51
|
Wan Kamarul Zaman WS, Nurul AA, Nordin F. Stem Cells and Cancer Stem Cells: The Jekyll and Hyde Scenario and Their Implications in Stem Cell Therapy. Biomedicines 2021; 9:biomedicines9091245. [PMID: 34572431 PMCID: PMC8468168 DOI: 10.3390/biomedicines9091245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 12/12/2022] Open
Abstract
"Jekyll and Hyde" refers to persons with an unpredictably dual personality, who are battling between good and evil within themselves In this regard, even cells consist of good and evil counterparts. Normal stem cells (NSCs) and cancer stem cells (CSCs) are two types of cells that share some similar characteristics but have distinct functions that play a major role in physiological and pathophysiological development. In reality, NSCs such as the adult and embryonic stem cells, are the good cells and the ultimate treatment used in cell therapy. CSCs are the corrupted cells that are a subpopulation of cancer cells within the cancer microenvironment that grow into a massive tumour or malignancy that needs to be treated. Hence, understanding the connection between NSCs and CSCs is important not just in cancer development but also in their therapeutic implication, which is the focus of this review.
Collapse
Affiliation(s)
- Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| | - Asma Abdullah Nurul
- School of Health Science, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre, UKM, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
52
|
Vendramin R, Katopodi V, Cinque S, Konnova A, Knezevic Z, Adnane S, Verheyden Y, Karras P, Demesmaeker E, Bosisio FM, Kucera L, Rozman J, Gladwyn-Ng I, Rizzotto L, Dassi E, Millevoi S, Bechter O, Marine JC, Leucci E. Activation of the integrated stress response confers vulnerability to mitoribosome-targeting antibiotics in melanoma. J Exp Med 2021; 218:e20210571. [PMID: 34287642 PMCID: PMC8424468 DOI: 10.1084/jem.20210571] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
The ability to adapt to environmental stress, including therapeutic insult, contributes to tumor evolution and drug resistance. In suboptimal conditions, the integrated stress response (ISR) promotes survival by dampening cytosolic translation. We show that ISR-dependent survival also relies on a concomitant up-regulation of mitochondrial protein synthesis, a vulnerability that can be exploited using mitoribosome-targeting antibiotics. Accordingly, such agents sensitized to MAPK inhibition, thus preventing the development of resistance in BRAFV600E melanoma models. Additionally, this treatment compromised the growth of melanomas that exhibited elevated ISR activity and resistance to both immunotherapy and targeted therapy. In keeping with this, pharmacological inactivation of ISR, or silencing of ATF4, rescued the antitumoral response to the tetracyclines. Moreover, a melanoma patient exposed to doxycycline experienced complete and long-lasting response of a treatment-resistant lesion. Our study indicates that the repurposing of mitoribosome-targeting antibiotics offers a rational salvage strategy for targeted therapy in BRAF mutant melanoma and a therapeutic option for NRAS-driven and immunotherapy-resistant tumors.
Collapse
Affiliation(s)
- Roberto Vendramin
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Vicky Katopodi
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sonia Cinque
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Angelina Konnova
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Zorica Knezevic
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sara Adnane
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Yvessa Verheyden
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department of Oncology, Laboratory for Molecular Cancer Biology, Katholieke Universiteit Leuven, Belgium
| | - Ewout Demesmaeker
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Lukas Kucera
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jan Rozman
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | | | - Lara Rizzotto
- Trace, Leuven Cancer Institute, Katholieke Universiteit Leuven, Belgium
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Stefania Millevoi
- Cancer Research Centre of Toulouse, Institut national de la santé et de la recherche médicale Joint Research Unit 1037, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
- Laboratoire d’Excellence “TOUCAN,” Toulouse, France
| | - Oliver Bechter
- Department of General Medical Oncology, Leuven Cancer Institute, Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department of Oncology, Laboratory for Molecular Cancer Biology, Katholieke Universiteit Leuven, Belgium
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
- Trace, Leuven Cancer Institute, Katholieke Universiteit Leuven, Belgium
| |
Collapse
|
53
|
Crous A, Abrahamse H. Aluminium (III) phthalocyanine chloride tetrasulphonate is an effective photosensitizer for the eradication of lung cancer stem cells. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210148. [PMID: 34527268 PMCID: PMC8424323 DOI: 10.1098/rsos.210148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Cancer stem cells (CSCs) are considered to contribute to the recurrence of lung cancer due to their stem-like nature and the involvement of genetic markers associated with drug efflux, regeneration and metastases. Photodynamic therapy (PDT) is a cost-effective and non-invasive therapeutic application that can act as an alternative therapy for lung cancer when considering CSC involvement. Stem-like cells derived from the A549 lung cancer cell line, positive for CD133, CD56 and CD44 antigen markers, were characterized, intracellular localization of aluminium (III) phthalocyanine chloride tetrasulphonate (AlPcS4Cl) determined and its anti-cancer PDT effects were evaluated. Results confirmed that isolated cells were stem cell-like and subcellular localization of AlPcS4Cl in integral organelles involved in cell homeostasis supported the destruction of CSC. AlPcS4Cl's effectivity was demonstrated with CSC eradication showing a significant increase in cytotoxicity and cell death via apoptosis, caused by a decrease in mitochondrial membrane potential. PDT could serve as a palliative treatment for lung cancer and improve prognosis by elimination of lung CSCs.
Collapse
Affiliation(s)
- Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg 2028, South Africa
| |
Collapse
|
54
|
Padthaisong S, Phetcharaburanin J, Klanrit P, Li JV, Namwat N, Khuntikeo N, Titapun A, Jarearnrat A, Wangwiwatsin A, Mahalapbutr P, Loilome W. Integration of global metabolomics and lipidomics approaches reveals the molecular mechanisms and the potential biomarkers for postoperative recurrence in early-stage cholangiocarcinoma. Cancer Metab 2021; 9:30. [PMID: 34348794 PMCID: PMC8335966 DOI: 10.1186/s40170-021-00266-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/21/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cholangiocarcioma (CCA) treatment is challenging because most of the patients are diagnosed when the disease is advanced, and cancer recurrence is the main problem after treatment, leading to low survival rates. Therefore, our understanding of the mechanism underlying CCA recurrence is essential in order to prevent CCA recurrence and improve patient outcomes. Methods We performed 1H-NMR and UPLC-MS-based metabolomics on the CCA serum. The differential metabolites were further analyzed using pathway analysis and potential biomarker identification. Results At an early stage, the metabolites involved in energy metabolisms, such as pyruvate metabolism, and the TCA cycle, are downregulated, while most lipids, including TGs, PCs, PEs, and PAs, are upregulated in recurrence patients. This metabolic feature has been described in cancer stem-like cell (CSC) metabolism. In addition, the CSC markers CD44v6 and CD44v8-10 are associated with CD36 (a protein involved in lipid uptake) as well as with recurrence-free survival. We also found that citrate, sarcosine, succinate, creatine, creatinine and pyruvate, and TGs have good predictive values for CCA recurrence. Conclusion Our study demonstrates the possible molecular mechanisms underlying CCA recurrence, and these may associate with the existence of CSCs. The metabolic change involved in the recurrence pathway might be used to determine biomarkers for predicting CCA recurrence. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00266-5.
Collapse
Affiliation(s)
- Sureerat Padthaisong
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mittraparp Road, Muang District, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mittraparp Road, Muang District, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poramate Klanrit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mittraparp Road, Muang District, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jia V Li
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mittraparp Road, Muang District, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apiwat Jarearnrat
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arporn Wangwiwatsin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mittraparp Road, Muang District, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mittraparp Road, Muang District, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mittraparp Road, Muang District, Khon Kaen, 40002, Thailand. .,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, 40002, Thailand. .,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
55
|
Mokhtari RB, Sambi M, Qorri B, Baluch N, Ashayeri N, Kumar S, Cheng HLM, Yeger H, Das B, Szewczuk MR. The Next-Generation of Combination Cancer Immunotherapy: Epigenetic Immunomodulators Transmogrify Immune Training to Enhance Immunotherapy. Cancers (Basel) 2021; 13:3596. [PMID: 34298809 PMCID: PMC8305317 DOI: 10.3390/cancers13143596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy harnesses the immune system by targeting tumor cells that express antigens recognized by immune system cells, thus leading to tumor rejection. These tumor-associated antigens include tumor-specific shared antigens, differentiation antigens, protein products of mutated genes and rearrangements unique to tumor cells, overexpressed tissue-specific antigens, and exogenous viral proteins. However, the development of effective therapeutic approaches has proven difficult, mainly because these tumor antigens are shielded, and cells primarily express self-derived antigens. Despite innovative and notable advances in immunotherapy, challenges associated with variable patient response rates and efficacy on select tumors minimize the overall effectiveness of immunotherapy. Variations observed in response rates to immunotherapy are due to multiple factors, including adaptative resistance, competency, and a diversity of individual immune systems, including cancer stem cells in the tumor microenvironment, composition of the gut microbiota, and broad limitations of current immunotherapeutic approaches. New approaches are positioned to improve the immune response and increase the efficacy of immunotherapies, highlighting the challenges that the current global COVID-19 pandemic places on the present state of immunotherapy.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Neda Ashayeri
- Division of Hematology & Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran;
| | - Sushil Kumar
- QPS, Holdings LLC, Pencader Corporate Center, 110 Executive Drive, Newark, DE 19702, USA;
| | - Hai-Ling Margaret Cheng
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5G 1M1, Canada;
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Herman Yeger
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Bikul Das
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
- KaviKrishna Laboratory, Department of Cancer and Stem Cell Biology, GBP, Indian Institute of Technology, Guwahati 781039, India
| | - Myron R. Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| |
Collapse
|
56
|
Shen YA, Chen CC, Chen BJ, Wu YT, Juan JR, Chen LY, Teng YC, Wei YH. Potential Therapies Targeting Metabolic Pathways in Cancer Stem Cells. Cells 2021; 10:1772. [PMID: 34359941 PMCID: PMC8304173 DOI: 10.3390/cells10071772] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are heterogeneous cells with stem cell-like properties that are responsible for therapeutic resistance, recurrence, and metastasis, and are the major cause for cancer treatment failure. Since CSCs have distinct metabolic characteristics that plays an important role in cancer development and progression, targeting metabolic pathways of CSCs appears to be a promising therapeutic approach for cancer treatment. Here we classify and discuss the unique metabolisms that CSCs rely on for energy production and survival, including mitochondrial respiration, glycolysis, glutaminolysis, and fatty acid metabolism. Because of metabolic plasticity, CSCs can switch between these metabolisms to acquire energy for tumor progression in different microenvironments compare to the rest of tumor bulk. Thus, we highlight the specific conditions and factors that promote or suppress CSCs properties to portray distinct metabolic phenotypes that attribute to CSCs in common cancers. Identification and characterization of the features in these metabolisms can offer new anticancer opportunities and improve the prognosis of cancer. However, the therapeutic window of metabolic inhibitors used alone or in combination may be rather narrow due to cytotoxicity to normal cells. In this review, we present current findings of potential targets in these four metabolic pathways for the development of more effective and alternative strategies to eradicate CSCs and treat cancer more effectively in the future.
