51
|
Bagalkot T, Sorkin A. Amphetamine Induces Sex-Dependent Loss of the Striatal Dopamine Transporter in Sensitized Mice. eNeuro 2024; 11:ENEURO.0491-23.2023. [PMID: 38164591 PMCID: PMC10849026 DOI: 10.1523/eneuro.0491-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Dopamine transporter (DAT) controls dopamine signaling in the brain through the reuptake of synaptically released dopamine. DAT is a target of abused psychostimulants such as amphetamine (Amph). Acute Amph administration induces transient DAT endocytosis, which, among other Amph effects on dopaminergic neurons, elevates extracellular dopamine. However, the effects of repeated Amph abuse, leading to behavioral sensitization and drug addiction, on DAT are unknown. Hence, we developed a 14 d Amph-sensitization protocol in knock-in mice expressing HA-epitope-tagged DAT (HA-DAT) and investigated the effects of Amph challenge on sensitized HA-DAT animals. The Amph challenge resulted in the highest locomotor activity on Day 14 in both sexes, which was sustained for 1 h in male but not female mice. Strikingly, significant (by 30-60%) loss of the HA-DAT protein in the striatum was caused by the Amph challenge of sensitized males but not females. Amph also reduced V max of dopamine transport in the striatal synaptosomes of males without changing K m values. Consistently, immunofluorescence microscopy revealed a significant increase of HA-DAT colocalization with the endosomal protein VPS35 only in Amph-challenged males. Amph-induced loss of striatal HA-DAT in sensitized mice was blocked by chloroquine, vacuolin-1, and inhibitor of Rho-associated kinases ROCK1/2, indicative of the involvement of endocytic trafficking in the DAT protein loss. Interestingly, an apparent degradation of HA-DAT protein was observed in the nucleus accumbens and not in the dorsal striatum. We propose that Amph challenge in sensitized mice triggers Rho-mediated endocytosis and post-endocytic trafficking of DAT in a brain-region-specific and sex-dependent manner.
Collapse
Affiliation(s)
- Tarique Bagalkot
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh 15261, Pennsylvania
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh 15261, Pennsylvania
| |
Collapse
|
52
|
Wu J, Wei J, Chen H, Dang Y, Lei F. Rho Kinase (ROCK) Inhibitors for the Treatment of Glaucoma. Curr Drug Targets 2024; 25:94-107. [PMID: 38155465 PMCID: PMC10964082 DOI: 10.2174/0113894501286195231220094646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Glaucoma is the most common cause of irreversible blindness worldwide. It is characterized by progressive optic nerve degeneration and loss of visual field. Pathological increased intraocular pressure is its main modifiable risk factor. Rho kinase inhibitors are developed as a new class of glaucoma medication that increases outflow facility from the conventional aqueous humor outflow pathway. Additionally, they also have neuroprotective and anti-scarring effects that can might increase the success rate of glaucoma filtration surgery. This review aims to summarize the current concept of Rho kinase inhibitors in the treatment of glaucoma from beach to bedside.
Collapse
Affiliation(s)
- Junhui Wu
- Department of Ophthalmology, the First Affiliated Hospital of Henan University of Science and Technology/College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jing Wei
- Department of Ophthalmology, the First Affiliated Hospital of Henan University of Science and Technology/College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Haoliang Chen
- Department of Ophthalmology, Sanmenxia Eye Hospital/Sanmenxia Central Hospital Affiliated to Henan University of Science and Technology, Sanmenxia, China
| | - Yalong Dang
- Department of Ophthalmology, Sanmenxia Eye Hospital/Sanmenxia Central Hospital Affiliated to Henan University of Science and Technology, Sanmenxia, China
| | - Fang Lei
- Department of Ophthalmology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
53
|
Hu S, Kou Y, Liu X, Rong W, Han H, Zhang G. Activation of the 5-hydroxytryptamine 4 receptor ameliorates tight junction barrier dysfunction in the colon of type 1 diabetic mice. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1874-1883. [PMID: 37766457 PMCID: PMC10753360 DOI: 10.3724/abbs.2023137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/12/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperglycemia drives dysfunction of the intestinal barrier. 5-Hydroxytryptaine 4 receptor (5-HT 4R) agonists have been considered therapeutics for constipation in clnic. However, the roles of 5-HT 4R activation in mucosa should be fully realized. Here, we investigate the effects of 5-HT 4R activation on diabetes-induced disruption of the tight junction (TJ) barrier in the colon. Not surprisingly, the TJ barrier in diabetic mice with or without 5-HT 4R is tremendously destroyed, as indicated by increased serum fluorescein isothiocyanate (FITC)-dextran and decreased transepithelial electrical resistance (TER). Simultaneously, decreased expressions of TJ proteins are shown in both wild-type (WT) and 5-HT 4R knockout (KO) mice with diabetes. Notably, chronic treatment with intraperitoneal injection of a 5-HT 4R agonist in WT mice with diabetes repairs the TJ barrier and promotes TJ protein expressions, including occludin, claudin-1 and ZO-1, in the colon, whereas a 5-HT 4R agonist does not improve TJ barrier function or TJ protein expressions in 5-HT 4R KO mice with diabetes. Furthermore, stimulation of 5-HT 4R inhibits diabetes-induced upregulation of myosin light chain kinase (MLCK), Rho-associated coiled coil protein kinase 1 (ROCK1), and phosphorylated myosin light chain (p-MLC), which are key molecules that regulate TJ integrity, in the colonic mucosa of WT mice. However, such action induced by a 5-HT 4R agonist is not observed in 5-HT 4R KO mice with diabetes. These findings indicate that 5-HT 4R activation may restore TJ integrity by inhibiting the expressions of MLCK, ROCK1 and p-MLC, improving epithelial barrier function in diabetes.
Collapse
Affiliation(s)
- Shasha Hu
- Department of Anatomy and PhysiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yueting Kou
- Department of Anatomy and PhysiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Xiaochen Liu
- Department of Anatomy and PhysiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Weifang Rong
- Department of Anatomy and PhysiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Hongxiu Han
- Department of PathologyTongji HospitalTongji UniversityShanghai200065China
| | - Guohua Zhang
- Department of Anatomy and PhysiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
54
|
Mannan A, Dhiamn S, Garg N, Singh TG. Pharmacological modulation of Sonic Hedgehog signaling pathways in Angiogenesis: A mechanistic perspective. Dev Biol 2023; 504:58-74. [PMID: 37739118 DOI: 10.1016/j.ydbio.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
The Sonic hedgehog (SHh) signaling pathway is an imperative operating network that helps in regulates the critical events during the development processes like multicellular embryo growth and patterning. Disruptions in SHh pathway regulation can have severe consequences, including congenital disabilities, stem cell renewal, tissue regeneration, and cancer/tumor growth. Activation of the SHh signal occurs when SHh binds to the receptor complex of Patch (Ptc)-mediated Smoothened (Smo) (Ptc-smo), initiating downstream signaling. This review explores how pharmacological modulation of the SHh pathway affects angiogenesis through canonical and non-canonical pathways. The canonical pathway for angiogenesis involves the activation of angiogenic cytokines such as fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), placental growth factor (PGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), stromal cell-derived factor 1α, transforming growth factor-β1 (TGF-β1), and angiopoietins (Ang-1 and Ang-2), which facilitate the process of angiogenesis. The Non-canonical pathway includes indirect activation of certain pathways like iNOS/Netrin-1/PKC, RhoA/Rock, ERK/MAPK, PI3K/Akt, Wnt/β-catenin, Notch signaling pathway, and so on. This review will provide a better grasp of the mechanistic approach of SHh in mediating angiogenesis, which can aid in the suppression of certain cancer and tumor growths.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Sonia Dhiamn
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
55
|
Halász H, Szatmári Z, Kovács K, Koppán M, Papp S, Szabó-Meleg E, Szatmári D. Changes of Ex Vivo Cervical Epithelial Cells Due to Electroporation with JMY. Int J Mol Sci 2023; 24:16863. [PMID: 38069185 PMCID: PMC10706833 DOI: 10.3390/ijms242316863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The ionic environment within the nucleoplasm might diverge from the conditions found in the cytoplasm, potentially playing a role in the cellular stress response. As a result, it is conceivable that interactions of nuclear actin and actin-binding proteins (ABPs) with apoptosis factors may differ in the nucleoplasm and cytoplasm. The primary intracellular stress response is Ca2+ influx. The junctional mediating and regulating Y protein (JMY) is an actin-binding protein and has the capability to interact with the apoptosis factor p53 in a Ca2+-dependent manner, forming complexes that play a regulatory role in cytoskeletal remodelling and motility. JMY's presence is observed in both the cytoplasm and nucleoplasm. Here, we show that ex vivo ectocervical squamous cells subjected to electroporation with JMY protein exhibited varying morphological alterations. Specifically, the highly differentiated superficial and intermediate cells displayed reduced nuclear size. In inflamed samples, nuclear enlargement and simultaneous cytoplasmic reduction were observable and showed signs of apoptotic processes. In contrast, the less differentiated parabasal and metaplastic cells showed increased cytoplasmic activity and the formation of membrane protrusions. Surprisingly, in severe inflammation, vaginosis or ASC-US (Atypical Squamous Cells of Undetermined Significance), JMY appears to influence only the nuclear and perinuclear irregularities of differentiated cells, and cytoplasmic abnormalities still existed after the electroporation. Our observations can provide an appropriate basis for the exploration of the relationship between cytopathologically relevant morphological changes of epithelial cells and the function of ABPs. This is particularly important since ABPs are considered potential diagnostic and therapeutic biomarkers for both cancers and chronic inflammation.
Collapse
Affiliation(s)
- Henriett Halász
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (H.H.); (E.S.-M.)
| | | | - Krisztina Kovács
- Department of Pathology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | | | - Szilárd Papp
- DaVinci Clinics, 7635 Pécs, Hungary; (M.K.); (S.P.)
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (H.H.); (E.S.-M.)
| | - Dávid Szatmári
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (H.H.); (E.S.-M.)
| |
Collapse
|
56
|
Ali I, Iqbal MN, Ibrahim M, Haq IU, Alonazi WB, Siddiqi AR. Computational exploration of novel ROCK2 inhibitors for cardiovascular disease management; insights from high-throughput virtual screening, molecular docking, DFT and MD simulation. PLoS One 2023; 18:e0294511. [PMID: 37972144 PMCID: PMC10653426 DOI: 10.1371/journal.pone.0294511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Cardiovascular disorders are the world's major cause of death nowadays. To treat cardiovascular diseases especially coronary artery diseases and hypertension, researchers found potential ROCK2 (Rho-associated coiled-coil-containing protein kinase 2) target due to its substantial role in NO-cGMP and RhoA/ROCK pathway. Available drugs for ROCK2 are less effective and some of them depict side effects. Therefore, a set of novel compounds were screened that can potentially inhibit the activity of ROCK2 and help to treat cardiovascular diseases by employing In-silico techniques. In this study, we undertook ligand based virtual screening of 50 million compound's library, to that purpose shape and features (contain functional groups) based pharmacophore query was modelled and validated by Area Under Curve graph (AUC). 2000 best hits were screened for Lipinski's rule of 5 compliance. Subsequently, these selected compounds were docked into the binding site of ROCK2 to gain insights into the interactions between hit compounds and the target protein. Based on binding affinity and RMSD scores, a final cohort of 15 compounds were chosen which were further refined by pharmacokinetics, ADMET and bioactivity scores. 2 potential hits were screened using density functional theory, revealing remarkable biological and chemical activity. Potential inhibitors (F847-0007 and 9543495) underwent rigorous examination through MD Simulations and MMGBSA analysis, elucidating their stability and strong binding affinities. Results of current study unveil the potential of identified novel hits as promising lead compounds for ROCK2 associated with cardiovascular diseases. These findings will further investigate via In-vitro and In-vivo studies to develop novel druglike molecules against ROCK2.
