51
|
Zhang S, Deshpande A, Verma BK, Wang H, Mi H, Yuan L, Ho WJ, Jaffee EM, Zhu Q, Anders RA, Yarchoan M, Kagohara LT, Fertig EJ, Popel AS. Informing virtual clinical trials of hepatocellular carcinoma with spatial multi-omics analysis of a human neoadjuvant immunotherapy clinical trial. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553000. [PMID: 37645761 PMCID: PMC10462044 DOI: 10.1101/2023.08.11.553000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Human clinical trials are important tools to advance novel systemic therapies improve treatment outcomes for cancer patients. The few durable treatment options have led to a critical need to advance new therapeutics in hepatocellular carcinoma (HCC). Recent human clinical trials have shown that new combination immunotherapeutic regimens provide unprecedented clinical response in a subset of patients. Computational methods that can simulate tumors from mathematical equations describing cellular and molecular interactions are emerging as promising tools to simulate the impact of therapy entirely in silico. To facilitate designing dosing regimen and identifying potential biomarkers, we developed a new computational model to track tumor progression at organ scale while reflecting the spatial heterogeneity in the tumor at tissue scale in HCC. This computational model is called a spatial quantitative systems pharmacology (spQSP) platform and it is also designed to simulate the effects of combination immunotherapy. We then validate the results from the spQSP system by leveraging real-world spatial multi-omics data from a neoadjuvant HCC clinical trial combining anti-PD-1 immunotherapy and a multitargeted tyrosine kinase inhibitor (TKI) cabozantinib. The model output is compared with spatial data from Imaging Mass Cytometry (IMC). Both IMC data and simulation results suggest closer proximity between CD8 T cell and macrophages among non-responders while the reverse trend was observed for responders. The analyses also imply wider dispersion of immune cells and less scattered cancer cells in responders' samples. We also compared the model output with Visium spatial transcriptomics analyses of samples from post-treatment tumor resections in the original clinical trial. Both spatial transcriptomic data and simulation results identify the role of spatial patterns of tumor vasculature and TGFβ in tumor and immune cell interactions. To our knowledge, this is the first spatial tumor model for virtual clinical trials at a molecular scale that is grounded in high-throughput spatial multi-omics data from a human clinical trial.
Collapse
Affiliation(s)
- Shuming Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atul Deshpande
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Babita K. Verma
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haoyang Mi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Long Yuan
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth M. Jaffee
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Qingfeng Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A. Anders
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Yarchoan
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Luciane T. Kagohara
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Elana J. Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Jointly supervised research
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Jointly supervised research
| |
Collapse
|
52
|
Niu M, Yi M, Wu Y, Lyu L, He Q, Yang R, Zeng L, Shi J, Zhang J, Zhou P, Zhang T, Mei Q, Chu Q, Wu K. Synergistic efficacy of simultaneous anti-TGF-β/VEGF bispecific antibody and PD-1 blockade in cancer therapy. J Hematol Oncol 2023; 16:94. [PMID: 37573354 PMCID: PMC10423429 DOI: 10.1186/s13045-023-01487-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/26/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Recently, therapeutic antibodies against programmed cell death 1 (PD-1) and its ligand (PD-L1) have exerted potent anticancer effect in a variety of tumors. However, blocking the PD-1/PD-L1 axis alone is not sufficient to restore normal immune response. Other negative regulators of antitumor immunity, like TGF-β and VEGFA, are also involved in immune escape of tumor cells and induce immunotherapy resistance. METHODS We developed a novel anti-TGF-β/VEGF bispecific antibody Y332D based on the Nano-YBODY™ technology platform. The CCK-8, flow cytometry, SBE4 luciferase reporter assay, western blotting and transwell assays were used to measure the biological activities of the anti-TGF-β moiety. The NFAT luciferase reporter assay, luminescent cell viability assay and tube formation assay were used to measure the biological activities of the anti-VEGF moiety. The in vivo anticancer efficacy of Y332D alone or in combination with PD-1 blockade was evaluated in H22, EMT-6, 4T1, and AKT/Ras-driven murine hepatocellular carcinoma tumor models. Immunofluorescent staining, flow cytometry, RNA-seq and quantitative RT-PCR were adopted to analyze the alterations in the tumor microenvironment. RESULTS Y332D could maintain specific binding affinities for TGF-β and VEGFA. Y332D almost entirely counteracted the in vitro biological functions of