Collapse
Affiliation(s)
- Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chang-Cyuan Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
| | - Bo-Jung Chen
- Department of Pathology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
| | - Yu-Ting Wu
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 50046, Taiwan;
| | - Jiun-Ru Juan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
| | - Liang-Yun Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
| | - Yueh-Chun Teng
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 50046, Taiwan;
| |
Collapse
|
57
|
Abstract
Cancer stem cells (CSCs) are heterogeneous cells with stem cell-like properties that are responsible for therapeutic resistance, recurrence, and metastasis, and are the major cause for cancer treatment failure. Since CSCs have distinct metabolic characteristics that plays an important role in cancer development and progression, targeting metabolic pathways of CSCs appears to be a promising therapeutic approach for cancer treatment. Here we classify and discuss the unique metabolisms that CSCs rely on for energy production and survival, including mitochondrial respiration, glycolysis, glutaminolysis, and fatty acid metabolism. Because of metabolic plasticity, CSCs can switch between these metabolisms to acquire energy for tumor progression in different microenvironments compare to the rest of tumor bulk. Thus, we highlight the specific conditions and factors that promote or suppress CSCs properties to portray distinct metabolic phenotypes that attribute to CSCs in common cancers. Identification and characterization of the features in these metabolisms can offer new anticancer opportunities and improve the prognosis of cancer. However, the therapeutic window of metabolic inhibitors used alone or in combination may be rather narrow due to cytotoxicity to normal cells. In this review, we present current findings of potential targets in these four metabolic pathways for the development of more effective and alternative strategies to eradicate CSCs and treat cancer more effectively in the future.
Collapse
|
58
|
Esmaeili SA, Sahranavard S, Salehi A, Bagheri V. Selectively targeting cancer stem cells: Current and novel therapeutic strategies and approaches in the effective eradication of cancer. IUBMB Life 2021; 73:1045-1059. [PMID: 34184810 DOI: 10.1002/iub.2524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022]
Abstract
Cancer stem cells (CSCs) are a subgroup of cells in malignant cancers, which possess self-renewal capacity, tumor-initiating capability, and pluripotency, as well as being responsible for tumor maintenance, metastasis, relapse, and chemoresistance. The treatment modalities previously established for cancer included surgery, chemotherapy, and radiotherapy. The majority of tumor cells of non-CSCs could be eradicated using conventional chemotherapy and radiotherapy. Therefore, novel and promising therapeutic strategies that selectively target CSCs are of great importance. In this review, we described different therapeutic strategies such as immunotherapy, metabolism-based therapeutic strategies, and additional potential therapeutic approaches (targeting microRNAs [miRNAs], histone deacetylase, and DNA methyl transferase) against CSCs. Taken together, due to the inefficiency of anticancer single therapies, targeting CSCs through their metabolism and using immunotherapy and miRNAs besides classical chemo- and radiotherapy may exert better therapeutic effects.
Collapse
Affiliation(s)
- Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shamim Sahranavard
- Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Astireh Salehi
- Biology Department, Islamic Azad University, Sanandaj, Iran
| | - Vahid Bagheri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
59
|
Song W, He X, Gong P, Yang Y, Huang S, Zeng Y, Wei L, Zhang J. Glycolysis-Related Gene Expression Profiling Screen for Prognostic Risk Signature of Pancreatic Ductal Adenocarcinoma. Front Genet 2021; 12:639246. [PMID: 34249078 PMCID: PMC8261051 DOI: 10.3389/fgene.2021.639246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
Objective: Pancreatic ductal adenocarcinoma (PDAC) is highly lethal. Although progress has been made in the treatment of PDAC, its prognosis remains unsatisfactory. This study aimed to develop novel prognostic genes related to glycolysis in PDAC and to apply these genes to new risk stratification. Methods: In this study, based on the Cancer Genome Atlas (TCGA) PAAD cohort, the expression level of glycolysis-related gene at mRNA level in PAAD and its relationship with prognosis were analyzed. Non-negative matrix decomposition (NMF) clustering was used to cluster PDAC patients according to glycolytic genes. Prognostic glycolytic genes, screened by univariate Cox analysis and LASSO regression analysis were established to calculate risk scores. The differentially expressed genes (DEGs) in the high-risk group and the low-risk group were analyzed, and the signal pathway was further enriched to analyze the correlation between glycolysis genes. In addition, based on RNA-seq data, CIBERSORT was used to evaluate the infiltration degree of immune cells in PDAC samples, and ESTIMATE was used to calculate the immune score of the samples. Results: A total of 319 glycolysis-related genes were retrieved, and all PDAC samples were divided into two clusters by NMF cluster analysis. Survival analysis showed that PDAC patients in cluster 1 had shorter survival time and worse prognosis compared with cluster 2 samples (P < 0.001). A risk prediction model based on 11 glycolysis genes was constructed, according to which patients were divided into two groups, with significantly poorer prognosis in high-risk group than in low-risk group (P < 0.001). Both internal validation and external dataset validation demonstrate good predictive ability of the model (AUC = 0.805, P < 0.001; AUC = 0.763, P < 0.001). Gene aggregation analysis showed that DEGs highly expressed in high-risk group were mainly concentrated in the glycolysis level, immune status, and tumor cell proliferation, etc. In addition, the samples in high-risk group showed immunosuppressed status and infiltrated by relatively more macrophages and less CD8+T cell. Conclusions: These findings suggested that the gene signature based on glycolysis-related genes had potential diagnostic, therapeutic, and prognostic value for PDAC.
Collapse
Affiliation(s)
- Wenjing Song
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xin He
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Pengju Gong
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yan Yang
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Sirui Huang
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yifan Zeng
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lei Wei
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingwei Zhang
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
60
|
Metabolic protein phosphoglycerate kinase 1 confers lung cancer migration by directly binding HIV Tat specific factor 1. Cell Death Discov 2021; 7:135. [PMID: 34091600 PMCID: PMC8179927 DOI: 10.1038/s41420-021-00520-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2021] [Accepted: 05/13/2021] [Indexed: 12/29/2022] Open
Abstract
Phosphoglycerate kinase (PGK) is involved in glycolytic and various metabolic events. Dysfunction of PGK may induce metabolic reprogramming and the Warburg effect. In this study, we demonstrated that PGK1, but not PGK2, may play a key role in tumorigenesis and is associated with metastasis. We observed an inverse correlation between PGK1 and the survival rate in several clinical cohorts through bioinformatics statistical and immunohistochemical staining analyses. Surprisingly, we found that PGK1 was significantly increased in adenocarcinoma compared with other subtypes. Thus, we established a PGK1-based proteomics dataset by a pull-down assay. We further investigated HIV-1 Tat Specific Factor 1 (HTATSF1), a potential binding partner, through protein–protein interactions. Then, we confirmed that PGK1 indeed bound to HTATSF1 by two-way immunoprecipitation experiments. In addition, we generated several mutant clones of PGK1 through site-directed mutagenesis, including mutagenesis of the N-terminal region, the enzyme catalytic domain, and the C-terminal region. We observed that even though the phosphoglycerate kinase activity had been inhibited, the migration ability induced by PGK1 was maintained. Moreover, our immunofluorescence staining also indicated the translocation of PGK1 from the cytoplasm to the nucleus and its colocalization with HTATSF1. From the results presented in this study, we propose a novel model in which the PGK1 binds to HTATSF1 and exerts functional control of cancer metastasis. In addition, we also showed a nonenzymatic function of PGK1.
Collapse
|
61
|
Inoue J, Kishikawa M, Tsuda H, Nakajima Y, Asakage T, Inazawa J. Identification of PDHX as a metabolic target for esophageal squamous cell carcinoma. Cancer Sci 2021; 112:2792-2802. [PMID: 33964039 PMCID: PMC8253269 DOI: 10.1111/cas.14938] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
The metabolism in tumors is reprogrammed to meet its energetic and substrate demands. However, this metabolic reprogramming creates metabolic vulnerabilities, providing new opportunities for cancer therapy. Metabolic vulnerability as a therapeutic target in esophageal squamous cell carcinoma (ESCC) has not been adequately clarified. Here, we identified pyruvate dehydrogenase (PDH) component X (PDHX) as a metabolically essential gene for the cell growth of ESCC. PDHX expression was required for the maintenance of PDH activity and the production of ATP, and its knockdown inhibited the proliferation of cancer stem cells (CSCs) and in vivo tumor growth. PDHX was concurrently upregulated with the CD44 gene, a marker of CSCs, by co-amplification at 11p13 in ESCC tumors and these genes coordinately functioned in cancer stemness. Furthermore, CPI-613, a PDH inhibitor, inhibited the proliferation of CSCs in vitro and the growth of ESCC xenograft tumors in vivo. Thus, our study provides new insights related to the development of novel therapeutic strategies for ESCC by targeting the PDH complex-associated metabolic vulnerability.
Collapse
Affiliation(s)
- Jun Inoue
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Kishikawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, Saitama, Japan
| | - Yasuaki Nakajima
- Department of Surgical Gastroenterology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Asakage
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
62
|
Ludikhuize MC, Rodríguez Colman MJ. Metabolic Regulation of Stem Cells and Differentiation: A Forkhead Box O Transcription Factor Perspective. Antioxid Redox Signal 2021; 34:1004-1024. [PMID: 32847377 DOI: 10.1089/ars.2020.8126] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Stem cell activation and differentiation occur along changes in cellular metabolism. Metabolic transitions translate into changes in redox balance, cell signaling, and epigenetics, thereby regulating these processes. Metabolic transitions are key regulators of cell fate and exemplify the moonlighting nature of many metabolic enzymes and their associated metabolites. Recent Advances: Forkhead box O transcription factors (FOXOs) are bona fide regulators of cellular homeostasis. FOXOs are multitasking proteins able to regulate cell cycle, cellular metabolism, and redox state. Recent and ongoing research poses FOXOs as key factors in stem cell maintenance and differentiation in several tissues. Critical Issues: The multitasking nature of FOXOs and their tissue-specific expression patterns hinders to disclose a possible conserved mechanism of regulation of stem cell maintenance and differentiation. Moreover, cellular metabolism, cell signaling, and epigenetics establish complex regulatory interactions, which challenge the establishment of the causal/temporal nature of metabolic changes and stem cell activation and differentiation. Future Directions: The development of single-cell technologies and in vitro models able to reproduce the dynamics of stem cell differentiation are actively contributing to define the role of metabolism in this process. This knowledge is key to understanding and designing therapies for those pathologies where the balance between proliferation and differentiation is lost. Importantly, metabolic interventions could be applied to optimize stem cell cultures meant for therapeutical applications, such as transplantations, to treat autoimmune and degenerative disorders. Antioxid. Redox Signal. 34, 1004-1024.
Collapse
Affiliation(s)
- Marlies Corine Ludikhuize
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - María José Rodríguez Colman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
63
|
Genovese I, Carinci M, Modesti L, Aguiari G, Pinton P, Giorgi C. Mitochondria: Insights into Crucial Features to Overcome Cancer Chemoresistance. Int J Mol Sci 2021; 22:ijms22094770. [PMID: 33946271 PMCID: PMC8124268 DOI: 10.3390/ijms22094770] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are key regulators of cell survival and are involved in a plethora of mechanisms, such as metabolism, Ca2+ signaling, reactive oxygen species (ROS) production, mitophagy and mitochondrial transfer, fusion, and fission (known as mitochondrial dynamics). The tuning of these processes in pathophysiological conditions is fundamental to the balance between cell death and survival. Indeed, ROS overproduction and mitochondrial Ca2+ overload are linked to the induction of apoptosis, while the impairment of mitochondrial dynamics and metabolism can have a double-faceted role in the decision between cell survival and death. Tumorigenesis involves an intricate series of cellular impairments not yet completely clarified, and a further level of complexity is added by the onset of apoptosis resistance mechanisms in cancer cells. In the majority of cases, cancer relapse or lack of responsiveness is related to the emergence of chemoresistance, which may be due to the cooperation of several cellular protection mechanisms, often mitochondria-related. With this review, we aim to critically report the current evidence on the relationship between mitochondria and cancer chemoresistance with a particular focus on the involvement of mitochondrial dynamics, mitochondrial Ca2+ signaling, oxidative stress, and metabolism to possibly identify new approaches or targets for overcoming cancer resistance.
