversityHeidelbergGermany
| | - Raquel E. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ruben C. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tim Hahn
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Ben J. Harrison
- Department of PsychiatryThe University of MelbourneMelbourneVictoriaAustralia
| | - Sean Hatton
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
| | - Ian B. Hickie
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
| | - Hilleke E. Hulshoff Pol
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of PsychologyUtrecht UniversityUtrechtThe Netherlands
- Department of PsychiatryUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Alec J. Jamieson
- Department of PsychiatryThe University of MelbourneMelbourneVictoriaAustralia
| | - Terry L. Jernigan
- Center for Human Development, Departments of Cognitive Science, Psychiatry, and RadiologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Andrew J. Kalnin
- Department of RadiologyThe Ohio State University College of MedicineColumbusOhioUSA
| | - Sim Kang
- West Region, Institute of Mental HealthSingaporeSingapore
| | - Nicole A. Kochan
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Anna Kraus
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Jim Lagopoulos
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and PsychologyHospital Clínic, IDIBAPS, CIBERSAM, University of BarcelonaBarcelonaSpain
| | - Brenna C. McDonald
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience CentreCollege of Medicine Nursing and Health Sciences, University of GalwayGalwayIreland
| | - Katie L. McMahon
- School of Clinical Sciences, Centre for Biomedical TechnologiesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Benson Mwangi
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | | | - Jessica Royer
- McConnell Brain Imaging CentreMcGill UniversityMontrealQuebecCanada
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | | | - Andrew J. Saykin
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Gunter Schumann
- Department of PsychiatryCCM, Charite Universitaetsmedizin BerlinBerlinGermany
- Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBIFudan UniversityShanghaiChina
| | - Pierluigi Sevaggi
- Department of Translational Biomedicine and NeuroscienceUniversity of Bari Aldo MoroBariItaly
| | - Jordan W. Smoller
- Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Center for Precision PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
| | - Jair C. Soares
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | - Christian K. Tamnes
- PROMENTA Research Center, Department of PsychologyUniversity of OsloOsloNorway
| | - Julian N. Trollor
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Department of Developmental Disability Neuropsychiatry, School of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Dennis Van't Ent
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin BerlinCorporate Member of FU Berlin and Humboldt Universität zu BerlinBerlinGermany
| | - Yang Wang
- Department of RadiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Bernd Weber
- Institute for Experimental Epileptology and Cognition ResearchUniversity of Bonn and University Hospital BonnBonnGermany
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Lara M. Wierenga
- Department of Psychology, Faculty of Social SciencesLeiden UniversityLeidenThe Netherlands
| | - Steven C. R. Williams
- Department of NeuroimagingInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Mon‐Ju Wu
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Giovana B. Zunta‐Soares
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Boris Bernhardt
- McConnell Brain Imaging CentreMcGill UniversityMontrealQuebecCanada
| | - Paul Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Sophia Frangou
- Djavad Mowafaghian Centre for Brain Health, Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ruiyang Ge
- Djavad Mowafaghian Centre for Brain Health, Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | |
Collapse
|
69
|
Nakaya M, Sato N, Suzuki F, Maikusa N, Matsuda H, Kimura Y, Shigemoto Y, Chiba E, Ota M, Yamamura T, Sato W, Okamoto T, Abe O. Multimodal imaging analyses in neuromyelitis optica spectrum disorder with or without visual disturbance. J Neurol Sci 2024; 462:123090. [PMID: 38865876 DOI: 10.1016/j.jns.2024.123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND AND PURPOSE Neuromyelitis optica spectrum disorder is a demyelinating and inflammatory affliction that often leads to visual disturbance. Various imaging techniques, including free-water imaging, have been used to determine neuroinflammation and degeneration. Therefore, this study aimed at determining multimodal imaging differences between patients with neuromyelitis optica spectrum disorder, especially those with visual disturbance, and healthy controls. MATERIALS AND METHODS Eighty-five neuromyelitis optica spectrum disorder patients and 89 age- and sex-matched healthy controls underwent 3-T magnetic resonance imaging (MRI). We analyzed adjusted brain-predicted age difference, voxel-based morphometry, and free-water-corrected diffusion tensor imaging (DTI) by tract-based spatial statistics in each patient group (MRI-positive/negative neuromyelitis optica spectrum disorder patients with or without a history of visual disturbance) compared with the healthy control group. RESULTS MRI-positive neuromyelitis optica spectrum disorder patients exhibited reduced volumes of the bilateral thalamus. Tract-based spatial statistics showed diffuse white matter abnormalities in all DTI metrics in MRI-positive neuromyelitis optica spectrum disorder patients with a history of visual disturbance. In MRI-negative neuromyelitis optica spectrum disorder patients with a history of visual disturbance, voxel-based morphometry showed volume reduction of bilateral thalami and optic radiations, and tract-based spatial statistics revealed significantly lower free-water-corrected fractional anisotropy and higher mean diffusivity in the posterior dominant distributions, including the optic nerve radiation. CONCLUSION Free-water-corrected DTI and voxel-based morphometry analyses may reflect symptoms of visual disturbance in neuromyelitis optica spectrum disorder.
Collapse
Affiliation(s)
- Moto Nakaya
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan; Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan.
| | - Fumio Suzuki
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan; Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Norihide Maikusa
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Hiroshi Matsuda
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan; Department of Biofunctional Imaging, Fukushima Medical University, 1 Hikariga-Oka, Fukushima 960-1295, Japan
| | - Yukio Kimura
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Yoko Shigemoto
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Emiko Chiba
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Miho Ota
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan; Department of Neuropsychiatry, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8576, Japan
| | - Takashi Yamamura
- Department of Immunology, Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Wakiro Sato
- Department of Immunology, Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Tomoko Okamoto
- Department of Neurology, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
70
|
Borrelli S, Guisset F, Vanden Bulcke C, Stölting A, Bugli C, Lolli V, Du Pasquier R, van Pesch V, Absinta M, Pasi M, Maggi P. Enlarged perivascular spaces are associated with brain microangiopathy and aging in multiple sclerosis. Mult Scler 2024; 30:983-993. [PMID: 38850029 DOI: 10.1177/13524585241256881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
BACKGROUND Growing evidence links brain-MRI enlarged perivascular spaces (EPVS) and multiple sclerosis (MS), but their role remains unclear. OBJECTIVE This study aimed to investigate the cross-sectional associations of EPVS with several neuroinflammatory and neurodegenerative features in a large multicentric-MS cohort. METHODS In total, 207 patients underwent 3T axial-T2-weighted brain-MRI for EPVS assessment (EPVS dichotomized into high/low according to ⩾ 2/< 2 rating categories). MRI biomarkers included brain-predicted age and brain-predicted age difference (brain-PAD), central vein sign (CVS)-positive lesion percentage (CVS%), paramagnetic rim and cortical lesions, T2-lesion load, and brain volumetry. The variable relative importance for EPVS-category prediction was explored using a classification random forest approach. RESULTS High EPVS patients were older (49 vs 44 years, p = 0.003), had ⩾ 1 vascular risk factors (VRFs; p = 0.005), lower CVS% (67% vs 78%, p < 0.001), reduced brain volumes (whole brain: 0.63 vs 0.73, p = 0.01; gray matter: 0.36 vs 0.40; p = 0.002), and older brain-predicted age (58 vs 50 years, p < 0.001). No differences were found for neuroinflammatory markers. After adjusting for age and VFRs (multivariate analyses), the high EPVS category correlated with lower CVS% (odds ratio (OR) = 0.98, 95% confidence interval (CI) = 0.96-0.99; p = 0.02), lower whole brain (OR = 0.01, 95% CI = 0.0003-0.5; p = 0.02), gray matter (OR = 0.0004, 95% CI = 0.0000004-0.4; p = 0.03) volumes, and higher brain-PAD (OR = 1.05, 95% CI = 1.01-1.09; p = 0.02). Random forest identified brain-PAD as the most important predictor of high EPVS. CONCLUSION EPVS in MS likely reflect microangiopathic disease rather than neuroinflammation, potentially contributing to accelerated neurodegeneration.
Collapse
Affiliation(s)
- Serena Borrelli
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium/Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Brussels, Brussels, Belgium
| | - François Guisset
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Colin Vanden Bulcke
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium/ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Anna Stölting
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Céline Bugli
- Plateforme technologique de Support en Méthodologie et Calcul Statistique, Université catholique de Louvain, Brussels, Belgium
| | - Valentina Lolli
- Department of Radiology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Brussels, Brussels, Belgium
| | - Renaud Du Pasquier
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Vincent van Pesch
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Martina Absinta
- Vita-Salute San Raffaele University, Milan, Italy/Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marco Pasi
- Stroke Unit, Department of Neurology, CIC-IT 1415, CHRU de Tours, INSERM 1253 iBrain, Tours, France
| | - Pietro Maggi
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium/Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland/Department of Neurology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
71
|
Ogg M, Coon WG. Self-Supervised Transformer Model Training for a Sleep-EEG Foundation Model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-6. [PMID: 40039051 DOI: 10.1109/embc53108.2024.10782281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The American Academy of Sleep Medicine (AASM) recognizes five sleep/wake states (Wake, N1, N2, N3, REM), yet this classification schema provides only a high-level summary of sleep and likely overlooks important neurological or health information. New, data-driven approaches are needed to more deeply probe the information content of sleep signals. Here we present a self-supervised approach that learns the structure embedded in large quantities of neurophysiological sleep data. This masked transformer training procedure is inspired by high performing self-supervised methods developed for speech transcription. We show that self-supervised pre-training matches or outperforms supervised sleep stage classification, especially when labeled data or compute-power is limited. Perhaps more importantly, we also show that our pre-trained model is flexible and can be fine-tuned to perform well on new EEG recording montages not seen in training, and for new tasks including distinguishing individuals or quantifying "brain age" (a potential health biomarker). This suggests that modern methods can automatically learn information that is potentially overlooked by the 5-class sleep staging schema, laying the groundwork for new sleep scoring schemas and further data-driven exploration of sleep.
