51
|
Zhu J, Liao X, Du L, Lv P, Deng J. Associations of serum folate and vitamin B 12 levels with all-cause mortality among patients with metabolic dysfunction associated steatotic liver disease: a prospective cohort study. Front Endocrinol (Lausanne) 2024; 15:1426103. [PMID: 39703860 PMCID: PMC11655224 DOI: 10.3389/fendo.2024.1426103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Serum folate and vitamin B12 levels correlate with the prevalence of fatty liver disease, but it is not clear how they affect mortality. Therefore, this study aimed to investigate the association of serum folate and vitamin B12 concentrations with all-cause mortality in individuals with metabolic dysfunction-associated steatotic liver disease (MASLD). Methods MASLD subjects were from the Third National Health and Nutrition Examination Survey (NHANES III) in the United States, and mortality follow-up data were obtained by linkage to death records from the National Death Index. Multivariable Cox proportional regression models and restricted cubic spline (RCS) models were used to evaluate the association of serum folate/vitamin B12 with all-cause mortality in the MASLD population. Results 3,636 and 2,125 MASLD individuals were included in the analyses related to serum folate and vitamin B12, respectively. During a follow-up period of more than 20 years, the RCS models demonstrated significant nonlinear associations of both serum folate (P <0.001) and vitamin B12 (P =0.016) with all-cause mortality in MASLD. When their serum concentrations were below the median level, the risk of all-cause mortality decreased with increasing concentration, reaching a lowest risk around the median level, and then leveled off. In the multivariable cox regression model, for vitamin B12, the risk of all-cause mortality was reduced by 42% and 28% in the third and fourth quartile groups, respectively, compared with the lowest quartile group (hazard ratio [HR]=0.58, 95% CI: 0.39-0.86, P =0.008; HR =0.72, 95% CI: 0.54-0.96, P=0.026, respectively). For folate, the risk of all-cause mortality was reduced by 28% in the third quartile compared with the lowest quartile (HR =0.72, 95% CI: 0.57-0.91, P =0.005). Conclusion This longitudinal cohort study suggests that low serum folate and vitamin B12 levels in patients with MASLD are significantly associated with an elevated risk of all-cause mortality.
Collapse
Affiliation(s)
- Jiaxin Zhu
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xinyi Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Du
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengju Lv
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jian Deng
- Department of Thyroid Breast Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
52
|
Kurakawa T, Kani K, Chudan S, Nishikawa M, Tabuchi Y, Sakamoto K, Nagai Y, Ikushiro S, Furusawa Y. Rice Kefiran Ameliorates Obesity and Hepatic Steatosis Through the Change in Gut Microbiota. Microorganisms 2024; 12:2495. [PMID: 39770698 PMCID: PMC11728449 DOI: 10.3390/microorganisms12122495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Obesity is a global epidemic and a significant risk factor for various diseases. Obesity and dysbiosis are associated, drawing attention to the mechanisms that regulate the gut microbiota. In this study, we focused on the postbiotic effects of rice kefiran (Kef), a functional product of Lactobacillus kefiranofaciens cultured in a rice-based medium, on obesity and its complications. Although Kef has the potential to improve obesity, the underlying mechanisms remain unknown. Therefore, we aimed to elucidate the mechanisms underlying changes in gut microbiota. The administration of Kef significantly suppressed diet-induced body weight gain, reduced liver fat accumulation, and modestly improved insulin resistance. Among the gut bacteria, Lachnospiraceae and Lachnoclostridium, which were positively correlated with obesity, decreased in mice administered Kef. In contrast, Bacteroides and Alistipes, both reported to ameliorate obesity, were increased. Consistent with the changes in the gut microbiota, Kef increased fecal acetate levels, which ameliorated obesity and hepatic steatosis. Predictive metagenomic analysis suggested that Kef administration increased the abundance of KEGG orthologs, associated with carbohydrate metabolism and improvements in insulin resistance. In conclusion, Kef improves diet-induced obesity, hepatic steatosis, and insulin resistance by regulating the gut microbiota's composition.
Collapse
Affiliation(s)
- Takuto Kurakawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan
| | - Koudai Kani
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan
| | - Seita Chudan
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Sugitani, Toyama 930-0194, Toyama, Japan
| | - Kazuichi Sakamoto
- College of Agriculture, Ibaraki University, 3-21-1. Chuo, Ami-cho, Ami-machi 300-0393, Ibaraki, Japan
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan
| |
Collapse
|
53
|
Basil B, Myke-Mbata BK, Eze OE, Akubue AU. From adiposity to steatosis: metabolic dysfunction-associated steatotic liver disease, a hepatic expression of metabolic syndrome - current insights and future directions. Clin Diabetes Endocrinol 2024; 10:39. [PMID: 39617908 PMCID: PMC11610122 DOI: 10.1186/s40842-024-00187-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/20/2024] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing health concern and the risk of its development is connected with the increasing prevalence of metabolic syndrome (MetS) which occurs as a result of some complex obesity-induced metabolic changes. It is a common chronic liver disease characterized by excessive fat accumulation in the liver, the tendency to progress to more severe forms, and a corresponding increase in morbidity and mortality. Thus, effectively addressing the rising burden of the disease requires a thorough understanding of its complex interrelationship with obesity and MetS. MAIN BODY MASLD results from complex interactions involving obesity, insulin resistance, and dyslipidaemia, leading to hepatic lipid accumulation, and is influenced by several genetic and environmental factors such as diet and gut microbiota dysbiosis. It has extensive metabolic and non-metabolic implications, including links to MetS components like hyperglycaemia, hypertension, and dyslipidaemia, and progresses to significant liver damage and other extra-hepatic risks like cardiovascular disease and certain cancers. Diagnosis often relies on imaging and histology, with non-invasive methods preferred over liver biopsies. Emerging biomarkers and OMIC technologies offer improved diagnostic capabilities but face practical challenges. Advancements in artificial intelligence (AI), lifestyle interventions, and pharmacological treatments show promise, with future efforts focusing on precision medicine and novel diagnostic tools to improve patient outcome. CONCLUSION Understanding the pathogenic mechanisms underlying the development of MASLD within the context of metabolic syndrome (MetS) is essential for identifying potential therapeutic targets. Advancements in non-invasive diagnostic tools and novel pharmacological treatments, hold promise for improving the management of MASLD. Future research should focus on precision medicine and innovative therapies to effectively address the disease and its consequences.
Collapse
Affiliation(s)
- Bruno Basil
- Department of Chemical Pathology, Benue State University, Makurdi, Nigeria.
- Department of Nursing, Central Washington College, Enugu, Nigeria.
| | - Blessing K Myke-Mbata
- Department of Chemical Pathology, Benue State University, Makurdi, Nigeria
- Department of Chemical Pathology, Bingham University, Jos, Nigeria
| | - Onyinye E Eze
- Department of Nursing, Central Washington College, Enugu, Nigeria
- Department of Haematology and Blood Transfusion, Enugu State University of Science and Technology, Enugu, Nigeria
| | | |
Collapse
|
54
|
Kitsios K, Trakatelli CM, Antza C, Triantafyllou A, Sarigianni M, Kotsis V. Treatment of Metabolic (Dysfunction)-Associated Fatty Liver Disease: Evidence from Randomized Controlled Trials-A Short Review. Metab Syndr Relat Disord 2024; 22:703-708. [PMID: 39088384 DOI: 10.1089/met.2024.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024] Open
Abstract
Metabolic-associated fatty liver disease (MALFD) is a highly prevalent and progressive disease, strongly related to obesity, metabolic syndrome, and cardiovascular disease. It comprises a spectrum of liver pathology from steatosis (fat accumulation in the hepatocytes) to steatosis with inflammation (metabolic-associated steatohepatitis, MASH), fibrosis, cirrhosis, and hepatocellular carcinoma. There is currently only one medication, resmetirom, US Food and Drug Administration approved for the treatment of MALFD. Evidence from randomized trials supports the efficacy of hypocaloric diets and exercise in MASH resolution. Moreover, substantial weight loss after bariatric surgery can lead to significant and longitudinally sustained MASH resolution, improvement in liver fibrosis, and decrease in the risk of major cardiovascular adverse events. Pioglitazone, an insulin sensitizer, initiated at the early stages, before the progression to fibrosis, may be effective in resolution of MASH in patients with or without type 2 diabetes. Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs), semaglutide and liraglutide, may also be effective in resolution of MASH but not of fibrosis. Preliminary data from interventions with tirzepatide, a dual GLP-1 and glucose-dependent insulinotropic polypeptide RA, and sodium-glucose cotransporter 2 inhibitors are encouraging, but more data based on liver biopsy are needed.
Collapse
Affiliation(s)
- Konstantinos Kitsios
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Christina-Maria Trakatelli
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Christina Antza
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Maria Sarigianni
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Vasilios Kotsis
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| |
Collapse
|
55
|
Li T, Feng Y, Liu Y, Wang H. The role of organic anion transport peptides in cyclophosphamide-induced hepatotoxicity in high-fat diet mice. Life Sci 2024; 359:123239. [PMID: 39566716 DOI: 10.1016/j.lfs.2024.123239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Clinically, patients with lipid metabolism disorders caused by factors such as high-fat diet (HFD) developed severer liver damage and lipid metabolism disorders after treatment with cyclophosphamide (CTX). This can lead to elevated levels of inflammatory cytokines, which in turn lead to changes in levels of various liver and kidney transporters, to increase drug accumulation, which may be a way to exacerbate liver injury. The role of organic anion transport peptides (OATPs), an important uptake transporter, in the transport process of CTX and in the aggravation of liver injury induced by CTX in HFD mice is unclear. The aim of this study was to characterize the hepatotoxicity and lipid metabolism disorders of HFD mice exposed to CTX and to investigate the possible mechanism from the perspective of drug in vivo process and transporter regulation. It has been verified that CTX induced severer liver injury in HFD mice compared with the control group, accompanied with upregulated Interleukin-1β (IL-1β) expression and down-regulated OATPs expression in liver and renal, and increased blood CTX concentration. This suggested that the down-regulation of OATPs involved in IL-1β may play an important role in HFD-CTX-induced liver injury, and then experiments in Hep G2 cells was used to validate the hypothesis. Pharmacokinetic and primary hepatocyte uptake experiments confirmed that OATPs may be an important factor involved in the in vivo process of CTX. In summary, this study demonstrated that HFD mice exhibited severer liver toxicity after exposure to CTX, which may be caused by the disorder of lipid levels and the up-regulation of inflammatory factors, and then the downregulation of liver and renal OATPs to increase the accumulation of CTX in vivo. These findings suggest that IL-1β and OATPs may be involved in the interactive regulation of CTX accumulation and endogenous lipid disturbance, and play very important role in the aggravation of liver injury induced by CTX in HFD mice.
Collapse
Affiliation(s)
- Tianyi Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Yuhao Feng
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Yan Liu
- Department of Pharmacy, Weifang People's Hospital, Weifang, Shandong, China
| | - Haina Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
56
|
Mao D, Guo J, Yang K, Yang F, Peng J, Jia X, Luo Z, Liu L, Yang E, Tang R, Lan H, Zheng Q. Mechanism of epigallocatechin gallate in treating non-alcoholic fatty liver disease: Insights from network pharmacology and experimental validation. Biochem Biophys Res Commun 2024; 734:150424. [PMID: 39083974 DOI: 10.1016/j.bbrc.2024.150424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
To explore the therapeutic effects along with the molecular mechanisms of epigallocatechin gallate (EGCG) in non-alcoholic fatty liver disease (NAFLD) treatment using network pharmacology as well as animal experiments. Firstly, the Traditional Chinese Medicine (TCM) Systems Pharmacology Database was searched to identify the potential targets of EGCG. The DisGeNET Database was used to screen the potential targets of NAFLD. The GeneCards Database was searched to identify related genes involved in pyroptosis. Subsequently, the intersecting genes of EGCG targeting pyroptosis to regulate NAFLD were obtained using a Venn diagram. Simultaneously, the aforementioned intersecting genes were used to construct a drug-disease target protein-protein interaction (PPI) network. The DAVID database was adopted for Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The main pathway-target network was determined. Next, the potential mechanism of EGCG targeting pyroptosis to regulate NAFLD was investigated and validated through in vivo experiments. 626 potential targets of EGCG, 447 target genes of NAFLD, and 568 potential targets of pyroptosis were identified. The number of common targets between EGCG, NAFLD, and pyroptosis was 266. GO biological process items and 92 KEGG pathways were determined based on the analysis results. Animal experiments demonstrated that EGCG could ameliorate body weight, glucolipid metabolism, steatosis, and liver injury, enhance insulin sensitivity, and improve glucose tolerance in NAFLD mice through the classical pathway of pyroptosis. EGCG could effectively treat NAFLD through multiple targets and pathways. It was concluded that EGCG ameliorates hepatocyte steatosis, pyroptosis, dyslipidemia, and inflammation in NAFLD mice fed a high-fat diet (HFD), and the protective mechanism could be associated with the NLRP3-Caspase-1-GSDMD classical pyroptosis pathway.