Collapse
Affiliation(s)
- Iqra Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad, Pakistan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Islamabad, Pakistan
| | - Muhammad Nasir Iqbal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ibrahim
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Islamabad, Pakistan
| | - Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
- Programa de Pós-Graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Wadi B. Alonazi
- Health Administration Department, College of Business Administration, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad, Pakistan
| |
Collapse
|
57
|
Yang Z, He M, Austin J, Sayed D, Abdellatif M. Reducing branched-chain amino acids improves cardiac stress response in mice by decreasing histone H3K23 propionylation. J Clin Invest 2023; 133:e169399. [PMID: 37669116 PMCID: PMC10645387 DOI: 10.1172/jci169399] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Identification of branched-chain amino acid (BCAA) oxidation enzymes in the nucleus led us to predict that they are a source of the propionyl-CoA that is utilized for histone propionylation and, thereby, regulate gene expression. To investigate the effects of BCAAs on the development of cardiac hypertrophy and failure, we applied pressure overload on the heart in mice maintained on a diet with standard levels of BCAAs (BCAA control) versus a BCAA-free diet. The former was associated with an increase in histone H3K23-propionyl (H3K23Pr) at the promoters of upregulated genes (e.g., cell signaling and extracellular matrix genes) and a decrease at the promoters of downregulated genes (e.g., electron transfer complex [ETC I-V] and metabolic genes). Intriguingly, the BCAA-free diet tempered the increases in promoter H3K23Pr, thus reducing collagen gene expression and fibrosis during cardiac hypertrophy. Conversely, the BCAA-free diet inhibited the reductions in promoter H3K23Pr and abolished the downregulation of ETC I-V subunits, enhanced mitochondrial respiration, and curbed the progression of cardiac hypertrophy. Thus, lowering the intake of BCAAs reduced pressure overload-induced changes in histone propionylation-dependent gene expression in the heart, which retarded the development of cardiomyopathy.
Collapse
|
58
|
Frederick MI, Hovey OFJ, Kakadia JH, Shepherd TG, Li SSC, Heinemann IU. Proteomic and Phosphoproteomic Reprogramming in Epithelial Ovarian Cancer Metastasis. Mol Cell Proteomics 2023; 22:100660. [PMID: 37820923 PMCID: PMC10652129 DOI: 10.1016/j.mcpro.2023.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is a high-risk cancer presenting with heterogeneous tumors. The high incidence of EOC metastasis from primary tumors to nearby tissues and organs is a major driver of EOC lethality. We used cellular models of spheroid formation and readherence to investigate cellular signaling dynamics in each step toward EOC metastasis. In our system, adherent cells model primary tumors, spheroid formation represents the initiation of metastatic spread, and readherent spheroid cells represent secondary tumors. Proteomic and phosphoproteomic analyses show that spheroid cells are hypoxic and show markers for cell cycle arrest. Aurora kinase B abundance and downstream substrate phosphorylation are significantly reduced in spheroids and readherent cells, explaining their cell cycle arrest phenotype. The proteome of readherent cells is most similar to spheroids, yet greater changes in the phosphoproteome show that spheroid cells stimulate Rho-associated kinase 1 (ROCK1)-mediated signaling, which controls cytoskeletal organization. In spheroids, we found significant phosphorylation of ROCK1 substrates that were reduced in both adherent and readherent cells. Application of the ROCK1-specific inhibitor Y-27632 to spheroids increased the rate of readherence and altered spheroid density. The data suggest ROCK1 inhibition increases EOC metastatic potential. We identified novel pathways controlled by Aurora kinase B and ROCK1 as major drivers of metastatic behavior in EOC cells. Our data show that phosphoproteomic reprogramming precedes proteomic changes that characterize spheroid readherence in EOC metastasis.
Collapse
Affiliation(s)
- Mallory I Frederick
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Owen F J Hovey
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jenica H Kakadia
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Trevor G Shepherd
- Department of Obstetrics & Gynaecology, Western University, London, Ontario, Canada; London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - Shawn S C Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| | - Ilka U Heinemann
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
59
|
Wu D, Zhu J, Yang F, Li R, Liu L, Liu D, Liu C, Qu X, Liu H, Ji M, Qin X, Hua L, Xiang Y. CTNNAL1 deficiency suppresses CFTR expression in HDM-induced asthma mouse model through ROCK1-CAL signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1618-1629. [PMID: 37715489 PMCID: PMC10579809 DOI: 10.3724/abbs.2023152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/28/2023] [Indexed: 09/17/2023] Open
Abstract
The downregulation of adhesion molecule catenin alpha-like 1 (CTNNAL1) in airway epithelial cells of asthma patients and house dust mite (HDM)-induced asthma animal models was illustrated in our previous study. It is assumed to contribute to airway inflammation and mucus hypersecretion. In this work, we further explore the underlying mechanism of CTNNAL1 in asthma. CTNNAL1-silenced female mice exhibit a decreased level of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated and ATP-gated Cl - channel that correlates with mucus hypersecretion. Our previous study demonstrated that ROCK1 expression decreases but ROCK2 expression increases in the lungs of a CTNNAL1-silenced mouse model. Inhibition of ROCK1 leads to a reduction in CFTR expression in CTNNAL1-overexpressing and CTNNAL1-silenced human bronchial epithelial (HBE) cells. It has been reported that ROCK1 is a downstream target of RhoA and that activation of RhoA increases CFTR expression after CTNNAL1 deficiency in vitro and in vivo. The above results indicate that CTNNAL1 regulates CFTR expression through the ROCK1 pathway. In addition, the expression of CFTR-associated ligand (CAL) is increased after CTNNAL1 silencing, and immunoprecipitation results confirm the interaction between ROCK1 and CAL. Inhibition of CAL does not influence ROCK1 expression but increases CFTR expression in CTNNAL1-silenced HBE cells. These data suggest that CTNNAL1 deficiency decreases CFTR expression in the HDM-induced asthma mouse model through the ROCK1-CAL signaling pathway.
Collapse
Affiliation(s)
- Di Wu
- School of MedicineFoshan UniversityFoshan528000China
- Department of PhysiologySchool of Basic Medical ScienceCentral South UniversityChangsha410008China
| | - Jiahui Zhu
- Department of PhysiologySchool of Basic Medical ScienceCentral South UniversityChangsha410008China
| | - Fang Yang
- School of MedicineFoshan UniversityFoshan528000China
| | - Riwang Li
- School of MedicineFoshan UniversityFoshan528000China
| | - Lexin Liu
- Department of PhysiologySchool of Basic Medical ScienceCentral South UniversityChangsha410008China
| | - Dahai Liu
- School of MedicineFoshan UniversityFoshan528000China
| | - Chi Liu
- Department of PhysiologySchool of Basic Medical ScienceCentral South UniversityChangsha410008China
| | - Xiangping Qu
- Department of PhysiologySchool of Basic Medical ScienceCentral South UniversityChangsha410008China
| | - Huijun Liu
- Department of PhysiologySchool of Basic Medical ScienceCentral South UniversityChangsha410008China
| | - Ming Ji
- Department of PhysiologySchool of Basic Medical ScienceCentral South UniversityChangsha410008China
| | - Xiaoqun Qin
- Department of PhysiologySchool of Basic Medical ScienceCentral South UniversityChangsha410008China
| | - Lan Hua
- the Second Xiangya Hospital of Central South UniversityChangsha410011China
| | - Yang Xiang
- Department of PhysiologySchool of Basic Medical ScienceCentral South UniversityChangsha410008China
| |
Collapse
|
60
|
Fayed HS, Bakleh MZ, Ashraf JV, Howarth A, Ebner D, Al Haj Zen A. Selective ROCK Inhibitor Enhances Blood Flow Recovery after Hindlimb Ischemia. Int J Mol Sci 2023; 24:14410. [PMID: 37833857 PMCID: PMC10572734 DOI: 10.3390/ijms241914410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The impairment in microvascular network formation could delay the restoration of blood flow after acute limb ischemia. A high-content screen of a GSK-published kinase inhibitor library identified a set of ROCK inhibitor hits enhancing endothelial network formation. Subsequent kinase activity profiling against a panel of 224 protein kinases showed that two indazole-based ROCK inhibitor hits exhibited high selectivity for ROCK1 and ROCK2 isoforms compared to other ROCK inhibitors. One of the chemical entities, GSK429286, was selected for follow-up studies. We found that GSK429286 was ten times more potent in enhancing endothelial tube formation than Fasudil, a classic ROCK inhibitor. ROCK1 inhibition by RNAi phenocopied the angiogenic phenotype of the GSK429286 compound. Using an organotypic angiogenesis co-culture assay, we showed that GSK429286 formed a dense vascular network with thicker endothelial tubes. Next, mice received either vehicle or GSK429286 (10 mg/kg i.p.) for seven days after hindlimb ischemia induction. As assessed by laser speckle contrast imaging, GSK429286 potentiated blood flow recovery after ischemia induction. At the histological level, we found that GSK429286 significantly increased the size of new microvessels in the regenerating areas of ischemic muscles compared with vehicle-treated ones. Our findings reveal that selective ROCK inhibitors have in vitro pro-angiogenic properties and therapeutic potential to restore blood flow in limb ischemia.
Collapse
Affiliation(s)
- Hend Salah Fayed
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Mouayad Zuheir Bakleh
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | | | - Alison Howarth
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Daniel Ebner
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Ayman Al Haj Zen
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
61
|
Green JR, Mahalingaiah PKS, Gopalakrishnan SM, Liguori MJ, Mittelstadt SW, Blomme EAG, Van Vleet TR. Off-target pharmacological activity at various kinases: Potential functional and pathological side effects. J Pharmacol Toxicol Methods 2023; 123:107468. [PMID: 37553032 DOI: 10.1016/j.vascn.2023.107468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
In drug discovery, during the lead optimization and candidate characterization stages, novel small molecules are frequently evaluated in a battery of in vitro pharmacology assays to identify potential unintended, off-target interactions with various receptors, transporters, ion channels, and enzymes, including kinases. Furthermore, these screening panels may also provide utility at later stages of development to provide a mechanistic understanding of unexpected safety findings. Here, we present a compendium of the most likely functional and pathological outcomes associated with interaction(s) to a panel of 95 kinases based on an extensive curation of the scientific literature. This panel of kinases was designed by AbbVie based on safety-related data extracted from the literature, as well as from over 20 years of institutional knowledge generated from discovery efforts. For each kinase, the scientific literature was reviewed using online databases and the most often reported functional and pathological effects were summarized. This work should serve as a practical guide for small molecule drug discovery scientists and clinical investigators to predict and/or interpret adverse effects related to pharmacological interactions with these kinases.
Collapse
Affiliation(s)
- Jonathon R Green
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States.
| | | | - Sujatha M Gopalakrishnan
- Drug Discovery Science and Technology, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Michael J Liguori
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Scott W Mittelstadt
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Eric A G Blomme
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Terry R Van Vleet
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| |
Collapse
|
62
|
Ko JA, Komatsu K, Minamoto A, Kondo S, Okumichi H, Hirooka K, Kiuchi Y. Effects of Ripasudil, a Rho-Kinase Inhibitor, on Scar Formation in a Mouse Model of Filtration Surgery. Curr Eye Res 2023; 48:826-835. [PMID: 37216470 DOI: 10.1080/02713683.2023.2217367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE Glaucoma is a leading cause of blindness worldwide. Characteristic changes occur in the optic nerve and visual field of patients with glaucoma; optic nerve damage can be mitigated by lowering intraocular pressure. Treatment modalities include drugs and lasers; filtration surgery is necessary for patients with insufficient intraocular pressure reduction. Scar formation often contributes to glaucoma filtration surgery failure by increasing fibroblast proliferation and activation. Here, we examined the effects of ripasudil, a Rho-associated protein kinase (ROCK) inhibitor, on postoperative scar formation in human Tenon's fibroblasts. METHODS Collagen gel contraction assays were used to compare contractility activity among ripasudil and other anti-glaucoma drugs. The effect of Ripasudil in combination with other anti-glaucoma drugs and transforming growth factor-β (TGF-β), latanoprost and timolol-induce contractions were also tested in this study. Immunofluorescence and Western blotting were used to study the expression of factors relating scarring formation. RESULTS Ripasudil inhibited contraction in collagen gel assay and reduced α-smooth muscle actin (SMA) and vimentin (scar formation-related factors) expression, which was inversely promoted by latanoprost, timolol or TGF-β. Ripasudil also inhibited contraction on TGF-β, latanoprost and timolol-induced contraction. Furthermore, we investigated the effects of ripasudil on postoperative scarring in a mouse model; ripasudil suppressed postoperative scar formation by altering the expression of α-SMA and vimentin. CONCLUSIONS These results suggest that ripasudil, ROCK inhibitor may inhibit excessive fibrosis after glaucoma filtering surgery vis inhibition the transdifferentiation of tenon fibroblast into myofibroblast and may have a potential effect as anti-scarring for glaucoma filtration surgery.