Collapse
|
72
|
Vakli P, Weiss B, Rozmann D, Erőss G, Nárai Á, Hermann P, Vidnyánszky Z. The effect of head motion on brain age prediction using deep convolutional neural networks. Neuroimage 2024; 294:120646. [PMID: 38750907 DOI: 10.1016/j.neuroimage.2024.120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024] Open
Abstract
Deep learning can be used effectively to predict participants' age from brain magnetic resonance imaging (MRI) data, and a growing body of evidence suggests that the difference between predicted and chronological age-referred to as brain-predicted age difference (brain-PAD)-is related to various neurological and neuropsychiatric disease states. A crucial aspect of the applicability of brain-PAD as a biomarker of individual brain health is whether and how brain-predicted age is affected by MR image artifacts commonly encountered in clinical settings. To investigate this issue, we trained and validated two different 3D convolutional neural network architectures (CNNs) from scratch and tested the models on a separate dataset consisting of motion-free and motion-corrupted T1-weighted MRI scans from the same participants, the quality of which were rated by neuroradiologists from a clinical diagnostic point of view. Our results revealed a systematic increase in brain-PAD with worsening image quality for both models. This effect was also observed for images that were deemed usable from a clinical perspective, with brains appearing older in medium than in good quality images. These findings were also supported by significant associations found between the brain-PAD and standard image quality metrics indicating larger brain-PAD for lower-quality images. Our results demonstrate a spurious effect of advanced brain aging as a result of head motion and underline the importance of controlling for image quality when using brain-predicted age based on structural neuroimaging data as a proxy measure for brain health.
Collapse
Affiliation(s)
- Pál Vakli
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary.
| | - Béla Weiss
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Biomatics and Applied Artificial Intelligence Institute, John von Neumann Faculty of Informatics, Óbuda University, Budapest 1034, Hungary.
| | - Dorina Rozmann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - György Erőss
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Ádám Nárai
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Doctoral School of Biology and Sportbiology, Institute of Biology, Faculty of Sciences, University of Pécs, Pécs 7624, Hungary
| | - Petra Hermann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary.
| |
Collapse
|
73
|
Liu YS, Baxi M, Madan CR, Zhan K, Makris N, Rosene DL, Killiany RJ, Cetin-Karayumak S, Pasternak O, Kubicki M, Cao B. Brain age of rhesus macaques over the lifespan. Neurobiol Aging 2024; 139:73-81. [PMID: 38643691 DOI: 10.1016/j.neurobiolaging.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/23/2024]
Abstract
Through the application of machine learning algorithms to neuroimaging data the brain age methodology was shown to provide a useful individual-level biological age prediction and identify key brain regions responsible for the prediction. In this study, we present the methodology of constructing a rhesus macaque brain age model using a machine learning algorithm and discuss the key predictive brain regions in comparison to the human brain, to shed light on cross-species primate similarities and differences. Structural information of the brain (e.g., parcellated volumes) from brain magnetic resonance imaging of 43 rhesus macaques were used to develop brain atlas-based features to build a brain age model that predicts biological age. The best-performing model used 22 selected features and achieved an R2 of 0.72. We also identified interpretable predictive brain features including Right Fronto-orbital Cortex, Right Frontal Pole, Right Inferior Lateral Parietal Cortex, and Bilateral Posterior Central Operculum. Our findings provide converging evidence of the parallel and comparable brain regions responsible for both non-human primates and human biological age prediction.
Collapse
Affiliation(s)
- Yang S Liu
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Madhura Baxi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Kevin Zhan
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Nikolaos Makris
- Department of Psychiatry, Center for Morphometric Analysis, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ronald J Killiany
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Suheyla Cetin-Karayumak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Center for Morphometric Analysis, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bo Cao
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada; Department of Computing Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
74
|
Burmistrov DE, Gudkov SV, Franceschi C, Vedunova MV. Sex as a Determinant of Age-Related Changes in the Brain. Int J Mol Sci 2024; 25:7122. [PMID: 39000227 PMCID: PMC11241365 DOI: 10.3390/ijms25137122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The notion of notable anatomical, biochemical, and behavioral distinctions within male and female brains has been a contentious topic of interest within the scientific community over several decades. Advancements in neuroimaging and molecular biological techniques have increasingly elucidated common mechanisms characterizing brain aging while also revealing disparities between sexes in these processes. Variations in cognitive functions; susceptibility to and progression of neurodegenerative conditions, notably Alzheimer's and Parkinson's diseases; and notable disparities in life expectancy between sexes, underscore the significance of evaluating aging within the framework of gender differences. This comprehensive review surveys contemporary literature on the restructuring of brain structures and fundamental processes unfolding in the aging brain at cellular and molecular levels, with a focus on gender distinctions. Additionally, the review delves into age-related cognitive alterations, exploring factors influencing the acceleration or deceleration of aging, with particular attention to estrogen's hormonal support of the central nervous system.
Collapse
Affiliation(s)
- Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia;
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
75
|
Beheshti I, Potvin O, Dadar M, Duchesne S. Cerebrovascular lesion loads and accelerated brain aging: insights into the cognitive spectrum. FRONTIERS IN DEMENTIA 2024; 3:1380015. [PMID: 39081605 PMCID: PMC11285662 DOI: 10.3389/frdem.2024.1380015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 08/02/2024]
Abstract
Introduction White matter hyperintensities (WMHs) and cerebral microbleeds are widespread among aging population and linked with cognitive deficits in mild cognitive impairment (MCI), vascular MCI (V-MCI), and Alzheimer's disease without (AD) or with a vascular component (V-AD). In this study, we aimed to investigate the association between brain age, which reflects global brain health, and cerebrovascular lesion load in the context of pathological aging in diverse forms of clinically-defined neurodegenerative conditions. Methods We computed brain-predicted age difference (brain-PAD: predicted brain age minus chronological age) in the Comprehensive Assessment of Neurodegeneration and Dementia cohort of the Canadian Consortium on Neurodegeneration in Aging including 70 cognitively intact elderly (CIE), 173 MCI, 88 V-MCI, 50 AD, and 47 V-AD using T1-weighted magnetic resonance imaging (MRI) scans. We used a well-established automated methodology that leveraged fluid attenuated inversion recovery MRIs for precise quantification of WMH burden. Additionally, cerebral microbleeds were detected utilizing a validated segmentation tool based on the ResNet50 network, utilizing routine T1-weighted, T2-weighted, and T2* MRI scans. Results The mean brain-PAD in the CIE cohort was around zero, whereas the four categories showed a significantly higher mean brain-PAD compared to CIE, except MCI group. A notable association trend between brain-PAD and WMH loads was observed in aging and across the spectrum of cognitive impairment due to AD, but not between brain-PAD and microbleed loads. Discussion WMHs were associated with faster brain aging and should be considered as a risk factor which imperils brain health in aging and exacerbate brain abnormalities in the context of neurodegeneration of presumed AD origin. Our findings underscore the significance of novel research endeavors aimed at elucidating the etiology, prevention, and treatment of WMH in the area of brain aging.
Collapse
Affiliation(s)
- Iman Beheshti
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Olivier Potvin
- Centre de recherche CERVO, Québec, QC, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec, Québec, QC, Canada
| | - Mahsa Dadar
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Simon Duchesne
- Centre de recherche CERVO, Québec, QC, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec, Québec, QC, Canada
- Département de Radiologie et de Médecine Nucléaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
76
|
Wittens MMJ, Denissen S, Sima DM, Fransen E, Niemantsverdriet E, Bastin C, Benoit F, Bergmans B, Bier JC, de Deyn PP, Deryck O, Hanseeuw B, Ivanoiu A, Picard G, Ribbens A, Salmon E, Segers K, Sieben A, Struyfs H, Thiery E, Tournoy J, van Binst AM, Versijpt J, Smeets D, Bjerke M, Nagels G, Engelborghs S. Brain age as a biomarker for pathological versus healthy ageing - a REMEMBER study. Alzheimers Res Ther 2024; 16:128. [PMID: 38877568 PMCID: PMC11179390 DOI: 10.1186/s13195-024-01491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVES This study aimed to evaluate the potential clinical value of a new brain age prediction model as a single interpretable variable representing the condition of our brain. Among many clinical use cases, brain age could be a novel outcome measure to assess the preventive effect of life-style interventions. METHODS The REMEMBER study population (N = 742) consisted of cognitively healthy (HC,N = 91), subjective cognitive decline (SCD,N = 65), mild cognitive impairment (MCI,N = 319) and AD dementia (ADD,N = 267) subjects. Automated brain volumetry of global, cortical, and subcortical brain structures computed by the CE-labeled and FDA-cleared software icobrain dm (dementia) was retrospectively extracted from T1-weighted MRI sequences that were acquired during clinical routine at participating memory clinics from the Belgian Dementia Council. The volumetric features, along with sex, were combined into a weighted sum using a linear model, and were used to predict 'brain age' and 'brain predicted age difference' (BPAD = brain age-chronological age) for every subject. RESULTS MCI and ADD patients showed an increased brain age compared to their chronological age. Overall, brain age outperformed BPAD and chronological age in terms of classification accuracy across the AD spectrum. There was a weak-to-moderate correlation between total MMSE score and both brain age (r = -0.38,p < .001) and BPAD (r = -0.26,p < .001). Noticeable trends, but no significant correlations, were found between BPAD and incidence of conversion from MCI to ADD, nor between BPAD and conversion time from MCI to ADD. BPAD was increased in heavy alcohol drinkers compared to non-/sporadic (p = .014) and moderate (p = .040) drinkers. CONCLUSIONS Brain age and associated BPAD have the potential to serve as indicators for, and to evaluate the impact of lifestyle modifications or interventions on, brain health.