Collapse
Affiliation(s)
- Danting Mao
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Jianwei Guo
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Kunli Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Fan Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Jiaojiao Peng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Xu Jia
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Ziren Luo
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Lu Liu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Enjie Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Rui Tang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Haitao Lan
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Qian Zheng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
57
|
Besné-Eseverri I, Martín MÁ, Lobo G, Cano MP, Portillo MP, Trepiana J. Antioxidant and Anti-Inflammatory Effects of Opuntia Extracts on a Model of Diet-Induced Steatosis. Antioxidants (Basel) 2024; 13:1416. [PMID: 39594557 PMCID: PMC11591152 DOI: 10.3390/antiox13111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress and inflammation are widely recognised as factors that can initiate and facilitate the development of MAFLD. The aim of this study is to analyse the effect of low and high doses of Opuntia stricta var. dillenii peel extract (L-OD and H-OD, respectively) and Opuntia ficus-indica var. colorada pulp extract (L-OFI and H-OFI, respectively), which are rich in betalains and phenolic compounds, on oxidative stress, inflammation, DNA damage and apoptosis in rat livers with diet-induced steatosis. Steatotic diet led to increased final body and liver weight, serum transaminases, hepatic TG content, oxidative status and cell death. H-OFI treatment decreased serum AST levels, while L-OFI reduced hepatic TG accumulation. Oxidative stress was partially prevented with H-OD and H-OFI supplementation, and pro-inflammatory cytokines levels were especially improved with H-OFI treatment. Moreover, H-OFI appears to prevent DNA damage markers. Finally, H-OD and L-OFI supplementation down-regulated the apoptotic pathway. In conclusion, both H-OD and H-OFI supplementation were effective in regulating the progression to metabolic steatohepatitis, triggering different mechanisms of action.
Collapse
Affiliation(s)
- Irene Besné-Eseverri
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Centre, 01006 Vitoria-Gasteiz, Spain; (I.B.-E.); (M.P.P.)
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain
| | - María Ángeles Martín
- Science and Food Technology and Nutrition Institute (ICTAN-CSIC), 28040 Madrid, Spain;
- CIBER Diabetes and Related Metabolic Diseases (CIBERdem), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Gloria Lobo
- Department of Crop Production in Tropical and Subtropical Areas, Instituto Canario de Investigaciones Agrarias (ICIA), 38297 Tenerife, Spain;
| | - M. Pilar Cano
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain;
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Centre, 01006 Vitoria-Gasteiz, Spain; (I.B.-E.); (M.P.P.)
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain
- BIOARABA Institute of Health, 01009 Vitoria-Gasteiz, Spain
| | - Jenifer Trepiana
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Centre, 01006 Vitoria-Gasteiz, Spain; (I.B.-E.); (M.P.P.)
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain
- BIOARABA Institute of Health, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
58
|
He C, Zhang Q, Zhu R, Tse G, Wong WT. Asperuloside activates hepatic NRF2 signaling to stimulate mitochondrial metabolism and restore lipid homeostasis in high fat diet-induced MAFLD. Eur J Pharmacol 2024; 983:177003. [PMID: 39278309 DOI: 10.1016/j.ejphar.2024.177003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Nutrient overload predisposes the development of metabolic dysfunction-associated fatty liver disease (MAFLD). However, there are no specific pharmacological therapies for MAFLD. Asperuloside (ASP), an iridoid glycoside extracted from Eucommia ulmoides leaves, can alleviate obesity and MAFLD. However, the underlying mechanism and pharmacological effects of ASP on ameliorating MAFLD remain largely investigated. This study aimed to explore the effects of ASP in ameliorating MAFLD and to unravel its underlying mechanism using a high fat diet-induced MAFLD mice model. METHODS Six-week-old C57BL/6 male mice were fed a high fat diet for 12 weeks to induce MAFLD, followed by daily ASP treatment (50 mg/kg via oral gavage) for 7 weeks. HepG2 cells were used for in vitro studies. Nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor, ML385, was employed to explore the mechanisms of ASP's action. RESULTS ASP stimulated lipolysis and inhibited de novo lipogenesis, contributing to alleviating lipid deposition in obese mice livers and HepG2 cells. ASP restored ATP production and reversed the impairments of mitochondrial energetics and biogenesis in obese mice livers and HepG2 cells. ASP attenuated oxidative stress in obese mice livers and HepG2 cells, exhibiting its antioxidant value. Impressively, ASP significantly promotes Nrf2 nuclear translocation and Nrf2/ARE binding, thereby activating Nrf2/ARE pathway in obese mice livers and HepG2 cells, demonstrating its potential as a hepatic Nrf2 activator. Nrf2 inhibition abolishes the protective effects of ASP against lipid deposition, oxidative stress and mitochondrial dysfunction, emphasizing the critical role of ASP-activated hepatic Nrf2 signaling in ameliorating MAFLD. CONCLUSIONS This study provides the first line of evidence demonstrating the pivotal role of ASP-stimulated Nrf2 activation in alleviating MAFLD, emphasizing its potential as a hepatic Nrf2 activator targeting fatty liver diseases. These findings offer new evidence of ASP-stimulated mitochondrial metabolism and lipolysis in MAFLD, paving the way for the development of ASP as a therapeutic agent and dietary supplement to attenuate MAFLD progression.
Collapse
Affiliation(s)
- Chufeng He
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Qile Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ruiwen Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Gary Tse
- School of Nursing and Health Studies, Hong Kong Metropolitan University, 999077, China; Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Wing Tak Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
59
|
Yang Z, Wang J, Zhao T, Wang L, Liang T, Zheng Y. Mitochondrial structure and function: A new direction for the targeted treatment of chronic liver disease with Chinese herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118461. [PMID: 38908494 DOI: 10.1016/j.jep.2024.118461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Excessive fat accumulation, biological clock dysregulation, viral infections, and sustained inflammatory responses can lead to liver inflammation, fibrosis, and cancer, thus promoting the development of chronic liver disease. A comprehensive understanding of the etiological factors leading to chronic liver disease and the intrinsic mechanisms influencing its onset and progression can aid in identifying potential targets for targeted therapy. Mitochondria, as key organelles that maintain the metabolic homeostasis of the liver, provide an important foundation for exploring therapeutic targets for chronic liver disease. Recent studies have shown that active ingredients in herbal medicines and their natural products can modulate chronic liver disease by influencing the structure and function of mitochondria. Therefore, studying how Chinese herbs target mitochondrial structure and function to treat chronic liver diseases is of great significance. AIM OF THE STUDY Investigating the prospects of herbal medicine the Lens of chronic liver disease based on mitochondrial structure and function. MATERIALS AND METHODS A computerized search of PubMed was conducted using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "botanicals, mitochondria and chronic liver disease".Data from the Web of Science and Science Direct databases were also included. The research findings regarding herbal medicines targeting mitochondrial structure and function for the treatment of chronic liver disease are summarized. RESULTS A computerized search of PubMed using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "phytopharmaceuticals, mitochondria, and chronic liver disease", as well as the Web of Science and Science Direct databases was conducted to summarize information on studies of mitochondrial structure- and function-based Chinese herbal medicines for the treatment of chronic liver disease and to suggest that the effects of herbal medicines on mitochondrial division and fusion.The study suggested that there is much room for research on the influence of Chinese herbs on mitochondrial division and fusion. CONCLUSIONS Targeting mitochondrial structure and function is crucial for herbal medicine to combat chronic liver disease.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Tiejian Zhao
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Lei Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Tianjian Liang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China.
| | - Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China.
| |
Collapse
|
60
|
Liu Y, Fan Y, Liu J, Liu X, Li X, Hu J. Application and mechanism of Chinese herb medicine in the treatment of non-alcoholic fatty liver disease. Front Pharmacol 2024; 15:1499602. [PMID: 39605910 PMCID: PMC11598537 DOI: 10.3389/fphar.2024.1499602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver condition closely associated with metabolic syndrome, with its incidence rate continuously rising globally. Recent studies have shown that the development of NAFLD is associated with insulin resistance, lipid metabolism disorder, oxidative stress and endoplasmic reticulum stress. Therapeutic strategies for NAFLD include lifestyle modifications, pharmacological treatments, and emerging biological therapies; however, there is currently no specific drug to treat NAFLD. However Chinese herb medicine (CHM) has shown potential in the treatment of NAFLD due to its unique therapeutic concepts and methods for centuries in China. This review aims to summarize the pathogenesis of NAFLD and some CHMs that have been shown to have therapeutic effects on NAFLD, thus enriching the scientific connotation of TCM theories and facilitating the exploration of TCM in the treatment of NAFLD.
Collapse
Affiliation(s)
- Yuqiao Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Fan
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jibin Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyang Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuyan Li
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingqing Hu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, China
| |
Collapse
|
61
|
Zhang Z, He Y, Zhao M, He X, Zhou Z, Yue Y, Shen T, Liu J, Zhang G, Zhang Y. Qinlian Hongqu Decoction Modulates FXR/TGR5/GLP-1 Pathway to Improve Insulin Resistance in NAFLD Mice: Bioinformatics and Experimental Study. ACS OMEGA 2024; 9:45447-45466. [PMID: 39554433 PMCID: PMC11561767 DOI: 10.1021/acsomega.4c07463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Background: Qinglian Hongqu decoction (QLHQD), a traditional Chinese herbal remedy, shows potential in alleviating metabolic issues related to nonalcoholic fatty liver disease (NAFLD). However, its precise mode of action remains uncertain. Objective: This study aims to evaluate the efficacy and mechanisms of QLHQD in treating NAFLD. Methods: This study utilized a NAFLD mouse model to assess the effects of QLHQD on lipid metabolism, including blood lipids and hepatic steatosis, as well as glucose metabolism, including blood glucose levels, OGTT results, and serum insulin. Network pharmacology, bioinformatics, and molecular docking were used to explore how QLHQD may improve NAFLD treatment. Key proteins involved in these mechanisms were validated via WB and immunohistochemistry. Additionally, the expression of downstream pathway targets was examined to further validate the insulin resistance mechanism by which QLHQD improves NAFLD. Results: Animal studies demonstrated that QLHQD alleviated lipid abnormalities, hepatic steatosis, blood glucose levels, the insulin resistance index, and the OGTT results in NAFLD mice (P < 0.05 or 0.01). Network pharmacology and bioinformatics analyses indicated that the effects of QLHQD on NAFLD might involve bile acid secretion pathways. Subsequent validation through Western blotting, immunohistochemistry, and qPCR demonstrated that QLHQD may influence fat metabolism and insulin sensitivity in NAFLD mice via the FXR/TGR5/GLP-1 signaling pathway. Conclusion: QLHQD significantly alleviates glucose and lipid metabolism disorders in a high-fat diet-induced NAFLD mouse model. Its mechanism of action may involve the activation of the FXR/TGR5/GLP-1 signaling pathway in the gut, which reduces lipid accumulation and insulin resistance.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Institute
of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine
Sciences, Chengdu 610041, China
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunliang He
- Institute
of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine
Sciences, Chengdu 610041, China
| | - Mei Zhao
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin He
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
- Department
of Traditional Chinese Medicine, Chengdu
Integrated TCM&Western Medicine Hospital, Chengdu 610041, China
| | - Zubing Zhou
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuanyuan Yue
- Department
of Traditional Chinese Medicine, Chengdu
Integrated TCM&Western Medicine Hospital, Chengdu 610041, China
| | - Tao Shen
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Juncheng Liu
- Department
of Traditional Chinese Medicine, Pengzhou
Hospital of Traditional Chinese Medicine, Pengzhou 611900, China
| | - Gan Zhang
- Institute
of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine
Sciences, Chengdu 610041, China
| | - Yong Zhang
- Institute
of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine
Sciences, Chengdu 610041, China
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
62
|
da Silva GR, Kluck AJ, Albuquerque ER, Guarnier LP, Braga FDA, Silva EP, Negrini KS, Mendonça JA, Gazim ZC, Gasparotto Junior A, Ribeiro-Paes JT, Lívero FADR. Effects of Baccharis dracunculifolia DC on an Innovative Animal Model of Cardiometabolic Syndrome. Pharmaceutics 2024; 16:1446. [PMID: 39598569 PMCID: PMC11597276 DOI: 10.3390/pharmaceutics16111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objective: Cardiometabolic syndrome (CMS) is a complex clinical condition that encompasses metabolic dysregulation, cardiovascular disease, and diabetes risk factors. Worldwide, CMS is underdiagnosed, and its occurrence significantly increases cardiovascular morbimortality. Despite available pharmacological treatments, the approach is fragmented, and the associated clinical conditions are treated independently. This approach may be partially due to limited preclinical models to mimic the clinical conditions of CMS. Therefore, our study aims to present an innovative animal model of cardiometabolic syndrome and evaluate the effects of Baccharis dracunculifolia on the set of clinical alterations associated with the condition. Methods: Female Wistar rats were induced to develop diabetes, fed a cholesterol-enriched diet, and exposed to the smoke of 9 cigarettes/day for 6 weeks. During the last 2 weeks, the rats were treated with vehicle, B. dracunculifolia (30, 100, and 300 mg/kg), or a combination of simvastatin and insulin. At the end of the treatment, plasma lipid levels were measured, and the liver was analyzed histologically for hepatic lipid quantification and oxidative stress assessment. Results: Phytochemical analysis revealed seven phenolic acids and six flavonoids in the extract. B. dracunculifolia showed significant hepatoprotective effects, reducing AST and ALT levels and lowering both plasma and hepatic lipid levels. The extract also reversed hepatic steatosis and demonstrated antioxidant properties. Conclusions: These findings suggest that B. dracunculifolia may be a therapeutic option for the metabolic dysregulation present in CMS.