Collapse
Affiliation(s)
- Ji-Ae Ko
- Department of Ophthalmology and Visual Science, Hiroshima University, Hiroshima, Japan
| | - Kaori Komatsu
- Department of Ophthalmology and Visual Science, Hiroshima University, Hiroshima, Japan
| | - Akira Minamoto
- Department of Ophthalmology and Visual Science, Hiroshima University, Hiroshima, Japan
| | - Satomi Kondo
- Department of Ophthalmology and Visual Science, Hiroshima University, Hiroshima, Japan
| | - Hideaki Okumichi
- Department of Ophthalmology and Visual Science, Hiroshima University, Hiroshima, Japan
| | - Kazuyuki Hirooka
- Department of Ophthalmology and Visual Science, Hiroshima University, Hiroshima, Japan
| | - Yoshiaki Kiuchi
- Department of Ophthalmology and Visual Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
63
|
Roskoski R. Small molecule protein kinase inhibitors approved by regulatory agencies outside of the United States. Pharmacol Res 2023; 194:106847. [PMID: 37454916 DOI: 10.1016/j.phrs.2023.106847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Owing to genetic alterations and overexpression, the dysregulation of protein kinases plays a significant role in the pathogenesis of many autoimmune and neoplastic disorders and protein kinase antagonists have become an important drug target. Although the efficacy of imatinib in the treatment of chronic myelogenous leukemia in the United States in 2001 was the main driver of protein kinase inhibitor drug discovery, this was preceded by the approval of fasudil (a ROCK antagonist) in Japan in 1995 for the treatment of cerebral vasospasm. There are 21 small molecule protein kinase inhibitors that are approved in China, Japan, Europe, and South Korea that are not approved in the United Sates and 75 FDA-approved inhibitors in the United States. Of the 21 agents, eleven target receptor protein-tyrosine kinases, eight inhibit nonreceptor protein-tyrosine kinases, and two block protein-serine/threonine kinases. All 21 drugs are orally bioavailable or topically effective. Of the non-FDA approved drugs, sixteen are prescribed for the treatment of neoplastic diseases, three are directed toward inflammatory disorders, one is used for glaucoma, and fasudil is used in the management of vasospasm. The leading targets of kinase inhibitors approved by both international regulatory agencies and by the FDA are members of the EGFR family, the VEGFR family, and the JAK family. One-third of the 21 internationally approved drugs are not compliant with Lipinski's rule of five for orally bioavailable drugs. The rule of five relies on four parameters including molecular weight, number of hydrogen bond donors and acceptors, and the Log of the partition coefficient.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791-8717, United States.
| |
Collapse
|
64
|
Peche VS, Pietka TA, Jacome-Sosa M, Samovski D, Palacios H, Chatterjee-Basu G, Dudley AC, Beatty W, Meyer GA, Goldberg IJ, Abumrad NA. Endothelial cell CD36 regulates membrane ceramide formation, exosome fatty acid transfer and circulating fatty acid levels. Nat Commun 2023; 14:4029. [PMID: 37419919 PMCID: PMC10329018 DOI: 10.1038/s41467-023-39752-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
Endothelial cell (EC) CD36 controls tissue fatty acid (FA) uptake. Here we examine how ECs transfer FAs. FA interaction with apical membrane CD36 induces Src phosphorylation of caveolin-1 tyrosine-14 (Cav-1Y14) and ceramide generation in caveolae. Ensuing fission of caveolae yields vesicles containing FAs, CD36 and ceramide that are secreted basolaterally as small (80-100 nm) exosome-like extracellular vesicles (sEVs). We visualize in transwells EC transfer of FAs in sEVs to underlying myotubes. In mice with EC-expression of the exosome marker emeraldGFP-CD63, muscle fibers accumulate circulating FAs in emGFP-labeled puncta. The FA-sEV pathway is mapped through its suppression by CD36 depletion, blocking actin-remodeling, Src inhibition, Cav-1Y14 mutation, and neutral sphingomyelinase 2 inhibition. Suppression of sEV formation in mice reduces muscle FA uptake, raises circulating FAs, which remain in blood vessels, and lowers glucose, mimicking prominent Cd36-/- mice phenotypes. The findings show that FA uptake influences membrane ceramide, endocytosis, and EC communication with parenchymal cells.
Collapse
Affiliation(s)
- V S Peche
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - T A Pietka
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - M Jacome-Sosa
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - D Samovski
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - H Palacios
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - G Chatterjee-Basu
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - A C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - W Beatty
- Department of Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - G A Meyer
- Departments of Physical Therapy, Neurology and Orthopedic Surgery, Washington University School of Medicine, St. Louis, 63110, USA
| | - I J Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - N A Abumrad
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
65
|
Fang J, Singh S, Cheng C, Natarajan S, Sheppard H, Abu-Zaid A, Durbin AD, Lee HW, Wu Q, Steele J, Connelly JP, Jin H, Chen W, Fan Y, Pruett-Miller SM, Rehg JE, Koo SC, Santiago T, Emmons J, Cairo S, Wang R, Glazer ES, Murphy AJ, Chen T, Davidoff AM, Armengol C, Easton J, Chen X, Yang J. Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma. Nat Commun 2023; 14:4003. [PMID: 37414763 PMCID: PMC10326052 DOI: 10.1038/s41467-023-39717-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
A lack of relevant genetic models and cell lines hampers our understanding of hepatoblastoma pathogenesis and the development of new therapies for this neoplasm. Here, we report an improved MYC-driven hepatoblastoma-like murine model that recapitulates the pathological features of embryonal type of hepatoblastoma, with transcriptomics resembling the high-risk gene signatures of the human disease. Single-cell RNA-sequencing and spatial transcriptomics identify distinct subpopulations of hepatoblastoma cells. After deriving cell lines from the mouse model, we map cancer dependency genes using CRISPR-Cas9 screening and identify druggable targets shared with human hepatoblastoma (e.g., CDK7, CDK9, PRMT1, PRMT5). Our screen also reveals oncogenes and tumor suppressor genes in hepatoblastoma that engage multiple, druggable cancer signaling pathways. Chemotherapy is critical for human hepatoblastoma treatment. A genetic mapping of doxorubicin response by CRISPR-Cas9 screening identifies modifiers whose loss-of-function synergizes with (e.g., PRKDC) or antagonizes (e.g., apoptosis genes) the effect of chemotherapy. The combination of PRKDC inhibition and doxorubicin-based chemotherapy greatly enhances therapeutic efficacy. These studies provide a set of resources including disease models suitable for identifying and validating potential therapeutic targets in human high-risk hepatoblastoma.
Collapse
Affiliation(s)
- Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Sheppard
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ha Won Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacob Steele
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph Emmons
- VPC Diagnostic Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stefano Cairo
- Champions Oncology, 1330 Piccard dr, Rockville, MD, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Hematology/Oncology & BMT, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Evan S Glazer
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Carolina Armengol
- Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Translational Program in Cancer Research (CARE), Badalona, Spain
- CIBER, Hepatic and Digestive Diseases, Barcelona, Spain
- CIBERehd, Madrid, Spain
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
66
|
Kim D, Jeong W, Kim Y, Lee J, Cho SW, Oh CM, Park R. Pharmacologic Activation of Angiotensin-Converting Enzyme II Alleviates Diabetic Cardiomyopathy in db/db Mice by Reducing Reactive Oxidative Stress. Diabetes Metab J 2023; 47:487-499. [PMID: 37096378 PMCID: PMC10404524 DOI: 10.4093/dmj.2022.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 04/26/2023] Open
Abstract
BACKGRUOUND Diabetes mellitus is one of the most common chronic diseases worldwide, and cardiovascular disease is the leading cause of morbidity and mortality in diabetic patients. Diabetic cardiomyopathy (DCM) is a phenomenon characterized by a deterioration in cardiac function and structure, independent of vascular complications. Among many possible causes, the renin-angiotensin-aldosterone system and angiotensin II have been proposed as major drivers of DCM development. In the current study, we aimed to investigate the effects of pharmacological activation of angiotensin-converting enzyme 2 (ACE2) on DCM. METHODS The ACE2 activator diminazene aceturate (DIZE) was administered intraperitoneally to male db/db mice (8 weeks old) for 8 weeks. Transthoracic echocardiography was used to assess cardiac mass and function in mice. Cardiac structure and fibrotic changes were examined using histology and immunohistochemistry. Gene and protein expression levels were examined using quantitative reverse transcription polymerase chain reaction and Western blotting, respectively. Additionally, RNA sequencing was performed to investigate the underlying mechanisms of the effects of DIZE and identify novel potential therapeutic targets for DCM. RESULTS Echocardiography revealed that in DCM, the administration of DIZE significantly improved cardiac function as well as reduced cardiac hypertrophy and fibrosis. Transcriptome analysis revealed that DIZE treatment suppresses oxidative stress and several pathways related to cardiac hypertrophy. CONCLUSION DIZE prevented the diabetes mellitus-mediated structural and functional deterioration of mouse hearts. Our findings suggest that the pharmacological activation of ACE2 could be a novel treatment strategy for DCM.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Wooju Jeong
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jibeom Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sung Woo Cho
- Division of Cardiology, Department of Internal Medicine, Inje University Ilsan Paik Hospital, College of Medicine, Inje University, Goyang, Korea
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
67
|
Yang YN, Luo YB, Xu G, Li K, Ma RL, Yuan W. CircHECTD1 promoted MIRI-associated inflammation via inhibiting miR-138-5p and upregulating ROCK2. Kaohsiung J Med Sci 2023; 39:675-687. [PMID: 37096660 DOI: 10.1002/kjm2.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/22/2023] [Accepted: 03/10/2023] [Indexed: 04/26/2023] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) was often observed after surgeries, causing a lot of suffering to patients. Inflammation and apoptosis were critical determinants during MIRI. We conveyed experiments to reveal the regulatory functions of circHECTD1 in MIRI development. The Rat MIRI model was established and determined by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. We analyzed cell apoptosis using TUNEL and flow cytometry. Proteins expression was evaluated by western blot. The RNA level was determined by qRT-PCR. Secreted inflammatory factors were analyzed by ELISA assay. To predict the interaction sequences on circHECTD1, miR-138-5p, and ROCK2, bioinformatics analysis was performed. Dual-luciferase assay was used to confirm these interaction sequences. CircHECTD1 and ROCK2 were upregulated in the rat MIRI model, while miR-138-5p was decreased. CircHECTD1 knockdown alleviated H/R-induced inflammation in H9c2 cells. Direct interaction and regulation of circHECTD1/miR-138-5p and miR-138-5p/ROCK2 were confirmed by dual-luciferase assay. CircHECTD1 promoted H/R-induced inflammation and cell apoptosis by inhibiting miR-138-5p. miR-138-5p alleviated H/R-induced inflammation, while ectopic ROCK2 antagonized such effect of miR-138-5p. Our research suggested that the circHECTD1-modulated miR-138-5p suppressing is responsible for ROCK2 activation during H/R-induced inflammatory response, providing a novel insight into MIRI-associated inflammation.