Collapse
Affiliation(s)
- Ilaria Genovese
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Lorenzo Modesti
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, Section of Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44121 Ferrara, Italy;
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
- Correspondence:
| |
Collapse
|
64
|
Thyroid Cancer Stem-Like Cells: From Microenvironmental Niches to Therapeutic Strategies. J Clin Med 2021; 10:jcm10071455. [PMID: 33916320 PMCID: PMC8037626 DOI: 10.3390/jcm10071455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Recent progress in thyroid cancer biology revealed a certain degree of intratumoral heterogeneity, highlighting the coexistence of cellular subpopulations with distinct proliferative capacities and differentiation abilities. Among those subpopulations, cancer stem-like cells (CSCs) are hypothesized to drive TC heterogeneity, contributing to its metastatic potential and therapy resistance. CSCs principally exist in tumor areas with specific microenvironmental conditions, the so-called stem cell niches. In particular, in thyroid cancer, CSCs' survival is enhanced in the hypoxic niche, the immune niche, and some areas with specific extracellular matrix composition. In this review, we summarize the current knowledge about thyroid CSCs, the tumoral niches that allow their survival, and the implications for TC therapy.
Collapse
|
65
|
van Noorden CJ, Hira VV, van Dijck AJ, Novak M, Breznik B, Molenaar RJ. Energy Metabolism in IDH1 Wild-Type and IDH1-Mutated Glioblastoma Stem Cells: A Novel Target for Therapy? Cells 2021; 10:cells10030705. [PMID: 33810170 PMCID: PMC8005124 DOI: 10.3390/cells10030705] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a redox disease. Low levels of reactive oxygen species (ROS) are beneficial for cells and have anti-cancer effects. ROS are produced in the mitochondria during ATP production by oxidative phosphorylation (OXPHOS). In the present review, we describe ATP production in primary brain tumors, glioblastoma, in relation to ROS production. Differentiated glioblastoma cells mainly use glycolysis for ATP production (aerobic glycolysis) without ROS production, whereas glioblastoma stem cells (GSCs) in hypoxic periarteriolar niches use OXPHOS for ATP and ROS production, which is modest because of the hypoxia and quiescence of GSCs. In a significant proportion of glioblastoma, isocitrate dehydrogenase 1 (IDH1) is mutated, causing metabolic rewiring, and all cancer cells use OXPHOS for ATP and ROS production. Systemic therapeutic inhibition of glycolysis is not an option as clinical trials have shown ineffectiveness or unwanted side effects. We argue that systemic therapeutic inhibition of OXPHOS is not an option either because the anti-cancer effects of ROS production in healthy cells is inhibited as well. Therefore, we advocate to remove GSCs out of their hypoxic niches by the inhibition of their binding to niches to enable their differentiation and thus increase their sensitivity to radiotherapy and/or chemotherapy.
Collapse
Affiliation(s)
- Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; (V.V.V.H.); (M.N.); (B.B.); (R.J.M.)
- Department of Medical Biology, Amsterdam UMC Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Correspondence: ; Tel.: +31-638-639-561
| | - Vashendriya V.V. Hira
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; (V.V.V.H.); (M.N.); (B.B.); (R.J.M.)
| | - Amber J. van Dijck
- Department of Medical Biology, Amsterdam UMC Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; (V.V.V.H.); (M.N.); (B.B.); (R.J.M.)
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; (V.V.V.H.); (M.N.); (B.B.); (R.J.M.)
| | - Remco J. Molenaar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; (V.V.V.H.); (M.N.); (B.B.); (R.J.M.)
- Department of Medical Oncology, Amsterdam UMC Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
66
|
Benítez L, Barberis L, Vellón L, Condat CA. Understanding the influence of substrate when growing tumorspheres. BMC Cancer 2021; 21:276. [PMID: 33722191 PMCID: PMC7962376 DOI: 10.1186/s12885-021-07918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/15/2021] [Indexed: 11/18/2022] Open
Abstract
Background Cancer stem cells are important for the development of many solid tumors. These cells receive promoting and inhibitory signals that depend on the nature of their environment (their niche) and determine cell dynamics. Mechanical stresses are crucial to the initiation and interpretation of these signals. Methods A two-population mathematical model of tumorsphere growth is used to interpret the results of a series of experiments recently carried out in Tianjin, China, and extract information about the intraspecific and interspecific interactions between cancer stem cell and differentiated cancer cell populations. Results The model allows us to reconstruct the time evolution of the cancer stem cell fraction, which was not directly measured. We find that, in the presence of stem cell growth factors, the interspecific cooperation between cancer stem cells and differentiated cancer cells induces a positive feedback loop that determines growth, independently of substrate hardness. In a frustrated attempt to reconstitute the stem cell niche, the number of cancer stem cells increases continuously with a reproduction rate that is enhanced by a hard substrate. For growth on soft agar, intraspecific interactions are always inhibitory, but on hard agar the interactions between stem cells are collaborative while those between differentiated cells are strongly inhibitory. Evidence also suggests that a hard substrate brings about a large fraction of asymmetric stem cell divisions. In the absence of stem cell growth factors, the barrier to differentiation is broken and overall growth is faster, even if the stem cell number is conserved. Conclusions Our interpretation of the experimental results validates the centrality of the concept of stem cell niche when tumor growth is fueled by cancer stem cells. Niche memory is found to be responsible for the characteristic population dynamics observed in tumorspheres. The model also shows why substratum stiffness has a deep influence on the behavior of cancer stem cells, stiffer substrates leading to a larger proportion of asymmetric doublings. A specific condition for the growth of the cancer stem cell number is also obtained Supplementary Information The online version contains supplementary material available at (10.1186/s12885-021-07918-1).
Collapse
Affiliation(s)
- Lucía Benítez
- Instituto de Física Enrique Gaviola, CONICET, and Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, X5000 HUA, Argentina
| | - Lucas Barberis
- Instituto de Física Enrique Gaviola, CONICET, and Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, X5000 HUA, Argentina.
| | - Luciano Vellón
- Instituto de Biología y Medicina Experimental, CONICET., Buenos Aires, C1428 ADN, Argentina
| | - Carlos A Condat
- Instituto de Física Enrique Gaviola, CONICET, and Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, X5000 HUA, Argentina
| |
Collapse
|
67
|
Jones CL, Inguva A, Jordan CT. Targeting Energy Metabolism in Cancer Stem Cells: Progress and Challenges in Leukemia and Solid Tumors. Cell Stem Cell 2021; 28:378-393. [PMID: 33667359 PMCID: PMC7951949 DOI: 10.1016/j.stem.2021.02.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Malignant stem cells have long been considered a key therapeutic target in leukemia. Therapeutic strategies designed to target the fundamental biology of leukemia stem cells while sparing normal hematopoietic cells may provide better outcomes for leukemia patients. One process in leukemia stem cell biology that has intriguing therapeutic potential is energy metabolism. In this article we discuss the metabolic properties of leukemia stem cells and how targeting energy metabolism may provide more effective therapeutic regimens for leukemia patients. In addition, we highlight the similarities and differences in energy metabolism between leukemia stem cells and malignant stem cells from solid tumors.
Collapse
Affiliation(s)
- Courtney L Jones
- Princess Margaret Cancer Centre, 101 College St. Toronto, ON M5G 1L7, Canada
| | - Anagha Inguva
- Division of Hematology, University of Colorado, 12700 East 19th Ave., Aurora, CO 80045, USA
| | - Craig T Jordan
- Division of Hematology, University of Colorado, 12700 East 19th Ave., Aurora, CO 80045, USA.
| |
Collapse
|
68
|
Dianat-Moghadam H, Khalili M, Keshavarz M, Azizi M, Hamishehkar H, Rahbarghazi R, Nouri M. Modulation of LXR signaling altered the dynamic activity of human colon adenocarcinoma cancer stem cells in vitro. Cancer Cell Int 2021; 21:100. [PMID: 33568147 PMCID: PMC7877018 DOI: 10.1186/s12935-021-01803-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The expansion and metastasis of colorectal cancers are closely associated with the dynamic growth of cancer stem cells (CSCs). This study aimed to explore the possible effect of LXR (a regulator of glycolysis and lipid hemostasis) in the tumorgenicity of human colorectal CD133 cells. METHODS Human HT-29 CD133+ cells were enriched by MACS and incubated with LXR agonist (T0901317) and antagonist (SR9243) for 72 h. Cell survival was evaluated using MTT assay and flow cytometric analysis of Annexin-V. The proliferation rate was measured by monitoring Ki-67 positive cells using IF imaging. The modulation of LXR was studied by monitoring the activity of all factors related to ABC transporters using real-time PCR assay and western blotting. Protein levels of metabolic enzymes such as PFKFB3, GSK3β, FASN, and SCD were also investigated upon treatment of CSCs with LXR modulators. The migration of CSCs was monitored after being exposed to LXR agonist using scratch and Transwell insert assays. The efflux capacity was measured using hypo-osmotic conditions. The intracellular content of reactive oxygen species was studied by DCFH-DA staining. RESULTS Data showed incubation of CSCs with T0901317 and SR9243 reduced the viability of CD133 cells in a dose-dependent manner compared to the control group. The activation of LXR up-regulated the expression and protein levels of ABC transporters (ABCA1, ABCG5, and ABCG8) compared to the non-treated cells (p < 0.05). Despite these effects, LXR activation suppressed the proliferation, clonogenicity, and migration of CD133 cells, and increased hypo-osmotic fragility (p < 0.05). We also showed that SR9243 inhibited the proliferation and clonogenicity of CD133 cells through down-regulating metabolic enzymes PFKFB3, GSK3β, FASN, and SCD as compared with the control cells (p < 0.05). Intracellular ROS levels were increased after the inhibition of LXR by SR9243 (p < 0.05). Calling attention, both T0901317 and SR9243 compounds induced apoptotic changes in cancer stem cells (p < 0.05). CONCLUSIONS The regulation of LXR activity can be considered as a selective targeting of survival, metabolism, and migration in CSCs to control the tumorigenesis and metastasis in patients with advanced colorectal cancers.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Khalili
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Azizi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
69
|
Courtois S, de Luxán-Delgado B, Penin-Peyta L, Royo-García A, Parejo-Alonso B, Jagust P, Alcalá S, Rubiolo JA, Sánchez L, Sainz B, Heeschen C, Sancho P. Inhibition of Mitochondrial Dynamics Preferentially Targets Pancreatic Cancer Cells with Enhanced Tumorigenic and Invasive Potential. Cancers (Basel) 2021; 13:698. [PMID: 33572276 PMCID: PMC7914708 DOI: 10.3390/cancers13040698] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors, partly due to its intrinsic aggressiveness, metastatic potential, and chemoresistance of the contained cancer stem cells (CSCs). Pancreatic CSCs strongly rely on mitochondrial metabolism to maintain their stemness, therefore representing a putative target for their elimination. Since mitochondrial homeostasis depends on the tightly controlled balance between fusion and fission processes, namely mitochondrial dynamics, we aim to study this mechanism in the context of stemness. In human PDAC tissues, the mitochondrial fission gene DNM1L (DRP1) was overexpressed and positively correlated with the stemness signature. Moreover, we observe that primary human CSCs display smaller mitochondria and a higher DRP1/MFN2 expression ratio, indicating the activation of the mitochondrial fission. Interestingly, treatment with the DRP1 inhibitor mDivi-1 induced dose-dependent apoptosis, especially in CD133+ CSCs, due to the accumulation of dysfunctional mitochondria and the subsequent energy crisis in this subpopulation. Mechanistically, mDivi-1 inhibited stemness-related features, such as self-renewal, tumorigenicity, and invasiveness and chemosensitized the cells to the cytotoxic effects of Gemcitabine. In summary, mitochondrial fission is an essential process for pancreatic CSCs and represents an attractive target for designing novel multimodal treatments that will more efficiently eliminate cells with high tumorigenic potential.