Collapse
Affiliation(s)
- Gustavo Ratti da Silva
- Laboratory of Preclinical Research of Natural Products, Post-Graduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama 81531-980, Brazil; (G.R.d.S.); (E.R.A.)
| | - Arianne Jung Kluck
- Laboratory of Cardiometabolic Pharmacology, Federal University of Paraná (UFPR), Curitiba 81531-990, Brazil;
| | - Edilson Rodrigues Albuquerque
- Laboratory of Preclinical Research of Natural Products, Post-Graduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama 81531-980, Brazil; (G.R.d.S.); (E.R.A.)
| | - Lucas Pires Guarnier
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
| | - Fernanda de Abreu Braga
- Laboratory of Preclinical Research of Natural Products, Post-Graduate Program in Medicinal Plants and Phytotherapeutics in Basic Attention, Paranaense University, Umuarama 81531-980, Brazil; (F.d.A.B.); (E.P.S.); (K.S.N.)
| | - Ester Pelegrini Silva
- Laboratory of Preclinical Research of Natural Products, Post-Graduate Program in Medicinal Plants and Phytotherapeutics in Basic Attention, Paranaense University, Umuarama 81531-980, Brazil; (F.d.A.B.); (E.P.S.); (K.S.N.)
| | - Karina Sposito Negrini
- Laboratory of Preclinical Research of Natural Products, Post-Graduate Program in Medicinal Plants and Phytotherapeutics in Basic Attention, Paranaense University, Umuarama 81531-980, Brazil; (F.d.A.B.); (E.P.S.); (K.S.N.)
| | - Juliana Aparecida Mendonça
- Chemistry Laboratory of Natural Products, Post-Graduate Program in Biotechnology Applied to Agriculture, Paranaense University, Umuarama 81531-980, Brazil;
| | - Zilda Cristiani Gazim
- Chemistry Laboratory of Natural Products, Post-Graduate Programs in Animal Science and Biotechnology Applied to Agriculture, Paranaense University, Umuarama 81531-980, Brazil;
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79804-970, Brazil;
| | - João Tadeu Ribeiro-Paes
- Laboratory of Genetics and Cell Therapy (GenTe Cel), Department of Biotechnology, São Paulo State University, Assis 19806-900, Brazil;
| | - Francislaine Aparecida dos Reis Lívero
- Laboratory of Cardiometabolic Pharmacology, Federal University of Paraná (UFPR), Curitiba 81531-990, Brazil;
- Laboratory of Preclinical Research of Natural Products, Post-Graduate Program in Medicinal Plants and Phytotherapeutics in Basic Attention, Paranaense University, Umuarama 81531-980, Brazil; (F.d.A.B.); (E.P.S.); (K.S.N.)
| |
Collapse
|
63
|
Ağagündüz D, Yeşildemir Ö, Koçyiğit E, Koçak T, Özen Ünaldı B, Ayakdaş G, Budán F. Oxylipins Derived from PUFAs in Cardiometabolic Diseases: Mechanism of Actions and Possible Nutritional Interactions. Nutrients 2024; 16:3812. [PMID: 39599599 PMCID: PMC11597274 DOI: 10.3390/nu16223812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Oxylipins are oxidized fatty acids, both saturated and unsaturated, formed through pathways that involve singlet oxygen or dioxygen-mediated oxygenation reactions and are primarily produced by enzyme families such as cyclooxygenases, lipoxygenases, and cytochrome P450. These lipid-based complex bioactive molecules are pivotal signal mediators, acting in a hormone-like manner in the pathophysiology of numerous diseases, especially cardiometabolic diseases via modulating plenty of mechanisms. It has been reported that omega-6 and omega-3 oxylipins are important novel biomarkers of cardiometabolic diseases. Moreover, collected literature has noted that diet and dietary components, especially fatty acids, can modulate these oxygenated lipid products since they are mainly derived from dietary omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) or linoleic acid and α-linolenic by elongation and desaturation pathways. This comprehensive review aims to examine their correlations to cardiometabolic diseases and how diets modulate oxylipins. Also, some aspects of developing new biomarkers and therapeutical utilization are detailed in this review.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Türkiye
| | - Özge Yeşildemir
- Department of Nutrition and Dietetics, Bursa Uludag University, Görükle Campus, 16059 Bursa, Türkiye;
| | - Emine Koçyiğit
- Department of Nutrition and Dietetics, Ordu University, Cumhuriyet Yerleşkesi, 52200 Ordu, Türkiye;
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Gümüşhane University, Gümüşhanevî Kampüsü, 29100 Gümüşhane, Türkiye;
| | - Buket Özen Ünaldı
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Türkiye;
| | - Gamze Ayakdaş
- Department of Nutrition and Dietetics, Acıbadem University, Kerem Aydınlar Campus, 34752 İstanbul, Türkiye;
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
64
|
Liu L, Sun W, Tang X, Zhen D, Guan C, Fu S, Liu J. Chiglitazar attenuates high-fat diet-induced nonalcoholic fatty liver disease by modulating multiple pathways in mice. Mol Cell Endocrinol 2024; 593:112337. [PMID: 39098464 DOI: 10.1016/j.mce.2024.112337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide; however, effective intervention strategies for NAFLD are still unavailable. The present study sought to investigate the efficacy of chiglitazar, a pan-PPAR agonist, in protecting against NAFLD in mice and its underlying molecular mechanism. Male C57BL/6 J mice were fed a high-fat diet (HFD) for 8 weeks to generate NAFLD and the HFD was continued for an additional 10 weeks in the absence or presence of 5 mg/kg/d or 10 mg/kg/d chiglitazar by gavage. Chiglitazar significantly improved dyslipidemia and insulin resistance, ameliorated hepatic steatosis and reduced liver inflammation and oxidative stress in NAFLD mice. RNA-seq revealed that chiglitazar alleviated HFD-induced NAFLD in mice through multiple pathways, including fatty acid metabolism regulation, insulin signaling pathway, and AMPK signaling pathway. This study demonstrated the potential therapeutic effect of chiglitazar on NAFLD. Chiglitazar ameliorated NAFLD by modulating multiple pathways.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Weiming Sun
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xulei Tang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Donghu Zhen
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Conghui Guan
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jinjin Liu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| |
Collapse
|
65
|
Kurbatova IV, Topchieva LV, Dudanova OP, Shipovskaya AA. Role of MMP-2 and MMP-9 in the Relationship between Inflammation, Fibrosis, and Apoptosis during Progression of Non-Alcoholic Fatty Liver Disease and Diagnostic Significance of Plasma Levels of Their Active Forms. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1998-2022. [PMID: 39647828 DOI: 10.1134/s0006297924110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 12/10/2024]
Abstract
MMP-2 and MMP-9 play an important role in pathogenesis of chronic liver diseases, participating in the processes of inflammation and fibrosis. Their role in progression of non-alcoholic fatty liver disease (NAFLD) is poorly understood. Analysis of MMP-2, -9 levels in the blood plasma of patients with different forms of NAFLD [liver steatosis (LS) and non-alcoholic steatohepatitis (NASH) of weak (-WA), moderate (MA), high (-HA) activity without pronounced fibrosis] was performed. Correlations between the levels of MMP-2, -9 and mRNA of the genes MMP2, MMP9, ADAM17, NLRP3, caspase 3 activity in peripheral blood leukocytes (PBL), TNFα, IL-6, sIL-6R, cytokeratin-18 fragments in plasma were assessed. In steatosis, the levels of MMP2 gene mRNA in PBL and MMP-2 in plasma are lower than in the control, and expression of the NLRP3 gene in PBL is increased relative to other groups. In the NASH-WA, the level of MMP-9 is higher than in the control, in LS, and in NASH-MA, which could be associated with activation of inflammation during transformation of LS into NASH. The plasma level of MMP-9 over 389.50 pg/ml has been shown to be diagnostically significant for identification of NASH-WA among the patients with steatosis (AUC ROC = 0.818, 95% CI = 0.689-0.948, p < 0.001). In NAFLD, the level of MMP-9 could be associated not only with inflammation, but also with apoptosis. ADAM17 probably plays a certain role in this regard. In the advanced NASH, hepatocyte apoptosis is increased, the level of caspase 3 activity in PBL is increased, the level of MMP-9 in the blood is reduced to the level of the control and LS. In the NASH-HA, the level of mRNA of the ADAM17 gene in PBL is increased compared to the control, NASH-WA, and NASH-MA. Thus, MMP-2 and MMP-9 are involved in pathogenesis of NAFLD already at the early stages and their level in blood could be associated with the presence and severity of inflammation in the liver parenchyma.
Collapse
Affiliation(s)
- Irina V Kurbatova
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Karelia, 185910, Russia.
| | - Lyudmila V Topchieva
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Karelia, 185910, Russia
| | - Olga P Dudanova
- Zilber Medical Institute, Petrozavodsk State University, Petrozavodsk, Karelia, 185910, Russia
| | - Anastasia A Shipovskaya
- Zilber Medical Institute, Petrozavodsk State University, Petrozavodsk, Karelia, 185910, Russia
| |
Collapse
|
66
|
Lee Y, Choi D, Park J, Kim JG, Choi T, Youn D. The Effects of Warm Acupuncture on the Expression of AMPK in High-Fat Diet-Induced MAFLD Rats. Curr Issues Mol Biol 2024; 46:11580-11592. [PMID: 39451567 PMCID: PMC11506734 DOI: 10.3390/cimb46100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
This study investigated the effects of acupuncture and warm acupuncture on the expression and mechanism of the AMP-activated protein kinase (AMPK) signalling pathway associated with lipid accumulation in the liver tissue of rats with metabolic dysfunction-associated fatty liver disease (MAFLD) induced by a high-fat diet. Sprague-Dawley rats were categorised into four groups: control (CON), untreated MAFLD (MAFLD), and two MAFLD groups treated with acupuncture (ACU) and warm acupuncture (WA). The treatment groups underwent 16 application sessions over 8 weeks at the SP9 and BL18 acupoints. We measured the expression levels of AMPK, sterol regulatory element-binding protein1 (SREBP1), acetyl-coenzyme A carboxylase (ACC), peroxisome proliferator-activated receptorα (PPARα), carnitine palmitoyltransferase1 (CPT1), and CPT2. AMPK was activated in both ACU and WA groups. WA downregulated both SREBP1 and ACC expression at the protein level, whereas the acupuncture treatment downregulated SREBP1 expression. Additionally, WA selectively induced the activation of signalling pathways related to AMPK, PPARα, CPT1, and CPT2 at the mRNA level. Histological observations confirmed that fat accumulation was reduced in both the ACU and the WA groups compared to the MAFLD group. The WA treatment-promoted amelioration of HFD-induced MAFLD may be related to the activation of the AMPK/SREBP1/ACC pathway in the liver.
Collapse
Affiliation(s)
- Yumi Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (Y.L.); (J.P.); (J.G.K.)
| | - Donghee Choi
- Department of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea;
| | - Junghye Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (Y.L.); (J.P.); (J.G.K.)
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (Y.L.); (J.P.); (J.G.K.)
| | - Taejin Choi
- DongHaeng Convalescent Hospital, Gwangju 61251, Republic of Korea;
| | - Daehwan Youn
- Department of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea;
| |
Collapse
|
67
|
Poo CL, Lau MS, Nasir NLM, Nik Zainuddin NAS, Rahman MRAA, Mustapha Kamal SK, Awang N, Muhammad H. A Scoping Review on Hepatoprotective Mechanism of Herbal Preparations through Gut Microbiota Modulation. Curr Issues Mol Biol 2024; 46:11460-11502. [PMID: 39451562 PMCID: PMC11506797 DOI: 10.3390/cimb46100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024] Open
Abstract
Liver diseases cause millions of deaths globally. Current treatments are often limited in effectiveness and availability, driving the search for alternatives. Herbal preparations offer potential hepatoprotective properties. Disrupted gut microbiota is linked to liver disorders. This scoping review aims to explore the effects of herbal preparations on hepatoprotective mechanisms, particularly in the context of non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatic steatosis, with a focus on gut microbiota modulation. A systematic search was performed using predetermined keywords in four electronic databases (PubMed, Scopus, EMBASE, and Web of Science). A total of 55 studies were included for descriptive analysis, covering study characteristics such as disease model, dietary model, animal model, intervention details, comparators, and study outcomes. The findings of this review suggest that the hepatoprotective effects of herbal preparations are closely related to their interactions with the gut microbiota. The hepatoprotective mechanisms of herbal preparations are shown through their effects on the gut microbiota composition, intestinal barrier, and microbial metabolites, which resulted in decreased serum levels of liver enzymes and lipids, improved liver pathology, inhibition of hepatic fatty acid accumulation, suppression of inflammation and oxidative stress, reduced insulin resistance, and altered bile acid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hussin Muhammad
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia; (C.L.P.); (M.S.L.); (N.L.M.N.); (N.A.S.N.Z.); (M.R.A.A.R.); (S.K.M.K.); (N.A.)
| |
Collapse
|
68
|
Nie Z, Xiao C, Wang Y, Li R, Zhao F. Heat shock proteins (HSPs) in non-alcoholic fatty liver disease (NAFLD): from molecular mechanisms to therapeutic avenues. Biomark Res 2024; 12:120. [PMID: 39396024 PMCID: PMC11470698 DOI: 10.1186/s40364-024-00664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), a spectrum of liver conditions characterized by fat accumulation without excessive alcohol consumption, represents a significant global health burden. The intricate molecular landscape underlying NAFLD pathogenesis involves lipid handling, inflammation, oxidative stress, and mitochondrial dysfunction, with endoplasmic reticulum (ER) stress emerging as a key contributor. ER stress triggers the unfolded protein response (UPR), impacting hepatic steatosis in NAFLD and contributing to inflammation, fibrosis, and progression to NASH and eventually hepatocellular carcinoma (HCC). Heat shock proteins (HSPs), including small HSPs such as HSP20 and HSP27, HSP60, HSP70, GRP78, and HSP90, are integral to cellular stress responses. They aid in protein folding, prevent aggregation, and facilitate degradation, thus mitigating cellular damage under stress conditions. In NAFLD, aberrant HSP expression and function contribute to disease pathogenesis. Understanding the specific roles of HSP subtypes in NAFLD offers insights into potential therapeutic interventions. This review discusses the involvement of HSPs in NAFLD pathophysiology and highlights their therapeutic potential. By elucidating the molecular mechanisms underlying HSP-mediated protection in NAFLD, this article aims to pave the way for the development of targeted therapies for this prevalent liver disorder.