Collapse
Affiliation(s)
- Ya-Nan Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yong-Bai Luo
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gang Xu
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kang Li
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ru-Lan Ma
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Yuan
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
68
|
González-Jiménez P, Duarte S, Martínez AE, Navarro-Carrasco E, Lalioti V, Pajares MA, Pérez-Sala D. Vimentin single cysteine residue acts as a tunable sensor for network organization and as a key for actin remodeling in response to oxidants and electrophiles. Redox Biol 2023; 64:102756. [PMID: 37285743 DOI: 10.1016/j.redox.2023.102756] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
Cysteine residues can undergo multiple posttranslational modifications with diverse functional consequences, potentially behaving as tunable sensors. The intermediate filament protein vimentin has important implications in pathophysiology, including cancer progression, infection, and fibrosis, and maintains a close interplay with other cytoskeletal structures, such as actin filaments and microtubules. We previously showed that the single vimentin cysteine, C328, is a key target for oxidants and electrophiles. Here, we demonstrate that structurally diverse cysteine-reactive agents, including electrophilic mediators, oxidants and drug-related compounds, disrupt the vimentin network eliciting morphologically distinct reorganizations. As most of these agents display broad reactivity, we pinpointed the importance of C328 by confirming that local perturbations introduced through mutagenesis provoke structure-dependent vimentin rearrangements. Thus, GFP-vimentin wild type (wt) forms squiggles and short filaments in vimentin-deficient cells, the C328F, C328W, and C328H mutants generate diverse filamentous assemblies, and the C328A and C328D constructs fail to elongate yielding dots. Remarkably, vimentin C328H structures resemble the wt, but are strongly resistant to electrophile-elicited disruption. Therefore, the C328H mutant allows elucidating whether cysteine-dependent vimentin reorganization influences other cellular responses to reactive agents. Electrophiles such as 1,4-dinitro-1H-imidazole and 4-hydroxynonenal induce robust actin stress fibers in cells expressing vimentin wt. Strikingly, under these conditions, vimentin C328H expression blunts electrophile-elicited stress fiber formation, apparently acting upstream of RhoA. Analysis of additional vimentin C328 mutants shows that electrophile-sensitive and assembly-defective vimentin variants permit induction of stress fibers by reactive species, whereas electrophile-resistant filamentous vimentin structures prevent it. Together, our results suggest that vimentin acts as a break for actin stress fibers formation, which would be released by C328-aided disruption, thus allowing full actin remodeling in response to oxidants and electrophiles. These observations postulate C328 as a "sensor" transducing structurally diverse modifications into fine-tuned vimentin network rearrangements, and a gatekeeper for certain electrophiles in the interplay with actin.
Collapse
Affiliation(s)
- Patricia González-Jiménez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Sofia Duarte
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Alma E Martínez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Elena Navarro-Carrasco
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Vasiliki Lalioti
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain.
| |
Collapse
|
69
|
Kim HJ, Hwang JS, Noh KB, Oh SH, Park JB, Shin YJ. A p-Tyr42 RhoA Inhibitor Promotes the Regeneration of Human Corneal Endothelial Cells by Ameliorating Cellular Senescence. Antioxidants (Basel) 2023; 12:1186. [PMID: 37371916 DOI: 10.3390/antiox12061186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The development of treatment strategies for human corneal endothelial cells (hCECs) disease is necessary because hCECs do not regenerate in vivo due to the properties that are similar to senescence. This study is performed to investigate the role of a p-Tyr42 RhoA inhibitor (MH4, ELMED Inc., Chuncheon) in transforming growth factor-beta (TGF-β)- or H2O2-induced cellular senescence of hCECs. Cultured hCECs were treated with MH4. The cell shape, proliferation rate, and cell cycle phases were analyzed. Moreover, cell adhesion assays and immunofluorescence staining for F-actin, Ki-67, and E-cadherin were performed. Additionally, the cells were treated with TGF-β or H2O2 to induce senescence, and mitochondrial oxidative reactive oxygen species (ROS) levels, mitochondrial membrane potential, and NF-κB translocation were evaluated. LC3II/LC3I levels were determined using Western blotting to analyze autophagy. MH4 promotes hCEC proliferation, shifts the cell cycle, attenuates actin distribution, and increases E-cadherin expression. TGF-β and H2O2 induce senescence by increasing mitochondrial ROS levels and NF-κB translocation into the nucleus; however, this effect is attenuated by MH4. Moreover, TGF-β and H2O2 decrease the mitochondrial membrane potential and induce autophagy, while MH4 reverses these effects. In conclusion, MH4, a p-Tyr42 RhoA inhibitor, promotes the regeneration of hCECs and protects hCECs against TGF-β- and H2O2-induced senescence via the ROS/NF-κB/mitochondrial pathway.
Collapse
Affiliation(s)
- Hyeon Jung Kim
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| | - Kyung Bo Noh
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| | - Sun-Hee Oh
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| |
Collapse
|
70
|
Bagalkot T, Sorkin A. Endocytic down-regulation of the striatal dopamine transporter by amphetamine in sensitized mice in sex-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541165. [PMID: 37293021 PMCID: PMC10245703 DOI: 10.1101/2023.05.17.541165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dopamine transporter (DAT) controls dopamine signaling in the brain through the reuptake of synaptically released dopamine. DAT is a target of abused psychostimulants such as amphetamine (Amph). Acute Amph is proposed to cause transient DAT endocytosis which among other Amph effects on dopaminergic neurons elevates extracellular dopamine. However, the effects of repeated Amph abuse, leading to behavioral sensitization and drug addiction, on DAT traffic are unknown. Hence, we developed a 14-day Amph-sensitization protocol in knock-in mice expressing HA-epitope tagged DAT (HA-DAT) and investigated effects of Amph challenge on HA-DAT in sensitized animals. Amph challenge resulted in the highest locomotor activity on day 14 in both sexes, which was however sustained for 1 hour in male but not female mice. Strikingly, significant (by 30-60%) reduction in the amount of the HA-DAT protein in striatum was observed in response to Amph challenge of sensitized males but not females. Amph reduced Vmax of dopamine transport in striatal synaptosomes of males without changing Km values. Consistently, immunofluorescence microscopy revealed a significant increase of HA-DAT co-localization with the endosomal protein VPS35 only in males. Amph-induced HA-DAT down-regulation in the striatum of sensitized mice was blocked by chloroquine, vacuolin-1 (inhibitor of PIKfive kinase), and inhibitor of Rho-associated kinases (ROCK1/2), indicative of the involvement of endocytic trafficking in DAT down-regulation. Interestingly, HA-DAT protein down-regulation was observed in nucleus accumbens and not in dorsal striatum. We propose that Amph challenge in sensitized mice leads to ROCK-dependent endocytosis and post-endocytic traffic of DAT in a brain-region-specific and sex-dependent manner.
Collapse
|
71
|
Chen KJ, Huang JH, Shih JH, Gu DL, Lee SS, Shen R, Hsu YH, Kung YC, Wu CY, Ho CM, Jen HW, Lee HY, Lang YD, Hsiao CH, Jou YS. Somatic A-to-I RNA-edited RHOA isoform 2 specific-R176G mutation promotes tumor progression in lung adenocarcinoma. Mol Carcinog 2023; 62:348-359. [PMID: 36453714 PMCID: PMC10107479 DOI: 10.1002/mc.23490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/06/2022] [Accepted: 11/20/2022] [Indexed: 12/04/2022]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is the most common posttranscriptional editing to create somatic mutations and increase proteomic diversity. However, the functions of the edited mutations are largely underexplored. To identify novel targets in lung adenocarcinoma (LUAD), we conducted a genome-wide somatic A-to-I RNA editing analysis of 23 paired adjacent normal and LUAD transcriptomes and identified 26,280 events, including known nonsynonymous AZIN1-S367G and novel RHOAiso2 (RHOA isoform 2)-R176G, tubulin gamma complex associated protein 2 (TUBGCP2)-N211S, and RBMXL1-I40 M mutations. We validated the edited mutations in silico in multiple databases and in newly collected LUAD tissue pairs with the SEQUENOM MassARRAY® and TaqMan PCR Systems. We selected RHOAiso2-R176G due to its significant level, isoform-specificity, and being the most common somatic edited nonsynonymous mutation of RHOAiso2 to investigate its roles in LUAD tumorigenesis. RHOAiso2 is a ubiquitous but low-expression alternative spliced isoform received a unique Alu-rich exon at the 3' RHOA mRNA to become an editing RNA target, leading to somatic hypermutation and protein diversity. Interestingly, LUAD patients harboring the RHOAiso2-R176G mutation were associated with aberrant RHOA functions, cancer cell proliferation and migration, and poor clinical outcomes in transcriptome analysis. Mechanistically, RHOAiso2-R176G mutation-expressing LUAD cells potentiate RHOA-guanosine triphosphate (GTP) activity to phosphorylate ROCK1/2 effectors and enhance cell proliferation and migration in vitro and increase tumor growth in xenograft and systemic metastasis models in vivo. Taken together, the RHOAiso2-R176G mutation is a common somatic A-to-I edited mutation of the hypermutated RHOA isoform 2. It is an oncogenic and isoform-specific theranostic target that activates RHOA-GTP/p-ROCK1/2 signaling to promote tumor progression.
Collapse
Affiliation(s)
- Kuan-Ju Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jing-Hsiang Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Computer Science and Engineering, University of California at Santa Cruz, Santa Cruz, California, USA
| | - Jou-Ho Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - De-Leung Gu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Szu-Shuo Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Roger Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yu-Hsuan Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Ying-Chih Kung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Yen Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Ming Ho
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-Wei Jen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-Yi Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yaw-Dong Lang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Hao Hsiao
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Department of Surgery, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Yuh-Shan Jou
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
72
|
Orchard KJA, Akbar M, Crowe LAN, Cole J, Millar NL, Raleigh SM. Characterization of Histone Modifications in Late-Stage Rotator Cuff Tendinopathy. Genes (Basel) 2023; 14:496. [PMID: 36833423 PMCID: PMC9956879 DOI: 10.3390/genes14020496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
The development and progression of rotator cuff tendinopathy (RCT) is multifactorial and likely to manifest through a combination of extrinsic, intrinsic, and environmental factors, including genetics and epigenetics. However, the role of epigenetics in RCT, including the role of histone modification, is not well established. Using chromatin immunoprecipitation sequencing, differences in the trimethylation status of H3K4 and H3K27 histones in late-stage RCT compared to control were investigated in this study. For H3K4, 24 genomic loci were found to be significantly more trimethylated in RCT compared to control (p < 0.05), implicating genes such as DKK2, JAG2, and SMOC2 in RCT. For H3K27, 31 loci were shown to be more trimethylated (p < 0.05) in RCT compared to control, inferring a role for EPHA3, ROCK1, and DEFβ115. Furthermore, 14 loci were significantly less trimethylated (p < 0.05) in control compared to RCT, implicating EFNA5, GDF6, and GDF7. Finally, the TGFβ signaling, axon guidance, and regulation of focal adhesion assembly pathways were found to be enriched in RCT. These findings suggest that the development and progression of RCT is, at least in part, under epigenetic control, highlighting the influence of histone modifications in this disorder and paving the way to further understand the role of epigenome in RCT.
Collapse
Affiliation(s)
- Kayleigh J. A. Orchard
- Centre for Sports, Exercise and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Moeed Akbar
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Lindsay A. N. Crowe
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - John Cole
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Neal L. Millar
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Stuart M. Raleigh
- Centre for Sports, Exercise and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
73
|
Hu P, Wan P, Xu A, Yan B, Liu C, Xu Q, Wei Z, Xu J, Liu S, Yang G, Pan Y. Neferine, a novel ROCK1-targeting inhibitor, blocks EMT process and induces apoptosis in non-small cell lung cancer. J Cancer Res Clin Oncol 2023; 149:553-566. [PMID: 35984492 DOI: 10.1007/s00432-022-04280-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
The compounds derived from Traditional Chinese Medicines have shown various pharmacological activities with unique advantages, especially in the aspect of antitumor. Neferine (Nef), a natural compound, extracted from green seed embryos of Lotus (Nelumbo nucifera Gaertn.) also exerts antitumor effects on cancers. In this study, the effects and mechanisms of Nef on epithelial-to-mesenchymal transition (EMT) process in non-small cell lung cancer (NSCLC) were evaluated. The results showed that Nef had the antitumor effects in vivo and in vitro. Nef significantly suppressed cell viability and induced apoptosis in NSCLC cells, with elevated reactive oxygen species and reduced BCL2/BAX ratio. Nef was also demonstrated to inhibit the invasion, metastasis and EMT process of NSCLC cells, and attenuate EMT-related changes of E-cadherin, N-cadherin and Vimentin at both transcriptional and translational levels. Moreover, we concluded that the inhibitory effects of Nef on EMT was achieved by targeting Rho-associated protein kinase 1, a protein mediating the process of EMT in various cancers. These results showed that Nef had a significant antitumor effect on NSCLC cells by inducing apoptosis and blocking EMT, providing the therapeutical prospect on NSCLC treatment.