Collapse
Affiliation(s)
- Sarah Courtois
- Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragon, 50009 Zaragoza, Spain; (S.C.); (A.R.-G.); (B.P.-A.)
| | - Beatriz de Luxán-Delgado
- Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (B.d.L.-D.); (L.P.-P.); (P.J.)
| | - Laure Penin-Peyta
- Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (B.d.L.-D.); (L.P.-P.); (P.J.)
| | - Alba Royo-García
- Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragon, 50009 Zaragoza, Spain; (S.C.); (A.R.-G.); (B.P.-A.)
| | - Beatriz Parejo-Alonso
- Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragon, 50009 Zaragoza, Spain; (S.C.); (A.R.-G.); (B.P.-A.)
| | - Petra Jagust
- Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (B.d.L.-D.); (L.P.-P.); (P.J.)
| | - Sonia Alcalá
- Department of Biochemistry, School of Medicine, Instituto de Investigaciones Biomédicas (IIBm) “Alberto Sols” CSIC-UAM, Autónoma University of Madrid (UAM), 28029 Madrid, Spain; (S.A.); (B.S.J.)
- Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28029 Madrid, Spain
| | - Juan A. Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (J.A.R.); (L.S.)
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (J.A.R.); (L.S.)
| | - Bruno Sainz
- Department of Biochemistry, School of Medicine, Instituto de Investigaciones Biomédicas (IIBm) “Alberto Sols” CSIC-UAM, Autónoma University of Madrid (UAM), 28029 Madrid, Spain; (S.A.); (B.S.J.)
- Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28029 Madrid, Spain
| | - Christopher Heeschen
- Center for Single-Cell Omics, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Patricia Sancho
- Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragon, 50009 Zaragoza, Spain; (S.C.); (A.R.-G.); (B.P.-A.)
| |
Collapse
|
70
|
Kharkar PS. Cancer Stem Cell (CSC) Inhibitors in Oncology-A Promise for a Better Therapeutic Outcome: State of the Art and Future Perspectives. J Med Chem 2020; 63:15279-15307. [PMID: 33325699 DOI: 10.1021/acs.jmedchem.0c01336] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs), a subpopulation of cancer cells endowed with self-renewal, tumorigenicity, pluripotency, chemoresistance, differentiation, invasive ability, and plasticity, reside in specialized tumor niches and are responsible for tumor maintenance, metastasis, therapy resistance, and tumor relapse. The new-age "hierarchical or CSC" model of tumor heterogeneity is based on the concept of eradicating CSCs to prevent tumor relapse and therapy resistance. Small-molecular entities and biologics acting on various stemness signaling pathways, surface markers, efflux transporters, or components of complex tumor microenvironment are under intense investigation as potential anti-CSC agents. In addition, smart nanotherapeutic tools have proved their utility in achieving CSC targeting. Several CSC inhibitors in clinical development have shown promise, either as mono- or combination therapy, in refractory and difficult-to-treat cancers. Clinical investigations with CSC marker follow-up as a measure of clinical efficacy are needed to turn the "hype" into the "hope" these new-age oncology therapeutics have to offer.
Collapse
Affiliation(s)
- Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| |
Collapse
|
71
|
Molecular and Metabolic Subtypes Correspondence for Pancreatic Ductal Adenocarcinoma Classification. J Clin Med 2020; 9:jcm9124128. [PMID: 33371431 PMCID: PMC7767410 DOI: 10.3390/jcm9124128] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, is an extremely lethal disease due to late diagnosis, aggressiveness and lack of effective therapies. Considering its intrinsic heterogeneity, patient stratification models based on transcriptomic and genomic signatures, with partially overlapping subgroups, have been established. Besides molecular alterations, PDAC tumours show a strong desmoplastic response, resulting in profound metabolic reprogramming involving increased glucose and amino acid consumption, as well as lipid scavenging and biosynthesis. Interestingly, recent works have also revealed the existence of metabolic subtypes with differential prognosis within PDAC, which correlated to defined molecular subclasses in patients: lipogenic subtype correlated with a classical/progenitor signature, while glycolytic tumours associated with the highly aggressive basal/squamous profile. Bioinformatic analyses have demonstrated that the representative genes of each metabolic subtype are up-regulated in PDAC samples and predict patient survival. This suggests a relationship between the genetic signature, metabolic profile, and aggressiveness of the tumour. Considering all this, defining metabolic subtypes represents a clear opportunity for patient stratification considering tumour functional behaviour independently of their mutational background.
Collapse
|
72
|
Jagust P, Alcalá S, Jr BS, Heeschen C, Sancho P. Glutathione metabolism is essential for self-renewal and chemoresistance of pancreatic cancer stem cells. World J Stem Cells 2020; 12:1410-1428. [PMID: 33312407 PMCID: PMC7705467 DOI: 10.4252/wjsc.v12.i11.1410] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/19/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cellular metabolism regulates stemness in health and disease. A reduced redox state is essential for self-renewal of normal and cancer stem cells (CSCs). However, while stem cells rely on glycolysis, different CSCs, including pancreatic CSCs, favor mitochondrial metabolism as their dominant energy-producing pathway. This suggests that powerful antioxidant networks must be in place to detoxify mitochondrial reactive oxygen species (ROS) and maintain stemness in oxidative CSCs. Since glutathione metabolism is critical for normal stem cell function and CSCs from breast, liver and gastric cancer show increased glutathione content, we hypothesized that pancreatic CSCs also rely on this pathway for ROS detoxification.
AIM To investigate the role of glutathione metabolism in pancreatic CSCs.
METHODS Primary pancreatic cancer cells of patient-derived xenografts (PDXs) were cultured in adherent or CSC-enriching sphere conditions to determine the role of glutathione metabolism in stemness. Real-time polymerase chain reaction (PCR) was used to validate RNAseq results involving glutathione metabolism genes in adherent vs spheres, as well as the expression of pluripotency-related genes following treatment. Public TCGA and GTEx RNAseq data from pancreatic cancer vs normal tissue samples were analyzed using the webserver GEPIA2. The glutathione-sensitive fluorescent probe monochlorobimane was used to determine glutathione content by fluorimetry or flow cytometry. Pharmacological inhibitors of glutathione synthesis and recycling [buthionine-sulfoximine (BSO) and 6-Aminonicotinamide (6-AN), respectively] were used to investigate the impact of glutathione depletion on CSC-enriched cultures. Staining with propidium iodide (cell cycle), Annexin-V (apoptosis) and CD133 (CSC content) were determined by flow cytometry. Self-renewal was assessed by sphere formation assay and response to gemcitabine treatment was used as a readout for chemoresistance.
RESULTS Analysis of our previously published RNAseq dataset E-MTAB-3808 revealed up-regulation of genes involved in the KEGG (Kyoto Encyclopedia of Genes and Genomes) Pathway Glutathione Metabolism in CSC-enriched cultures compared to their differentiated counterparts. Consistently, in pancreatic cancer patient samples the expression of most of these up-regulated genes positively correlated with a stemness signature defined by NANOG, KLF4, SOX2 and OCT4 expression (P < 10-5). Moreover, 3 of the upregulated genes (MGST1, GPX8, GCCT) were associated with reduced disease-free survival in patients [Hazard ratio (HR) 2.2-2.5; P = 0.03-0.0054], suggesting a critical role for this pathway in pancreatic cancer progression. CSC-enriched sphere cultures also showed increased expression of different glutathione metabolism-related genes, as well as enhanced glutathione content in its reduced form (GSH). Glutathione depletion with BSO induced cell cycle arrest and apoptosis in spheres, and diminished the expression of stemness genes. Moreover, treatment with either BSO or the glutathione recycling inhibitor 6-AN inhibited self-renewal and the expression of the CSC marker CD133. GSH content in spheres positively correlated with intrinsic resistance to gemcitabine treatment in different PDXs r = 0.96, P = 5.8 × 1011). Additionally, CD133+ cells accumulated GSH in response to gemcitabine, which was abrogated by BSO treatment (P < 0.05). Combined treatment with BSO and gemcitabine-induced apoptosis in CD133+ cells to levels comparable to CD133- cells and significantly diminished self-renewal (P < 0.05), suggesting that chemoresistance of CSCs is partially dependent on GSH metabolism.
CONCLUSION Our data suggest that pancreatic CSCs depend on glutathione metabolism. Pharmacological targeting of this pathway showed that high GSH content is essential to maintain CSC functionality in terms of self-renewal and chemoresistance.
Collapse
Affiliation(s)
- Petra Jagust
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sonia Alcalá
- Department of Biochemistry, Autónoma University of Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid 28029, Spain
| | - Bruno Sainz Jr
- Department of Biochemistry, Autónoma University of Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid 28029, Spain
| | - Christopher Heeschen
- Center for Single-Cell Omics & Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Patricia Sancho
- Hospital Universitario Miguel Servet, IIS Aragon, Zaragoza 50009, Spain
| |
Collapse
|
73
|
Bhaskara VK, Mittal B, Mysorekar VV, Amaresh N, Simal-Gandara J. Resveratrol, cancer and cancer stem cells: A review on past to future. Curr Res Food Sci 2020; 3:284-295. [PMID: 33305295 PMCID: PMC7718213 DOI: 10.1016/j.crfs.2020.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer remains to be an unresolved medical challenge despite of tremendous advancement in basic science research and clinical medicine. One of the major limitations is due to the side effects of chemotherapy which remains to be palliative without offering any permanent cure for cancer. Cancer stem cells (CSCs) are the subpopulation of cells in tumors that remain viable even after surgery, chemo- and radio-therapy that eventually responsible for tumor relapse. Hence, by eliminating non-stem cancer cells and cancer stem cells from the patient, permanent cure is expected. Phytochemicals have been under the intensive study to target these CSCs effectively and permanently as they do not cause any side effects. Resveratrol (RSV) is one such compound attaining lot of interest in recent days to target CSCs either alone or in combination. RSV has been used by several researchers to target cancer cells in a variety of disease models, however its CSC targeting abilities are under intensive study at present. This review is to summarize the effects of RSV under in vitro and in vivo conditions along with advantages and disadvantages of its uses against cancer cells and cancer stem cells. From the first reports on phytochemical applications against cancer and cancer stem cells in 1997 and 2002 respectively followed by later reports, up to date observations and developments are enlisted from PubMed in this comprehensive review. RSV is shown to be a potential compound having impact on altering the signal transduction pathways in cancer cells. However, the effects are variable under in vitro and in vivo conditions, and also with its use alone or in combination with other small molecules. Past research on RSV is emphasizing the importance of in vivo experimental models and clinical trials with different prospective combinations, is a hope for future promising treatment regimen.