Collapse
Affiliation(s)
- Mandy M J Wittens
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium
| | - Stijn Denissen
- icometrix, Leuven, Belgium
- AIMS lab, Center for Neurosciences (C4N), Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Diana M Sima
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium
- icometrix, Leuven, Belgium
| | - Erik Fransen
- Centre of Medical Genetics, University of Antwerp, and Antwerp University Hospital - UZA, Edegem, Belgium
| | | | - Christine Bastin
- GIGA-CRC-IVI, Liège University, Allée du Six Août, 8, Liège, 4000, Belgium
| | - Florence Benoit
- Geriatrics Department, Brugmann University Hospital, Universite Libre de Bruxelles, Brussels, Belgium
| | - Bruno Bergmans
- Neurology Department, AZ St-Jan Brugge, Brugge, Belgium
- Ghent University Hospital, Ghent, Belgium
| | - Jean-Christophe Bier
- Neurological department H. U. B. - Erasme Hospital - Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Peter Paul de Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Antwerp, 2610, Belgium
- Memory Clinic, Ziekenhuisnetwerk, Antwerp, Belgium
| | - Olivier Deryck
- Neurology Department, AZ St-Jan Brugge, Brugge, Belgium
- Ghent University Hospital, Ghent, Belgium
| | - Bernard Hanseeuw
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, 1200, Belgium
- Department of Neurology, Clinique Universitaires Saint-Luc, Brussels, 1200, Belgium
- WELBIO Department, WEL Research Institute, Wavre, 1300, Belgium
| | - Adrian Ivanoiu
- Department of Neurology, Cliniques Universitaires St Luc, and Institute of Neuroscience, Université Catholique de Louvain, Woluwe-Saint-Lambert (Brussels), Belgium
| | - Gaëtane Picard
- Department of Neurology, Clinique Saint-Pierre, Ottignies, Belgium
| | | | - Eric Salmon
- GIGA-CRC-IVI, Liège University, Allée du Six Août, 8, Liège, 4000, Belgium
- Department of Neurology, Memory Clinic, Centre Hospitalier Universitaire (CHU) Liège, Liège, Belgium
| | - Kurt Segers
- Memory Clinic - Neurology and Geriatrics Department, CHU Brugmann, Van Gehuchtenplein 4, Brussels, 1020, Belgium
| | - Anne Sieben
- Neuropathology Lab, IBB-NeuroBiobank BB190113, Born Bunge Institute, Antwerp, Belgium
- Department of Pathology, Antwerp University Hospital - UZA, Antwerp, Belgium
- Laboratory of Neurology, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Hanne Struyfs
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Johnson and Johnson Innovative Medicine, Beerse, Belgium
| | - Evert Thiery
- Department of Neurology, University Hospital Ghent, Ghent University, Ghent, Belgium
| | - Jos Tournoy
- Department of Chronic Diseases, Metabolism and Ageing, Geriatric Medicine and Memory Clinic, University Hospitals Leuven and KU Leuven, Louvain, Belgium
| | - Anne-Marie van Binst
- Radiology Department, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Jan Versijpt
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium
| | - Dirk Smeets
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium
- icometrix, Leuven, Belgium
| | - Maria Bjerke
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium
- Department of Clinical Chemistry, Laboratory of Neurochemistry, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Guy Nagels
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- St. Edmund Hall, University of Oxford, Oxford, UK
- AIMS lab, Center for Neurosciences (C4N), Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
77
|
Tetereva A, Pat N. Brain age has limited utility as a biomarker for capturing fluid cognition in older individuals. eLife 2024; 12:RP87297. [PMID: 38869938 PMCID: PMC11175613 DOI: 10.7554/elife.87297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
One well-known biomarker candidate that supposedly helps capture fluid cognition is Brain Age, or a predicted value based on machine-learning models built to predict chronological age from brain MRI. To formally evaluate the utility of Brain Age for capturing fluid cognition, we built 26 age-prediction models for Brain Age based on different combinations of MRI modalities, using the Human Connectome Project in Aging (n=504, 36-100 years old). First, based on commonality analyses, we found a large overlap between Brain Age and chronological age: Brain Age could uniquely add only around 1.6% in explaining variation in fluid cognition over and above chronological age. Second, the age-prediction models that performed better at predicting chronological age did NOT necessarily create better Brain Age for capturing fluid cognition over and above chronological age. Instead, better-performing age-prediction models created Brain Age that overlapped larger with chronological age, up to around 29% out of 32%, in explaining fluid cognition. Third, Brain Age missed around 11% of the total variation in fluid cognition that could have been explained by the brain variation. That is, directly predicting fluid cognition from brain MRI data (instead of relying on Brain Age and chronological age) could lead to around a 1/3-time improvement of the total variation explained. Accordingly, we demonstrated the limited utility of Brain Age as a biomarker for fluid cognition and made some suggestions to ensure the utility of Brain Age in explaining fluid cognition and other phenotypes of interest.
Collapse
Affiliation(s)
- Alina Tetereva
- Department of Psychology, University of OtagoDunedinNew Zealand
| | - Narun Pat
- Department of Psychology, University of OtagoDunedinNew Zealand
| |
Collapse
|
78
|
Prince JB, Davis HL, Tan J, Muller-Townsend K, Markovic S, Lewis DMG, Hastie B, Thompson MB, Drummond PD, Fujiyama H, Sohrabi HR. Cognitive and neuroscientific perspectives of healthy ageing. Neurosci Biobehav Rev 2024; 161:105649. [PMID: 38579902 DOI: 10.1016/j.neubiorev.2024.105649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/17/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
With dementia incidence projected to escalate significantly within the next 25 years, the United Nations declared 2021-2030 the Decade of Healthy Ageing, emphasising cognition as a crucial element. As a leading discipline in cognition and ageing research, psychology is well-equipped to offer insights for translational research, clinical practice, and policy-making. In this comprehensive review, we discuss the current state of knowledge on age-related changes in cognition and psychological health. We discuss cognitive changes during ageing, including (a) heterogeneity in the rate, trajectory, and characteristics of decline experienced by older adults, (b) the role of cognitive reserve in age-related cognitive decline, and (c) the potential for cognitive training to slow this decline. We also examine ageing and cognition through multiple theoretical perspectives. We highlight critical unresolved issues, such as the disparate implications of subjective versus objective measures of cognitive decline and the insufficient evaluation of cognitive training programs. We suggest future research directions, and emphasise interdisciplinary collaboration to create a more comprehensive understanding of the factors that modulate cognitive ageing.
Collapse
Affiliation(s)
- Jon B Prince
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia.
| | - Helen L Davis
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia
| | - Jane Tan
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia
| | - Katrina Muller-Townsend
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia
| | - Shaun Markovic
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia; Discipline of Psychology, Counselling and Criminology, Edith Cowan University, WA, Australia
| | - David M G Lewis
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia
| | | | - Matthew B Thompson
- School of Psychology, Murdoch University, WA, Australia; Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, WA, Australia
| | - Peter D Drummond
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia
| | - Hakuei Fujiyama
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, WA, Australia
| | - Hamid R Sohrabi
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, WA, Australia; Department of Biomedical Sciences, Macquarie University, NSW, Australia.
| |
Collapse
|
79
|
Villa C, Combi R. Epigenetics in Alzheimer's Disease: A Critical Overview. Int J Mol Sci 2024; 25:5970. [PMID: 38892155 PMCID: PMC11173284 DOI: 10.3390/ijms25115970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Epigenetic modifications have been implicated in a number of complex diseases as well as being a hallmark of organismal aging. Several reports have indicated an involvement of these changes in Alzheimer's disease (AD) risk and progression, most likely contributing to the dysregulation of AD-related gene expression measured by DNA methylation studies. Given that DNA methylation is tissue-specific and that AD is a brain disorder, the limitation of these studies is the ability to identify clinically useful biomarkers in a proxy tissue, reflective of the tissue of interest, that would be less invasive, more cost-effective, and easily obtainable. The age-related DNA methylation changes have also been used to develop different generations of epigenetic clocks devoted to measuring the aging in different tissues that sometimes suggests an age acceleration in AD patients. This review critically discusses epigenetic changes and aging measures as potential biomarkers for AD detection, prognosis, and progression. Given that epigenetic alterations are chemically reversible, treatments aiming at reversing these modifications will be also discussed as promising therapeutic strategies for AD.