Collapse
Affiliation(s)
- Zhenwang Nie
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Congshu Xiao
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yingzi Wang
- International Medical Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Rongkuan Li
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fangcheng Zhao
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
69
|
Zhang H, You Y, Xu J, Jiang H, Jiang J, Su Z, Chao Z, Du Q, He F. New sesquiterpenes and viridin derivatives from Penicillium sp. Ameliorates NAFLD by regulating the PINK1/Parkin mitophagy pathway. Bioorg Chem 2024; 151:107656. [PMID: 39047333 DOI: 10.1016/j.bioorg.2024.107656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Fungi from the plant rhizosphere microbiome are considered an important source of bioactive novel natural compounds. In this study, three new sesquiterpenes, penisterpenoids A-C (1-3), and three new viridin derivatives, peniviridiols A-C (4-6), along with twenty one known compounds (7-27), were isolated from the rhizosphere fungus Penicillium sp. SMU0102 of medicinal plant Bupleurum chinense DC. Their structures were elucidated by extensive spectroscopic analysis. The absolute configurations of compounds 1-6 were determined by experimental and calculated ECD spectra, DP4 + probability analysis, modified Mosher's method, and X-ray crystallography. All new compounds were screened for their cytotoxic and lipid-lowering activities in vitro. Among them, compound 1 (20 μM) remarkably alleviated lipid accumulation both in FFA-induced LO2 cells and TAA-induced zebrafish NAFLD models. Furthermore, compound 1 enhanced ATP production and mitochondrial membrane potential (MMP), suppressed reactive oxygen species (ROS) formation, restored mitochondrial structure, and induced autophagosome formation. Moreover, compound 1 significantly upregulated the expression of representative proteins for the mitochondrial homeostasis, including OPA1, DRP1, MFF, and Fis1, as well as mitophagy representative proteins PINK1, Parkin, and P62. Further mechanistic investigations indicated that compound 1 primarily alleviated lipid accumulation through selective activation of the PINK1/Parkin mitophagy signaling pathway.
Collapse
Affiliation(s)
- Hang Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yanting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingyang Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Haimei Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jinyan Jiang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Zijie Su
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhi Chao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qingfeng Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, China.
| | - Fei He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, China.
| |
Collapse
|
70
|
Wan Q, Luo S, Lu Q, Guan C, Zhang H, Deng Z. Protective effects of puerarin on metabolic diseases: Emphasis on the therapeutical effects and the underlying molecular mechanisms. Biomed Pharmacother 2024; 179:117319. [PMID: 39197190 DOI: 10.1016/j.biopha.2024.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Metabolic diseases (MetD) such as diabetes mellitus, obesity, and hyperlipidemia have become global health challenges. As a naturally occurring plant component, puerarin has been verified to possess a wide range of pharmacological effects including lowering blood glucose, improving insulin resistance, and regulating lipid metabolism, which has attracted extensive attention in recent years, and its potential in the treatment of MetD has been highly acclaimed. In addition, puerarin has exhibited antioxidant, anti-inflammatory, and cardiovascular protective effects, which are of great significance in the prevention and treatment of MetD. This article comprehensively summarizes the research progress of puerarin in the treatment of MetD and explores its pharmacological mechanisms, clinical applications, and future perspectives. More importantly, this review provided a list of the involved molecular mechanims in treating MetD of puerarin. Taking into account these conclusions, it may provide a strong foundation for the optimized use of puerarin in the treatment of patients suffering from MetD.
Collapse
Affiliation(s)
- Qiang Wan
- Department of Medical Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China; Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zhiyan Deng
- Department of Gastroenterology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua 321017, China.
| |
Collapse
|
71
|
Li Y, Zhang J, Chen S, Ke Y, Li Y, Chen Y. Growth differentiation factor 15: Emerging role in liver diseases. Cytokine 2024; 182:156727. [PMID: 39111112 DOI: 10.1016/j.cyto.2024.156727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024]
Abstract
Growth differentiation factor 15 (GDF15) is a cell stress-response cytokine within the transforming growth factor-β (TGFβ) superfamily. It is known to exert diverse effects on many metabolic pathways through its receptor GFRAL, which is expressed in the hindbrain, and transduces signals through the downstream receptor tyrosine kinase Ret. Since the liver is the core organ of metabolism, summarizing the functions of GDF15 is highly important. In this review, we assessed the relevant literature regarding the main metabolic, inflammatory, fibrogenic, tumorigenic and other effects of GDF15 on different liver diseases, including Metabolic dysfunction-associated steatotic liver disease(MASLD), alcohol and drug-induced liver injury, as well as autoimmune and viral hepatitis, with a particular focus on the pathogenesis of MASLD progression from hepatic steatosis to MASH, liver fibrosis and even hepatocellular carcinoma (HCC). Finally, we discuss the prospects of the clinical application potential of GDF15 along with its research and development progress. With better knowledge of GDF15, increasing in-depth research will lead to a new era in the field of liver diseases.
Collapse
Affiliation(s)
- Yu Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie Zhang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shurong Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yini Ke
- Department of Rheumatology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Youming Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yi Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
72
|
Waldrop SW, Ibrahim AA, Maya J, Monthe-Dreze C, Stanford FC. Overview of Pediatric Obesity as a Disease. Pediatr Clin North Am 2024; 71:761-779. [PMID: 39343491 PMCID: PMC11443063 DOI: 10.1016/j.pcl.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The authors highlight well-known and hypothesized pathophysiologic mechanistic links underlying obesity and the various pediatric disorders across multiple organ systems with which it is associated. Obesity is attributed to an imbalance in energy intake versus expenditure; there is growing knowledge regarding its multifactorial origins, dysfunctional physiologic processes, and adverse health consequences. Individuals with obesity exhibit variations in metabolic rate, genetic predisposition, and hormonal regulation, influencing diverse responses in regulating energy balance. Understanding the complex mechanistic relationships surrounding the pathophysiology of obesity assists in its consideration as a disease process, allowing pediatric health practitioners to manage its sequelae more effectively.
Collapse
Affiliation(s)
- Stephanie W Waldrop
- Section on Nutrition, Department of Pediatrics, Anschutz Medical Campus, Nutrition Obesity Research Center (NORC), University of Colorado, Aurora, CO, USA.
| | - Awab Ali Ibrahim
- Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Jacqueline Maya
- Department of Pediatrics, Division of Pediatric Endocrinology, MGH Weight Center, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02115, USA
| | - Carmen Monthe-Dreze
- Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Fatima Cody Stanford
- Division of Endocrinology-Neuroendocrine, Department of Medicine, Massachusetts General Hospital, MGH Weight Center, 50 Staniford Street, Suite 430, Boston, MA 02115, USA; Department of Pediatrics, Division of Endocrinology, Nutrition Obesity Research Center at Harvard (NORCH), Boston, MA, USA. https://twitter.com/askdrfatima
| |
Collapse
|
73
|
Wang Q, Zhang Y, Lu R, Zhao Q, Gao Y. The multiple mechanisms and therapeutic significance of rutin in metabolic dysfunction-associated fatty liver disease (MAFLD). Fitoterapia 2024; 178:106178. [PMID: 39153555 DOI: 10.1016/j.fitote.2024.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The global incidence of metabolic dysfunction-associated fatty liver disease (MAFLD) has been steadily increasing, making it a leading chronic liver disease. MAFLD refers to a metabolic syndrome linked with type 2 diabetes mellitus, obesity. However, its pathophysiology is complex, there are currently no effective and approved medicines for therapy. Rutin, a naturally occurring polyphenolic flavonoid, is widely distributed in fruits, vegetables, and other plants. It exhibits a plethora of bioactive properties, such as antioxidant, anticancer, and anti-inflammatory and neuroprotective activities, making it an extremely promising phytochemical. Rutin has shown great potential in the treatment of a wide variety of metabolic diseases and received considerable attention in recent years. Fortuitously, various research studies have validated rutin's extensive biological functions in treating metabolic disorders. Despite the fact that the exact pathophysiological mechanisms through which rutin has a hepatoprotective effect on MAFLD are still not fully elucidated. This review comprehensively outlines rutin's multifaceted preventive and therapeutic effects in MAFLD, including the modulation of lipid metabolism, reduction of insulin resistance, diminution of inflammation and oxidative stress, combatting of obesity, and influence on intestinal flora. This paper details the known molecular targets and pathways of rutin in MAFLD pathogenesis. It endeavored to provide new ideas for treating MAFLD and accelerating its translation from bench to bedside.
Collapse
Affiliation(s)
- Qianzhuo Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yingjuan Zhang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Ruiling Lu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Qingwen Zhao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China.
| | - Yue Gao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China.
| |
Collapse
|
74
|
Zhao L, Zeng Q, Zhou X, Tang L, Wang Y, Han Q, Zou Y, Xiao X, Liu K, Ju X, Wu Y, Li X, Zhao C, Liu F. Impact of non-alcoholic fatty liver disease and fibrosis on mortality and kidney outcomes in patients with type 2 diabetes and chronic kidney disease: A multi-cohort longitudinal study. Diabetes Obes Metab 2024; 26:4241-4250. [PMID: 39021330 DOI: 10.1111/dom.15758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
AIM To evaluate the impact of non-alcoholic fatty liver disease (NAFLD) presence and fibrosis risk on adverse outcomes in patients with type 2 diabetes and chronic kidney disease. METHODS Data were sourced from two longitudinal cohorts: 1172 patients from the National Health and Nutrition Examination Survey (NHANES) and 326 patients from the kidney biopsy cohort at the West China Hospital of Sichuan University. Cox regression estimated hazard ratios (HRs) for NAFLD and liver fibrosis concerning adverse clinical outcomes. Subsequently, a two-sample Mendelian randomization study using genome-wide association study statistics explored NAFLD's potential causal link to cardio-cerebrovascular events. RESULTS In the NHANES cohort, NAFLD stood as an independent risk factor for various outcomes: overall mortality [HR 1.53 (95% confidence interval, CI 1.21-1.95)], mortality because of cardio-cerebrovascular diseases [HR 1.63 (95% CI 1.12-2.37)], heart disease [HR 1.58 (95% CI 1.00-2.49)], and cerebrovascular disease [HR 3.95 (95% CI 1.48-10.55)]. Notably, advanced liver fibrosis, identified by a fibrosis-4 (FIB-4) score >2.67, exhibited associations with overall mortality, cardio-cerebrovascular disease mortality and heart disease mortality. Within the kidney biopsy cohort, NAFLD correlated with future end-stage kidney disease [ESKD; HR 2.17 (95% CI 1.41-3.34)], while elevated FIB-4 or NAFLD Fibrosis Scores predicted future ESKD, following full adjustment. Liver fibrosis was positively correlated with renal interstitial fibrosis and tubular atrophy in biopsies. Further Mendelian randomization analysis supported a causal relationship between NAFLD and cardio-cerebrovascular events. CONCLUSIONS In patients with type 2 diabetes and chronic kidney disease, the NAFLD presence and elevated FIB-4 scores link to heightened mortality risk and ESKD susceptibility. Moreover, NAFLD shows a causal relationship with cardio-cerebrovascular events.