TGF-β and VEGFA, including immunosuppression, activated TGF-β signaling, epithelial-mesenchymal transition (EMT), activated VEGF/VEGFR signaling, HUVEC proliferation and tube formation. The in vivo experiment data demonstrated that Y332D was more effective in inhibiting tumor growth and metastasis than anti-TGF-β and anti-VEGF monotherapies. In combination therapies, Y332D plus PD-1 blockade exhibited the most potent and durable anticancer effect. Mechanistically, Y332D plus PD-1 blockade upregulated the density and function of tumor-infiltrating lymphocytes and exerted reinvigorated antitumor immunity. CONCLUSION Y332D could simultaneously block TGF-β and VEGF signalings. In comparison with the monotherapies, Y332D combined with PD-1 blockade exerts superior antitumor effect through improving immune microenvironment.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000 China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Lijuan Lyu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710000 China
| | - Qing He
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075 People’s Republic of China
| | - Rui Yang
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075 People’s Republic of China
| | - Liang Zeng
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075 People’s Republic of China
| | - Jian Shi
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075 People’s Republic of China
| | - Jing Zhang
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075 People’s Republic of China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075 People’s Republic of China
| | - Tingting Zhang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Qi Mei
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
53
|
Lu N, Jiang YF, Xia WX, Huang Y, Xie CM, Xu C, Ye YF, Liu GY, Bei WX, Ke LR, Li WZ, Zhang C, Wang X, Liu Q, Chen X, Chen ZX, Xie C, Liang H, Xiang YQ. Efficacy and safety of sintilimab plus bevacizumab in metastatic nasopharyngeal carcinoma after failure of platinum-based chemotherapy: an open-label phase 2 study. EClinicalMedicine 2023; 62:102136. [PMID: 37593221 PMCID: PMC10430191 DOI: 10.1016/j.eclinm.2023.102136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
Background There are limited treatment options for patients with metastatic nasopharyngeal carcinoma (mNPC) after failure of platinum-based chemotherapy. In this trial, we assessed the efficacy and safety of sintilimab plus bevacizumab in patients with mNPC where platinum-based chemotherapy has been ineffective. Methods This was a single-centre, open-label, single-arm, phase 2 trial in Guangzhou, China for patients with mNPC progressed after at least one line of systemic therapy. Eligible patients were between 18 and 75 years old, were histologically confirmed differentiated or undifferentiated non-keratinized NPC, were ineffective after platinum-based chemotherapy, and they had at least one measurable metastatic lesion assessed with Response Evaluation Criteria in Solid Tumors Version 1.1 (RECIST V.1.1) by investigators and unsuitable for local surgery or radiotherapy. Key exclusion criterion was previous treatment with anti-PD-1/PD-L1 antibodies plus anti-VEGF antibodies and high risk of hemorrhage or nasopharyngeal necrosis. Patients were enrolled and received sintilimab (200 mg) plus bevacizumab (7.5 mg/kg) intravenously every 3 weeks. Intention-to-treat population was included in primary endpoint analyses and safety analyses. The primary endpoint was objective response rate (ORR) assessed by investigators following the guidelines of RECIST V1.1. Key secondary endpoints were progression-free survival (PFS), overall survival (OS), duration of response (DOR), and safety. This trial is registered with ClinicalTrials.gov (NCT04872582). Findings Between July 29, 2021 and August 16, 2022, 33 patients were enrolled. Median age was 46 years (range, 18-64 years), and 63.6% of patients had previously received two or more lines of chemotherapy for metastatic disease. Median follow-up was 7.6 months (range, 4.1-17.5 months). ORR was 54.5% (95% CI, 36.4-71.9%) with 3 complete responses (9.1%) and 15 partial responses (45.5%). Median PFS was 6.8 months (95% CI, 5.2 months to not estimable). Median DOR was 7.2 months (95% CI, 4.4 months to not estimable). Median OS was not reached. The most common potential immune-related adverse event (AE) was Grade 1-2 hypothyroidism (42.4%). Treatment-related grade 3 or 4 AEs occurred in 7 patients (21.2%), including nasal necrosis (3/33), hypertension (1/33), pruritus (1/33), total bilirubin increased (1/33) and anaphylactic shock (1/33). No treatment-related deaths and severe epistaxis occurred. Interpretation This phase 2 trial showed that sintilimab plus bevacizumab demonstrated promising antitumour activity and manageable toxicities in patients with mNPC after failure of platinum-based chemotherapy. Further trials are warranted, and the detailed mechanisms need to be elucidated. Funding The Guangdong Basic and Applied Basic Research Foundation, the National Natural Science Foundation of China, the Natural Science Foundation of Guangdong Province, and the Science and Technology Planning Project of International Cooperation of Guangdong Province.