Collapse
Affiliation(s)
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
80
|
Zwilling CE, Wu J, Barbey AK. Investigating nutrient biomarkers of healthy brain aging: a multimodal brain imaging study. NPJ AGING 2024; 10:27. [PMID: 38773079 PMCID: PMC11109270 DOI: 10.1038/s41514-024-00150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024]
Abstract
The emerging field of Nutritional Cognitive Neuroscience aims to uncover specific foods and nutrients that promote healthy brain aging. Central to this effort is the discovery of nutrient profiles that can be targeted in nutritional interventions designed to promote brain health with respect to multimodal neuroimaging measures of brain structure, function, and metabolism. The present study therefore conducted one of the largest and most comprehensive nutrient biomarker studies examining multimodal neuroimaging measures of brain health within a sample of 100 older adults. To assess brain health, a comprehensive battery of well-established cognitive and brain imaging measures was administered, along with 13 blood-based biomarkers of diet and nutrition. The findings of this study revealed distinct patterns of aging, categorized into two phenotypes of brain health based on hierarchical clustering. One phenotype demonstrated an accelerated rate of aging, while the other exhibited slower-than-expected aging. A t-test analysis of dietary biomarkers that distinguished these phenotypes revealed a nutrient profile with higher concentrations of specific fatty acids, antioxidants, and vitamins. Study participants with this nutrient profile demonstrated better cognitive scores and delayed brain aging, as determined by a t-test of the means. Notably, participant characteristics such as demographics, fitness levels, and anthropometrics did not account for the observed differences in brain aging. Therefore, the nutrient pattern identified by the present study motivates the design of neuroscience-guided dietary interventions to promote healthy brain aging.
Collapse
Affiliation(s)
- Christopher E Zwilling
- Department of Psychology, University of Illinois, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, USA
| | - Jisheng Wu
- Decision Neuroscience Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Aron K Barbey
- Department of Psychology, University of Illinois, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, USA.
- Decision Neuroscience Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Bioengineering, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
81
|
DeJong NR, Jansen JFA, van Boxtel MPJ, Schram MT, Stehouwer CDA, van Greevenbroek MMJ, van der Kallen CJH, Koster A, Eussen SJPM, de Galan BE, Backes WH, Köhler S. Brain structure and connectivity mediate the association between lifestyle and cognition: The Maastricht Study. Brain Commun 2024; 6:fcae171. [PMID: 38846531 PMCID: PMC11154141 DOI: 10.1093/braincomms/fcae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024] Open
Abstract
Life-course exposure to risk and protective factors impacts brain macro- and micro-structure, which in turn affects cognition. The concept of brain-age gap assesses brain health by comparing an individual's neuroimaging-based predicted age with their calendar age. A higher BAG implies accelerated brain ageing and is expected to be associated with worse cognition. In this study, we comprehensively modelled mutual associations between brain health and lifestyle factors, brain age and cognition in a large, middle-aged population. For this study, cognitive test scores, lifestyle and 3T MRI data for n = 4881 participants [mean age (± SD) = 59.2 (±8.6), 50.1% male] were available from The Maastricht Study, a population-based cohort study with extensive phenotyping. Whole-brain volumes (grey matter, cerebrospinal fluid and white matter hyperintensity), cerebral microbleeds and structural white matter connectivity were calculated. Lifestyle factors were combined into an adapted LIfestyle for BRAin health weighted sum score, with higher score indicating greater dementia risk. Cognition was calculated by averaging z-scores across three cognitive domains (memory, information processing speed and executive function and attention). Brain-age gap was calculated by comparing calendar age to predictions from a neuroimaging-based multivariable regression model. Paths between LIfestyle for BRAin health tertiles, brain-age gap and cognitive function were tested using linear regression and structural equation modelling, adjusting for sociodemographic and clinical confounders. The results show that cerebrospinal fluid, grey matter, white matter hyperintensity and cerebral microbleeds best predicted brain-age gap (R 2 = 0.455, root mean squared error = 6.44). In regression analysis, higher LIfestyle for BRAin health scores (greater dementia risk) were associated with higher brain-age gap (standardized regression coefficient β = 0.126, P < 0.001) and worse cognition (β = -0.046, P = 0.013), while higher brain-age gap was associated with worse cognition (β=-0.163, P < 0.001). In mediation analysis, 24.7% of the total difference in cognition between the highest and lowest LIfestyle for BRAin health tertile was mediated by brain-age gap (β indirect = -0.049, P < 0.001; β total = -0.198, P < 0.001) and an additional 3.8% was mediated via connectivity (β indirect = -0.006, P < 0.001; β total = -0.150, P < 0.001). Findings suggest that associations between health- and lifestyle-based risk/protective factors (LIfestyle for BRAin health) and cognition can be partially explained by structural brain health markers (brain-age gap) and white matter connectivity markers. Lifestyle interventions targeted at high-risk individuals in mid-to-late life may be effective in promoting and preserving cognitive function in the general public.
Collapse
Affiliation(s)
- Nathan R DeJong
- Faculty of Health, Medicine and Life Sciences, School for Mental Health & Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
- Alzheimer Centrum Limburg, Maastricht University Medical Center+, 6229 ET Maastricht, The Netherlands
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Jacobus F A Jansen
- Faculty of Health, Medicine and Life Sciences, School for Mental Health & Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AP Eindhoven, The Netherlands
| | - Martin P J van Boxtel
- Faculty of Health, Medicine and Life Sciences, School for Mental Health & Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
- Alzheimer Centrum Limburg, Maastricht University Medical Center+, 6229 ET Maastricht, The Netherlands
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Miranda T Schram
- Faculty of Health, Medicine and Life Sciences, School for Mental Health & Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
- Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Maastricht Heart & Vascular Center, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Marleen M J van Greevenbroek
- Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Carla J H van der Kallen
- Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Annemarie Koster
- Faculty of Health, Medicine and Life Sciences, Care and Public Health Research Institute (CAPHRI), Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Social Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 GT Maastricht, The Netherlands
| | - Simone J P M Eussen
- Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Faculty of Health, Medicine and Life Sciences, Care and Public Health Research Institute (CAPHRI), Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Epidemiology, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Bastiaan E de Galan
- Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Department of Internal Medicine, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Walter H Backes
- Faculty of Health, Medicine and Life Sciences, School for Mental Health & Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Sebastian Köhler
- Faculty of Health, Medicine and Life Sciences, School for Mental Health & Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
- Alzheimer Centrum Limburg, Maastricht University Medical Center+, 6229 ET Maastricht, The Netherlands
| |
Collapse
|
82
|
Feng L, Ye Z, Du Z, Pan Y, Canida T, Ke H, Liu S, Chen S, Hong LE, Kochunov P, Chen J, Lei DK, Shenassa E, Ma T. Association between allostatic load and accelerated white matter brain aging: findings from the UK Biobank. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.26.24301793. [PMID: 38343822 PMCID: PMC10854327 DOI: 10.1101/2024.01.26.24301793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
White matter (WM) brain age, a neuroimaging-derived biomarker indicating WM microstructural changes, helps predict dementia and neurodegenerative disorder risks. The cumulative effect of chronic stress on WM brain aging remains unknown. In this study, we assessed cumulative stress using a multi-system composite allostatic load (AL) index based on inflammatory, anthropometric, respiratory, lipidemia, and glucose metabolism measures, and investigated its association with WM brain age gap (BAG), computed from diffusion tensor imaging data using a machine learning model, among 22 951 European ancestries aged 40 to 69 (51.40% women) from UK Biobank. Linear regression, Mendelian randomization, along with inverse probability weighting and doubly robust methods, were used to evaluate the impact of AL on WM BAG adjusting for age, sex, socioeconomic, and lifestyle behaviors. We found increasing one AL score unit significantly increased WM BAG by 0.29 years in association analysis and by 0.33 years in Mendelian analysis. The age- and sex-stratified analysis showed consistent results among participants 45-54 and 55-64 years old, with no significant sex difference. This study demonstrated that higher chronic stress was significantly associated with accelerated brain aging, highlighting the importance of stress management in reducing dementia and neurodegenerative disease risks.
Collapse
Affiliation(s)
- Li Feng
- Department of Nutrition and Food Science, College of Agriculture & Natural Resources, University of Maryland, College Park, Maryland, United States of America
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, Maryland, United States of America
| | - Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Zewen Du
- Department of Biostatistics, School of Global Public Health, New York University, New York, New York, United States of America
| | - Yezhi Pan
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Travis Canida
- Department of Mathematics, The college of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Hongjie Ke
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, Maryland, United States of America
| | - Song Liu
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - L. Elliot Hong
- Louis A. Faillace Department of Psychiatry & Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Peter Kochunov
- Louis A. Faillace Department of Psychiatry & Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jie Chen
- Department of Health Policy and Management, School of Public Health, University of Maryland, College Park, Maryland, United States of America
| | - David K.Y. Lei
- Department of Nutrition and Food Science, College of Agriculture & Natural Resources, University of Maryland, College Park, Maryland, United States of America
| | - Edmond Shenassa
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, Maryland, United States of America
- Maternal & Child Health Program, School of Public Health, University of Maryland, College Park, Maryland, United States of America
- Department of Epidemiology, School of Public Health, Brown University, Rhode Island, United States of America
- Department of Epidemiology & Public Health, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
83
|
Guo X, Ding Y, Xu W, Wang D, Yu H, Lin Y, Chang S, Zhang Q, Zhang Y. Predicting brain age gap with radiomics and automl: A Promising approach for age-Related brain degeneration biomarkers. J Neuroradiol 2024; 51:265-273. [PMID: 37722591 DOI: 10.1016/j.neurad.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The Brain Age Gap (BAG), which refers to the difference between chronological age and predicted neuroimaging age, is proposed as a potential biomarker for age-related brain degeneration. However, existing brain age prediction models usually rely on a single marker and can not discover meaningful hidden information in radiographic images. This study focuses on the application of radiomics, an advanced imaging analysis technique, combined with automated machine learning to predict BAG. Our methods achieve a promising result with a mean absolute error of 1.509 using the Alzheimer's Disease Neuroimaging Initiative dataset. Furthermore, we find that the hippocampus and parahippocampal gyrus play a significant role in predicting age with interpretable method called SHapley Additive exPlanations. Additionally, our investigation of age prediction discrepancies between patients with Alzheimer's disease (AD) and those with mild cognitive impairment (MCI) reveals a notable correlation with clinical cognitive assessment scale scores. This suggests that BAG has the potential to serve as a biomarker to support the diagnosis of AD and MCI. Overall, this study presents valuable insights into the application of neuroimaging models in the diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoliang Guo
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yanhui Ding
- School of Information Science and Engineering, Shandong Normal University, Jinan, China.