Collapse
Affiliation(s)
- Lijun Zhao
- Department of General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Nephrology; Laboratory of Diabetic Kidney Disease, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Qingyue Zeng
- Department of General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoqin Zhou
- Research Center of Clinical Epidemiology and Evidence-Based Medicine, West China Hospital, Sichuan University, Chengdu, China
- Center of Biostatistics, Design, Measurement and Evaluation (CBDME), Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Linqiao Tang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Wang
- Department of Undergraduate Students, West China School of Medicine, Sichuan University, Chengdu, China
| | - Qianqian Han
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Yutong Zou
- Department of Nephrology; Laboratory of Diabetic Kidney Disease, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Xiang Xiao
- Department of Nephrology; Laboratory of Diabetic Kidney Disease, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Ke Liu
- Department of Nephrology; Laboratory of Diabetic Kidney Disease, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Xuegui Ju
- Department of Nephrology; Laboratory of Diabetic Kidney Disease, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Yucheng Wu
- Department of Nephrology; Laboratory of Diabetic Kidney Disease, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Xingyuan Li
- Department of Nephrology; Laboratory of Diabetic Kidney Disease, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Chuanyi Zhao
- Department of Nephrology; Laboratory of Diabetic Kidney Disease, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Fang Liu
- Department of Nephrology; Laboratory of Diabetic Kidney Disease, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
75
|
Zhang L, Xu L, Rong A, Cui Y, Wang L, Li L, Han X, Xiao X, Wu H. Effect of Rab18 on liver injury and lipid accumulation by regulating perilipin 2 and peroxisome proliferator-activated receptor gamma in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2024; 39:2219-2227. [PMID: 39030773 DOI: 10.1111/jgh.16676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND AND AIM Nonalcoholic fatty liver disease (NAFLD) is currently one of the most common chronic liver diseases worldwide, characterized by the presence of lipid droplets. Rab18 is an important lipid droplet protein; however, its effects and mechanisms of action on NAFLD remain unclear. METHODS Free fatty acid-stimulated AML-12 cells and high-fat diet (HFD)-fed mice were used as NAFLD models. Lentiviruses overexpressing Rab18 (Rab18-OE) or knockdown (Rab18-KD) were used to generate stable cell lines for genetic analysis. Blood serum levels of alanine aminotransferase, aspartate aminotransferase, total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, glucose, and leptin were measured using a biochemical autoanalyzer. Hematoxylin and eosin staining was performed to detect pathological damage to the liver. Lipid accumulation in the cells was assessed by Oil Red O staining. Target expression was measured using qPCR, western blotting, and immunocytochemistry. RESULTS Rab18 mRNA and protein expression levels increased in free fatty acid-stimulated AML-12 cells and the livers of HFD-fed mice. Rab18-OE increased lipid accumulation in vitro, which was attenuated by Rab18-KD. In vivo, Rab18-OE augmented liver pathological damage, serum alanine aminotransferase/aspartate aminotransferase activity, and triglyceride, total cholesterol, and low-density lipoprotein levels, whereas Rab18-KD decreased these indicators. Rab18-KD also downregulated blood glucose levels in HFD-fed mice. Mechanistically, Rab18-OE and Rab18-KD regulated the mRNA and protein expression levels of perilipin 2 (PLIN2) and peroxisome proliferator-activated receptor gamma (PPARγ) in vitro and in vivo, respectively. Immunocytochemistry revealed that Rab18 colocalized with PLIN2 and PPARγ in AML-12 cells. CONCLUSION Rab18 expression was elevated in vitro and in vivo in the NAFLD mouse model. Rab18 regulates PLIN2 and PPARγ expression to exaggerate liver injury and lipid accumulation in patients with NAFLD. Thus, Rab18 may be a crucial protein in this disease and a potential therapeutic target.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lidong Xu
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Aimei Rong
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yuanbo Cui
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lin Wang
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lu Li
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaomeng Han
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xingguo Xiao
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Huili Wu
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
76
|
Liu GK, Yang Q, Ye FQ, Niu Z, Zhang BY, Kang N, Yao T, Cao SJ, Qiu F. Benzoate glycosides from Gentiana scabra Bge. and their lipid-lowering activity. PHYTOCHEMISTRY 2024; 226:114209. [PMID: 38972439 DOI: 10.1016/j.phytochem.2024.114209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Seven undescribed benzoate glycosides (1-7) and five known ones (8-12) were isolated from the rhizomes of Gentiana scabra Bge. Their structures were characterized by comprehensive NMR and MS spectroscopic data analysis. The lipid-lowering effects of these compounds were evaluated by measuring the triglyceride (TG) contents and intracellular lipid droplets (LDs) in oleic acid (OA)-treated HepG2 cells. The results showed that compounds 1, 5, 7, and 11 significantly reduced the TG content at 20 μM, and the Bodipy staining displayed that OA enhanced the levels of LDs in the cell, while these compounds reversed the lipid accumulation caused by OA. These findings provide a basis for further development and utilization of G. scabra as a natural source of potential lipid-lowering agents.
Collapse
Affiliation(s)
- Guan-Ke Liu
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Qing Yang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Fan-Qing Ye
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Zheng Niu
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Bing-Yang Zhang
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Tie Yao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| | - Shi-Jie Cao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| | - Feng Qiu
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| |
Collapse
|
77
|
Ábel T, Benczúr B, Csobod ÉC. Sex differences in pathogenesis and treatment of dyslipidemia in patients with type 2 diabetes and steatotic liver disease. Front Med (Lausanne) 2024; 11:1458025. [PMID: 39376658 PMCID: PMC11456427 DOI: 10.3389/fmed.2024.1458025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Previously published studies have shown that women with type 2 diabetes have a higher risk of atherosclerotic cardiovascular disease than men with type 2 diabetes. The exact reason for this is not yet known. The association between metabolic dysfunction-associated steatotic liver disease and type 2 diabetes appears to be bidirectional, meaning that the onset of one may increase the risk of the onset and progression of the other. Dyslipidemia is common in both diseases. Our aim was therefore to investigate whether there is a sex difference in the pathogenesis and management of dyslipidemia in patients with type 2 diabetes and steatotic liver disease with metabolic dysfunction. While the majority of published studies to date have found no difference between men and women in statin treatment, some studies have shown reduced effectiveness in women compared to men. Statin treatment is under-prescribed for both type 2 diabetics and patients with dysfunction-associated steatotic liver disease. No sex differences were found for ezetimibe treatment. However, to the best of our knowledge, no such study was found for fibrate treatment. Conflicting results on the efficacy of newer cholesterol-lowering PCSK9 inhibitors have been reported in women and men. Results from two real-world studies suggest that up-titration of statin dose improves the efficacy of PCSK9 inhibitors in women. Bempedoic acid treatment has been shown to be effective and safe in patients with type 2 diabetes and more effective in lipid lowering in women compared to men, based on phase 3 results published to date. Further research is needed to clarify whether the sex difference in dyslipidemia management shown in some studies plays a role in the risk of ASCVD in patients with type 2 diabetes and steatotic liver disease with metabolic dysfunction.
Collapse
Affiliation(s)
- Tatjana Ábel
- Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Béla Benczúr
- Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
- János Balassa County Hospital, Ist Department of Internal medicine (Cardiology/Nephrology), Szekszárd, Hungary
| | - Éva Csajbókné Csobod
- Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
78
|
Daniels NJ, Hershberger CE, Kerosky M, Wehrle CJ, Raj R, Aykun N, Allende DS, Aucejo FN, Rotroff DM. Biomarker Discovery in Liver Disease Using Untargeted Metabolomics in Plasma and Saliva. Int J Mol Sci 2024; 25:10144. [PMID: 39337628 PMCID: PMC11432510 DOI: 10.3390/ijms251810144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic liver diseases, including non-alcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC), continue to be a global health burden with a rise in incidence and mortality, necessitating a need for the discovery of novel biomarkers for HCC detection. This study aimed to identify novel non-invasive biomarkers for these different liver disease states. We performed untargeted metabolomics in plasma (Healthy = 9, NAFLD = 14, Cirrhosis = 10, HCC = 34) and saliva samples (Healthy = 9, NAFLD = 14, Cirrhosis = 10, HCC = 22) to test for significant metabolite associations with each disease state. Additionally, we identified enriched biochemical pathways and analyzed correlations of metabolites between, and within, the two biofluids. We identified two salivary metabolites and 28 plasma metabolites significantly associated with at least one liver disease state. No metabolites were significantly correlated between biofluids, but we did identify numerous metabolites correlated within saliva and plasma, respectively. Pathway analysis revealed significant pathways enriched within plasma metabolites for several disease states. Our work provides a detailed analysis of the altered metabolome at various stages of liver disease while providing some context to altered pathways and relationships between metabolites.
Collapse
Affiliation(s)
- Noah J Daniels
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Courtney E Hershberger
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Matthew Kerosky
- Department of HPB Surgery and Liver Transplantation, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Chase J Wehrle
- Department of HPB Surgery and Liver Transplantation, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Roma Raj
- Department of HPB Surgery and Liver Transplantation, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Nihal Aykun
- Department of HPB Surgery and Liver Transplantation, Cleveland Clinic, Cleveland, OH 44106, USA
| | | | - Federico N Aucejo
- Department of HPB Surgery and Liver Transplantation, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Daniel M Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH 44106, USA
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
79
|
Singh S, Kriti M, Catanzaro R, Marotta F, Malvi M, Jain A, Verma V, Nagpal R, Tiwari R, Kumar M. Deciphering the Gut–Liver Axis: A Comprehensive Scientific Review of Non-Alcoholic Fatty Liver Disease. LIVERS 2024; 4:435-454. [DOI: 10.3390/livers4030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant global health issue. The condition is closely linked to metabolic dysfunctions such as obesity and type 2 diabetes. The gut–liver axis, a bidirectional communication pathway between the liver and the gut, plays a crucial role in the pathogenesis of NAFLD. This review delves into the mechanisms underlying the gut–liver axis, exploring the influence of gut microbiota, intestinal permeability, and inflammatory pathways. This review also explores the potential therapeutic strategies centered on modulating gut microbiota such as fecal microbiota transplantation; phage therapy; and the use of specific probiotics, prebiotics, and postbiotics in managing NAFLD. By understanding these interactions, we can better comprehend the development and advancement of NAFLD and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Mona Kriti
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Roberto Catanzaro
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, Gastroenterology and Hepatology Service, University Hospital Policlinico “G. Rodolico”, University of Catania, 95123 Catania, Italy
| | | | - Mustafa Malvi
- Choithram Hospital and Research Centre Indore, Indore 452014, India
| | - Ajay Jain
- Choithram Hospital and Research Centre Indore, Indore 452014, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, College of Health & Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Rajnarayan Tiwari
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| |
Collapse
|
80
|
Huang M, Yang J, Wang Y, Wu J. Comparative efficacy of different exercise modalities on metabolic profiles and liver functions in non-alcoholic fatty liver disease: a network meta-analysis. Front Physiol 2024; 15:1428723. [PMID: 39376897 PMCID: PMC11457013 DOI: 10.3389/fphys.2024.1428723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Objective Research evidence suggests that exercise is a potent therapeutic strategy for non-alcoholic fatty liver disease (NAFLD). Many investigations have delved into the curative potential of diverse exercise regimens on NAFLD. This investigation synthesizes findings from randomized controlled trials via a network meta-analysis to evaluate the efficacy of exercise-based interventions on NAFLD. Methods We conducted a search across five electronic databases (Web of Science, EMBASE, PubMed, SCOPUS, and CNKI)to identify randomized controlled trials (RCTs) comparing the effects of different exercise modalities on metabolic profiles and liver functions in patients with NAFLD. The literature search was comprehensive up to 15, December 2023. The selected studies were subjected to a rigorous quality appraisal and risk of bias analysis in accordance with the Cochrane Handbook's guidelines, version 5.1.0. We employed Stata/MP 17 for the network meta-analysis, presenting effect sizes as standardized mean differences (SMD). Results This study aggregated results from 28 studies, involving a total of 1,606 participants. The network meta-analysis revealed that aerobic exercise was the most effective intervention for improving BMI in patients with NAFLD, demonstrating a significant decrease in BMI (-0.72, 95%CI: -0.98 to -0.46; p < 0.05; Surface Under the Cumulative Ranking (SUCRA) = 79.8%). HIIT was the top intervention for enhancing HDL-C (0.12, 95% CI: 0.04 to 0.20; p < 0.05; SUCRA = 76.1%). Resistance exercise was the most effective for reducing LDL-C (-0.20, 95% CI: -0.33 to -0.06; p < 0.05; SUCRA = 69.7%). Mind-body exercise showed superior effectiveness in improving TC (-0.67, 95% CI: -1.10 to -0.24; p < 0.05; SUCRA = 89.7%), TG = -0.67, 95% CI: -1.10 to -0.24; p < 0.05; SUCRA = 99.6%), AST (-8.07, 95% CI: -12.88 to -3.25; p < 0.05; SUCRA = 76.1%), ALT (-12.56, 95% CI: -17.54 to -7.58; p < 0.05; SUCRA = 99.5%), and GGT (-13.77, 95% CI: -22.00 to -5.54; p < 0.05; SUCRA = 81.8%). Conclusion This network meta-analysis demonstrates that exercise interventions positively affect various metabolic profiles and liver functions in NAFLD patients. Mind-body exercises are particularly effective, surpassing other exercise forms in improving metabolic profiles and liver functions. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier registration number CRD42024526332.
Collapse
Affiliation(s)
- Mingming Huang
- School of Exercise Science and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Jiafa Yang
- School of Arts and Sports, Dong-A University, Busan, Republic of Korea
| | - Yihao Wang
- School of Exercise Science and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Jian Wu
- School of Exercise Science and Health, Capital University of Physical Education and Sports, Beijing, China
| |
Collapse
|
81
|
Gomonova VP, Raikhelson KL, Pazenko EV, Prashnova MK, Lapin SV, Nazarov VD, Sidorenko DV. Compensated advanced chronic liver disease in patients with metabolic dysfunction-associated steatotic liver disease: association with cardiometabolic factors. SECHENOV MEDICAL JOURNAL 2024; 15:15-25. [DOI: 10.47093/2218-7332.2024.1075.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Aim. Тo study cardiometabolic factors and the PNPLA3 I148M (rs738409 C>G) gene polymorphism in association with the compensated advanced chronic liver disease (cACLD) in patients with metabolic dysfunction-associated steatotic liver disease (MASLD).Materials and methods. А retrospective cross-sectional study was conducted. The total of 108 patients with MASLD (33 men and 75 women aged 28 to 89 years) involved were divided into two groups based on results of transient elastography: group 1 – with the presence of cACLD (liver stiffness ≥ 8.0 kPa) – 18 patients and group 2 – without cACLD (<8.0 kPa) – 90 patients. Cardiometabolic risk factors and the PNPLA3 I148M (rs738409 C>G) gene polymorphism were studied in both groups. Odds ratios (OR) and 95% confidence intervals (CI) were calculated, and a logistic regression model was constructed for the detection of cACLD.Results. Compared to group 2, patients with cACLD had statistically significant higher prevalence of: arterial hypertension (p < 0.05), type 2 diabetes mellitus (p < 0.01), obesity (p < 0.05), dyslipidemia (p < 0.05), and PNPLA3 gene polymorphism (p < 0.05). The OR for cACLD in individuals with arterial hypertension was 5.58 (95% CI: 1.21–25.71; p < 0.05), with type 2 diabetes mellitus – 4.58 (95% CI: 1.59–13.21; p < 0.01), with obesity – 3.83 (95% CI: 1.17–12.52; p < 0.05), with dyslipidemia – 6.12 (95% CI: 1.33–28.20; p < 0.05), in the presence of a polymorphic variant of the PNPLA3 gene in a hetero or homozygous state – 3.9 (95% CI: 1.28–11.89; p < 0.05). The binary logistic regression model for detecting cACLD included type 2 diabetes mellitus, dyslipidemia, and waist circumference. The area under the ROC curve was 0.81 (95% CI: 0.70–0.92), sensitivity was 72.2%, specificity was 74.4%, and accuracy was 84.3%.Conclusion. Type 2 diabetes mellitus, dyslipidemia, and waist circumference are the determining factors for the development of cACLD in patients with MASLD. The PNPLA3 I148M gene polymorphism does not play a leading role in the development of progressive MASLD in the study cohort.