Collapse
Affiliation(s)
- Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Peng Wan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Anna Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Binghui Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunmei Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qixuan Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenhuan Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingyi Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Siqi Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guangming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
74
|
Kang YG, Canoy RJE, Jang Y, Santos ARMP, Son I, Kim BM, Park Y. Optical coherence microscopy with a split-spectrum image reconstruction method for temporal-dynamics contrast-based imaging of intracellular motility. BIOMEDICAL OPTICS EXPRESS 2023; 14:577-592. [PMID: 36874497 PMCID: PMC9979675 DOI: 10.1364/boe.478264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Biomedical researchers use optical coherence microscopy (OCM) for its high resolution in real-time label-free tomographic imaging. However, OCM lacks bioactivity-related functional contrast. We developed an OCM system that can measure changes in intracellular motility (indicating cellular process states) via pixel-wise calculations of intensity fluctuations from metabolic activity of intracellular components. To reduce image noise, the source spectrum is split into five using Gaussian windows with 50% of the full bandwidth. The technique verified that F-actin fiber inhibition by Y-27632 reduces intracellular motility. This finding could be used to search for other intracellular-motility-associated therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Yong Guk Kang
- BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, Republic of Korea
- These authors contributed equally to this work
| | - Raymart Jay E. Canoy
- Department of Biomicro System Technology, College of Engineering, Korea University, Seoul 02841, Republic of Korea
- These authors contributed equally to this work
| | - Yongjun Jang
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ana Rita M. P. Santos
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Inwoo Son
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Beop-Min Kim
- BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, Republic of Korea
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Yongdoo Park
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
75
|
Guan G, Cannon RD, Coates DE, Mei L. Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components. Genes (Basel) 2023; 14:272. [PMID: 36833199 PMCID: PMC9957420 DOI: 10.3390/genes14020272] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The mechanical properties of cells are important in tissue homeostasis and enable cell growth, division, migration and the epithelial-mesenchymal transition. Mechanical properties are determined to a large extent by the cytoskeleton. The cytoskeleton is a complex and dynamic network composed of microfilaments, intermediate filaments and microtubules. These cellular structures confer both cell shape and mechanical properties. The architecture of the networks formed by the cytoskeleton is regulated by several pathways, a key one being the Rho-kinase/ROCK signaling pathway. This review describes the role of ROCK (Rho-associated coiled-coil forming kinase) and how it mediates effects on the key components of the cytoskeleton that are critical for cell behaviour.
Collapse
Affiliation(s)
- Guangzhao Guan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Dawn E. Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Li Mei
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
76
|
ROCK2 interacts with p22phox to phosphorylate p47phox and to control NADPH oxidase activation in human monocytes. Proc Natl Acad Sci U S A 2023; 120:e2209184120. [PMID: 36626553 PMCID: PMC9934299 DOI: 10.1073/pnas.2209184120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Monocytes play a key role in innate immunity by eliminating pathogens, releasing high levels of cytokines, and differentiating into several cell types, including macrophages and dendritic cells. Similar to other phagocytes, monocytes produce superoxide anions through the NADPH oxidase complex, which is composed of two membrane proteins (p22phox and gp91phox/NOX2) and four cytosolic proteins (p47phox, p67phox, p40phox and Rac1). The pathways involved in NADPH oxidase activation in monocytes are less known than those in neutrophils. Here, we show that p22phox is associated with Rho-associated coiled-coil kinase 2 (ROCK2) in human monocytes but not neutrophils. This interaction occurs between the cytosolic region of p22phox (amino acids 132 to 195) and the coiled-coil region of ROCK2 (amino acids 400 to 967). Interestingly, ROCK2 does not phosphorylate p22phox, p40phox, p67phox, or gp91phox in vitro but phosphorylates p47phox on Ser304, Ser315, Ser320 and Ser328. Furthermore, KD025, a selective inhibitor of ROCK2, inhibited reactive oxygen species (ROS) production and p47phox phosphorylation in monocytes. Specific inhibition of ROCK2 expression in THP1-monocytic cell line by siRNA inhibited ROS production. These data show that ROCK2 interacts with p22phox and phosphorylates p47phox, and suggest that p22phox could be a shuttle for ROCK2 to allow p47phox phosphorylation and NADPH oxidase activation in human monocytes.
Collapse
|
77
|
Li X, McLain C, Samuel MS, Olson MF, Radice GL. Actomyosin-mediated cellular tension promotes Yap nuclear translocation and myocardial proliferation through α5 integrin signaling. Development 2023; 150:dev201013. [PMID: 36621002 PMCID: PMC10110499 DOI: 10.1242/dev.201013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023]
Abstract
The cardiomyocyte phenotypic switch from a proliferative to terminally differentiated state results in the loss of regenerative potential of the mammalian heart shortly after birth. Nonmuscle myosin IIB (NM IIB)-mediated actomyosin contractility regulates cardiomyocyte cytokinesis in the embryonic heart, and NM IIB levels decline after birth, suggesting a role for cellular tension in the regulation of cardiomyocyte cell cycle activity in the postnatal heart. To investigate the role of actomyosin contractility in cardiomyocyte cell cycle arrest, we conditionally activated ROCK2 kinase domain (ROCK2:ER) in the murine postnatal heart. Here, we show that α5/β1 integrin and fibronectin matrix increase in response to actomyosin-mediated tension. Moreover, activation of ROCK2:ER promotes nuclear translocation of Yap, a mechanosensitive transcriptional co-activator, and enhances cardiomyocyte proliferation. Finally, we show that reduction of myocardial α5 integrin rescues the myocardial proliferation phenotype in ROCK2:ER hearts. These data demonstrate that cardiomyocytes respond to increased intracellular tension by altering their intercellular contacts in favor of cell-matrix interactions, leading to Yap nuclear translocation, thus uncovering a function for nonmuscle myosin contractility in promoting cardiomyocyte proliferation in the postnatal heart.
Collapse
Affiliation(s)
- Xiaofei Li
- Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Department of Medicine, Division of Cardiology, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Callie McLain
- Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Department of Medicine, Division of Cardiology, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Michael S. Samuel
- Centre for Cancer Biology, an alliance between SA Pathology and the University of South Australia, Adelaide 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
| | - Michael F. Olson
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, M5B 2K3 Canada
| | - Glenn L. Radice
- Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Department of Medicine, Division of Cardiology, Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
78
|
Chen J, Huayu M, Su S, Wang S, Yang Z, Nan X, Lu D, Li Z. Vanillic Acid Alleviates Right Ventricular Function in Rats With MCT-Induced Pulmonary Arterial Hypertension. Nat Prod Commun 2023. [DOI: 10.1177/1934578x221148896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This study examined the molecular processes behind the effects of vanillic acid (VA) on right ventricular (RV) hypertrophy and function in rats with monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH). There were 40 male Sprague‒Dawley (SD) rats that were separated into 4 groups: Control, PAH, MCT + VA (50 mg/kg/d), and MCT + VA (100 mg/kg/d). Male SD rats were injected with MCT once under the skin to create the PAH model (40 mg/kg). RV morphological properties were evaluated using Masson and hematoxylin and eosin (H&E) staining. Echocardiography was used to evaluate RV functioning and right ventricle–pulmonary artery (RV-PA) coupling. In addition, Rho-associated protein kinase (ROCK) pathway-related factors were evaluated using Western blotting. Enzyme-linked immunosorbent assay (ELISA) was used to detect inflammatory markers as well as atrial natriuretic peptide (ANP) and brain-type natriuretic peptide (BNP) in the blood of PAH rats. As a result, VA effectively reduced the development of RV cardiomyocyte hypertrophy and fibrosis in PAH rats; levels of ANP, BNP, and inflammatory markers in the blood of PAH rats were also significantly decreased by VA intervention. Additionally, VA enhanced RV functioning and RV-PA coupling in PAH rats. In response to VA, the expression of proteins related to the ROCK pathway (ROCK1, ROCK2, NFATc3, P-STAT3, and Bax) was downregulated, whereas Bcl-2 expression was elevated. This study found that VA could attenuate RV remodeling and improve RV-PA coupling in PAH rats. RV remodeling and dysfunction may be linked to the dysregulation of the ROCK pathway, and the protective action of VA on RV function may be due to a block in the ROCK signaling pathway or its downstream signaling molecules.
Collapse
Affiliation(s)
- Ju Chen
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
- School of Ecological and Environmental Engineering, Qinghai University, Xining, China
| | - Meiduo Huayu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Shanshan Su
- Technical center of Xining Customs, Key Laboratory of Food Safety Research in Qinghai Province, Xining, China
| | - Shan Wang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | | | - Xingmei Nan
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
- School of Ecological and Environmental Engineering, Qinghai University, Xining, China
| | - Dianxiang Lu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
- Medical College, Qinghai University, Xining, China
| | - Zhanqiang Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
- Medical College, Qinghai University, Xining, China
| |
Collapse
|
79
|
Kopecny LR, Lee BWH, Coroneo MT. A systematic review on the effects of ROCK inhibitors on proliferation and/or differentiation in human somatic stem cells: A hypothesis that ROCK inhibitors support corneal endothelial healing via acting on the limbal stem cell niche. Ocul Surf 2023; 27:16-29. [PMID: 36586668 DOI: 10.1016/j.jtos.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Rho kinase inhibitors (ROCKi) have attracted growing multidisciplinary interest, particularly in Ophthalmology where the question as to how they promote corneal endothelial healing remains unresolved. Concurrently, stem cell biology has rapidly progressed in unravelling drivers of stem cell (SC) proliferation and differentiation, where mechanical niche factors and the actin cytoskeleton are increasingly recognized as key players. There is mounting evidence from the study of the peripheral corneal endothelium that supports the likelihood of an internal limbal stem cell niche. The possibility that ROCKi stimulate the endothelial SC niche has not been addressed. Furthermore, there is currently a paucity of data that directly evaluates whether ROCKi promotes corneal endothelial healing by acting on this limbal SC niche located near the transition zone. Therefore, we performed a systematic review examining the effects ROCKi on the proliferation and differentiation of human somatic SC, to provide insight into its effects on various human SC populations. An appraisal of electronic searches of four databases identified 1 in vivo and 58 in vitro studies (36 evaluated proliferation while 53 examined differentiation). Types of SC studied included mesenchymal (n = 32), epithelial (n = 11), epidermal (n = 8), hematopoietic and other (n = 8). The ROCK 1/2 selective inhibitor Y-27632 was used in almost all studies (n = 58), while several studies evaluated ≥2 ROCKi (n = 4) including fasudil, H-1152, and KD025. ROCKi significantly influenced human somatic SC proliferation in 81% of studies (29/36) and SC differentiation in 94% of studies (50/53). The present systemic review highlights that ROCKi are influential in regulating human SC proliferation and differentiation, and provides evidence to support the hypothesis that ROCKi promotes corneal endothelial division and maintenance via acting on the inner limbal SC niche.
Collapse
Affiliation(s)
- Lloyd R Kopecny
- School of Clinical Medicine, University of New South Wales, Sydney, Australia.
| | - Brendon W H Lee
- Department of Ophthalmology, School of Clinical Medicine, University of New South Wales, Level 2 South Wing, Edmund Blacket Building, Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Minas T Coroneo
- Department of Ophthalmology, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
80
|
Protective role of Decylubiquinone against secondary melanoma at lung in B16F10 induced mice by reducing E-cadherin expression and ameliorating ROCKII-Limk1/2-Cofiliin mediated metastasis. Cell Signal 2023; 101:110486. [PMID: 36208704 DOI: 10.1016/j.cellsig.2022.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Melanoma is one of the most consequential skin cancer with a rising death incidences. Silent but belligerent nature of metastatic sprouting is the leading cause of melanoma related mortality. Invasion of metastatic cells and re-expression of E-Cadherin play the crucial role in the establishment of secondary tumor at distal sites. Thus, manipulation of tumor cell invasion in parallel to regulation of E-Cadherin expression can be considered as potential anti-metastatic strategy. Evidences suggested key role of reactive oxygen species associated ROCK activities in the modulation of metastatic invasion via F-actin stabilization. Here, we first-time report Decylubiquinone, a dietary Coenzyme Q10 analog, as an effective attenuator of pulmonary metastatic melanoma in C57BL/6 mice. Current study depicted detailed molecular interplay associated with Decylubiquinone mediated phosphorylation of ROCKII at Tyr722 along with reduced phosphorylation of ROCKII Ser1366 leading to suppression of Limk1/2-Cofilin-F-actin stabilization axis that finally restricted B16F10 melanoma cell invasion at metastatic site. Analysis further deciphered the role of HNF4α as its nuclear translocation modulated E-Cadherin expression, the effect of reactive oxygen species dependent ROCKII activity in secondarily colonized B16F10 melanoma cells at lungs. Thus unbosoming of related signal orchestra represented Decylubiquinone as a potential remedial agent against secondary lung melanoma.