| | - Weizhi Xu
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Dong Wang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunication, Beijing, China
| | - Huiying Yu
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yongkang Lin
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Shulei Chang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Qiqi Zhang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yongxin Zhang
- School of Mathematics and Statistics, Shandong Normal University, Jinan, China.
| |
Collapse
|
84
|
Dular L, Pernuš F, Špiclin Ž. Extensive T1-weighted MRI preprocessing improves generalizability of deep brain age prediction models. Comput Biol Med 2024; 173:108320. [PMID: 38531250 DOI: 10.1016/j.compbiomed.2024.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Brain age is an estimate of chronological age obtained from T1-weighted magnetic resonance images (T1w MRI), representing a straightforward diagnostic biomarker of brain aging and associated diseases. While the current best accuracy of brain age predictions on T1w MRIs of healthy subjects ranges from two to three years, comparing results across studies is challenging due to differences in the datasets, T1w preprocessing pipelines, and evaluation protocols used. This paper investigates the impact of T1w image preprocessing on the performance of four deep learning brain age models from recent literature. Four preprocessing pipelines, which differed in terms of registration transform, grayscale correction, and software implementation, were evaluated. The results showed that the choice of software or preprocessing steps could significantly affect the prediction error, with a maximum increase of 0.75 years in mean absolute error (MAE) for the same model and dataset. While grayscale correction had no significant impact on MAE, using affine rather than rigid registration to brain atlas statistically significantly improved MAE. Models trained on 3D images with isotropic 1mm3 resolution exhibited less sensitivity to the T1w preprocessing variations compared to 2D models or those trained on downsampled 3D images. Our findings indicate that extensive T1w preprocessing improves MAE, especially when predicting on a new dataset. This runs counter to prevailing research literature, which suggests that models trained on minimally preprocessed T1w scans are better suited for age predictions on MRIs from unseen scanners. We demonstrate that, irrespective of the model or T1w preprocessing used during training, applying some form of offset correction is essential to enable the model's performance to generalize effectively on datasets from unseen sites, regardless of whether they have undergone the same or different T1w preprocessing as the training set.
Collapse
Affiliation(s)
- Lara Dular
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| | - Franjo Pernuš
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| | - Žiga Špiclin
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia.
| |
Collapse
|
85
|
Mulholland MM, Stuifbergen A, De La Torre Schutz A, Franco Rocha OY, Blayney DW, Kesler SR. Evidence of compensatory neural hyperactivity in a subgroup of chemotherapy-treated breast cancer survivors and its association with brain aging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.22.24306190. [PMID: 38712178 PMCID: PMC11071584 DOI: 10.1101/2024.04.22.24306190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Chemotherapy-related cognitive impairment (CRCI) remains poorly understood in terms of the mechanisms of cognitive decline. Neural hyperactivity has been reported on average in cancer survivors, but it is unclear which patients demonstrate this neurophenotype, limiting precision medicine in this population. We evaluated a retrospective sample of 80 breast cancer survivors and 80 non-cancer controls, age 35-73, for which we had previously identified and validated three data-driven, biological subgroups (biotypes) of CRCI. We measured neural activity using the z-normalized percent amplitude of fluctuation from resting state functional magnetic resonance imaging (MRI). We tested established, quantitative criteria to determine if hyperactivity can accurately be considered compensatory. We also calculated brain age gap by applying a previously validated algorithm to anatomic MRI. We found that neural activity differed across the three CRCI biotypes and controls (F = 13.5, p < 0.001), with Biotype 2 demonstrating significant hyperactivity compared to the other groups (p < 0.004, corrected), primarily in prefrontal regions. Alternatively, Biotypes 1 and 3 demonstrated significant hypoactivity (p < 0.02, corrected). Hyperactivity in Biotype 2 met several of the criteria to be considered compensatory. However, we also found a positive relationship between neural activity and brain age gap in these patients (r = 0.45, p = 0.042). Our results indicated that neural hyperactivity is specific to a subgroup of breast cancer survivors and, while it seems to support preserved cognitive function, it could also increase the risk of accelerated brain aging. These findings could inform future neuromodulatory interventions with respect to the risks and benefits of up or downregulation of neural activity.
Collapse
Affiliation(s)
- Michele M Mulholland
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Alexa Stuifbergen
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, USA
| | | | - Oscar Y Franco Rocha
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, USA
| | - Douglas W Blayney
- Department of Medical Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Shelli R Kesler
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
86
|
Tustison NJ, Yassa MA, Rizvi B, Cook PA, Holbrook AJ, Sathishkumar MT, Tustison MG, Gee JC, Stone JR, Avants BB. ANTsX neuroimaging-derived structural phenotypes of UK Biobank. Sci Rep 2024; 14:8848. [PMID: 38632390 PMCID: PMC11024129 DOI: 10.1038/s41598-024-59440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
UK Biobank is a large-scale epidemiological resource for investigating prospective correlations between various lifestyle, environmental, and genetic factors with health and disease progression. In addition to individual subject information obtained through surveys and physical examinations, a comprehensive neuroimaging battery consisting of multiple modalities provides imaging-derived phenotypes (IDPs) that can serve as biomarkers in neuroscience research. In this study, we augment the existing set of UK Biobank neuroimaging structural IDPs, obtained from well-established software libraries such as FSL and FreeSurfer, with related measurements acquired through the Advanced Normalization Tools Ecosystem. This includes previously established cortical and subcortical measurements defined, in part, based on the Desikan-Killiany-Tourville atlas. Also included are morphological measurements from two recent developments: medial temporal lobe parcellation of hippocampal and extra-hippocampal regions in addition to cerebellum parcellation and thickness based on the Schmahmann anatomical labeling. Through predictive modeling, we assess the clinical utility of these IDP measurements, individually and in combination, using commonly studied phenotypic correlates including age, fluid intelligence, numeric memory, and several other sociodemographic variables. The predictive accuracy of these IDP-based models, in terms of root-mean-squared-error or area-under-the-curve for continuous and categorical variables, respectively, provides comparative insights between software libraries as well as potential clinical interpretability. Results demonstrate varied performance between package-based IDP sets and their combination, emphasizing the need for careful consideration in their selection and utilization.
Collapse
Affiliation(s)
- Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| | - Michael A Yassa
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Batool Rizvi
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Philip A Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew J Holbrook
- Department of Biostatistics, University of California, Los Angeles, CA, USA
| | | | | | - James C Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Brian B Avants
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
87
|
Hanson JL, Adkins DJ, Bacas E, Zhou P. Examining the reliability of brain age algorithms under varying degrees of participant motion. Brain Inform 2024; 11:9. [PMID: 38573551 PMCID: PMC10994881 DOI: 10.1186/s40708-024-00223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
Brain age algorithms using data science and machine learning techniques show promise as biomarkers for neurodegenerative disorders and aging. However, head motion during MRI scanning may compromise image quality and influence brain age estimates. We examined the effects of motion on brain age predictions in adult participants with low, high, and no motion MRI scans (Original N = 148; Analytic N = 138). Five popular algorithms were tested: brainageR, DeepBrainNet, XGBoost, ENIGMA, and pyment. Evaluation metrics, intraclass correlations (ICCs), and Bland-Altman analyses assessed reliability across motion conditions. Linear mixed models quantified motion effects. Results demonstrated motion significantly impacted brain age estimates for some algorithms, with ICCs dropping as low as 0.609 and errors increasing up to 11.5 years for high motion scans. DeepBrainNet and pyment showed greatest robustness and reliability (ICCs = 0.956-0.965). XGBoost and brainageR had the largest errors (up to 13.5 RMSE) and bias with motion. Findings indicate motion artifacts influence brain age estimates in significant ways. Furthermore, our results suggest certain algorithms like DeepBrainNet and pyment may be preferable for deployment in populations where motion during MRI acquisition is likely. Further optimization and validation of brain age algorithms is critical to use brain age as a biomarker relevant for clinical outcomes.
Collapse
Affiliation(s)
- Jamie L Hanson
- Learning, Research & Development Center, University of Pittsburgh, Murdoch Building 3420 Forbes Ave. Rm. 639, Pittsburgh, PA, 15260, USA.