Collapse
Affiliation(s)
| | | | | | | | - S. V. Lapin
- Pavlov First Saint Petersburg State Medical University
| | - V. D. Nazarov
- Pavlov First Saint Petersburg State Medical University
| | | |
Collapse
|
82
|
Sun Z, Wei Y, Xu Y, Jiao J, Duan X. The use of traditional Chinese medicine in the treatment of non-alcoholic fatty liver disease: A review. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2024; 12:100475. [DOI: 10.1016/j.prmcm.2024.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
83
|
Mor A, Friedman S, Hashmueli S, Peled A, Pinzani M, Frankel M, Safadi R. Targeting CCL24 in Inflammatory and Fibrotic Diseases: Rationale and Results from Three CM-101 Phase 1 Studies. Drug Saf 2024; 47:869-881. [PMID: 38822943 PMCID: PMC11324678 DOI: 10.1007/s40264-024-01436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Overexpression of C-C motif chemokine ligand 24 (CCL24) is associated with inflammatory and fibrotic diseases, including primary sclerosing cholangitis (PSC), systemic sclerosis, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). CM-101 is a humanized monoclonal antibody that neutralizes CCL24 to attenuate inflammation and fibrosis in preclinical models. Here we report the results from two Phase 1a studies investigating the safety and tolerability of intravenous (IV) and subcutaneous (SC) CM-101 in healthy participants, and in one Phase 1b study of IV and SC CM-101 in patients with MASLD without evidence of MASH. METHODS In each dose group (0.75 mg/kg, 2.5 mg/kg, 5.0 mg/kg, and 10.0 mg/kg) of the single-center, double-blind, placebo-controlled Phase 1a IV study, healthy volunteers were randomized 3:1 to receive a single IV infusion of CM-101 or placebo. In another Phase 1a, single-center, double-blind placebo-controlled study, healthy volunteers were randomized 3:1 to receive a single SC injection of CM-101 5.0 mg/kg or placebo. In the multicenter, double-blind, placebo-controlled Phase 1b MASLD study, patients with MASLD without evidence of MASH were randomized 3:1 to receive the following: cohort 1, IV CM-101 2.5 mg/kg or placebo, and cohort 2, SC CM-101 5.0 mg/kg or placebo every three weeks for 12 weeks. The primary endpoints (for all these studies) were safety, tolerability, and serum pharmacokinetic parameters of CM-101. RESULTS In each study, adverse events were rare and mild to moderate. The CM-101 pharmacokinetics profile was typical of a monoclonal antibody, with a terminal half-life of approximately 19 days when given IV and approximately 17 days when given as SC injection. In patients with MASLD without evidence of MASH, CM-101 was associated with decreased serum levels of inflammatory, fibrotic, and collagen turnover biomarkers. CONCLUSIONS In healthy volunteers and patients with MASLD without evidence of MASH, IV and SC CM-101 was well tolerated at doses ranging from 0.75 mg/kg to10.0 mg/kg and engaged its target (i.e., CCL24), indicating therapeutic potential in treating inflammatory and fibrotic diseases. CLINICAL TRIAL RETROSPECTIVELY REGISTRATION NCT06025851, NCT06037577, and NCT06044467. Date of registration: September 2023.
Collapse
MESH Headings
- Humans
- Double-Blind Method
- Male
- Female
- Adult
- Middle Aged
- Chemokine CCL24
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/pharmacology
- Injections, Subcutaneous
- Dose-Response Relationship, Drug
- Inflammation/drug therapy
- Young Adult
- Fibrosis/drug therapy
- Aged
- Fatty Liver/drug therapy
Collapse
Affiliation(s)
- Adi Mor
- Chemomab Therapeutics, Kiryat Atidim, Building 7, 6158002, Tel Aviv, Israel.
| | - Scott Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sharon Hashmueli
- Chemomab Therapeutics, Kiryat Atidim, Building 7, 6158002, Tel Aviv, Israel
| | - Amnon Peled
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, University College of London, Royal Free Hospital, London, UK
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London, UK
| | - Matthew Frankel
- Chemomab Therapeutics, Kiryat Atidim, Building 7, 6158002, Tel Aviv, Israel
| | - Rifaat Safadi
- Department of Medicine, Liver Institute, Hebrew University, Hadassah Medical Organization, Jerusalem, Israel
| |
Collapse
|
84
|
Ni J, Huang Y, Xiang Q, Zheng Q, Xu X, Qin Z, Sheng G, Li L. Establishment and Evaluation of a Noninvasive Metabolism-Related Fatty Liver Screening and Dynamic Monitoring Model: Cross-Sectional Study. Interact J Med Res 2024; 13:e56035. [PMID: 39172506 PMCID: PMC11377904 DOI: 10.2196/56035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/03/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Metabolically associated fatty liver disease (MAFLD) insidiously affects people's health, and many models have been proposed for the evaluation of liver fibrosis. However, there is still a lack of noninvasive and sensitive models to screen MAFLD in high-risk populations. OBJECTIVE The purpose of this study was to explore a new method for early screening of the public and establish a home-based tool for regular self-assessment and monitoring of MAFLD. METHODS In this cross-sectional study, there were 1758 eligible participants in the training set and 200 eligible participants in the testing set. Routine blood, blood biochemistry, and FibroScan tests were performed, and body composition was analyzed using a body composition instrument. Additionally, we recorded multiple factors including disease-related risk factors, the Forns index score, the hepatic steatosis index (HSI), the triglyceride glucose index, total body water (TBW), body fat mass (BFM), visceral fat area, waist-height ratio (WHtR), and basal metabolic rate. Binary logistic regression analysis was performed to explore the potential anthropometric indicators that have a predictive ability to screen for MAFLD. A new model, named the MAFLD Screening Index (MFSI), was established using binary logistic regression analysis, and BFM, WHtR, and TBW were included. A simple rating table, named the MAFLD Rating Table (MRT), was also established using these indicators. RESULTS The performance of the HSI (area under the curve [AUC]=0.873, specificity=76.8%, sensitivity=81.4%), WHtR (AUC=0.866, specificity=79.8%, sensitivity=80.8%), and BFM (AUC=0.842, specificity=76.9%, sensitivity=76.2%) in discriminating between the MAFLD group and non-fatty liver group was evaluated (P<.001). The AUC of the combined model including WHtR, HSI, and BFM values was 0.900 (specificity=81.8%, sensitivity=85.6%; P<.001). The MFSI was established based on better performance at screening MAFLD patients in the training set (AUC=0.896, specificity=83.8%, sensitivity=82.1%) and was confirmed in the testing set (AUC=0.917, specificity=89.8%, sensitivity=84.4%; P<.001). CONCLUSIONS The novel MFSI model was built using WHtR, BFM, and TBW to screen for early MAFLD. These body parameters can be easily obtained using a body fat scale at home, and the mobile device software can record specific values and perform calculations. MFSI had better performance than other models for early MAFLD screening. The new model showed strong power and stability and shows promise in the area of MAFLD detection and self-assessment. The MRT was a practical tool to assess disease alterations in real time.
Collapse
Affiliation(s)
- Jiali Ni
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Huang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Qiangqiang Xiang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Zheng
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Xu
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Zhiwen Qin
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Guoping Sheng
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
85
|
Shen Q, Yang M, Wang S, Chen X, Chen S, Zhang R, Xiong Z, Leng Y. The pivotal role of dysregulated autophagy in the progression of non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 2024; 15:1374644. [PMID: 39175576 PMCID: PMC11338765 DOI: 10.3389/fendo.2024.1374644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicopathologic syndrome characterized by excessive fat deposition in hepatocytes and a major cause of end-stage liver disease. Autophagy is a metabolic pathway responsible for degrading cytoplasmic products and damaged organelles, playing a pivotal role in maintaining the homeostasis and functionality of hepatocytes. Recent studies have shown that pharmacological intervention to activate or restore autophagy provides benefits for liver function recovery by promoting the clearance of lipid droplets (LDs) in hepatocytes, decreasing the production of pro-inflammatory factors, and inhibiting activated hepatic stellate cells (HSCs), thus improving liver fibrosis and slowing down the progression of NAFLD. This article summarizes the physiological process of autophagy, elucidates the close relationship between NAFLD and autophagy, and discusses the effects of drugs on autophagy and signaling pathways from the perspectives of hepatocytes, kupffer cells (KCs), and HSCs to provide assistance in the clinical management of NAFLD.
Collapse
Affiliation(s)
- Qiaohui Shen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ming Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Song Wang
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xingyu Chen
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Sulan Chen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhuang Xiong
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yan Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
86
|
Qin D, Pan P, Lyu B, Chen W, Gao Y. Lupeol improves bile acid metabolism and metabolic dysfunction-associated steatotic liver disease in mice via FXR signaling pathway and gut-liver axis. Biomed Pharmacother 2024; 177:116942. [PMID: 38889641 DOI: 10.1016/j.biopha.2024.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has a multifactorial and complex pathogenesis. Notably, the disorder of Bile acid (BA) metabolism and lipid metabolism-induced lipotoxicity are the main risk factors of MASLD. Lupeol, traditional regional medicine from Xinjiang, has a long history of use for its anti-inflammatory, anti-tumor, and immune-modulating properties. Recent research suggests its potential as a therapeutic option for MASLD due to its proposed binding capacity to the nuclear BA receptor, Farnesoid X receptor (FXR), hence could represent a therapeutic option for MASLD. In this study, a natural triterpenoid drug lupeol improved BA metabolism and MASLD in mice through the FXR signaling pathway and the gut-liver axis. Furthermore, lupeol effectively restored gut healthiness and improved intestinal immunity, barrier integrity, and inflammation, as indicated by the reconstructed gut flora. Compared with fenofibrate (Feno), lupeol treatment significantly reduced weight gain, fat deposition, and liver injury, decreased serum total cholesterol (TC) and triglyceride (TG) levels, and alleviated hepatic steatosis and liver inflammation. BA analysis showed that lupeol treatment accelerated BA efflux and decreased uptake of BA by increasing hepatic FXR and bile salt export pump (BSEP) expression. Gut microbiota alterations could be related to enhanced fecal BA excretion in lupeol-treated mice. Therefore, consumption of lupeol may prevent HFD-induced MASLD and BA accumulation, possibly via the FXR signaling pathway and regulating the gut microbiota.
Collapse
Affiliation(s)
- Dongmei Qin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China.
| | - Peiyan Pan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China.
| | - Bo Lyu
- The First Affiliated Hospital of School of Medicine, Shihezi University, Shihezi 832000, China.
| | - Weijun Chen
- Xinjiang Second Medical College, Karamay 834000, China.
| | - Yuefeng Gao
- College of Applied Engineering, Henan University of Science and Technology, Sanmenxia 472000, China.
| |
Collapse
|
87
|
Jiang Y, Yusoff NM, Du J, Moses EJ, Lin JT. Current perspectives on mesenchymal stem cells as a potential therapeutic strategy for non-alcoholic fatty liver disease. World J Stem Cells 2024; 16:760-772. [PMID: 39086561 PMCID: PMC11287429 DOI: 10.4252/wjsc.v16.i7.760] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant health challenge, characterized by its widespread prevalence, intricate natural progression and multifaceted pathogenesis. Although NAFLD initially presents as benign fat accumulation, it may progress to steatosis, non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. Mesenchymal stem cells (MSCs) are recognized for their intrinsic self-renewal, superior biocompatibility, and minimal immunogenicity, positioning them as a therapeutic innovation for liver diseases. Therefore, this review aims to elucidate the potential roles of MSCs in alleviating the progression of NAFLD by alteration of underlying molecular pathways, including glycolipid metabolism, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. The insights are expected to provide further understanding of the potential of MSCs in NAFLD therapeutics, and support the development of MSC-based therapy in the treatment of NAFLD.