Collapse
Affiliation(s)
- Nian Lu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yao-Fei Jiang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Wei-Xiong Xia
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Ying Huang
- Department of Radiotherapy, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Chuan-Miao Xie
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Cheng Xu
- Department of Radiotherapy, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yan-Fang Ye
- Clinical Research Design Division, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guo-Ying Liu
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei-Xin Bei
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Liang-Ru Ke
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Wang-Zhong Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Cheng Zhang
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xin Wang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, United States
| | - Qin Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xi Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zi-Xiong Chen
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Changqing Xie
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, United States
| | - Hu Liang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yan-Qun Xiang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|
54
|
Huang D, Ke L, Cui H, Li S. Efficacy and safety of PD-1/PD-L1 inhibitors combined with anti-angiogenic therapy for the unresectable hepatocellular carcinoma and the benefit for hepatitis B virus etiology subgroup: a systematic review and meta-analysis of randomized controlled trials. BMC Cancer 2023; 23:474. [PMID: 37226111 PMCID: PMC10207853 DOI: 10.1186/s12885-023-10960-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death, worldwide. The predominant causative factor for HCC is hepatitis B virus (HBV) infection. We conducted a meta-analysis to estimate the efficacy and safety of PD-1/PD-L1 inhibitors combined with anti-angiogenic therapy for the first-line treatment of the unresectable HCC and to evaluate the benefits of different geographic regions and etiology stratifications. METHODS Randomized clinical trials published up to 12th November 2022 were searched by online databases. Moreover, effects of hazard ratio (HR) for overall survival (OS) and progression-free survival (PFS) were extracted from included studies. Pooled odds ratio (OR) and 95% CI for objective response rate (ORR), disease control rate (DCR), and treatment-related adverse events (TRAEs) were calculated. RESULTS A total of 3057 patients from five phase III randomized clinical trials were collected and reviewed for this meta-analysis. The pooled HR of OS (HR = 0.71; 95% CI: 0.60-0.85) and PFS (HR = 0.64; 95% CI: 0.53-0.77) demonstrated significantly better benefit in PD-1/PD-L1 inhibitors combination group than targeted monotherapy to treat unresectable HCC. In addition, combination therapy showed better ORR and DCR, with ORs of 3.29 (95% CI: 1.92-5.62) and 1.88 (95% CI: 1.35-2.61), respectively. The subgroup analysis indicated that PD-1/PD-L1 inhibitors combination therapy was significantly superior to anti-angiogenic monotherapy for HBV-related HCC in terms of OS (HR = 0.64; 95% CI: 0.55-0.74) and PFS (HR = 0.53; 95% CI:0.47-0.59), while there was no significant difference in patients with HCV (OS, HR = 0.81, p = 0.1) or non-viral (OS, HR = 0.91, p = 0.37; PFS, HR = 0.77, p = 0.05). CONCLUSIONS Meta-analysis revealed for the first-time that PD-1/PD-L1 inhibitors combination therapy for unresectable HCC was associated with better clinical outcomes than anti-angiogenic monotherapy, especially for HBV infection and Asian population.