Collapse
Affiliation(s)
- Vasanth K Bhaskara
- Department of Biochemistry-PG, Ramaiah Post Graduate Center, Ramaiah College - RCASC, Bengaluru 560054, India
| | - Bharti Mittal
- Immuniteit Lab Pvt Ltd., Electronic City, Bengaluru 560024, India
| | - Vijaya V Mysorekar
- Department of Pathology, Ramaiah Medical College & Hospitals (RMCH), Bengaluru 560054, India
| | - Nagarathna Amaresh
- Department of Biotechnology, Ramaiah Post Graduate Center, Ramaiah College - RCASC, Bengaluru 560054, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
74
|
Praharaj PP, Panigrahi DP, Bhol CS, Patra S, Mishra SR, Mahapatra KK, Behera BP, Singh A, Patil S, Bhutia SK. Mitochondrial rewiring through mitophagy and mitochondrial biogenesis in cancer stem cells: A potential target for anti-CSC cancer therapy. Cancer Lett 2020; 498:217-228. [PMID: 33186655 DOI: 10.1016/j.canlet.2020.10.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/12/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) are distinct subpopulations of cancer cells with stem cell-like abilities and are more resilient to chemotherapy, causing tumor relapse. Mitophagy, a selective form of autophagy, removes damaged unwanted mitochondria from cells through a lysosome-based degradation pathway to maintain cellular homeostasis. CSCs use mitophagy as a chief survival response mechanism for their growth, propagation, and tumorigenic ability. Mitochondrial biogenesis is a crucial cellular event replacing damaged mitochondria through the coordinated regulation of several transcription factors to achieve the bioenergetic demands of the cell. Because of the high mitochondrial content in CSCs, mitochondrial biogenesis is an interesting target to address the resistance mechanisms of anti-CSC therapy. However, to what extent both mitophagy and mitochondrial biogenesis are vital in promoting stemness, metabolic reprogramming, and drug resistance in CSCs has yet to be established. Therefore, in this review, we focus on understanding the interesting aspects of mitochondrial rewiring that involve mitophagy and mitochondrial biogenesis in CSCs. We also discuss their coordinated regulation in the elimination of CSCs, with respect to stemness and differentiation of the CSC phenotype, and the different aspects of tumorigenesis such as cancer initiation, progression, resistance, and tumor relapse. Finally, we address several other unanswered questions relating to targeted anti-CSC cancer therapy, which improves patient survival.
Collapse
Affiliation(s)
- Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Amruta Singh
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
75
|
Valle S, Alcalá S, Martin-Hijano L, Cabezas-Sáinz P, Navarro D, Muñoz ER, Yuste L, Tiwary K, Walter K, Ruiz-Cañas L, Alonso-Nocelo M, Rubiolo JA, González-Arnay E, Heeschen C, Garcia-Bermejo L, Hermann PC, Sánchez L, Sancho P, Fernández-Moreno MÁ, Sainz B. Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells. Nat Commun 2020; 11:5265. [PMID: 33067432 PMCID: PMC7567808 DOI: 10.1038/s41467-020-18954-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the fourth leading cause of cancer death, has a 5-year survival rate of approximately 7-9%. The ineffectiveness of anti-PDAC therapies is believed to be due to the existence of a subpopulation of tumor cells known as cancer stem cells (CSCs), which are functionally plastic, and have exclusive tumorigenic, chemoresistant and metastatic capacities. Herein, we describe a 2D in vitro system for long-term enrichment of pancreatic CSCs that is amenable to biological and CSC-specific studies. By changing the carbon source from glucose to galactose in vitro, we force PDAC cells to utilize OXPHOS, resulting in enrichment of CSCs defined by increased CSC biomarker and pluripotency gene expression, greater tumorigenic potential, induced but reversible quiescence, increased OXPHOS activity, enhanced invasiveness, and upregulated immune evasion properties. This CSC enrichment method can facilitate the discovery of new CSC-specific hallmarks for future development into targets for PDAC-based therapies.
Collapse
Affiliation(s)
- Sandra Valle
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sonia Alcalá
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Laura Martin-Hijano
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Pablo Cabezas-Sáinz
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidad de Santiago de Compostela, Lugo, Spain
| | - Diego Navarro
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Lourdes Yuste
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Kanishka Tiwary
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Karolin Walter
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Laura Ruiz-Cañas
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Marta Alonso-Nocelo
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Juan A Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidad de Santiago de Compostela, Lugo, Spain
| | | | - Christopher Heeschen
- Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Center for Single-Cell Omics and Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidad de Santiago de Compostela, Lugo, Spain
| | | | - Miguel Ángel Fernández-Moreno
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain.
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| | - Bruno Sainz
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain.
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
76
|
The Metabolic Heterogeneity and Flexibility of Cancer Stem Cells. Cancers (Basel) 2020; 12:cancers12102780. [PMID: 32998263 PMCID: PMC7601708 DOI: 10.3390/cancers12102780] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Cancer stem cells (CSCs) have been shown to be the main cause of therapy resistance and cancer recurrence. An analysis of their biological properties has revealed that CSCs have a particular metabolism that differs from non-CSCs to maintain their stemness properties. In this review, we analyze the flexible metabolic mechanisms of CSCs and highlight the new therapeutics that target CSC metabolism. Abstract Numerous findings have indicated that CSCs, which are present at a low frequency inside primary tumors, are the main cause of therapy resistance and cancer recurrence. Although various therapeutic methods targeting CSCs have been attempted for eliminating cancer cells completely, the complicated characteristics of CSCs have hampered such attempts. In analyzing the biological properties of CSCs, it was revealed that CSCs have a peculiar metabolism that is distinct from non-CSCs to maintain their stemness properties. The CSC metabolism involves not only the catabolic and anabolic pathways, but also intracellular signaling, gene expression, and redox balance. In addition, CSCs can reprogram their metabolism to flexibly respond to environmental changes. In this review, we focus on the flexible metabolic mechanisms of CSCs, and highlight the new therapeutics that target CSC metabolism.
Collapse
|
77
|
Gonzalez-Villarreal CA, Quiroz-Reyes AG, Islas JF, Garza-Treviño EN. Colorectal Cancer Stem Cells in the Progression to Liver Metastasis. Front Oncol 2020; 10:1511. [PMID: 32974184 PMCID: PMC7468493 DOI: 10.3389/fonc.2020.01511] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal carcinoma (CRC) is a leading cause of cancer mortality. Tumorigenesis is a dynamic process wherein cancer stem cells (CSCs) and their microenvironment promote initiation, progression, and metastasis. Metastatic colonization is an inefficient process that is very complex and is poorly understood; however, in most cases, metastatic disease is not curable, and resistance mechanisms tend to develop against conventional treatments. An understanding of the underlying mechanisms and factors that contribute to the development of metastasis in CRC can aid in the search for specific therapeutic targets for improving standard treatments. In this review, we summarize current knowledge regarding tumor biology and the use of stroma cells as prognostic factors and inflammatory inducers associated with the use of tumor microenvironments as a promoter of cancer metastasis. Moreover, we look into the importance of CSC, pericytes, and circulating tumor cells as mechanisms that lead to liver metastasis, and we also focus on the cellular and molecular pathways that modulate and regulate epithelial–mesenchymal transition. Finally, we discuss a novel therapeutic target that can potentially eliminate CSCs as a CRC treatment.
Collapse
Affiliation(s)
| | - Adriana G Quiroz-Reyes
- Universidad Autonoma de Nuevo Leon Facultad de Medicina, Departamento de Bioquimica y Medicina Molecular, San Nicolás de los Garza, Mexico
| | - Jose F Islas
- Universidad Autonoma de Nuevo Leon Facultad de Medicina, Departamento de Bioquimica y Medicina Molecular, San Nicolás de los Garza, Mexico
| | - Elsa N Garza-Treviño
- Universidad Autonoma de Nuevo Leon Facultad de Medicina, Departamento de Bioquimica y Medicina Molecular, San Nicolás de los Garza, Mexico
| |
Collapse
|
78
|
Ghahremani H, Nabati S, Tahmori H, Peirouvi T, Sirati-Sabet M, Salami S. Long-Term Glucose Restriction with or without β-Hydroxybutyrate Enrichment Distinctively Alters Epithelial-Mesenchymal Transition-Related Signalings in Ovarian Cancer Cells. Nutr Cancer 2020; 73:1708-1726. [PMID: 32799692 DOI: 10.1080/01635581.2020.1804947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The beneficial impacts of the ketogenic diet and metabolic reprograming were recently reported for ovarian cancer patients. In this study, the effects of glucose restriction with or without beta-hydroxybutyrate (bHB) enrichment were studied in drug-resistant CD133high A2780CP and CD133low SK-OV-3 ovarian cancer cells to scrutinize the impact of experimental ketosis on ATP production, epithelial to mesenchymal transition (EMT), and related signaling pathways including Wnt, Hippo, and Hedgehog. Cells were adapted and maintained for a month with restricted levels of glucose (250 mg/l) with or without the therapeutic concentration of bHB (5 mM). Quantitative PCR, Western blot analysis, flow cytometry, chemiluminescence, and wound healing assay were used in this study. Glucose restriction and bHB enrichment reduced the stemness marker and diminished In Vitro migration in both cell lines. Glucose restriction significantly reduced ATP levels in both cells, but bHB enrichment was partially compensated for the ATP levels solely in SK-OV-3 cells. Glucose restriction mainly inhibited the Wnt pathway in the CD133high A2780CP cells, but the Hedgehog pathway was the main target in CD133low SK-OV-3 cells. In Conclusion, Prior targeted evaluations of key genes' expression would help to predict the distinctive impacts of metabolic fuels and to optimize the efficacy of ketogenic diets.
Collapse
Affiliation(s)
- Hossein Ghahremani
- Cell Death and Differentiation Signaling Research Lab, Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Nabati
- Cell Death and Differentiation Signaling Research Lab, Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Tahmori
- Cell Death and Differentiation Signaling Research Lab, Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahmineh Peirouvi
- Departments of Histology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Majid Sirati-Sabet
- Cell Death and Differentiation Signaling Research Lab, Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Salami
- Cell Death and Differentiation Signaling Research Lab, Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
79
|
García-Heredia JM, Carnero A. Role of Mitochondria in Cancer Stem Cell Resistance. Cells 2020; 9:E1693. [PMID: 32679735 PMCID: PMC7407626 DOI: 10.3390/cells9071693] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSC) are associated with the mechanisms of chemoresistance to different cytotoxic drugs or radiotherapy, as well as with tumor relapse and a poor prognosis. Various studies have shown that mitochondria play a central role in these processes because of the ability of this organelle to modify cell metabolism, allowing survival and avoiding apoptosis clearance of cancer cells. Thus, the whole mitochondrial cycle, from its biogenesis to its death, either by mitophagy or by apoptosis, can be targeted by different drugs to reduce mitochondrial fitness, allowing for a restored or increased sensitivity to chemotherapeutic drugs. Once mitochondrial misbalance is induced by a specific drug in any of the processes of mitochondrial metabolism, two elements are commonly boosted: an increment in reactive nitrogen/oxygen species and, subsequently, activation of the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- José Manuel García-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Avda. de la Reina Mercedes 6, 41012 Seville, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
80
|
Olivares-Urbano MA, Griñán-Lisón C, Marchal JA, Núñez MI. CSC Radioresistance: A Therapeutic Challenge to Improve Radiotherapy Effectiveness in Cancer. Cells 2020; 9:cells9071651. [PMID: 32660072 PMCID: PMC7407195 DOI: 10.3390/cells9071651] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy (RT) is a modality of oncologic treatment that can be used to treat approximately 50% of all cancer patients either alone or in combination with other treatment modalities such as surgery, chemotherapy, immunotherapy, and therapeutic targeting. Despite the technological advances in RT, which allow a more precise delivery of radiation while progressively minimizing the impact on normal tissues, issues like radioresistance and tumor recurrence remain important challenges. Tumor heterogeneity is responsible for the variation in the radiation response of the different tumor subpopulations. A main factor related to radioresistance is the presence of cancer stem cells (CSC) inside tumors, which are responsible for metastases, relapses, RT failure, and a poor prognosis in cancer patients. The plasticity of CSCs, a process highly dependent on the epithelial–mesenchymal transition (EMT) and associated to cell dedifferentiation, complicates the identification and eradication of CSCs and it might be involved in disease relapse and progression after irradiation. The tumor microenvironment and the interactions of CSCs with their niches also play an important role in the response to RT. This review provides a deep insight into the characteristics and radioresistance mechanisms of CSCs and into the role of CSCs and tumor microenvironment in both the primary tumor and metastasis in response to radiation, and the radiobiological principles related to the CSC response to RT. Finally, we summarize the major advances and clinical trials on the development of CSC-based therapies combined with RT to overcome radioresistance. A better understanding of the potential therapeutic targets for CSC radiosensitization will provide safer and more efficient combination strategies, which in turn will improve the live expectancy and curability of cancer patients.