Collapse
Affiliation(s)
- Yan Jiang
- School of Nursing, Xinxiang Medical University, Xinxiang 453000, Henan Province, China
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Jiang Du
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Emmanuel Jairaj Moses
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Jun-Tang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453000, Henan Province, China.
| |
Collapse
|
88
|
Cai Y, Chen J, Deng X, Wang B, Huang J, Lian N, Lian N. Triglyceride-glucose index and combined indicators: effective indicators for screening NAFLD in snoring patients. BMC Pulm Med 2024; 24:359. [PMID: 39049008 PMCID: PMC11270774 DOI: 10.1186/s12890-024-03166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
AIMS Nonalcoholic fatty liver disease (NAFLD) is a common complication in snoring patients, especially in patients with obstructive sleep apnea syndrome (OSA). Triglyceride-glucose (TyG) index was a simple indicator of metabolic status and a surrogate marker of insulin resistance. This study aimed to explore the relationship between NAFLD and TyG index in snoring patients. METHODS A retrospective study was conducted. The successive snoring patients enrolled in the Sleep Center of the First Affiliated Hospital of Fujian Medical University and had abdominal ultrasonography were included. The clinical characteristics of patients in different quartile TyG groups were compared. The relationship of the TyG index and NAFLD were valued via logistic regression models and restricted cubic spline analysis. The value of TyG index in predicting NAFLD was determined by receiver operating characteristic curve (ROC curve). RESULTS A total of 463 NAFLD cases were found among the 654 snoring patients. TyG index was a risk factor of NAFLD in snoring patients (OR = 2.38, 95% CI = 1.71-3.36). The risk of NAFLD was much higher in patients with the highest quartile of TyG index (OR = 5.12, 95% CI = 2.85-9.22), compared with the lowest quartile group. Restricted cubic spline (RCS) analysis showed a significant dose-response relationship between TyG index and risk of NAFLD (p for non-linearity < 0.001). A combination of TyG, neck circumference and ESS score presented the acceptable AUC for the detection of NAFLD in snoring patients (0.746, 95% CI 0.701-0.790, p < 0.001). CONCLUSION The TyG index was a risk factor of NAFLD in snoring patients. A combination of TyG, neck circumferences and ESS score could act as a convenient and effective indicator for screening NAFLD in snoring patients.
Collapse
Affiliation(s)
- Yuqing Cai
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jia Chen
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiaoyu Deng
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Biying Wang
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jiefeng Huang
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ningfang Lian
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ningfang Lian
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
89
|
Sun Y, Zhou W, Zhu M. Serum Metabolomics Uncovers the Mechanisms of Inulin in Preventing Non-Alcoholic Fatty Liver Disease. Pharmaceuticals (Basel) 2024; 17:895. [PMID: 39065745 PMCID: PMC11279973 DOI: 10.3390/ph17070895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Inulin may be a promising therapeutic molecule for treating non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms of its therapeutic activity remain unclear. To address this issue, a high-fat-diet-induced NAFLD mouse model was developed and treated with inulin. The NAFLD phenotype was evaluated via histopathological analysis and biochemical parameters, including serum levels of alanine aminotransferase, aspartate aminotransferase, liver triglycerides, etc. A serum metabolomics study was conducted using ultra-performance liquid chromatography coupled with tandem mass spectrometry. The results revealed that inulin mitigated NAFLD symptoms such as histopathological changes and liver cholesterol levels. Through the serum metabolomics study, 347 differential metabolites were identified between the model and control groups, and 139 differential metabolites were identified between the inulin and model groups. Additionally, 48 differential metabolites (such as phosphatidylserine, dihomo-γ-linolenic acid, L-carnitine, and 13-HODE) were identified as candidate targets of inulin and subjected to pathway enrichment analysis. The results revealed that these 48 differential metabolites were enriched in several metabolic pathways such as fatty acid biosynthesis and cardiolipin biosynthesis. Taken together, our results suggest that inulin might attenuate NAFLD partially by modulating 48 differential metabolites and their correlated metabolic pathways, constituting information that might help us find novel therapies for NAFLD.
Collapse
Affiliation(s)
- Yunhong Sun
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Mingzhe Zhu
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| |
Collapse
|
90
|
Li SJ, Liu AB, Yu YY, Ma JH. The role and mechanism of pyroptosis and potential therapeutic targets in non-alcoholic fatty liver disease (NAFLD). Front Cell Dev Biol 2024; 12:1407738. [PMID: 39022762 PMCID: PMC11251954 DOI: 10.3389/fcell.2024.1407738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinical pathological syndrome characterized by the excessive accumulation of fat within liver cells, which can progress to end-stage liver disease in severe cases, posing a threat to life. Pyroptosis is a distinct, pro-inflammatory form of cell death, differing from traditional apoptosis. In recent years, there has been growing research interest in the association between pyroptosis and NAFLD, encompassing the mechanisms and functions of pyroptosis in the progression of NAFLD, as well as potential therapeutic targets. Controlled pyroptosis can activate immune cells, eliciting host immune responses to shield the body from harm. However, undue activation of pyroptosis may worsen inflammatory responses, induce cellular or tissue damage, disrupt immune responses, and potentially impact liver function. This review elucidates the involvement of pyroptosis and key molecular players, including NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome, gasdermin D (GSDMD), and the caspase family, in the pathogenesis and progression of NAFLD. It emphasizes the promising prospects of targeting pyroptosis as a therapeutic approach for NAFLD and offers valuable insights into future directions in the field of NAFLD treatment.
Collapse
Affiliation(s)
- Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Hai Ma
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
91
|
Hossam Abdelmonem B, Abdelaal NM, Anwer EKE, Rashwan AA, Hussein MA, Ahmed YF, Khashana R, Hanna MM, Abdelnaser A. Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review. Biomedicines 2024; 12:1467. [PMID: 39062040 PMCID: PMC11275228 DOI: 10.3390/biomedicines12071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP450) is a group of enzymes that play an essential role in Phase I metabolism, with 57 functional genes classified into 18 families in the human genome, of which the CYP1, CYP2, and CYP3 families are prominent. Beyond drug metabolism, CYP enzymes metabolize endogenous compounds such as lipids, proteins, and hormones to maintain physiological homeostasis. Thus, dysregulation of CYP450 enzymes can lead to different endocrine disorders. Moreover, CYP450 enzymes significantly contribute to fatty acid metabolism, cholesterol synthesis, and bile acid biosynthesis, impacting cellular physiology and disease pathogenesis. Their diverse functions emphasize their therapeutic potential in managing hypercholesterolemia and neurodegenerative diseases. Additionally, CYP450 enzymes are implicated in the onset and development of illnesses such as cancer, influencing chemotherapy outcomes. Assessment of CYP450 enzyme expression and activity aids in evaluating liver health state and differentiating between liver diseases, guiding therapeutic decisions, and optimizing drug efficacy. Understanding the roles of CYP450 enzymes and the clinical effect of their genetic polymorphisms is crucial for developing personalized therapeutic strategies and enhancing drug responses in diverse patient populations.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA), Giza 12451, Egypt
| | - Noha M. Abdelaal
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Alaa A. Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Yasmin F. Ahmed
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Rana Khashana
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| |
Collapse
|
92
|
Huang B, Yu Z, Cui D, Du F. MAPKAP1 orchestrates macrophage polarization and lipid metabolism in fatty liver-enhanced colorectal cancer. Transl Oncol 2024; 45:101941. [PMID: 38692197 PMCID: PMC11070763 DOI: 10.1016/j.tranon.2024.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/02/2024] [Accepted: 03/16/2024] [Indexed: 05/03/2024] Open
Abstract
Various factors, including fatty liver and macrophage alterations, influence colorectal cancer (CRC). This study explores the mechanistic role of fatty liver in CRC progression, focusing on macrophage polarization and lipid metabolism. A murine fatty liver model was created with a high-fat diet (HFD), and CRC was induced using AOM and DSS. Single-cell transcriptome sequencing (scRNA-seq) identified MAPKAP1 as a critical gene promoting CRC via M2 macrophage polarization and lipid metabolism reprogramming. Prognosis analysis on the TCGA-CRC dataset confirmed MAPKAP1's significance. In vitro and in vivo experiments demonstrated that EVs from fatty liver cells enhanced MAPKAP1 expression, accelerating CRC development and metastasis. HFD exacerbated CRC, but fatty acid inhibitors delayed progression. Fatty liver upregulates MAPKAP1, driving M2 macrophage polarization and lipid metabolism changes, worsening CRC. These findings suggest potential therapeutic strategies for CRC, particularly targeting lipid metabolism and macrophage-mediated tumor promotion.
Collapse
Affiliation(s)
- Bo Huang
- Department of Hypertension, The Affiliated Hospital of Guizhou Medical University, No.28, Guimedical Street, Yunyan District, Guiyang City, Guizhou Province, PR China.
| | - Zhenqiu Yu
- Department of Hypertension, The Affiliated Hospital of Guizhou Medical University, No.28, Guimedical Street, Yunyan District, Guiyang City, Guizhou Province, PR China.
| | - Dejun Cui
- Department of Gastroenterology, Guizhou Provincial People's Hospital, PR China.
| | - Fawang Du
- Department of Hypertension, The Affiliated Hospital of Guizhou Medical University, No.28, Guimedical Street, Yunyan District, Guiyang City, Guizhou Province, PR China
| |
Collapse
|
93
|
Zhang S, Gao YF, Zhang K, Deng GR, He GX, Gao PP, Yu YK, Yuan Y, Xing SJ, Zhao N, Zhang H, Di-Wu YC, Liu YH, Sui BD, Li Z, Ma J, Zheng CX. Integrating network pharmacology and experimental validation reveals therapeutic effects of D-mannose on NAFLD through mTOR suppression. Biochem Biophys Res Commun 2024; 715:149999. [PMID: 38678787 DOI: 10.1016/j.bbrc.2024.149999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), a chronic liver condition and metabolic disorder, has emerged as a significant health issue worldwide. D-mannose, a natural monosaccharide widely existing in plants and animals, has demonstrated metabolic regulatory properties. However, the effect and mechanism by which D-mannose may counteract NAFLD have not been studied. In this study, network pharmacology followed by molecular docking analysis was utilized to identify potential targets of mannose against NAFLD, and the leptin receptor-deficient, genetically obese db/db mice was employed as an animal model of NAFLD to validate the regulation of D-mannose on core targets. As a result, 67 targets of mannose are predicted associated with NAFLD, which are surprisingly centered on the mechanistic target of rapamycin (mTOR). Further analyses suggest that mTOR signaling is functionally enriched in potential targets of mannose treating NAFLD, and that mannose putatively binds to mTOR as a core mechanism. Expectedly, repeated oral gavage of supraphysiological D-mannose ameliorates liver steatosis of db/db mice, which is based on suppression of hepatic mTOR signaling. Moreover, daily D-mannose administration reduced hepatic expression of lipogenic regulatory genes in counteracting NAFLD. Together, these findings reveal D-mannose as an effective and potential NAFLD therapeutic through mTOR suppression, which holds translational promise.
Collapse
Affiliation(s)
- Sha Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Ying-Feng Gao
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Kai Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Guo-Rong Deng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Guang-Xiang He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Ping-Ping Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yi-Kang Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuan Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shu-Juan Xing
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Na Zhao
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Hong Zhang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Yong-Chang Di-Wu
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Yi-Han Liu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, Beijing, 100039, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Zhe Li
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China.
| | - Jing Ma
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
94
|
Mohammadian K, Fakhar F, Keramat S, Stanek A. The Role of Antioxidants in the Treatment of Metabolic Dysfunction-Associated Fatty Liver Disease: A Systematic Review. Antioxidants (Basel) 2024; 13:797. [PMID: 39061866 PMCID: PMC11273623 DOI: 10.3390/antiox13070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global public health problem that causes liver-related morbidity and mortality. It is also an independent risk factor for non-communicable diseases. In 2020, a proposal was made to refer to it as "metabolic dysfunction-associated fatty liver disease (MAFLD)", with concise diagnostic criteria. Given its widespread occurrence, its treatment is crucial. Increased levels of oxidative stress cause this disease. This review aims to evaluate various studies on antioxidant therapies for patients with MAFLD. A comprehensive search for relevant research was conducted on the PubMed, SCOPUS, and ScienceDirect databases, resulting in the identification of 87 studies that met the inclusion criteria. In total, 31.1% of human studies used natural antioxidants, 53.3% used synthetic antioxidants, and 15.5% used both natural and synthetic antioxidants. In human-based studies, natural antioxidants showed 100% efficacy in the treatment of MAFLD, while synthetic antioxidants showed effective results in only 91% of the investigations. In animal-based research, natural antioxidants were fully effective in the treatment of MAFLD, while synthetic antioxidants demonstrated effectiveness in only 87.8% of the evaluations. In conclusion, antioxidants in their natural form are more helpful for patients with MAFLD, and preserving the correct balance of pro-oxidants and antioxidants is a useful way to monitor antioxidant treatment.
Collapse
Affiliation(s)
- Kiana Mohammadian
- Division of Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran; (K.M.); (F.F.)
| | - Fatemeh Fakhar
- Division of Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran; (K.M.); (F.F.)
| | - Shayan Keramat
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy;
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Agata Stanek
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy;
- Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland
| |
Collapse
|
95
|
Curci R, Bonfiglio C, Franco I, Bagnato CB, Verrelli N, Bianco A. Leisure-Time Physical Activity in Subjects with Metabolic-Dysfunction-Associated Steatotic Liver Disease: An All-Cause Mortality Study. J Clin Med 2024; 13:3772. [PMID: 38999337 PMCID: PMC11242783 DOI: 10.3390/jcm13133772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Metabolic-dysfunction-associated steatotic liver disease (MASLD) affects 30% of adults worldwide and is associated with obesity and cardiovascular risk factors. If left untreated, it can progress to severe liver disease. Lifestyle changes such as physical activity and weight loss help to reduce the severity and risk of mortality. This study estimated the impact of MASLD and leisure-time physical activity (LTPA) on mortality and examined how gender mediates this effect in a Southern Italian population. Methods: This work is a population-based prospective cohort study of inhabitants of Castellana Grotte (>30 years old) in Southern Italy, which began in 1985. Participants provided general health information, underwent anthropometric measurements and ultrasonography, and completed a validated questionnaire on their food intake and LTPA. The vital status was tracked through local municipalities Results: In total, 1826 participants (39% with MASLD) were enrolled in this study, drawn from 2970 eligible subjects; the mean age was 51.91 (±14.76) years and 56.2% were men. Subjects with MASLD who practiced low LTPA had a significantly higher risk of death than those who did not have MASLD and practiced high LTPA. In addition, subjects with MASLD who practiced low LTPA were about 19% less likely to survive to the age of 82 years. As regards gender, both men and women with MASLD and low LTPA showed a significant risk of death, but this was higher in women. Conclusions: The presence of MASLD, especially in women, increases the risk of death from all causes. LTPA plays a key role in the disease and reduces mortality in these individuals.