Collapse
|
81
|
Tanaka R, Liao J, Hada K, Mori D, Nagai T, Matsuzaki T, Nabeshima T, Kaibuchi K, Ozaki N, Mizoguchi H, Yamada K. Inhibition of Rho-kinase ameliorates decreased spine density in the medial prefrontal cortex and methamphetamine-induced cognitive dysfunction in mice carrying schizophrenia-associated mutations of the Arhgap10 gene. Pharmacol Res 2023; 187:106589. [PMID: 36462727 DOI: 10.1016/j.phrs.2022.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Copy-number variations in the ARHGAP10 gene encoding Rho GTPase-activating protein 10 are associated with schizophrenia. Model mice (Arhgap10 S490P/NHEJ mice) that carry "double-hit" mutations in the Arhgap10 gene mimic the schizophrenia in a Japanese patient, exhibiting altered spine density, methamphetamine-induced cognitive dysfunction, and activation of RhoA/Rho-kinase signaling. However, it remains unclear whether the activation of RhoA/Rho-kinase signaling due to schizophrenia-associated Arhgap10 mutations causes the phenotypes of these model mice. Here, we investigated the effects of fasudil, a brain permeable Rho-kinase inhibitor, on altered spine density in the medial prefrontal cortex (mPFC) and on methamphetamine-induced cognitive impairment in a touchscreen‑based visual discrimination task in Arhgap10 S490P/NHEJ mice. Fasudil (20 mg/kg, intraperitoneal) suppressed the increased phosphorylation of myosin phosphatase-targeting subunit 1, a substrate of Rho-kinase, in the striatum and mPFC of Arhgap10 S490P/NHEJ mice. In addition, daily oral administration of fasudil (20 mg/kg/day) for 7 days ameliorated the reduced spine density of layer 2/3 pyramidal neurons in the mPFC. Moreover, fasudil (3-20 mg/kg, intraperitoneal) rescued the methamphetamine (0.3 mg/kg)-induced cognitive impairment of visual discrimination in Arhgap10 S490P/NHEJ mice. Our results suggest that Rho-kinase plays significant roles in the neuropathological changes in spine morphology and in the vulnerability of cognition to methamphetamine in mice with schizophrenia-associated Arhgap10 mutations.
Collapse
Affiliation(s)
- Rinako Tanaka
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Jingzhu Liao
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Kazuhiro Hada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan; Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Tetsuo Matsuzaki
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Toshitaka Nabeshima
- Laboratory of Health and Medical Science Innovation, Fujita Health University Graduate School of Health Sciences, Toyoake, Aichi 470-1192, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi 468-0069, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan; International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1129, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi 468-0069, Japan.
| |
Collapse
|
82
|
Olawale F, Olofinsan K, Ogunyemi OM, Karigidi KO, Gyebi GA, Ibrahim IM, Iwaloye O. Deciphering the therapeutic role of Kigelia africana fruit in erectile dysfunction through metabolite profiling and molecular modelling. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
83
|
Khatoon F, Haque S, Hashem A, Mahmoud A, Tashkandi H, Mathkor D, Harakeh S, Alghamdi B, Kumar V. Network-based approach for targeting human kinases commonly associated with amyotrophic lateral sclerosis and cancer. Front Mol Neurosci 2022; 15:1023286. [PMID: 36590916 PMCID: PMC9802580 DOI: 10.3389/fnmol.2022.1023286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Background Amyotrophic Lateral Sclerosis (ALS) is a rare progressive and chronic motor neuron degenerative disease for which at present no cure is available. In recent years, multiple genes encode kinases and other causative agents for ALS have been identified. Kinases are enzymes that show pleiotropic nature and regulate different signal transduction processes and pathways. The dysregulation of kinase activity results in dramatic changes in processes and causes many other human diseases including cancers. Methods In this study, we have adopted a network-based system biology approach to investigate the kinase-based molecular interplay between ALS and other human disorders. A list of 62 ALS-associated-kinases was first identified and then we identified the disease associated with them by scanning multiple disease-gene interaction databases to understand the link between the ALS-associated kinases and other disorders. Results An interaction network with 36 kinases and 381 different disorders associated with them was prepared, which represents the complexity and the comorbidity associated with the kinases. Further, we have identified 5 miRNAs targeting the majority of the kinases in the disease-causing network. The gene ontology and pathways enrichment analysis of those miRNAs were performed to understand their biological and molecular functions along with to identify the important pathways. We also identified 3 drug molecules that can perturb the disease-causing network by drug repurposing. Conclusion This network-based study presented hereby contributes to a better knowledge of the molecular underpinning of comorbidities associated with the kinases associated with the ALS disease and provides the potential therapeutic targets to disrupt the highly complex disease-causing network.
Collapse
Affiliation(s)
- Fatima Khatoon
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, Uttar Pradesh, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Anwar Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Hanaa Tashkandi
- Department of General Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Darin Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badra Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vijay Kumar
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Vijay Kumar,
| |
Collapse
|
84
|
Fortner A, Chera A, Tanca A, Bucur O. Apoptosis regulation by the tyrosine-protein kinase CSK. Front Cell Dev Biol 2022; 10:1078180. [PMID: 36578781 PMCID: PMC9792154 DOI: 10.3389/fcell.2022.1078180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
C-terminal Src kinase (CSK) is a cytosolic tyrosine-protein kinase with an important role in regulating critical cellular decisions, such as cellular apoptosis, survival, proliferation, cytoskeletal organization and many others. Current knowledge on the CSK mechanisms of action, regulation and functions is still at an early stage, most of CSK's known actions and functions being mediated by the negative regulation of the SRC family of tyrosine kinases (SFKs) through phosphorylation. As SFKs play a vital role in apoptosis, cell proliferation and survival regulation, SFK inhibition by CSK has a pro-apoptotic effect, which is mediated by the inhibition of cellular signaling cascades controlled by SFKs, such as the MAPK/ERK, STAT3 and PI3K/AKT signaling pathways. Abnormal functioning of CSK and SFK activation can lead to diseases such as cancer, cardiovascular and neurological manifestations. This review describes apoptosis regulation by CSK, CSK inhibition of the SFKs and further explores the clinical relevance of CSK in important pathologies, such as cancer, autoimmune, autoinflammatory, neurologic diseases, hypertension and HIV/AIDS.
Collapse
Affiliation(s)
- Andra Fortner
- Victor Babes National Institute of Pathology, Bucharest, Romania,Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Alexandra Chera
- Victor Babes National Institute of Pathology, Bucharest, Romania,Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Antoanela Tanca
- Victor Babes National Institute of Pathology, Bucharest, Romania,Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,*Correspondence: Octavian Bucur, ; Antoanela Tanca,
| | - Octavian Bucur
- Victor Babes National Institute of Pathology, Bucharest, Romania,Viron Molecular Medicine Institute, Boston, MA, United States,*Correspondence: Octavian Bucur, ; Antoanela Tanca,
| |
Collapse
|
85
|
Hirano M, Hirano K. Critical role of Rho proteins in myosin light chain di-phosphorylation during early phase of endothelial barrier disruption. J Physiol Sci 2022; 72:32. [PMID: 36476233 PMCID: PMC10717653 DOI: 10.1186/s12576-022-00857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
We previously reported the Rho-associated coiled-coil containing protein kinase (ROCK)-mediated di-phosphorylation of myosin light chain (MLC) and actin bundle formation at the cell periphery as early events of the endothelial barrier disruption. We herein examined the role of RhoA during early events of barrier disruption. Treatment of cultured porcine aortic endothelial cells with simvastatin prevented the decrease in trans-endothelial electrical resistance, MLC di-phosphorylation and peripheral actin bundle formation seen 3 min after thrombin stimulation. Co-treatment with geranylgeranyl pyrophosphate rescued the thrombin-induced events. Thrombin increased a GTP-bound form of RhoA and phosphorylation of myosin phosphatase target subunit 1 (MYPT1) at the ROCK site. The intracellular introduction of the inhibitory protein of RhoA inhibited the thrombin-induced di-phosphorylation of MLC. However, knockdown of either one of RhoA, RhoB or RhoC failed to inhibit thrombin-induced MLC di-phosphorylation. The findings suggest that Rho proteins play a critical role during early events of thrombin-induced barrier disruption.
Collapse
Affiliation(s)
- Mayumi Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan.
| |
Collapse
|
86
|
A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology. Biochem Pharmacol 2022; 206:115321. [DOI: 10.1016/j.bcp.2022.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022]
|
87
|
Fasudil, a ROCK inhibitor, preserves limb integrity in a mouse model of unilateral critical limb ischemia: Possible interplay of inflammatory and angiogenic signaling pathways. Life Sci 2022; 309:121019. [DOI: 10.1016/j.lfs.2022.121019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 11/20/2022]
|
88
|
Li M, Zhang L, Liu X, Wang G, Lu J, Guo J, Wang H, Xu J, Zhang Y, Li N, Zhou Y. Inhibition of Rho/ROCK signaling pathway participates in the cardiac protection of exercise training in spontaneously hypertensive rats. Sci Rep 2022; 12:17903. [PMID: 36284153 PMCID: PMC9596711 DOI: 10.1038/s41598-022-22191-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 10/11/2022] [Indexed: 01/20/2023] Open
Abstract
Exercise training (ExT) is capable of improving the heart function of spontaneously hypertensive rats (SHRs), but the underlying molecular mechanisms remain elusive. This study was aimed to investigate whether inhibition of RhoA/ROCK signaling pathway contributes to the cardiac protection by low-intensity ExT in SHRs. The results demonstrated that, compared with Wistar-Kyoto (WKY) rats, SHRs obviously exhibited higher blood pressure, increased heart weight index and thickness of left ventricular wall, decreased left ventricular function, damaged myocardial construction, and increased collagen fiber of left ventricle (P < 0.05 or P < 0.01). Meanwhile, the mRNA and protein expression levels of RhoA and ROCK in the heart of SHRs were significantly increased, compared with those of WKY rats (P < 0.05 or P < 0.01). Interestingly, the pathological changes of heart aforementioned were all improved in SHR-ExT rats compared with SHR-Sed rats (P < 0.05 or P < 0.01), indicating the cardiac protection of exercise training. In addition, the cardiac protective effect of exercise training could be blocked by LPA, an activator of Rho/ROCK signaling, and the protective effect in SHR rats could be mimicked by Fasudil, an inhibitor of Rho/ROCK signaling. The results strongly suggest that low-intensity ExT can protect heart against structure and function through inhibiting Rho/ROCK signaling pathway in hypertensive rats.