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Dorthea J Adkins
- Learning, Research & Development Center, University of Pittsburgh, Murdoch Building 3420 Forbes Ave. Rm. 639, Pittsburgh, PA, 15260, USA
| | - Eva Bacas
- Learning, Research & Development Center, University of Pittsburgh, Murdoch Building 3420 Forbes Ave. Rm. 639, Pittsburgh, PA, 15260, USA
| | - Peiran Zhou
- Learning, Research & Development Center, University of Pittsburgh, Murdoch Building 3420 Forbes Ave. Rm. 639, Pittsburgh, PA, 15260, USA
| |
Collapse
|
88
|
Iyer KK, Roberts JA, Waak M, Vogrin SJ, Kevat A, Chawla J, Haataja LM, Lauronen L, Vanhatalo S, Stevenson NJ. A growth chart of brain function from infancy to adolescence based on EEG. EBioMedicine 2024; 102:105061. [PMID: 38537603 PMCID: PMC11026939 DOI: 10.1016/j.ebiom.2024.105061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND In children, objective, quantitative tools that determine functional neurodevelopment are scarce and rarely scalable for clinical use. Direct recordings of cortical activity using routinely acquired electroencephalography (EEG) offer reliable measures of brain function. METHODS We developed and validated a measure of functional brain age (FBA) using a residual neural network-based interpretation of the paediatric EEG. In this cross-sectional study, we included 1056 children with typical development ranging in age from 1 month to 18 years. We analysed a 10- to 15-min segment of 18-channel EEG recorded during light sleep (N1 and N2 states). FINDINGS The FBA had a weighted mean absolute error (wMAE) of 0.85 years (95% CI: 0.69-1.02; n = 1056). A two-channel version of the FBA had a wMAE of 1.51 years (95% CI: 1.30-1.73; n = 1056) and was validated on an independent set of EEG recordings (wMAE = 2.27 years, 95% CI: 1.90-2.65; n = 723). Group-level maturational delays were also detected in a small cohort of children with Trisomy 21 (Cohen's d = 0.36, p = 0.028). INTERPRETATION A FBA, based on EEG, is an accurate, practical and scalable automated tool to track brain function maturation throughout childhood with accuracy comparable to widely used physical growth charts. FUNDING This research was supported by the National Health and Medical Research Council, Australia, Helsinki University Diagnostic Center Research Funds, Finnish Academy, Finnish Paediatric Foundation, and Sigrid Juselius Foundation.
Collapse
Affiliation(s)
- Kartik K Iyer
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - James A Roberts
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Michaela Waak
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Queensland Children's Hospital, Brisbane, Australia
| | | | - Ajay Kevat
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Queensland Children's Hospital, Brisbane, Australia
| | - Jasneek Chawla
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Queensland Children's Hospital, Brisbane, Australia
| | - Leena M Haataja
- Departments of Physiology and Clinical Neurophysiology, BABA Center, Paediatric Research Center, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Leena Lauronen
- Departments of Physiology and Clinical Neurophysiology, BABA Center, Paediatric Research Center, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sampsa Vanhatalo
- Departments of Physiology and Clinical Neurophysiology, BABA Center, Paediatric Research Center, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Nathan J Stevenson
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
89
|
Chang JR, Yao ZF, Hsieh S, Nordling TEM. Age Prediction Using Resting-State Functional MRI. Neuroinformatics 2024; 22:119-134. [PMID: 38341830 DOI: 10.1007/s12021-024-09653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/13/2024]
Abstract
The increasing lifespan and large individual differences in cognitive capability highlight the importance of comprehending the aging process of the brain. Contrary to visible signs of bodily ageing, like greying of hair and loss of muscle mass, the internal changes that occur within our brains remain less apparent until they impair function. Brain age, distinct from chronological age, reflects our brain's health status and may deviate from our actual chronological age. Notably, brain age has been associated with mortality and depression. The brain is plastic and can compensate even for severe structural damage by rewiring. Functional characterization offers insights that structural cannot provide. Contrary to the multitude of studies relying on structural magnetic resonance imaging (MRI), we utilize resting-state functional MRI (rsfMRI). We also address the issue of inclusion of subjects with abnormal brain ageing through outlier removal. In this study, we employ the Least Absolute Shrinkage and Selection Operator (LASSO) to identify the 39 most predictive correlations derived from the rsfMRI data. The data is from a cohort of 176 healthy right-handed volunteers, aged 18-78 years (95/81 male/female, mean age 48, SD 17) collected at the Mind Research Imaging Center at the National Cheng Kung University. We establish a normal reference model by excluding 68 outliers, which achieves a leave-one-out mean absolute error of 2.48 years. By asking which additional features that are needed to predict the chronological age of the outliers with a smaller error, we identify correlations predictive of abnormal aging. These are associated with the Default Mode Network (DMN). Our normal reference model has the lowest prediction error among published models evaluated on adult subjects of almost all ages and is thus a candidate for screening for abnormal brain aging that has not yet manifested in cognitive decline. This study advances our ability to predict brain aging and provides insights into potential biomarkers for assessing brain age, suggesting that the role of DMN in brain aging should be studied further.
Collapse
Affiliation(s)
- Jose Ramon Chang
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
| | - Zai-Fu Yao
- College of Education, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Research Center for Education and Mind Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Kinesiology, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Basic Psychology Group, Department of Educational Psychology and Counseling, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shulan Hsieh
- Department of Psychology, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
- Institute of Allied Health Sciences, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
| | - Torbjörn E M Nordling
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan.
| |
Collapse
|
90
|
Seitz-Holland J, Haas SS, Penzel N, Reichenberg A, Pasternak O. BrainAGE, brain health, and mental disorders: A systematic review. Neurosci Biobehav Rev 2024; 159:105581. [PMID: 38354871 PMCID: PMC11119273 DOI: 10.1016/j.neubiorev.2024.105581] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
The imaging-based method of brainAGE aims to characterize an individual's vulnerability to age-related brain changes. The present study systematically reviewed brainAGE findings in neuropsychiatric conditions and discussed the potential of brainAGE as a marker for biological age. A systematic PubMed search (from inception to March 6th, 2023) identified 273 articles. The 30 included studies compared brainAGE between neuropsychiatric and healthy groups (n≥50). We presented results qualitatively and adapted a bias risk assessment questionnaire. The imaging modalities, design, and input features varied considerably between studies. While the studies found higher brainAGE in neuropsychiatric conditions (11 mild cognitive impairment/ dementia, 11 schizophrenia spectrum/ other psychotic and bipolar disorder, six depression/ anxiety, two multiple groups), the associations with clinical characteristics were mixed. While brainAGE is sensitive to group differences, limitations include the lack of diverse training samples, multi-modal studies, and external validation. Only a few studies obtained longitudinal data, and all have used algorithms built solely to predict chronological age. These limitations impede the validity of brainAGE as a biological age marker.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nora Penzel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
91
|
Jockwitz C, Krämer C, Dellani P, Caspers S. Differential predictability of cognitive profiles from brain structure in older males and females. GeroScience 2024; 46:1713-1730. [PMID: 37730943 PMCID: PMC10828131 DOI: 10.1007/s11357-023-00934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
Structural brain imaging parameters may successfully predict cognitive performance in neurodegenerative diseases but mostly fail to predict cognitive abilities in healthy older adults. One important aspect contributing to this might be sex differences. Behaviorally, older males and females have been found to differ in terms of cognitive profiles, which cannot be captured by examining them as one homogenous group. In the current study, we examined whether the prediction of cognitive performance from brain structure, i.e. region-wise grey matter volume (GMV), would benefit from the investigation of sex-specific cognitive profiles in a large sample of older adults (1000BRAINS; N = 634; age range 55-85 years). Prediction performance was assessed using a machine learning (ML) approach. Targets represented a) a whole-sample cognitive component solution extracted from males and females, and b) sex-specific cognitive components. Results revealed a generally low predictability of cognitive profiles from region-wise GMV. In males, low predictability was observed across both, the whole sample as well as sex-specific cognitive components. In females, however, predictability differences across sex-specific cognitive components were observed, i.e. visual working memory (WM) and executive functions showed higher predictability than fluency and verbal WM. Hence, results accentuated that addressing sex-specific cognitive profiles allowed a more fine-grained investigation of predictability differences, which may not be observable in the prediction of the whole-sample solution. The current findings not only emphasize the need to further investigate the predictive power of each cognitive component, but they also emphasize the importance of sex-specific analyses in older adults.
Collapse
Affiliation(s)
- Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Camilla Krämer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Paulo Dellani
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
92
|
Montagnese M, Rittman T. Bridging modifiable risk factors and cognitive decline: the mediating role of brain age. THE LANCET. HEALTHY LONGEVITY 2024; 5:e243-e244. [PMID: 38555918 DOI: 10.1016/s2666-7568(24)00042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Affiliation(s)
- Marcella Montagnese
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK.
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| |
Collapse
|
93
|
Campeau Calfat A, Roger É, Sirois C. [Programme d'été sur le vieillissement de l'Institut du vieillissement des Instituts de Recherche en Santé du Canada : trois pistes de réflexion de participants du Québec]. Can J Aging 2024:1-3. [PMID: 38476013 DOI: 10.1017/s0714980824000035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Chaque année, les Instituts de recherche en santé du Canada (IRSC) subventionnent le Programme d'été sur le vieillissement (PEV). Cette année, la semaine de formation qui rassemblait des étudiants canadiens de tous les cycles supérieurs avait pour thème la recherche multidisciplinaire au quatrième âge. Cette note de recherche présente trois éléments de réflexion de deux participants de l'édition 2023 du PEV : 1) les enjeux liés au vieillissement sont des occasions de transformer les paradigmes de la recherche; 2) la recherche collaborative doit être sociétale, et s'étendre au-delà du cercle restreint des milieux universitaires; 3) les critères d'équité, de diversité et d'inclusion intégrés aux projets de recherche doivent se refléter au sein des organisations qui mènent la recherche.