Collapse
Affiliation(s)
- Danxue Huang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| | - Liyuan Ke
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Hongxia Cui
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Su Li
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
55
|
Xia WL, Zhao XH, Guo Y, Hu HT, Cao GS, Li Z, Fan WJ, Xu SJ, Li HL. Transarterial Chemoembolization Combined With Apatinib Plus PD-1 Inhibitors for Hepatocellular Carcinoma With Portal Vein Tumor Thrombus: A Multicenter Retrospective Study. Clin Transl Gastroenterol 2023; 14:e00581. [PMID: 36920551 PMCID: PMC10208716 DOI: 10.14309/ctg.0000000000000581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
INTRODUCTION The aim of this study was to compare transarterial chemoembolization (TACE) combined with apatinib and PD-1 inhibitors (TACE-AP) with TACE combined with apatinib alone (TACE-A) in the treatment of hepatocellular carcinoma (HCC) with portal vein tumor thrombus (PVTT) and to explore the prognostic factors affecting the survival of patients. METHODS This retrospective study analyzed data of patients with HCC with PVTT who were treated with TACE-AP or TACE-A between December 2018 and June 2021. The primary end points of the study were progression-free survival (PFS) and overall survival (OS), and the secondary end points were objective response rate (ORR) and adverse events (AEs). Propensity score matching (PSM) and stabilized inverse probability weighting (sIPTW) analyses were used to reduce patient selection bias, and Cox regression analysis was used to analyze prognostic factors affecting patient survival. RESULTS Sixty-nine and 40 patients were included in the TACE-A and TACE-AP groups, respectively. After PSM and IPTW analyses, the median PFS and median OS in the TACE-AP group were significantly higher than those in the TACE-A group (PFS: after PSM, 6.9 vs 4.0 months, P < 0.001, after IPTW, 6.5 vs 5.1 months, P < 0.001; OS: after PSM, 14.6 vs 8.5 months P < 0.001, after IPTW, 16.1 vs 10.5 months, P < 0.001). After PSM and IPTW analyses, the tumor ORR in the TACE-AP group was significantly higher than that in the TACE-A group (PSM, 53.6% vs 17.9%, P = 0.005; IPTW, 52.5% vs 28.6%, P = 0.013). All treatment-related AEs were observed to be tolerated. Multivariate Cox regression analysis showed that the main prognostic factors affecting the survival of patients were tumor number, PVTT type, alpha-fetoprotein, and treatment mode. DISCUSSION In the treatment of patients with HCC with PVTT, TACE-AP significantly improved PFS, OS, and ORR, and the AEs were safe and controllable.
Collapse
Affiliation(s)
- Wei-Li Xia
- Department of Minimal-Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiao-Hui Zhao
- Department of Minimal-Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yuan Guo
- Department of Minimal-Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Hong-Tao Hu
- Department of Minimal-Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Guang-Shao Cao
- Department of Intervention, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei-Jun Fan
- Department of Minimally Invasive Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shi-Jun Xu
- Department of Minimal-Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Hai-Liang Li
- Department of Minimal-Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
56
|
Nikoo M, Hassan ZF, Mardasi M, Rostamnezhad E, Roozbahani F, Rahimi S, Mohammadi J. Hepatocellular carcinoma (HCC) immunotherapy by anti-PD-1 monoclonal antibodies: A rapidly evolving strategy. Pathol Res Pract 2023; 247:154473. [PMID: 37207558 DOI: 10.1016/j.prp.2023.154473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers in the world, with a high relapse rate. Delayed symptom onset observed in 70-80% of patients leads to diagnosis in advanced stages commonly associated with chronic liver disease. Programmed cell death protein 1 (PD-1) blockade therapy has recently emerged as a promising therapeutic option in the clinical management of several advanced malignancies, including HCC, due to the activation of exhausted tumor-infiltrating lymphocytes and improved outcomes of T-cell function. However, many people with HCC do not respond to PD-1 blockade therapy, and the diversity of immune-related adverse events (irAEs) restricts their clinical utility. Therefore, numerous effective combinatory strategies, including combinations with anti-PD-1 antibodies and other therapeutic methods ranging from chemotherapy to targeted therapies, are evolving to improve therapeutic outcomes and evoke synergistic anti-tumor impressions in patients with advanced HCC. Unfortunately, combined therapy may have more side effects than single-agent treatment. Nonetheless, identifying appropriate predictive biomarkers can aid in managing potential immune-related adverse events by distinguishing patients who respond best to PD-1 inhibitors as single agents or in combination strategies. In the present review, we summarize the therapeutic potential of PD-1 blockade therapy for advanced HCC patients. Besides, a glimpse of the pivotal predictive biomarkers influencing a patient's response to anti-PD-1 antibodies will be provided.