Collapse
Affiliation(s)
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain;
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain;
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Correspondence: (J.A.M.); (M.I.N.); Tel.: +34-958-249321 (J.A.M.); +34-958-242077 (M.I.N.)
| | - María Isabel Núñez
- Department of Radiology and Physical Medicine, University of Granada, 18016 Granada, Spain;
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain;
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Correspondence: (J.A.M.); (M.I.N.); Tel.: +34-958-249321 (J.A.M.); +34-958-242077 (M.I.N.)
| |
Collapse
|
81
|
La Manna F, De Menna M, Patel N, Karkampouna S, De Filippo MR, Klima I, Kloen P, Beimers L, Thalmann GN, Pelger RCM, Jacinto E, Kruithof-de Julio M. Dual-mTOR Inhibitor Rapalink-1 Reduces Prostate Cancer Patient-Derived Xenograft Growth and Alters Tumor Heterogeneity. Front Oncol 2020; 10:1012. [PMID: 32656088 PMCID: PMC7324765 DOI: 10.3389/fonc.2020.01012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Bone metastasis is the leading cause of prostate cancer (PCa) mortality, frequently marking the progression to castration-resistant PCa. Dysregulation of the androgen receptor pathway is a common feature of castration-resistant PCa, frequently appearing in association with mTOR pathway deregulations. Advanced PCa is also characterized by increased tumor heterogeneity and cancer stem cell (CSC) frequency. CSC-targeted therapy is currently being explored in advanced PCa, with the aim of reducing cancer clonal divergence and preventing disease progression. In this study, we compared the molecular pathways enriched in a set of bone metastasis from breast and prostate cancer from snap-frozen tissue. To further model PCa drug resistance mechanisms, we used two patient-derived xenografts (PDX) models of bone-metastatic PCa, BM18, and LAPC9. We developed in vitro organoids assay and ex vivo tumor slice drug assays to investigate the effects of mTOR- and CSC-targeting compounds. We found that both PDXs could be effectively targeted by treatment with the bivalent mTORC1/2 inhibitor Rapalink-1. Exposure of LAPC9 to Rapalink-1 but not to the CSC-targeting drug disulfiram blocked mTORC1/2 signaling, diminished expression of metabolic enzymes involved in glutamine and lipid metabolism and reduced the fraction of CD44+ and ALDEFluorhigh cells, in vitro. Mice treated with Rapalink-1 showed a significantly delayed tumor growth compared to control and cells recovered from the tumors of treated animals showed a marked decrease of CD44 expression. Taken together these results highlight the increased dependence of advanced PCa on the mTOR pathway, supporting the development of a targeted approach for advanced, bone metastatic PCa.
Collapse
Affiliation(s)
- Federico La Manna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Department of Urology, Leiden University Medical Center, Leiden, Netherlands
| | - Marta De Menna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Nikhil Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Sofia Karkampouna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Maria Rosaria De Filippo
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Irena Klima
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Peter Kloen
- Department of Orthopedic Trauma Surgery, Academic Medical Center, Amsterdam, Netherlands
| | - Lijkele Beimers
- Department of Orthopedic Surgery, MC Slotervaart, Amsterdam, Netherlands
| | - George N. Thalmann
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Rob C. M. Pelger
- Department of Urology, Leiden University Medical Center, Leiden, Netherlands
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
82
|
Feng Q, Li X, Sun W, Sun M, Li Z, Sheng H, Xie F, Zhang S, Shan C. Targeting G6PD reverses paclitaxel resistance in ovarian cancer by suppressing GSTP1. Biochem Pharmacol 2020; 178:114092. [PMID: 32535103 DOI: 10.1016/j.bcp.2020.114092] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
Abstract
Ovarian cancer is one of the leading causes of mortality in women worldwide. Currently, paclitaxel is one of the most effective chemotherapies. However, resistance to paclitaxel is a major cause of therapy failure and the precise mechanism of paclitaxel resistance remains unclear. In this study, we demonstrated that the oxidative pentose phosphate pathway (PPP) enzyme glucose-6-phosphate dehydrogenase (G6PD) promotes paclitaxel resistance. We showed that G6PD expression was higher in paclitaxel-resistant cancer cells than in their paclitaxel-sensitive counterparts. Furthermore, we demonstrated that suppressing G6PD using shRNA, or an inhibitor, either as single agents or in combination, sensitized paclitaxel-resistant cancer cells to paclitaxel treatment and thereby improving the therapeutic efficacy of paclitaxel. Interestingly, we found that the upregulation of G6PD in paclitaxel-resistant cells was due to the decreased expression of protein arginine methyltransferase 6 (PRMT6), which targets the promoter of G6PD. We further identified that G6PD promotes paclitaxel resistance by regulating the expression of glutathione S-transferase P1 (GSTP1), which confers resistance to chemotherapy by detoxifying several anticancer drugs. Taken together, our results suggest that G6PD is a novel potential target to overcome paclitaxel resistance.
Collapse
Affiliation(s)
- Qi Feng
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiuru Li
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Wenjing Sun
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Mingming Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Zhen Li
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hao Sheng
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Fei Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Changliang Shan
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| |
Collapse
|
83
|
Turdo A, Porcelli G, D’Accardo C, Di Franco S, Verona F, Forte S, Giuffrida D, Memeo L, Todaro M, Stassi G. Metabolic Escape Routes of Cancer Stem Cells and Therapeutic Opportunities. Cancers (Basel) 2020; 12:E1436. [PMID: 32486505 PMCID: PMC7352619 DOI: 10.3390/cancers12061436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
Although improvement in early diagnosis and treatment ameliorated life expectancy of cancer patients, metastatic disease still lacks effective therapeutic approaches. Resistance to anticancer therapies stems from the refractoriness of a subpopulation of cancer cells-termed cancer stem cells (CSCs)-which is endowed with tumor initiation and metastasis formation potential. CSCs are heterogeneous and diverge by phenotypic, functional and metabolic perspectives. Intrinsic as well as extrinsic stimuli dictated by the tumor microenvironment (TME)have critical roles in determining cell metabolic reprogramming from glycolytic toward an oxidative phenotype and vice versa, allowing cancer cells to thrive in adverse milieus. Crosstalk between cancer cells and the surrounding microenvironment occurs through the interchange of metabolites, miRNAs and exosomes that drive cancer cells metabolic adaptation. Herein, we identify the metabolic nodes of CSCs and discuss the latest advances in targeting metabolic demands of both CSCs and stromal cells with the scope of improving current therapies and preventing cancer progression.
Collapse
Affiliation(s)
- Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (A.T.); (C.D.); (M.T.)
| | - Gaetana Porcelli
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (G.P.); (S.D.F.); (F.V.)
| | - Caterina D’Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (A.T.); (C.D.); (M.T.)
| | - Simone Di Franco
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (G.P.); (S.D.F.); (F.V.)
| | - Francesco Verona
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (G.P.); (S.D.F.); (F.V.)
| | - Stefano Forte
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), 95029 Catania, Italy; (S.F.); (D.G.); (L.M.)
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), 95029 Catania, Italy; (S.F.); (D.G.); (L.M.)
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), 95029 Catania, Italy; (S.F.); (D.G.); (L.M.)
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (A.T.); (C.D.); (M.T.)
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (G.P.); (S.D.F.); (F.V.)
| |
Collapse
|
84
|
Panuzzo C, Jovanovski A, Pergolizzi B, Pironi L, Stanga S, Fava C, Cilloni D. Mitochondria: A Galaxy in the Hematopoietic and Leukemic Stem Cell Universe. Int J Mol Sci 2020; 21:ijms21113928. [PMID: 32486249 PMCID: PMC7312164 DOI: 10.3390/ijms21113928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the main fascinating energetic source into the cells. Their number, shape, and dynamism are controlled by the cell’s type and current behavior. The perturbation of the mitochondrial inward system via stress response and/or oncogenic insults could activate several trafficking molecular mechanisms with the intention to solve the problem. In this review, we aimed to clarify the crucial pathways in the mitochondrial system, dissecting the different metabolic defects, with a special emphasis on hematological malignancies. We investigated the pivotal role of mitochondria in the maintenance of hematopoietic stem cells (HSCs) and their main alterations that could induce malignant transformation, culminating in the generation of leukemic stem cells (LSCs). In addition, we presented an overview of LSCs mitochondrial dysregulated mechanisms in terms of (1) increasing in oxidative phosphorylation program (OXPHOS), as a crucial process for survival and self-renewal of LSCs,(2) low levels of reactive oxygen species (ROS), and (3) aberrant expression of B-cell lymphoma 2 (Bcl-2) with sustained mitophagy. Furthermore, these peculiarities may represent attractive new “hot spots” for mitochondrial-targeted therapy. Finally, we remark the potential of the LCS metabolic effectors to be exploited as novel therapeutic targets.
Collapse
Affiliation(s)
- Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
- Correspondence: (C.P.); (D.C.)
| | - Aleksandar Jovanovski
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Lucrezia Pironi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Serena Stanga
- Department of Neuroscience Rita Levi Montalcini, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano, Italy
| | - Carmen Fava
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
- Correspondence: (C.P.); (D.C.)
| |
Collapse
|
85
|
Gao Y, Tang M, Leung E, Svirskis D, Shelling A, Wu Z. Dual or multiple drug loaded nanoparticles to target breast cancer stem cells. RSC Adv 2020; 10:19089-19105. [PMID: 35518295 PMCID: PMC9054075 DOI: 10.1039/d0ra02801k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer stem(-like) cells (BCSCs) have been found to be responsible for therapeutic resistance and disease relapse. BCSCs are difficult to eradicate due to their high resistance to conventional treatments and high plasticity. Functionalised nanoparticles have been investigated as smart vehicles to transport across various barriers and increase the interaction of therapeutic agents with cancer cells, as well as BCSCs. In this review, we discuss the different characteristics of BCSCs, and challenges to tackle BCSCs at cellular and molecular levels. The mechanisms of action and physicochemical properties of the current BCSC targeting agents are also covered. We will focus on the rational design and recent advances of "Nano + Nano" or single tumour targeting nanoparticle systems loaded with dual or multiple agents to kill all cancer cells including BCSCs. These cocktail therapies include the combination of a chemotherapy agent with a BCSC-specific inhibitor, a phytochemical agent or RNA based therapy. Given the heterogeneity of breast tumour tissue, targeting both BCSCs and bulk breast cancer cells simultaneously with multiple agents holds great promise in eliminating breast cancer. The future research needs to focus on overcoming various barriers in the 'clinical translation' of BCSC-targeting nanomedicines to cure breast cancer, which requires a significant multidisciplinary effort.