Collapse
Affiliation(s)
- Alexandre Campeau Calfat
- Faculté de Pharmacie, Université Laval, Québec, Canada
- VITAM - Centre de recherche en santé durable, Québec, Canada
| | - Élise Roger
- Institut Universitaire de Gériatrie de Montréal, Québec, Canada
| | - Caroline Sirois
- Faculté de Pharmacie, Université Laval, Québec, Canada
- VITAM - Centre de recherche en santé durable, Québec, Canada
| |
Collapse
|
94
|
Lim H, Joo Y, Ha E, Song Y, Yoon S, Shin T. Brain Age Prediction Using Multi-Hop Graph Attention Combined with Convolutional Neural Network. Bioengineering (Basel) 2024; 11:265. [PMID: 38534539 DOI: 10.3390/bioengineering11030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Convolutional neural networks (CNNs) have been used widely to predict biological brain age based on brain magnetic resonance (MR) images. However, CNNs focus mainly on spatially local features and their aggregates and barely on the connective information between distant regions. To overcome this issue, we propose a novel multi-hop graph attention (MGA) module that exploits both the local and global connections of image features when combined with CNNs. After insertion between convolutional layers, MGA first converts the convolution-derived feature map into graph-structured data by using patch embedding and embedding-distance-based scoring. Multi-hop connections between the graph nodes are modeled by using the Markov chain process. After performing multi-hop graph attention, MGA re-converts the graph into an updated feature map and transfers it to the next convolutional layer. We combined the MGA module with sSE (spatial squeeze and excitation)-ResNet18 for our final prediction model (MGA-sSE-ResNet18) and performed various hyperparameter evaluations to identify the optimal parameter combinations. With 2788 three-dimensional T1-weighted MR images of healthy subjects, we verified the effectiveness of MGA-sSE-ResNet18 with comparisons to four established, general-purpose CNNs and two representative brain age prediction models. The proposed model yielded an optimal performance with a mean absolute error of 2.822 years and Pearson's correlation coefficient (PCC) of 0.968, demonstrating the potential of the MGA module to improve the accuracy of brain age prediction.
Collapse
Affiliation(s)
- Heejoo Lim
- Division of Mechanical and Biomedical Engineering, Ewha W. University, Seoul 03760, Republic of Korea
- Graduate Program in Smart Factory, Ewha W. University, Seoul 03760, Republic of Korea
| | - Yoonji Joo
- Ewha Brain Institute, Ewha W. University, Seoul 03760, Republic of Korea
| | - Eunji Ha
- Ewha Brain Institute, Ewha W. University, Seoul 03760, Republic of Korea
| | - Yumi Song
- Ewha Brain Institute, Ewha W. University, Seoul 03760, Republic of Korea
- Department of Brain and Cognitive Sciences, Ewha W. University, Seoul 03760, Republic of Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha W. University, Seoul 03760, Republic of Korea
- Department of Brain and Cognitive Sciences, Ewha W. University, Seoul 03760, Republic of Korea
| | - Taehoon Shin
- Division of Mechanical and Biomedical Engineering, Ewha W. University, Seoul 03760, Republic of Korea
- Graduate Program in Smart Factory, Ewha W. University, Seoul 03760, Republic of Korea
| |
Collapse
|
95
|
Kamarajan C, Ardekani BA, Pandey AK, Meyers JL, Chorlian DB, Kinreich S, Pandey G, Richard C, de Viteri SS, Kuang W, Porjesz B. Prediction of brain age in individuals with and at risk for alcohol use disorder using brain morphological features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582844. [PMID: 38496639 PMCID: PMC10942318 DOI: 10.1101/2024.03.01.582844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Brain age measures predicted from structural and functional brain features are increasingly being used to understand brain integrity, disorders, and health. While there is a vast literature showing aberrations in both structural and functional brain measures in individuals with and at risk for alcohol use disorder (AUD), few studies have investigated brain age in these groups. The current study examines brain age measures predicted using brain morphological features, such as cortical thickness and brain volume, in individuals with a lifetime diagnosis of AUD as well as in those at higher risk to develop AUD from families with multiple members affected with AUD (i.e., higher family history density (FHD) scores). The AUD dataset included a group of 30 adult males (mean age = 41.25 years) with a lifetime diagnosis of AUD and currently abstinent and a group of 30 male controls (mean age = 27.24 years) without any history of AUD. A second dataset of young adults who were categorized based on their FHD scores comprised a group of 40 individuals (20 males) with high FHD of AUD (mean age = 25.33 years) and a group of 31 individuals (18 males) with low FHD (mean age = 25.47 years). Brain age was predicted using 187 brain morphological features of cortical thickness and brain volume in an XGBoost regression model; a bias-correction procedure was applied to the predicted brain age. Results showed that both AUD and high FHD individuals showed an increase of 1.70 and 0.09 years (1.08 months), respectively, in their brain age relative to their chronological age, suggesting accelerated brain aging in AUD and risk for AUD. Increased brain age was associated with poor performance on neurocognitive tests of executive functioning in both AUD and high FHD individuals, indicating that brain age can also serve as a proxy for cognitive functioning and brain health. These findings on brain aging in these groups may have important implications for the prevention and treatment of AUD and ensuing cognitive decline.
Collapse
Affiliation(s)
- Chella Kamarajan
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Babak A. Ardekani
- Center for Advanced Brain Imaging, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Department of Psychiatry, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Ashwini K. Pandey
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Jacquelyn L. Meyers
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - David B. Chorlian
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Sivan Kinreich
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Gayathri Pandey
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christian Richard
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Stacey Saenz de Viteri
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Weipeng Kuang
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| |
Collapse
|
96
|
Wood DA, Townend M, Guilhem E, Kafiabadi S, Hammam A, Wei Y, Al Busaidi A, Mazumder A, Sasieni P, Barker GJ, Ourselin S, Cole JH, Booth TC. Optimising brain age estimation through transfer learning: A suite of pre-trained foundation models for improved performance and generalisability in a clinical setting. Hum Brain Mapp 2024; 45:e26625. [PMID: 38433665 PMCID: PMC10910262 DOI: 10.1002/hbm.26625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/27/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Estimated age from brain MRI data has emerged as a promising biomarker of neurological health. However, the absence of large, diverse, and clinically representative training datasets, along with the complexity of managing heterogeneous MRI data, presents significant barriers to the development of accurate and generalisable models appropriate for clinical use. Here, we present a deep learning framework trained on routine clinical data (N up to 18,890, age range 18-96 years). We trained five separate models for accurate brain age prediction (all with mean absolute error ≤4.0 years, R2 ≥ .86) across five different MRI sequences (T2 -weighted, T2 -FLAIR, T1 -weighted, diffusion-weighted, and gradient-recalled echo T2 *-weighted). Our trained models offer dual functionality. First, they have the potential to be directly employed on clinical data. Second, they can be used as foundation models for further refinement to accommodate a range of other MRI sequences (and therefore a range of clinical scenarios which employ such sequences). This adaptation process, enabled by transfer learning, proved effective in our study across a range of MRI sequences and scan orientations, including those which differed considerably from the original training datasets. Crucially, our findings suggest that this approach remains viable even with limited data availability (as low as N = 25 for fine-tuning), thus broadening the application of brain age estimation to more diverse clinical contexts and patient populations. By making these models publicly available, we aim to provide the scientific community with a versatile toolkit, promoting further research in brain age prediction and related areas.
Collapse
Affiliation(s)
- David A. Wood
- School of Biomedical Engineering and Imaging Sciences, Rayne InstituteKing's College LondonLondonUK
| | - Matthew Townend
- School of Biomedical Engineering and Imaging Sciences, Rayne InstituteKing's College LondonLondonUK
| | - Emily Guilhem
- King's College Hospital NHS Foundation TrustLondonUK
| | | | - Ahmed Hammam
- King's College Hospital NHS Foundation TrustLondonUK
| | - Yiran Wei
- School of Biomedical Engineering and Imaging Sciences, Rayne InstituteKing's College LondonLondonUK
| | | | | | - Peter Sasieni
- School of Biomedical Engineering and Imaging Sciences, Rayne InstituteKing's College LondonLondonUK
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and NeuroscienceKing's College LondonLondonUK
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, Rayne InstituteKing's College LondonLondonUK
| | - James H. Cole
- Dementia Research Centre, Institute of NeurologyUniversity College LondonLondonUK
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUK
| | - Thomas C. Booth
- School of Biomedical Engineering and Imaging Sciences, Rayne InstituteKing's College LondonLondonUK
- King's College Hospital NHS Foundation TrustLondonUK
| |
Collapse
|
97
|
Constantinides C, Baltramonaityte V, Caramaschi D, Han LKM, Lancaster TM, Zammit S, Freeman TP, Walton E. Assessing the association between global structural brain age and polygenic risk for schizophrenia in early adulthood: A recall-by-genotype study. Cortex 2024; 172:1-13. [PMID: 38154374 DOI: 10.1016/j.cortex.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/22/2023] [Accepted: 11/23/2023] [Indexed: 12/30/2023]
Abstract
Neuroimaging studies consistently show advanced brain age in schizophrenia, suggesting that brain structure is often 'older' than expected at a given chronological age. Whether advanced brain age is linked to genetic liability for schizophrenia remains unclear. In this pre-registered secondary data analysis, we utilised a recall-by-genotype approach applied to a population-based subsample from the Avon Longitudinal Study of Parents and Children to assess brain age differences between young adults aged 21-24 years with relatively high (n = 96) and low (n = 93) polygenic risk for schizophrenia (SCZ-PRS). A global index of brain age (or brain-predicted age) was estimated using a publicly available machine learning model previously trained on a combination of region-wise gray-matter measures, including cortical thickness, surface area and subcortical volumes derived from T1-weighted magnetic resonance imaging (MRI) scans. We found no difference in mean brain-PAD (the difference between brain-predicted age and chronological age) between the high- and low-SCZ-PRS groups, controlling for the effects of sex and age at time of scanning (b = -.21; 95% CI -2.00, 1.58; p = .82; Cohen's d = -.034; partial R2 = .00029). These findings do not support an association between SCZ-PRS and brain-PAD based on global age-related structural brain patterns, suggesting that brain age may not be a vulnerability marker of common genetic risk for SCZ. Future studies with larger samples and multimodal brain age measures could further investigate global or localised effects of SCZ-PRS.