Collapse
Affiliation(s)
- Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mahsa Mardasi
- Biotechnology Department, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C., Evin, Tehran, Iran
| | - Elmira Rostamnezhad
- Department of Molecular Genetics, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Fatemeh Roozbahani
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sahel Rahimi
- Industrial and Environmental Biotechnology Department, National Institute of Genetic Engineering and Biotechnology(NIGEB), Tehran, Iran
| | - Javad Mohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| |
Collapse
|
57
|
Morita M, Nishida N, Aoki T, Chishina H, Takita M, Ida H, Hagiwara S, Minami Y, Ueshima K, Kudo M. Role of β-Catenin Activation in the Tumor Immune Microenvironment and Immunotherapy of Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:cancers15082311. [PMID: 37190239 DOI: 10.3390/cancers15082311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Recently, the therapeutic combination of atezolizumab and bevacizumab was widely used to treat advanced hepatocellular carcinoma (HCC). According to recent clinical trials, immune checkpoint inhibitors (ICIs) and molecular target agents are expected to be key therapeutic strategies in the future. Nonetheless, the mechanisms underlying molecular immune responses and immune evasion remain unclear. The tumor immune microenvironment plays a vital role in HCC progression. The infiltration of CD8-positive cells into tumors and the expression of immune checkpoint molecules are key factors in this immune microenvironment. Specifically, Wnt/β catenin pathway activation causes "immune exclusion", associated with poor infiltration of CD8-positive cells. Some clinical studies suggested an association between ICI resistance and β-catenin activation in HCC. Additionally, several subclassifications of the tumor immune microenvironment were proposed. The HCC immune microenvironment can be broadly divided into inflamed class and non-inflamed class, with several subclasses. β-catenin mutations are important factors in immune subclasses; this may be useful when considering therapeutic strategies as β-catenin activation may serve as a biomarker for ICI. Various types of β-catenin modulators were developed. Several kinases may also be involved in the β-catenin pathway. Therefore, combinations of β-catenin modulators, kinase inhibitors, and ICIs may exert synergistic effects.
Collapse
Affiliation(s)
- Masahiro Morita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Tomoko Aoki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Hirokazu Chishina
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Masahiro Takita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Hiroshi Ida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Satoru Hagiwara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Kazuomi Ueshima
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| |
Collapse
|
58
|
Leowattana W, Leowattana T, Leowattana P. Systemic treatment for unresectable hepatocellular carcinoma. World J Gastroenterol 2023; 29:1407-1424. [DOI: 10.3748/wjg.v29.i10.1407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is most commonly found in the context of liver cirrhosis and, in rare cases, in a healthy liver. Its prevalence has risen in recent years, particularly in Western nations, due to the increasing frequency of non-alcoholic fatty liver disease. Advanced HCC has a poor prognosis. For many years, the only proven therapy for unresectable HCC (uHCC) was sorafenib, a tyrosine kinase inhibitor. Recently, the synergistic effect of an immune checkpoint inhibitor, atezolizumab, and bevacizumab outperformed sorafenib alone in terms of survival, making it the recommended first-line therapy. Other multikinase inhibitors, lenvatinib and regorafenib, were also recommended as first and second-line drugs, respectively. Intermediate-stage HCC patients with retained liver function, particularly uHCC without extrahepatic metastasis, may benefit from trans-arterial chemoembolization. The current problem in uHCC is selecting a patient for the best treatment while considering the preexisting liver condition and liver function. Indeed, all study patients had a Child-Pugh class A, and the best therapy for other individuals is unknown. Additionally, in the absence of a medical contraindication, atezolizumab could be combined with bevacizumab for uHCC systemic therapy. Several studies are now underway to evaluate immune checkpoint inhibitors in combination with anti-angiogenic drugs, and the first findings are encouraging. The paradigm of uHCC therapy is changing dramatically, and many obstacles remain for optimum patient management in the near future. The purpose of this commentary review was to give an insight into current systemic treatment options for patients with uHCC who are not candidates for surgery to cure the disease.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - PathompThep Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
59
|