Collapse
Affiliation(s)
- Yu Gao
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| | - Mingtan Tang
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland Auckland 1023 New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| | - Andrew Shelling
- School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland Auckland 1142 New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| |
Collapse
|
86
|
Ghosh P, Vidal C, Dey S, Zhang L. Mitochondria Targeting as an Effective Strategy for Cancer Therapy. Int J Mol Sci 2020; 21:E3363. [PMID: 32397535 PMCID: PMC7247703 DOI: 10.3390/ijms21093363] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are well known for their role in ATP production and biosynthesis of macromolecules. Importantly, increasing experimental evidence points to the roles of mitochondrial bioenergetics, dynamics, and signaling in tumorigenesis. Recent studies have shown that many types of cancer cells, including metastatic tumor cells, therapy-resistant tumor cells, and cancer stem cells, are reliant on mitochondrial respiration, and upregulate oxidative phosphorylation (OXPHOS) activity to fuel tumorigenesis. Mitochondrial metabolism is crucial for tumor proliferation, tumor survival, and metastasis. Mitochondrial OXPHOS dependency of cancer has been shown to underlie the development of resistance to chemotherapy and radiotherapy. Furthermore, recent studies have demonstrated that elevated heme synthesis and uptake leads to intensified mitochondrial respiration and ATP generation, thereby promoting tumorigenic functions in non-small cell lung cancer (NSCLC) cells. Also, lowering heme uptake/synthesis inhibits mitochondrial OXPHOS and effectively reduces oxygen consumption, thereby inhibiting cancer cell proliferation, migration, and tumor growth in NSCLC. Besides metabolic changes, mitochondrial dynamics such as fission and fusion are also altered in cancer cells. These alterations render mitochondria a vulnerable target for cancer therapy. This review summarizes recent advances in the understanding of mitochondrial alterations in cancer cells that contribute to tumorigenesis and the development of drug resistance. It highlights novel approaches involving mitochondria targeting in cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (P.G.); (C.V.); (S.D.)
| |
Collapse
|
87
|
Chang YC, Yang YF, Chiou J, Tsai HF, Fang CY, Yang CJ, Chen CL, Hsiao M. Nonenzymatic function of Aldolase A downregulates miR-145 to promote the Oct4/DUSP4/TRAF4 axis and the acquisition of lung cancer stemness. Cell Death Dis 2020; 11:195. [PMID: 32188842 PMCID: PMC7080828 DOI: 10.1038/s41419-020-2387-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
Drug resistance remains a serious issue of clinical importance and is a consequence of cancer stemness. In this study, we showed that the level of Aldolase A (ALDOA) expression is significantly associated with the IC50 value of chemotherapy drugs in lung cancer. Our data revealed that ALDOA overexpression resulted in a significant increase of lung tumor spheres. The use of ingenuity pathway analysis (IPA) resulted in the identification of POU5F1 (Oct4) as the leading transcription factor of ALDOA. We observed high expression of ALDOA, Oct4 and stemness markers in collected spheroid cells. DUSP4 and TRAF4 were confirmed as major downstream targets of the ALDOA-Oct4 axis. Knockdown of these molecules significantly decreased the stemness ability of cells. In addition, we investigated whether miR-145 targets the 3′-UTR of Oct4 and is regulated by ALDOA due to the involvement of ALDOA in glycolysis and metabolic reprogramming. Furthermore, we constructed several mutant forms of ALDOA that disrupted its enzymatic activity and showed that they still induced significant in vitro sphere formation and in vivo tumorigenicity. These results demonstrated that ALDOA-mediated spheroid formation is independent of its enzymatic activity. In the clinical component, we also showed that the combination of ALDOA and TRAF4 or DUSP4 is positively correlated with poor overall survival in a xenograft model and cancer patients through immunohistochemical analyses. The results of our study revealed novel functional roles of ALDOA in inducing cancer stemness via the inhibition of miR-145 expression and the activation of Oct4 transcription. These findings offer new therapeutic strategies for modulation of lung cancer stemness to enhance chemotherapeutic responses in lung cancer patients.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jean Chiou
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Hsing-Fang Tsai
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chih-Yeu Fang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chih-Jen Yang
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Long Chen
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110, Taiwan. .,Department of Pathology, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan. .,Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
88
|
Shen YA, Pan SC, Chu I, Lai RY, Wei YH. Targeting cancer stem cells from a metabolic perspective. Exp Biol Med (Maywood) 2020; 245:465-476. [PMID: 32102562 PMCID: PMC7082881 DOI: 10.1177/1535370220909309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The process of cancer development and progression is driven by distinct subsets of cancer stem cells (CSCs) that contribute the self-renewal capacity as the major impetus to the metastatic dissemination and main impediments in cancer treatment. Given that CSCs are so scarce in the tumor mass, there are debatable points on the metabolic signatures of CSCs. As opposed to differentiated tumor progenies, CSCs display exquisite patterns of metabolism that, depending on the type of cancer, predominately rely on glycolysis, oxidative metabolism of glutamine, fatty acids, or amino acids for ATP production. Metabolic heterogeneity of CSCs, which attributes to differences in type and microenvironment of tumors, confers CSCs to have the plasticity to cope with the endogenous mitochondrial stress and exogenous microenvironment. In essence, CSCs and normal stem cells are like mirror images of each other in terms of metabolism. To achieve reprogramming, CSCs not only need to upregulate their metabolic engine for self-renewal and defense mechanism, but also expedite the antioxidant defense to sustain the redox homeostasis. In the context of these pathways, this review portrays the connection between the metabolic features of CSCs and cancer stemness. Identification of the metabolic features in conferring resistance to anticancer treatment dictated by CSCs can enhance the opportunity to open up a new therapeutic dimension, which might not only improve the effectiveness of cancer therapies but also annihilate the whole tumor without recurrence. Henceforth, we highlight current findings of potential therapeutic targets for the design of alternative strategies to compromise the growth, drug resistance, and metastasis of CSCs by altering their metabolic phenotypes. Perturbing the versatile skills of CSCs by barricading metabolic signaling might bring about plentiful approaches to discover novel therapeutic targets for clinical application in cancer treatments.Impact statementThis minireview highlights the current evidence on the mechanisms of pivotal metabolic pathways that attribute to cancer stem cells (CSCs) with a special focus on developing metabolic strategies of anticancer treatment that can be exploited in preclinical and clinical settings. Specific metabolic inhibitors that can overwhelm the properties of CSCs may impede tumor recurrence and metastasis, and potentially achieve a permanent cure of cancer patients.
Collapse
Affiliation(s)
- Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Siao-Cian Pan
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| | - I Chu
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ruo-Yun Lai
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| |
Collapse
|
89
|
El Hout M, Cosialls E, Mehrpour M, Hamaï A. Crosstalk between autophagy and metabolic regulation of cancer stem cells. Mol Cancer 2020; 19:27. [PMID: 32028963 PMCID: PMC7003352 DOI: 10.1186/s12943-019-1126-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is now considered as a heterogeneous ecosystem in which tumor cells collaborate with each other and with host cells in their microenvironment. As circumstances change, the ecosystem evolves to ensure the survival and growth of the cancer cells. In this ecosystem, metabolism is not only a key player but also drives stemness. In this review, we first summarize our current understanding of how autophagy influences cancer stem cell phenotype. We emphasize metabolic pathways in cancer stem cells and discuss how autophagy-mediated regulation metabolism is involved in their maintenance and proliferation. We then provide an update on the role of metabolic reprogramming and plasticity in cancer stem cells. Finally, we discuss how metabolic pathways in cancer stem cells could be therapeutically targeted.
Collapse
Affiliation(s)
- Mouradi El Hout
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, F-75993, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, F-75993, Paris, France
| | - Emma Cosialls
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, F-75993, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, F-75993, Paris, France
| | - Maryam Mehrpour
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, F-75993, Paris, France.
- Université Paris Descartes-Sorbonne Paris Cité, F-75993, Paris, France.
| | - Ahmed Hamaï
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, F-75993, Paris, France.
- Université Paris Descartes-Sorbonne Paris Cité, F-75993, Paris, France.
| |
Collapse
|
90
|
Kusumoto H, Tashiro K, Shimaoka S, Tsukasa K, Baba Y, Furukawa S, Furukawa J, Suenaga T, Kitazono M, Tanaka S, Niihara T, Hirotsu T, Uozumi T. Behavioural Response Alteration in Caenorhabditis elegans to Urine After Surgical Removal of Cancer: Nematode-NOSE (N-NOSE) for Postoperative Evaluation. BIOMARKERS IN CANCER 2019; 11:1179299X19896551. [PMID: 31903024 PMCID: PMC6931140 DOI: 10.1177/1179299x19896551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
The technique used for cancer monitoring is essential for effective cancer
therapy. Currently, several methods such as diagnostic imaging and biochemical
markers have been used for cancer monitoring, but these are invasive and show
low sensitivity. A previous study reported that Caenorhabditis
elegans sensitively discriminated patients with cancer from healthy
subjects, based on the smell of a urine sample. However, whether C.
elegans olfaction can detect the removal of cancerous tumours
remains unknown. This study was conducted to examine C. elegans
olfactory behaviour to urine samples collected from 78 patients before and after
surgery. The diagnostic ability of the technique termed Nematode-NOSE (N-NOSE)
was evaluated by receiver operating characteristic (ROC) analysis. The ROC curve
of N-NOSE was higher than those of classic tumour markers. Furthermore, we
examined the change in C. elegans olfactory behaviour following
exposure to preoperative and postoperative samples. The results suggest that a
reduction in attraction indicates the removal of the cancerous tumour. This
study may lead to the development of a noninvasive and highly sensitive tool for
evaluating postoperative cancer patients.
Collapse
Affiliation(s)
| | - Kotaro Tashiro
- Department of Gastroenterology, Nanpuh Hospital, Kagoshima, Japan
| | - Syunji Shimaoka
- Department of Gastroenterology, Nanpuh Hospital, Kagoshima, Japan
| | - Koichiro Tsukasa
- Department of Gastroenterology, Nanpuh Hospital, Kagoshima, Japan
| | - Yukiko Baba
- Department of Gastroenterology, Nanpuh Hospital, Kagoshima, Japan
| | - Saori Furukawa
- Department of Gastroenterology, Nanpuh Hospital, Kagoshima, Japan
| | | | - Toyokuni Suenaga
- Department of Gastrointestinal Surgery, Nanpuh Hospital, Kagoshima, Japan
| | - Masaki Kitazono
- Department of Gastrointestinal Surgery, Nanpuh Hospital, Kagoshima, Japan
| | - Sadao Tanaka
- Department of Diagnostic Pathology, Nanpuh Hospital, Kagoshima, Japan
| | - Toru Niihara
- Department of Gastroenterology, Nanpuh Hospital, Kagoshima, Japan
| | - Takaaki Hirotsu
- R&D Center, Hirotsu Bio Science Inc., Tokyo, Japan.,Department of Biology, Graduate School of Sciences, Kyushu University, Fukuoka, Japan.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | | |
Collapse
|
91
|
Neoadjuvant Metformin Added to Systemic Therapy Decreases the Proliferative Capacity of Residual Breast Cancer. J Clin Med 2019; 8:jcm8122180. [PMID: 31835708 PMCID: PMC6947627 DOI: 10.3390/jcm8122180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
The proliferative capacity of residual breast cancer (BC) disease indicates the existence of partial treatment resistance and higher probability of tumor recurrence. We explored the therapeutic potential of adding neoadjuvant metformin as an innovative strategy to decrease the proliferative potential of residual BC cells in patients failing to achieve pathological complete response (pCR) after pre-operative therapy. We performed a prospective analysis involving the intention-to-treat population of the (Metformin and Trastuzumab in Neoadjuvancy) METTEN study, a randomized multicenter phase II trial of women with primary, non-metastatic (human epidermal growth factor receptor 2) HER2-positive BC evaluating the efficacy, tolerability, and safety of oral metformin (850 mg twice-daily) for 24 weeks combined with anthracycline/taxane-based chemotherapy and trastuzumab (arm A) or equivalent regimen without metformin (arm B), before surgery. We centrally evaluated the proliferation marker Ki67 on sequential core biopsies using visual assessment (VA) and an (Food and Drug Administration) FDA-cleared automated digital image analysis (ADIA) algorithm. ADIA-based pre-operative values of high Ki67 (≥20%), but not those from VA, significantly predicted the occurrence of pCR in both arms irrespective of the hormone receptor status (p = 0.024 and 0.120, respectively). Changes in Ki67 in residual tumors of non-pCR patients were significantly higher in the metformin-containing arm (p = 0.025), with half of all patients exhibiting high Ki67 at baseline moving into the low-Ki67 (<20%) category after neoadjuvant treatment. By contrast, no statistically significant changes in Ki67 occurred in residual tumors of the control treatment arm (p = 0.293). There is an urgent need for innovative therapeutic strategies aiming to provide the protective effects of decreasing Ki67 after neoadjuvant treatment even if pCR is not achieved. Metformin would be evaluated as a safe candidate to decrease the aggressiveness of residual disease after neoadjuvant (pre-operative) systemic therapy of BC patients.