Collapse
Affiliation(s)
| | | | - Doretta Caramaschi
- Department of Psychology, Faculty of Health and Life Sciences, University of Exeter, UK
| | - Laura K M Han
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia; Orygen, Parkville, Australia
| | | | - Stanley Zammit
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK; Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tom P Freeman
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, UK
| | | |
Collapse
|
98
|
Du J, Pan Y, Jiang J, Lam BCP, Thalamuthu A, Chen R, Tsang IW, Sachdev PS, Wen W. White matter brain age as a biomarker of cerebrovascular burden in the ageing brain. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01758-3. [PMID: 38424358 DOI: 10.1007/s00406-024-01758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/13/2024] [Indexed: 03/02/2024]
Abstract
As the brain ages, it almost invariably accumulates vascular pathology, which differentially affects the cerebral white matter. A rich body of research has investigated the link between vascular risk factors and the brain. One of the less studied questions is that among various modifiable vascular risk factors, which is the most debilitating one for white matter health? A white matter specific brain age was developed to evaluate the overall white matter health from diffusion weighted imaging, using a three-dimensional convolutional neural network deep learning model in both cross-sectional UK biobank participants (n = 37,327) and a longitudinal subset (n = 1409). White matter brain age gap (WMBAG) was the difference between the white matter age and the chronological age. Participants with one, two, and three or more vascular risk factors, compared to those without any, showed an elevated WMBAG of 0.54, 1.23, and 1.94 years, respectively. Diabetes was most strongly associated with an increased WMBAG (1.39 years, p < 0.001) among all risk factors followed by hypertension (0.87 years, p < 0.001) and smoking (0.69 years, p < 0.001). Baseline WMBAG was associated significantly with processing speed, executive and global cognition. Significant associations of diabetes and hypertension with poor processing speed and executive function were found to be mediated through the WMBAG. White matter specific brain age can be successfully targeted for the examination of the most relevant risk factors and cognition, and for tracking an individual's cerebrovascular ageing process. It also provides clinical basis for the better management of specific risk factors.
Collapse
Affiliation(s)
- Jing Du
- Centre for Healthy Brain Aging (CHeBA), School of Psychiatry, UNSW Sydney, Kensington, New South Wales, 2052, Australia.
| | - Yuangang Pan
- Centre for Frontier AI Research (CFAR), A*STAR, Singapore, 138623, Singapore
- Australian Artificial Intelligence Institute (AAII), UTS, Sydney, NSW, 2007, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Aging (CHeBA), School of Psychiatry, UNSW Sydney, Kensington, New South Wales, 2052, Australia
| | - Ben C P Lam
- Centre for Healthy Brain Aging (CHeBA), School of Psychiatry, UNSW Sydney, Kensington, New South Wales, 2052, Australia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Aging (CHeBA), School of Psychiatry, UNSW Sydney, Kensington, New South Wales, 2052, Australia
| | - Rory Chen
- Centre for Healthy Brain Aging (CHeBA), School of Psychiatry, UNSW Sydney, Kensington, New South Wales, 2052, Australia
| | - Ivor W Tsang
- Centre for Frontier AI Research (CFAR), A*STAR, Singapore, 138623, Singapore
- Australian Artificial Intelligence Institute (AAII), UTS, Sydney, NSW, 2007, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Aging (CHeBA), School of Psychiatry, UNSW Sydney, Kensington, New South Wales, 2052, Australia
- Neuropsychiatric Institute (NPI), Euroa Centre, Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Wei Wen
- Centre for Healthy Brain Aging (CHeBA), School of Psychiatry, UNSW Sydney, Kensington, New South Wales, 2052, Australia.
- Neuropsychiatric Institute (NPI), Euroa Centre, Prince of Wales Hospital, Randwick, NSW, 2031, Australia.
| |
Collapse
|
99
|
Kalc P, Dahnke R, Hoffstaedter F, Gaser C. BrainAGE: Revisited and reframed machine learning workflow. Hum Brain Mapp 2024; 45:e26632. [PMID: 38379519 PMCID: PMC10879910 DOI: 10.1002/hbm.26632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Since the introduction of the BrainAGE method, novel machine learning methods for brain age prediction have continued to emerge. The idea of estimating the chronological age from magnetic resonance images proved to be an interesting field of research due to the relative simplicity of its interpretation and its potential use as a biomarker of brain health. We revised our previous BrainAGE approach, originally utilising relevance vector regression (RVR), and substituted it with Gaussian process regression (GPR), which enables more stable processing of larger datasets, such as the UK Biobank (UKB). In addition, we extended the global BrainAGE approach to regional BrainAGE, providing spatially specific scores for five brain lobes per hemisphere. We tested the performance of the new algorithms under several different conditions and investigated their validity on the ADNI and schizophrenia samples, as well as on a synthetic dataset of neocortical thinning. The results show an improved performance of the reframed global model on the UKB sample with a mean absolute error (MAE) of less than 2 years and a significant difference in BrainAGE between healthy participants and patients with Alzheimer's disease and schizophrenia. Moreover, the workings of the algorithm show meaningful effects for a simulated neocortical atrophy dataset. The regional BrainAGE model performed well on two clinical samples, showing disease-specific patterns for different levels of impairment. The results demonstrate that the new improved algorithms provide reliable and valid brain age estimations.
Collapse
Affiliation(s)
- Polona Kalc
- Structural Brain Mapping Group, Department of NeurologyJena University HospitalJenaGermany
| | - Robert Dahnke
- Structural Brain Mapping Group, Department of NeurologyJena University HospitalJenaGermany
- Department of Psychiatry and PsychotherapyJena University HospitalJenaGermany
| | - Felix Hoffstaedter
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, Brain and Behaviour (INM‐7)JülichGermany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Christian Gaser
- Structural Brain Mapping Group, Department of NeurologyJena University HospitalJenaGermany
- Department of Psychiatry and PsychotherapyJena University HospitalJenaGermany
- German Center for Mental Health (DZPG)Jena‐Halle‐MagdeburgGermany
| | | |
Collapse
|
100
|
Guan S, Jiang R, Meng C, Biswal B. Brain age prediction across the human lifespan using multimodal MRI data. GeroScience 2024; 46:1-20. [PMID: 37733220 PMCID: PMC10828281 DOI: 10.1007/s11357-023-00924-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Measuring differences between an individual's age and biological age with biological information from the brain have the potential to provide biomarkers of clinically relevant neurological syndromes that arise later in human life. To explore the effect of multimodal brain magnetic resonance imaging (MRI) features on the prediction of brain age, we investigated how multimodal brain imaging data improved age prediction from more imaging features of structural or functional MRI data by using partial least squares regression (PLSR) and longevity data sets (age 6-85 years). First, we found that the age-predicted values for each of these ten features ranged from high to low: cortical thickness (R = 0.866, MAE = 7.904), all seven MRI features (R = 0.8594, MAE = 8.24), four features in structural MRI (R = 0.8591, MAE = 8.24), fALFF (R = 0.853, MAE = 8.1918), gray matter volume (R = 0.8324, MAE = 8.931), three rs-fMRI feature (R = 0.7959, MAE = 9.744), mean curvature (R = 0.7784, MAE = 10.232), ReHo (R = 0.7833, MAE = 10.122), ALFF (R = 0.7517, MAE = 10.844), and surface area (R = 0.719, MAE = 11.33). In addition, the significance of the volume and size of brain MRI data in predicting age was also studied. Second, our results suggest that all multimodal imaging features, except cortical thickness, improve brain-based age prediction. Third, we found that the left hemisphere contributed more to the age prediction, that is, the left hemisphere showed a greater weight in the age prediction than the right hemisphere. Finally, we found a nonlinear relationship between the predicted age and the amount of MRI data. Combined with multimodal and lifespan brain data, our approach provides a new perspective for chronological age prediction and contributes to a better understanding of the relationship between brain disorders and aging.
Collapse
Affiliation(s)
- Sihai Guan
- College of Electronic and Information, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Electronic and Information Engineering, State Ethnic Affairs Commission, Chengdu, 610041, China.
| | - Runzhou Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Medical Equipment Department, Xiangyang No. 1 People's Hospital, Xiangyang, 441000, China
| | - Chun Meng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bharat Biswal
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|