Collapse
Affiliation(s)
- Mengwei Li
- grid.256885.40000 0004 1791 4722Department of Physiology, School of Basic Medical Sciences, Hebei University, 342 Yu Hu Dong Rd., Baoding, 071000 People’s Republic of China
| | - Limei Zhang
- grid.256885.40000 0004 1791 4722Clinical School of Medicine, Hebei University, Baoding, 071000 People’s Republic of China ,Hengshui People’s Hospital, Hengshui, 053000 People’s Republic of China
| | - Xinyan Liu
- grid.256885.40000 0004 1791 4722Department of Physiology, School of Basic Medical Sciences, Hebei University, 342 Yu Hu Dong Rd., Baoding, 071000 People’s Republic of China
| | - Guoqiang Wang
- grid.256885.40000 0004 1791 4722Clinical School of Medicine, Hebei University, Baoding, 071000 People’s Republic of China
| | - Jian Lu
- grid.256885.40000 0004 1791 4722Department of Physiology, School of Basic Medical Sciences, Hebei University, 342 Yu Hu Dong Rd., Baoding, 071000 People’s Republic of China
| | - Jifeng Guo
- grid.256885.40000 0004 1791 4722Clinical School of Medicine, Hebei University, Baoding, 071000 People’s Republic of China
| | - Hongjie Wang
- grid.256885.40000 0004 1791 4722Department of Physiology, School of Basic Medical Sciences, Hebei University, 342 Yu Hu Dong Rd., Baoding, 071000 People’s Republic of China ,Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Baoding, 071000 People’s Republic of China
| | - Jinpeng Xu
- grid.256885.40000 0004 1791 4722Clinical School of Medicine, Hebei University, Baoding, 071000 People’s Republic of China
| | - Yi Zhang
- grid.256885.40000 0004 1791 4722Department of Physiology, School of Basic Medical Sciences, Hebei University, 342 Yu Hu Dong Rd., Baoding, 071000 People’s Republic of China ,grid.256883.20000 0004 1760 8442Department of Physiology, School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, 05000 People’s Republic of China
| | - Na Li
- grid.256885.40000 0004 1791 4722Department of Physiology, School of Basic Medical Sciences, Hebei University, 342 Yu Hu Dong Rd., Baoding, 071000 People’s Republic of China ,Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Baoding, 071000 People’s Republic of China
| | - You Zhou
- grid.256885.40000 0004 1791 4722Department of Physiology, School of Basic Medical Sciences, Hebei University, 342 Yu Hu Dong Rd., Baoding, 071000 People’s Republic of China
| |
Collapse
|
89
|
Jin X, Liao X, Wu L, Huang J, Li Z, Li Y, Guo F. FOXO4 alleviates hippocampal neuronal damage in epileptic mice via the miR-138-5p/ROCK2 axis. Am J Med Genet B Neuropsychiatr Genet 2022; 189:271-284. [PMID: 35796190 DOI: 10.1002/ajmg.b.32904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/15/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023]
Abstract
Epilepsy (EP) is one of the most universal neurological disorders. This study investigated the mechanism of forkhead box protein O4 (FOXO4) on hippocampal neuronal damage in EP mice. Initially, the EP mouse model and the in vitro HT-22 cell model were established. EP seizures and neuronal damage in mice were assessed. FOXO4, microRNA (miR)-138-5p, and rho-associated coiled-coil containing protein kinase 2 (ROCK2) levels in hippocampal tissues or HT-22 cells were examined. The cell viability and apoptosis of HT-22 cells were determined. The concentrations of oxidative stress markers and the levels of inflammatory cytokines in hippocampal tissues or HT-22 cells were detected. We found that FOXO4 was poorly expressed in EP. FOXO4 overexpression alleviated hippocampal neuronal damage in EP mice and improved HT-22 cell viability and inhibited apoptosis, and decreased oxidative stress and inflammation in hippocampal tissue and HT-22 cells. The bindings of miR-138-5p to FOXO4 and ROCK2 were analyzed, which showed that FOXO4 promoted miR-138-5p via binding to the miR-138-5p promoter region, and miR-138-5p inhibited ROCK2 expression. Joint experiments showed that miR-138-5p suppression or ROCK2 overexpression reversed the alleviation of FOXO4 overexpression on hippocampal neuronal damage. FOXO4 inhibited ROCK2 expression via promoting miR-138-5p expression, thus alleviating hippocampal neuronal damage in EP mice.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pediatrics, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong, Shannxi, China
| | - Xingjuan Liao
- Department of pediatrics, Taihe Hospital, Shiyan, Hubei, China
| | - Longfei Wu
- Department of neurology, Xinjiang Kashgar First People's Hospital, Kashgar, Xinjiang, China
| | - Jianling Huang
- Department of Pediatrics, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong, Shannxi, China
| | - Zhimin Li
- Department of Pediatrics, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong, Shannxi, China
| | - Yali Li
- Department of Pediatrics, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong, Shannxi, China
| | - Fan Guo
- Department of pediatrics, Xixiang Hospital of Traditional Chinese Medicine, Xixiang, Shannxi, China
| |
Collapse
|
90
|
Sawma T, Shaito A, Najm N, Sidani M, Orekhov A, El-Yazbi AF, Iratni R, Eid AH. Role of RhoA and Rho-associated kinase in phenotypic switching of vascular smooth muscle cells: Implications for vascular function. Atherosclerosis 2022; 358:12-28. [DOI: 10.1016/j.atherosclerosis.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022]
|
91
|
Palshikar MG, Palli R, Tyrell A, Maggirwar S, Schifitto G, Singh MV, Thakar J. Executable models of immune signaling pathways in HIV-associated atherosclerosis. NPJ Syst Biol Appl 2022; 8:35. [PMID: 36131068 PMCID: PMC9492768 DOI: 10.1038/s41540-022-00246-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Abstract
Atherosclerosis (AS)-associated cardiovascular disease is an important cause of mortality in an aging population of people living with HIV (PLWH). This elevated risk has been attributed to viral infection, anti-retroviral therapy, chronic inflammation, and lifestyle factors. However, the rates at which PLWH develop AS vary even after controlling for length of infection, treatment duration, and for lifestyle factors. To investigate the molecular signaling underlying this variation, we sequenced 9368 peripheral blood mononuclear cells (PBMCs) from eight PLWH, four of whom have atherosclerosis (AS+). Additionally, a publicly available dataset of PBMCs from persons before and after HIV infection was used to investigate the effect of acute HIV infection. To characterize dysregulation of pathways rather than just measuring enrichment, we developed the single-cell Boolean Omics Network Invariant Time Analysis (scBONITA) algorithm. scBONITA infers executable dynamic pathway models and performs a perturbation analysis to identify high impact genes. These dynamic models are used for pathway analysis and to map sequenced cells to characteristic signaling states (attractor analysis). scBONITA revealed that lipid signaling regulates cell migration into the vascular endothelium in AS+ PLWH. Pathways implicated included AGE-RAGE and PI3K-AKT signaling in CD8+ T cells, and glucagon and cAMP signaling pathways in monocytes. Attractor analysis with scBONITA facilitated the pathway-based characterization of cellular states in CD8+ T cells and monocytes. In this manner, we identify critical cell-type specific molecular mechanisms underlying HIV-associated atherosclerosis using a novel computational method.
Collapse
Affiliation(s)
- Mukta G Palshikar
- Biophysics, Structural, and Computational Biology Program, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Rohith Palli
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Alicia Tyrell
- University of Rochester Clinical & Translational Science Institute, Rochester, USA
| | - Sanjay Maggirwar
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, USA
- Department of Imaging Sciences, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Meera V Singh
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Juilee Thakar
- Biophysics, Structural, and Computational Biology Program, University of Rochester School of Medicine and Dentistry, Rochester, USA.
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, USA.
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, USA.
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, USA.
| |
Collapse
|
92
|
Xie J, Hu Y, Sun D, Liu C, Li Z, Zhu J. Targeting non-coding RNA H19: A potential therapeutic approach in pulmonary diseases. Front Pharmacol 2022; 13:978151. [PMID: 36188624 PMCID: PMC9523668 DOI: 10.3389/fphar.2022.978151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Non-coding RNA is still one of the most popular fields in biology research. In recent years, people paid more attention to the roles of H19 in lung diseases, which expressed abnormally in various pathological process. Therefore, this review focus on the regulatory role of H19 in asthma, pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis (IPF), lung injury, pneumonia, lung cancer, etc. And the potential therapeutic agents and molecular treatments of H19 are collected. The aim is to demonstrate its underlying mechanism in pulmonary diseases and to guide the basic research targeting H19 into clinical drug translation.
Collapse
Affiliation(s)
- Jinghui Xie
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yuedi Hu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Dengdi Sun
- The Key Laboratory of Intelligent Computing and Signal Processing (ICSP), Ministry of Education, School of Artificial Intelligence, Anhui University, Hefei, China
| | - Changan Liu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zegeng Li
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Respiratory Medicine, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Jie Zhu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
93
|
Hollósi A, Pászty K, Bunta BL, Bozó T, Kellermayer M, Debreczeni ML, Cervenak L, Baccarini M, Varga A. BRAF increases endothelial cell stiffness through reorganization of the actin cytoskeleton. FASEB J 2022; 36:e22478. [PMID: 35916021 DOI: 10.1096/fj.202200344r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/11/2022]
Abstract
The dynamics of the actin cytoskeleton and its connection to endothelial cell-cell junctions determine the barrier function of endothelial cells. The proper regulation of barrier opening/closing is necessary for the normal function of vessels, and its dysregulation can result in chronic and acute inflammation leading to edema formation. By using atomic force microscopy, we show here that thrombin-induced permeability of human umbilical vein endothelial cells, associated with actin stress fiber formation, stiffens the cell center. The depletion of the MEK/ERK kinase BRAF reduces thrombin-induced permeability prevents stress fiber formation and cell stiffening. The peripheral actin ring becomes stabilized by phosphorylated myosin light chain, while cofilin is excluded from the cell periphery. All these changes can be reverted by the inhibition of ROCK, but not of the MEK/ERK module. We propose that the balance between the binding of cofilin and myosin to F-actin in the cell periphery, which is regulated by the activity of ROCK, determines the local dynamics of actin reorganization, ultimately driving or preventing stress fiber formation.
Collapse
Affiliation(s)
- Anna Hollósi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Katalin Pászty
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Bálint Levente Bunta
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Tamás Bozó
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Márta Lídia Debreczeni
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - László Cervenak
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Manuela Baccarini
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Andrea Varga
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
94
|
MacLean MR, Fanburg B, Hill N, Lazarus HM, Pack TF, Palacios M, Penumatsa KC, Wring SA. Serotonin and Pulmonary Hypertension; Sex and Drugs and ROCK and Rho. Compr Physiol 2022; 12:4103-4118. [PMID: 36036567 DOI: 10.1002/cphy.c220004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin is often referred to as a "happy hormone" as it maintains good mood, well-being, and happiness. It is involved in communication between nerve cells and plays a role in sleeping and digestion. However, too much serotonin can have pathogenic effects and serotonin synthesis is elevated in pulmonary artery endothelial cells from patients with pulmonary arterial hypertension (PAH). PAH is characterized by elevated pulmonary pressures, right ventricular failure, inflammation, and pulmonary vascular remodeling; serotonin has been shown to be associated with these pathologies. The rate-limiting enzyme in the synthesis of serotonin in the periphery of the body is tryptophan hydroxylase 1 (TPH1). TPH1 expression and serotonin synthesis are elevated in pulmonary artery endothelial cells in patients with PAH. The serotonin synthesized in the pulmonary arterial endothelium can act on the adjacent pulmonary arterial smooth muscle cells (PASMCs), adventitial macrophages, and fibroblasts, in a paracrine fashion. In humans, serotonin enters PASMCs cells via the serotonin transporter (SERT) and it can cooperate with the 5-HT1B receptor on the plasma membrane; this activates both contractile and proliferative signaling pathways. The "serotonin hypothesis of pulmonary hypertension" arose when serotonin was associated with PAH induced by diet pills such as fenfluramine, aminorex, and chlorphentermine; these act as indirect serotonergic agonists causing the release of serotonin from platelets and cells through the SERT. Here the role of serotonin in PAH is reviewed. Targeting serotonin synthesis or signaling is a promising novel alternative approach which may lead to novel therapies for PAH. © 2022 American Physiological Society. Compr Physiol 12: 1-16, 2022.
Collapse
Affiliation(s)
- Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Barry Fanburg
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Nicolas Hill
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | | | | | | - Krishna C Penumatsa
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
95
|
Kobayashi D, Watarai T, Ozawa M, Kanda Y, Saika F, Kiguchi N, Takeuchi A, Ikawa M, Matsuzaki S, Katakai T. Tas2R signaling enhances mouse neutrophil migration via a ROCK-dependent pathway. Front Immunol 2022; 13:973880. [PMID: 36059440 PMCID: PMC9436316 DOI: 10.3389/fimmu.2022.973880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Type-2 bitter taste receptors (Tas2Rs) are a large family of G protein-coupled receptors that are expressed in the oral cavity and serve to detect substances with bitter tastes in foods and medicines. Recent evidence suggests that Tas2Rs are also expressed extraorally, including in immune cells. However, the role of Tas2Rs in immune cells remains controversial. Here, we demonstrate that Tas2R126, Tas2R135, and Tas2R143 are expressed in mouse neutrophils, but not in other immune cells such as macrophages or T and B lymphocytes. Treatment of bone marrow-derived neutrophils from wild-type mice with the Tas2R126/143 agonists arbutin and d-salicin led to enhanced C-X-C motif chemokine ligand 2 (CXCL2)-stimulated migration in vitro, but this response was not observed in neutrophils from Tas2r126/135/143-deficient mice. Enhancement of CXCL2-stimulated migration by Tas2R agonists was accompanied by increased phosphorylation of myosin light chain 2 (MLC2) and was blocked by pretreatment of neutrophils with inhibitors of Rho-associated coiled-coil-containing protein kinase (ROCK), but not by inhibitors of the small GTPase RhoA. Taken together, these results demonstrate that mouse neutrophils express functional Tas2R126/143 and suggest a role for Tas2R126/143–ROCK–MLC2-dependent signaling in the regulation of neutrophil migration.