Collapse
|
92
|
Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res 2019; 150:104511. [DOI: 10.1016/j.phrs.2019.104511] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
|
93
|
Ren B, Rose JB, Liu Y, Jaskular-Sztul R, Contreras C, Beck A, Chen H. Heterogeneity of Vascular Endothelial Cells, De Novo Arteriogenesis and Therapeutic Implications in Pancreatic Neuroendocrine Tumors. J Clin Med 2019; 8:jcm8111980. [PMID: 31739580 PMCID: PMC6912347 DOI: 10.3390/jcm8111980] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Arteriogenesis supplies oxygen and nutrients in the tumor microenvironment (TME), which may play an important role in tumor growth and metastasis. Pancreatic neuroendocrine tumors (pNETs) are the second most common pancreatic malignancy and are frequently metastatic on presentation. Nearly a third of pNETs secrete bioactive substances causing debilitating symptoms. Current treatment options for metastatic pNETs are limited. Importantly, these tumors are highly vascularized and heterogeneous neoplasms, in which the heterogeneity of vascular endothelial cells (ECs) and de novo arteriogenesis may be critical for their progression. Current anti-angiogenetic targeted treatments have not shown substantial clinical benefits, and they are poorly tolerated. This review article describes EC heterogeneity and heterogeneous tumor-associated ECs (TAECs) in the TME and emphasizes the concept of de novo arteriogenesis in the TME. The authors also emphasize the challenges of current antiangiogenic therapy in pNETs and discuss the potential of tumor arteriogenesis as a novel therapeutic target. Finally, the authors prospect the clinical potential of targeting the FoxO1-CD36-Notch pathway that is associated with both pNET progression and arteriogenesis and provide insights into the clinical implications of targeting plasticity of cancer stem cells (CSCs) and vascular niche, particularly the arteriolar niche within the TME in pNETs, which will also provide insights into other types of cancer, including breast cancer, lung cancer, and malignant melanoma.
Collapse
Affiliation(s)
- Bin Ren
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition & Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Graduate Biomedical Science Program of the Graduate School, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence:
| | - J. Bart Rose
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Renata Jaskular-Sztul
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Carlo Contreras
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Adam Beck
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Graduate Biomedical Science Program of the Graduate School, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
94
|
Bokil A, Sancho P. Mitochondrial determinants of chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:634-646. [PMID: 35582564 PMCID: PMC8992520 DOI: 10.20517/cdr.2019.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022]
Abstract
Chemoresistance constitute nowadays the major contributor to therapy failure in most cancers. There are main factors that mitigate cell response to therapy, such as target organ, inherent sensitivity to the administered compound, its metabolism, drug efflux and influx or alterations on specific cellular targets, among others. We now know that intrinsic properties of cancer cells, including metabolic features, substantially contribute to chemoresistance. In fact, during the last years, numerous reports indicate that cancer cells resistant to chemotherapy demonstrate significant alterations in mitochondrial metabolism, membrane polarization and mass. Metabolic activity and expression of several mitochondrial proteins are modulated under treatment to cope with stress, making these organelles central players in the development of resistance to therapies. Here, we review the role of mitochondria in chemoresistant cells in terms of metabolic rewiring and function of key mitochondria-related proteins.
Collapse
Affiliation(s)
- Ansooya Bokil
- IIS Aragon, Hospital Universitario Miguel Servet, Zaragoza 50009, Spain
| | - Patricia Sancho
- IIS Aragon, Hospital Universitario Miguel Servet, Zaragoza 50009, Spain
| |
Collapse
|
95
|
Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A, Chiu DTY. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer. Cells 2019; 8:cells8091055. [PMID: 31500396 PMCID: PMC6770671 DOI: 10.3390/cells8091055] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
The generation of reducing equivalent NADPH via glucose-6-phosphate dehydrogenase (G6PD) is critical for the maintenance of redox homeostasis and reductive biosynthesis in cells. NADPH also plays key roles in cellular processes mediated by redox signaling. Insufficient G6PD activity predisposes cells to growth retardation and demise. Severely lacking G6PD impairs embryonic development and delays organismal growth. Altered G6PD activity is associated with pathophysiology, such as autophagy, insulin resistance, infection, inflammation, as well as diabetes and hypertension. Aberrant activation of G6PD leads to enhanced cell proliferation and adaptation in many types of cancers. The present review aims to update the existing knowledge concerning G6PD and emphasizes how G6PD modulates redox signaling and affects cell survival and demise, particularly in diseases such as cancer. Exploiting G6PD as a potential drug target against cancer is also discussed.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| | - Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Wei-Chen Yen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hui-Ya Liu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Arnold Stern
- New York University School of Medicine, New York, NY, USA.
| | - Daniel Tsun-Yee Chiu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Department of Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
96
|
Walsh HR, Cruickshank BM, Brown JM, Marcato P. The Flick of a Switch: Conferring Survival Advantage to Breast Cancer Stem Cells Through Metabolic Plasticity. Front Oncol 2019; 9:753. [PMID: 31552162 PMCID: PMC6736574 DOI: 10.3389/fonc.2019.00753] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
Within heterogeneous tumors, cancer stem cell (CSC) populations exhibit the greatest tumor initiation potential, promote metastasis, and contribute to therapy resistance. For breast cancer specifically, CSCs are identified by CD44highCD24low cell surface marker expression and increased aldehyde dehydrogenase activity. In general, bulk breast tumor cells possess altered energetics characterized by aerobic glycolysis. In contrast, breast CSCs appear to have adaptive metabolic plasticity that allows these tumor-initiating cells to switch between glycolysis and oxidative phosphorylation, depending on factors present in the tumor microenvironment (e.g., hypoxia, reactive oxygen species, availability of glucose). In this article, we review the regulatory molecules that may facilitate the metabolic plasticity of breast CSCs. These regulatory factors include epigenetic chromatin modifiers, non-coding RNAs, transcriptional repressors, transcription factors, energy and stress sensors, and metabolic enzymes. Furthermore, breast cancer cells acquire CSC-like characteristics and altered energetics by undergoing epithelial-mesenchymal transition (EMT). This energy costly process is paired with reprogrammed glucose metabolism by epigenetic modifiers that regulate expression of both EMT and other metabolism-regulating genes. The survival advantage imparted to breast CSCs by metabolic plasticity suggests that targeting the factors that mediate the energetic switch should hinder tumorigenesis and lead to improved patient outcomes.
Collapse
Affiliation(s)
- Hayley R Walsh
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | - Justin M Brown
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
97
|
De Francesco EM, Ózsvári B, Sotgia F, Lisanti MP. [Pollution of the environment with lead]. Front Oncol 1984; 9:615. [PMID: 31440463 PMCID: PMC6692486 DOI: 10.3389/fonc.2019.00615] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/21/2019] [Indexed: 12/26/2022] Open
Abstract
Elevated mitochondrial biogenesis and/or metabolism are distinguishing features of cancer cells, as well as Cancer Stem Cells (CSCs), which are involved in tumor initiation, metastatic dissemination, and therapy resistance. In fact, mitochondria-impairing agents can be used to hamper CSCs maintenance and propagation, toward better control of neoplastic disease. Tri-Phenyl-Phosphonium (TPP)-based mitochondrially-targeted compounds are small non-toxic and biologically active molecules that are delivered to and accumulated within the mitochondria of living cells. Therefore, TPP-derivatives may represent potentially “powerful” candidates to block CSCs. Here, we evaluate the metabolic and biological effects induced by the TPP-derivative, termed Dodecyl-TPP (d-TPP) on breast cancer cells. By employing the 3D mammosphere assay in MCF-7 cells, we demonstrate that treatment with d-TPP dose-dependently inhibits the propagation of breast CSCs in suspension. Also, d-TPP targets adherent “bulk” cancer cells, by decreasing MCF-7 cell viability. The analysis of metabolic flux using Seahorse Xfe96 revealed that d-TPP potently inhibits the mitochondrial oxygen consumption rate (OCR), while simultaneously shifting cell metabolism toward glycolysis. Thereafter, we exploited this ATP depletion phenotype and strict metabolic dependency on glycolysis to eradicate the residual glycolytic CSC population, by using additional metabolic stressors. More specifically, we applied a combination strategy based on treatment with d-TPP, in the presence of a selected panel of natural and synthetic compounds, some of which are FDA-approved, that are known to behave as glycolysis (Vitamin C, 2-Deoxy-Glucose) and OXPHOS (Doxycyline, Niclosamide, Berberine) inhibitors. This two-hit scheme effectively decreased CSC propagation, at concentrations of d-TPP toxic only for cancer cells, but not for normal cells, as evidenced using normal human fibroblasts (hTERT-BJ1) as a reference point. Taken together, d-TPP halts CSCs propagation and targets “bulk” cancer cells, without eliciting the relevant undesirable off-target effects in normal cells. These observations pave the way for further exploring the potential of TPP-based derivatives in cancer therapy. Moreover, TPP-based compounds should be investigated for their potential to discriminate between “normal” and “malignant” mitochondria, suggesting that distinct biochemical, and metabolic changes in these organelles could precede specific normal or pathological phenotypes. Lastly, our data validate the manipulation of the energetic machinery as useful tool to eradicate CSCs.
Collapse
|
98
|
Desbats MA, Giacomini I, Prayer-Galetti T, Montopoli M. Iron granules in plasma cells. J Clin Pathol 1982; 10:281. [PMID: 32211323 PMCID: PMC7068907 DOI: 10.3389/fonc.2020.00281] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/18/2020] [Indexed: 01/16/2023]
Abstract
Resistance of cancer cells to chemotherapy is the first cause of cancer-associated death. Thus, new strategies to deal with the evasion of drug response and to improve clinical outcomes are needed. Genetic and epigenetic mechanisms associated with uncontrolled cell growth result in metabolism reprogramming. Cancer cells enhance anabolic pathways and acquire the ability to use different carbon sources besides glucose. An oxygen and nutrient-poor tumor microenvironment determines metabolic interactions among normal cells, cancer cells and the immune system giving rise to metabolically heterogeneous tumors which will partially respond to metabolic therapy. Here we go into the best-known cancer metabolic profiles and discuss several studies that reported tumors sensitization to chemotherapy by modulating metabolic pathways. Uncovering metabolic dependencies across different chemotherapy treatments could help to rationalize the use of metabolic modulators to overcome therapy resistance.
Collapse
Affiliation(s)
- Maria Andrea Desbats
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Monica Montopoli
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- *Correspondence: Monica Montopoli
| |
Collapse
|