Collapse
Affiliation(s)
- Ritanna Curci
- Laboratory of Movement and Wellness, National Institute of Gastroenterology, IRCCS “S. de Bellis”, Via Turi, 70013 Castellana Grotte, BA, Italy; (R.C.); (I.F.); (C.B.B.); (N.V.)
| | - Caterina Bonfiglio
- Laboratory of Epidemiology and Statistics, National Institute of Gastroenterology, IRCCS “S. de Bellis”, 70013 Castellana Grotte, BA, Italy;
| | - Isabella Franco
- Laboratory of Movement and Wellness, National Institute of Gastroenterology, IRCCS “S. de Bellis”, Via Turi, 70013 Castellana Grotte, BA, Italy; (R.C.); (I.F.); (C.B.B.); (N.V.)
| | - Claudia Beatrice Bagnato
- Laboratory of Movement and Wellness, National Institute of Gastroenterology, IRCCS “S. de Bellis”, Via Turi, 70013 Castellana Grotte, BA, Italy; (R.C.); (I.F.); (C.B.B.); (N.V.)
| | - Nicola Verrelli
- Laboratory of Movement and Wellness, National Institute of Gastroenterology, IRCCS “S. de Bellis”, Via Turi, 70013 Castellana Grotte, BA, Italy; (R.C.); (I.F.); (C.B.B.); (N.V.)
| | - Antonella Bianco
- Laboratory of Movement and Wellness, National Institute of Gastroenterology, IRCCS “S. de Bellis”, Via Turi, 70013 Castellana Grotte, BA, Italy; (R.C.); (I.F.); (C.B.B.); (N.V.)
| |
Collapse
|
96
|
Khaznadar F, Khaznadar O, Petrovic A, Hefer M, Gjoni F, Gjoni S, Steiner J, Smolic M, Bojanic K. MAFLD Pandemic: Updates in Pharmacotherapeutic Approach Development. Curr Issues Mol Biol 2024; 46:6300-6314. [PMID: 39057018 PMCID: PMC11275123 DOI: 10.3390/cimb46070376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
With around one billion of the world's population affected, the era of the metabolic-associated fatty liver disease (MAFLD) pandemic has entered the global stage. MAFLD is a chronic progressive liver disease with accompanying metabolic disorders such as type 2 diabetes mellitus and obesity which can progress asymptomatically to liver cirrhosis and subsequently to hepatocellular carcinoma (HCC), and for which to date there are almost no approved pharmacologic options. Because MAFLD has a very complex etiology and it also affects extrahepatic organs, a multidisciplinary approach is required when it comes to finding an effective and safe active substance for MAFLD treatment. The optimal drug for MAFLD should diminish steatosis, fibrosis and inflammation in the liver, and the winner for MAFLD drug authorisation seems to be the one that significantly improves liver histology. Saroglitazar (Lipaglyn®) was approved for metabolic-dysfunction-associated steatohepatitis (MASH) in India in 2020; however, the drug is still being investigated in other countries. Although the pharmaceutical industry is still lagging behind in developing an approved pharmacologic therapy for MAFLD, research has recently intensified and many molecules which are in the final stages of clinical trials are expected to be approved in the coming few years. Already this year, the first drug (Rezdiffra™) in the United States was approved via accelerated procedure for treatment of MAFLD, i.e., of MASH in adults. This review underscores the most recent information related to the development of drugs for MAFLD treatment, focusing on the molecules that have come furthest towards approval.
Collapse
Affiliation(s)
- Farah Khaznadar
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (M.H.); (M.S.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Omar Khaznadar
- Department of Radiology, “Dr. Juraj Njavro” National Memorial Hospital Vukovar, 32000 Vukovar, Croatia;
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (M.H.); (M.S.)
| | - Marija Hefer
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (M.H.); (M.S.)
| | - Fabian Gjoni
- Opća bolnica Pula, Santoriova ul. 24a, 52100 Pula, Croatia; (F.G.); (S.G.)
| | - Stefan Gjoni
- Opća bolnica Pula, Santoriova ul. 24a, 52100 Pula, Croatia; (F.G.); (S.G.)
| | | | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (M.H.); (M.S.)
| | - Kristina Bojanic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (M.H.); (M.S.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Health Center Osijek-Baranja County, 31000 Osijek, Croatia;
| |
Collapse
|
97
|
Lv XL, Yue YX, Jia BB, Weng YZ, Lu Y, Yang ZX. Bilirubin influences the predictive effect of body mass index on hospital mortality in critically ill patients. Heliyon 2024; 10:e32089. [PMID: 38882368 PMCID: PMC11176823 DOI: 10.1016/j.heliyon.2024.e32089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Body mass index (BMI) can predict mortality in critically ill patients. Moreover, mortality is related to increased bilirubin levels. Thus, herein, we aimed to investigate the effect of bilirubin levels on the usefulness of BMI in predicting mortality in critically ill patients. Methods Data were extracted from the Medical Information Mart for Intensive Care (MIMIC IV) database. Patients were divided into two groups according to their total bilirubin levels within 24 h. Cox proportional hazard regression models were applied to obtain adjusted hazard ratios and 95 % confidence intervals for the correlation between BMI categories and hospital mortality. The dose-response relationship was flexibly modeled using a restricted cubic spline (RCS) with three knots. Results Of the 14376 patients included, 3.4 % were underweight, 29.3 % were of normal body weight, 32.2 % were overweight, and 35.1 % were obese. For patients with total bilirubin levels <2 mg/dL, hospital mortality was significantly lower in patients with obesity than in normal body weight patients (p < 0.05). However, the opposite results were observed for patients with total bilirubin levels ≥2 mg/dL. The Cox proportional hazard regression models suggested that the risk of death was lower in patients with overweightness and obesity than in normal body weight patients when the total bilirubin levels were <2 mg/dL, but not in the other case (total bilirubin levels ≥2 mg/dL). RCS analyses showed that, for patients with total bilirubin levels <2 mg/dL, the risk of death gradually decreased with increasing BMI. Conversely, for patients with total bilirubin levels ≥2 mg/dL, this risk did not decrease with increasing BMI until reaching obesity, after which it increased rapidly. Conclusion BMI predicted the risk of death differently in critically ill patients with different bilirubin levels.
Collapse
Affiliation(s)
- Xiao-Ling Lv
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Ying-Xing Yue
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Bing-Bing Jia
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Ying-Zheng Weng
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Yan Lu
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Zhou-Xin Yang
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| |
Collapse
|
98
|
Adetunji AG, Obeng-Gyasi E. Investigating the Interplay of Toxic Metals and Essential Elements in Liver Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:762. [PMID: 38929008 PMCID: PMC11203836 DOI: 10.3390/ijerph21060762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Liver diseases, including non-alcoholic fatty liver disease (NAFLD), are a growing global health issue. Environmental exposure to toxic metals can harm the liver, increasing the risk of NAFLD. Essential elements are vital for liver health, but imbalances or deficiencies can contribute to the development of NAFLD. Therefore, understanding the interplay between toxic metals and essential elements in liver disease is important. This study aims to assess the individual and combined effects of toxic metals (lead(Pb), cadmium (Cd), mercury (Hg)), and essential elements (manganese and selenium) on the risk of liver disease. Methods: We assessed the individual and combined effects of Pb, Cd, Hg, manganese (Mn), and selenium (Se) on liver disease risk using data from the National Health and Nutrition Examination Survey between 2017 and 2018. We performed descriptive statistics and linear regression analysis and then utilized Bayesian Kernel Machine Regression (BKMR) techniques such as univariate, bivariate, and overall effect analysis. BKMR enabled the assessment of non-linear exposure-response functions and interactions between metals and essential elements. Posterior Inclusion Probabilities (PIPs) were calculated to determine the importance of each metal and essential element in contributing to liver disease. Regarding our study results, the regression analysis of liver injury biomarkers ALT, AST, ALP, GGT, total bilirubin, and the FLI-an indicator of NAFLD-with toxic metals and essential elements, adjusting for covariates such as age, sex, BMI, alcohol consumption, ethnicity, income, and smoking status, demonstrated the differential effects of these contaminants on the markers of interest. Our BKMR analysis provided further insights. For instance, the PIP results underscored Pb's consistent importance in contributing to liver disease (PIP = 1.000), followed by Hg (PIP = 0.9512), Cd (PIP = 0.5796), Se (PIP = 0.5572), and Mn (PIP = 0.4248). Our univariate analysis showed a positive trend with Pb, while other exposures were relatively flat. Our analysis of the single-variable effects of toxic metals and essential elements on NAFLD also revealed that Pb significantly affected the risk of NAFLD. Our bivariate analysis found a positive (toxic) trend when Pb was combined with other metals and essential elements. For the overall exposure effect of exposure to all the contaminants together, the estimated risk of NAFLD showed a steady increase from the 60th to the 75th percentile. In conclusion, our study indicates that Pb exposure, when combined with other toxic metals and essential elements, plays a significant role in bringing about adverse liver disease outcomes.
Collapse
Affiliation(s)
- Aderonke Gbemi Adetunji
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
99
|
Wang J, Jiang Y, Jin L, Qian C, Zuo W, Lin J, Xie L, Jin B, Zhao Y, Huang L, Wang Y. Alantolactone attenuates high-fat diet-induced inflammation and oxidative stress in non-alcoholic fatty liver disease. Nutr Diabetes 2024; 14:41. [PMID: 38858382 PMCID: PMC11164993 DOI: 10.1038/s41387-024-00300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a chronic disease with an increasing incidence, which can further develop into liver fibrosis and hepatocellular carcinoma at the end stage. Alantolactone (Ala), a sesquiterpene lactone isolated from Asteraceae, has shown anti-inflammatory effects in different models. However, the therapeutic effect of Ala on NAFLD is not clear. METHODS C57BL/6 mice were fed a high-fat diet (HFD) to induce NAFLD. After 16 weeks, Ala was administered by gavage to observe its effect on NAFLD. RNA sequencing of liver tissues was performed to investigate the mechanism. In vitro, mouse cell line AML-12 was pretreated with Ala to resist palmitic acid (PA)-induced inflammation, oxidative stress and fibrosis. RESULTS Ala significantly inhibited inflammation, fibrosis and oxidative stress in HFD-induced mice, as well as PA-induced AML-12 cells. Mechanistic studies showed that the effect of Ala was related to the induction of Nrf2 and the inhibition of NF-κB. Taken together, these findings suggested that Ala exerted a liver protective effect on NAFLD by blocking inflammation and oxidative stress. CONCLUSIONS The study found that Ala exerted a liver protective effect on NAFLD by blocking inflammation and oxidative stress, suggesting that Ala is an effective therapy for NAFLD.
Collapse
Affiliation(s)
- Jiong Wang
- Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yucheng Jiang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Leiming Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenchen Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wei Zuo
- Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, Zhejiang, China
| | - Jianjun Lin
- Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, Zhejiang, China
| | - Longteng Xie
- Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, Zhejiang, China
| | - Bo Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yanni Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiang Huang
- Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, Zhejiang, China.
| | - Yi Wang
- Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, Zhejiang, China.
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
100
|
Min T, Qiu S, Bai Y, Cao H, Guo J, Su Z. Cilostazol Attenuates Hepatic Steatosis and Intestinal Disorders in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2024; 25:6280. [PMID: 38892467 PMCID: PMC11172724 DOI: 10.3390/ijms25116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases in the world, which begins with liver lipid accumulation and is associated with metabolic syndrome. Also, the name chosen to replace NAFLD was metabolic dysfunction-associated steatotic liver disease (MASLD). We performed focused drug screening and found that Cilostazol effectively ameliorated hepatic steatosis and might offer potential for NAFLD treatment. Our aim was to investigate the therapeutic effects of Cilostazol on the glycolipid metabolism and intestinal flora in NAFLD mice and explore the specific mechanism. In this study, 7-week-old male C57BL/6J mice were fed a high-fat diet (HFD) for 8 weeks to induce NAFLD, and then treated with intragastric administration for 12 weeks. The results showed that Cilostazol inhibited liver lipid de novo synthesis by regulating the AMPK-ACC1/SCD1 pathway and inhibited liver gluconeogenesis by the AMPK-PGC1α-G6P/PEPCK pathway. Cilostazol improved the intestinal flora diversity and intestinal microbial composition in the NAFLD mice, and specifically regulated Desulfovibrio and Akkermansia. In addition, Cilostazol increased the level of short-chain fatty acids in the NAFLD mice to a level similar to that in the blank Control group. Cilostazol reduces liver lipid accumulation in NAFLD mice by improving glucose and lipid metabolism disorders and intestinal dysfunction, thereby achieving the purpose of treating NAFLD.
Collapse
Affiliation(s)
- Tianqi Min
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (T.M.); (S.Q.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (T.M.); (S.Q.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China;
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (T.M.); (S.Q.)
| |
Collapse
|