Collapse
Affiliation(s)
- Daichi Kobayashi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Daichi Kobayashi, ; ; Tomoya Katakai,
| | - Tomoya Watarai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Madoka Ozawa
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuhiro Kanda
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Arata Takeuchi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
- Department of Radiological Sciences, Faculty of Medical Science Technology, Morinomiya University of Medical Sciences, Osaka, Japan
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Suita, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- *Correspondence: Daichi Kobayashi, ; ; Tomoya Katakai,
| |
Collapse
|
96
|
Pillay LM, Yano JJ, Davis AE, Butler MG, Ezeude MO, Park JS, Barnes KA, Reyes VL, Castranova D, Gore AV, Swift MR, Iben JR, Kenton MI, Stratman AN, Weinstein BM. In vivo dissection of Rhoa function in vascular development using zebrafish. Angiogenesis 2022; 25:411-434. [PMID: 35320450 DOI: 10.1007/s10456-022-09834-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022]
Abstract
The small monomeric GTPase RHOA acts as a master regulator of signal transduction cascades by activating effectors of cellular signaling, including the Rho-associated protein kinases ROCK1/2. Previous in vitro cell culture studies suggest that RHOA can regulate many critical aspects of vascular endothelial cell (EC) biology, including focal adhesion, stress fiber formation, and angiogenesis. However, the specific in vivo roles of RHOA during vascular development and homeostasis are still not well understood. In this study, we examine the in vivo functions of RHOA in regulating vascular development and integrity in zebrafish. We use zebrafish RHOA-ortholog (rhoaa) mutants, transgenic embryos expressing wild type, dominant negative, or constitutively active forms of rhoaa in ECs, pharmacological inhibitors of RHOA and ROCK1/2, and Rock1 and Rock2a/b dgRNP-injected zebrafish embryos to study the in vivo consequences of RHOA gain- and loss-of-function in the vascular endothelium. Our findings document roles for RHOA in vascular integrity, developmental angiogenesis, and vascular morphogenesis in vivo, showing that either too much or too little RHOA activity leads to vascular dysfunction.
Collapse
Affiliation(s)
- Laura M Pillay
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Joseph J Yano
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
- Department of Cell and Molecular Biology, University of Pennsylvania, 440 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Andrew E Davis
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Matthew G Butler
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Megan O Ezeude
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Jong S Park
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Keith A Barnes
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Vanessa L Reyes
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Daniel Castranova
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Aniket V Gore
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Matthew R Swift
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - James R Iben
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Madeleine I Kenton
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Amber N Stratman
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brant M Weinstein
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA.
| |
Collapse
|
97
|
Circ_0004712 promotes endometriotic epithelial cell proliferation, migration and invasion by regulating miR-488-3p/ROCK1 axis in vitro. Reprod Biol 2022; 22:100667. [PMID: 35717759 DOI: 10.1016/j.repbio.2022.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/04/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022]
Abstract
Recent evidence indicates that circular RNAs (circRNAs) play crucial regulatory roles in the pathogenesis and development of endometriosis. Circ_0004712 was found to be differentially expressed in endometriosis. However, the detailed function and mechanism of circ_0004712 in endometriosis are still unclear. Quantitative real-time polymerase chain reaction and Western blot were used for the detection of circ_0004712, miR-488-3p and ROCK1 (Rho Associated Coiled-Coil Containing Protein Kinase 1) levels. In vitro experiments in endometrial endothelial cells were performed by cell counting kit-8, EdU, transwell, wound healing assays, and flow cytometry, respectively. The molecular mechanism of circ_0004712 function was investigated using bioinformatics target predication, dual-luciferase reporter, and RNA immunoprecipitation (RIP) assays. The expression of circ_0004712 was higher in endometriotic endometrial tissues and epithelial cells. Knockdown of circ_0004712 suppressed cell proliferation, migration, invasion, EMT process and induced apoptosis in ectopic endometrial epithelial cells in vitro. Mechanistically, circ_0004712 acted as a ceRNA to sponge miR-488-3p, thus elevating the expression of ROCK1, which was confirmed to be a target of miR-488-3p. Rescue experiments suggested that miR-488-3p inhibition reversed the inhibitory effects of circ_0004712 silencing on cell growth and metastasis. Moreover, miR-488-3p restoration restrained the proliferation and metastasis in ectopic endometrial epithelial cells, which were attenuated by ROCK1 overexpression. Circ_0004712 knockdown suppressed the proliferation and metastasis of ectopic endometrial epithelial cells via miR-488-3p/ROCK1 axis in vitro, suggesting a new insight into the pathogenesis of endometriosis.
Collapse
|
98
|
Guo CL. Self-Sustained Regulation or Self-Perpetuating Dysregulation: ROS-dependent HIF-YAP-Notch Signaling as a Double-Edged Sword on Stem Cell Physiology and Tumorigenesis. Front Cell Dev Biol 2022; 10:862791. [PMID: 35774228 PMCID: PMC9237464 DOI: 10.3389/fcell.2022.862791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Organ development, homeostasis, and repair often rely on bidirectional, self-organized cell-niche interactions, through which cells select cell fate, such as stem cell self-renewal and differentiation. The niche contains multiplexed chemical and mechanical factors. How cells interpret niche structural information such as the 3D topology of organs and integrate with multiplexed mechano-chemical signals is an open and active research field. Among all the niche factors, reactive oxygen species (ROS) have recently gained growing interest. Once considered harmful, ROS are now recognized as an important niche factor in the regulation of tissue mechanics and topology through, for example, the HIF-YAP-Notch signaling pathways. These pathways are not only involved in the regulation of stem cell physiology but also associated with inflammation, neurological disorder, aging, tumorigenesis, and the regulation of the immune checkpoint molecule PD-L1. Positive feedback circuits have been identified in the interplay of ROS and HIF-YAP-Notch signaling, leading to the possibility that under aberrant conditions, self-organized, ROS-dependent physiological regulations can be switched to self-perpetuating dysregulation, making ROS a double-edged sword at the interface of stem cell physiology and tumorigenesis. In this review, we discuss the recent findings on how ROS and tissue mechanics affect YAP-HIF-Notch-PD-L1 signaling, hoping that the knowledge can be used to design strategies for stem cell-based and ROS-targeting therapy and tissue engineering.
Collapse
Affiliation(s)
- Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
99
|
Nguee SYT, Júnior JWBD, Epiphanio S, Rénia L, Claser C. Experimental Models to Study the Pathogenesis of Malaria-Associated Acute Respiratory Distress Syndrome. Front Cell Infect Microbiol 2022; 12:899581. [PMID: 35677654 PMCID: PMC9168995 DOI: 10.3389/fcimb.2022.899581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria-associated acute respiratory distress syndrome (MA-ARDS) is increasingly gaining recognition as a severe malaria complication because of poor prognostic outcomes, high lethality rate, and limited therapeutic interventions. Unfortunately, invasive clinical studies are challenging to conduct and yields insufficient mechanistic insights. These limitations have led to the development of suitable MA-ARDS experimental mouse models. In patients and mice, MA-ARDS is characterized by edematous lung, along with marked infiltration of inflammatory cells and damage of the alveolar-capillary barriers. Although, the pathogenic pathways have yet to be fully understood, the use of different experimental mouse models is fundamental in the identification of mediators of pulmonary vascular damage. In this review, we discuss the current knowledge on endothelial activation, leukocyte recruitment, leukocyte induced-endothelial dysfunction, and other important findings, to better understand the pathogenesis pathways leading to endothelial pulmonary barrier lesions and increased vascular permeability. We also discuss how the advances in imaging techniques can contribute to a better understanding of the lung lesions induced during MA-ARDS, and how it could aid to monitor MA-ARDS severity.
Collapse
Affiliation(s)
- Samantha Yee Teng Nguee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Sabrina Epiphanio
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Carla Claser,
| |
Collapse
|
100
|
Moretti R, Janjusevic M, Fluca AL, Saro R, Gagno G, Pierri A, Padoan L, Restivo L, Derin A, Beltrami AP, Caruso P, Sinagra G, Aleksova A. Common Shared Pathogenic Aspects of Small Vessels in Heart and Brain Disease. Biomedicines 2022; 10:1009. [PMID: 35625746 PMCID: PMC9138783 DOI: 10.3390/biomedicines10051009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Small-vessel disease (SVD), also known as microvascular endothelial dysfunction, is a disorder with negative consequences for various organs such as the heart and brain. Impaired dilatation and constriction of small vessels in the heart lead to reduced blood flow and ischemia independently of coronary artery disease (CAD) and are associated with major cardiac events. SVD is usually a silent form of subcortical vascular burden in the brain with various clinical manifestations, such as silent-lacunar-ischemic events and confluent white-matter hyperintensities. Imaging techniques are the main help for clinicians to diagnose cardiac and brain SVD correctly. Markers of inflammation, such as C-reactive protein, tumor-necrosis-factor α, and interleukin 6, provide insight into the disease and markers that negatively influence nitric-oxide bioavailability and promote oxidative stress. Unfortunately, the therapeutic approach against SVD is still not well-defined. In the last decades, various antioxidants, oxidative stress inhibitors, and superoxide scavengers have been the target of extensive investigations due to their potential therapeutic effect, but with unsatisfactory results. In clinical practice, traditional anti-ischemic and risk-reduction therapies for CAD are currently in use for SVD treatment.
Collapse
Affiliation(s)
- Rita Moretti
- Department of Internal Medicine and Neurology, Neurological Clinic, 34100 Trieste, Italy; (R.M.); (P.C.)
| | - Milijana Janjusevic
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, 34100 Trieste, Italy; (M.J.); (A.L.F.); (R.S.); (G.G.); (A.P.); (L.R.); (A.D.); (G.S.)
| | - Alessandra Lucia Fluca
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, 34100 Trieste, Italy; (M.J.); (A.L.F.); (R.S.); (G.G.); (A.P.); (L.R.); (A.D.); (G.S.)
| | - Riccardo Saro
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, 34100 Trieste, Italy; (M.J.); (A.L.F.); (R.S.); (G.G.); (A.P.); (L.R.); (A.D.); (G.S.)
| | - Giulia Gagno
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, 34100 Trieste, Italy; (M.J.); (A.L.F.); (R.S.); (G.G.); (A.P.); (L.R.); (A.D.); (G.S.)
| | - Alessandro Pierri
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, 34100 Trieste, Italy; (M.J.); (A.L.F.); (R.S.); (G.G.); (A.P.); (L.R.); (A.D.); (G.S.)
| | - Laura Padoan
- Cardiology and Cardiovascular Physiopathology, Azienda Ospedaliero-Universitaria S. Maria Della Misericordia, 06156 Perugia, Italy;
| | - Luca Restivo
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, 34100 Trieste, Italy; (M.J.); (A.L.F.); (R.S.); (G.G.); (A.P.); (L.R.); (A.D.); (G.S.)
| | - Agnese Derin
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, 34100 Trieste, Italy; (M.J.); (A.L.F.); (R.S.); (G.G.); (A.P.); (L.R.); (A.D.); (G.S.)
| | | | - Paola Caruso
- Department of Internal Medicine and Neurology, Neurological Clinic, 34100 Trieste, Italy; (R.M.); (P.C.)
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, 34100 Trieste, Italy; (M.J.); (A.L.F.); (R.S.); (G.G.); (A.P.); (L.R.); (A.D.); (G.S.)
| | - Aneta Aleksova
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, 34100 Trieste, Italy; (M.J.); (A.L.F.); (R.S.); (G.G.); (A.P.); (L.R.); (A.D.); (G.S.)
| |
Collapse
|