Leowattana W, Leowattana T, Leowattana P. Systemic treatment for unresectable hepatocellular carcinoma. World J Gastroenterol 2023; 29:1551-1568. [PMID: 36970588 PMCID: PMC10037251 DOI: 10.3748/wjg.v29.i10.1551] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/08/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is most commonly found in the context of liver cirrhosis and, in rare cases, in a healthy liver. Its prevalence has risen in recent years, particularly in Western nations, due to the increasing frequency of non-alcoholic fatty liver disease. Advanced HCC has a poor prognosis. For many years, the only proven therapy for unresectable HCC (uHCC) was sorafenib, a tyrosine kinase inhibitor. Recently, the synergistic effect of an immune checkpoint inhibitor, atezolizumab, and bevacizumab outperformed sorafenib alone in terms of survival, making it the recommended first-line therapy. Other multikinase inhibitors, lenvatinib and regorafenib, were also recommended as first and second-line drugs, respectively. Intermediate-stage HCC patients with retained liver function, particularly uHCC without extrahepatic metastasis, may benefit from trans-arterial chemoembolization. The current problem in uHCC is selecting a patient for the best treatment while considering the preexisting liver condition and liver function. Indeed, all study patients had a Child-Pugh class A, and the best therapy for other individuals is unknown. Additionally, in the absence of a medical contraindication, atezolizumab could be combined with bevacizumab for uHCC systemic therapy. Several studies are now underway to evaluate immune checkpoint inhibitors in combination with anti-angiogenic drugs, and the first findings are encouraging. The paradigm of uHCC therapy is changing dramatically, and many obstacles remain for optimum patient management in the near future. The purpose of this commentary review was to give an insight into current systemic treatment options for patients with uHCC who are not candidates for surgery to cure the disease.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - PathompThep Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
60
|
Tay C, Tanaka A, Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 2023; 41:450-465. [PMID: 36917950 DOI: 10.1016/j.ccell.2023.02.014] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
Regulatory T cells (Tregs) are abundant in tumor tissues, raising a question of whether immunosuppressive tumor-infiltrating Tregs (TI-Tregs) can be selectively depleted or functionally attenuated to evoke effective anti-tumor immune responses by conventional T cells (Tconvs), without perturbing Treg-dependent immune homeostasis in healthy organs and causing autoimmunity. Here, we review current cancer immunotherapy strategies, including immune checkpoint blockade (ICB) antibodies against CTLA-4 and PD-1 and discuss their effects on TI-Tregs. We also discuss approaches that exploit differentially regulated molecules on the cell surface (e.g., CTLA-4) and intracellularly (e.g., T cell receptor signaling molecules) between TI-Tregs and Tconvs as well as their dependence on cytokines (e.g., IL-2) and metabolites (e.g., lactate). We envisage that targeting TI-Tregs could be effective as a monotherapy and/or when combined with ICB antibodies.
Collapse
Affiliation(s)
- Christopher Tay
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Atsushi Tanaka
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
61
|
Midkine inhibition enhances anti-PD-1 immunotherapy in sorafenib-treated hepatocellular carcinoma via preventing immunosuppressive MDSCs infiltration. Cell Death Discov 2023; 9:92. [PMID: 36906597 PMCID: PMC10008628 DOI: 10.1038/s41420-023-01392-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
Sorafenib, a multiple-target tyrosine kinase inhibitor, is the standard of care for patients with advanced hepatocellular carcinoma (HCC), but provides limited benefits. Emerging evidences suggest that prolonged sorafenib treatment induces an immunosuppressive HCC microenvironment, but the underling mechanism is undetermined. In the present study, the potential function of midkine, a heparin-binding growth factor/cytokine, was evaluated in sorafenib-treated HCC tumors. Infiltrating immune cells of orthotopic HCC tumors were measured by flow cytometry. Differentially expressed genes in sorafenib-treated HCC tumors were evaluated by transcriptome RNA sequencing. The potential function of midkine were evaluated by western blot, T cell suppression assay, immunohistochemistry (IHC) staining and tumor xenograft model. We found that sorafenib treatment increased intratumoral hypoxia and altered HCC microenvironment towards an immune-resistant state in orthotopic HCC tumors. Sorafenib treatment promoted midkine expression and secretion by HCC cells. Moreover, forced midkine expression stimulated immunosuppressive myeloid-derived suppressor cells (MDSCs) accumulation in HCC microenvironment, while knockdown of midkine exhibited opposite effects. Furthermore, midkine overexpression promoted CD11b+CD33+HLA-DR- MDSCs expansion from human PBMCs, while midkine depletion suppressed this effect. PD-1 blockade showed no obvious inhibition on tumor growth of sorafenib-treated HCC tumors, but the inhibitory effect was greatly enhanced by midkine knockdown. Besides, midkine overexpression promoted multiple pathways activation and IL-10 production by MDSCs. Our data elucidated a novel role of midkine in the immunosuppressive microenvironment of sorafenib-treated HCC tumors. Mikdine might be a potential target for the combination of anti-PD-1 immunotherapy in HCC patients.
Collapse
|
62
|
Evaluating the Benefits of TACE Combined with Lenvatinib Plus PD-1 Inhibitor for Hepatocellular Carcinoma with Portal Vein Tumor Thrombus. Adv Ther 2023; 40:1686-1704. [PMID: 36805422 DOI: 10.1007/s12325-023-02449-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023]
Abstract
INTRODUCTION This study evaluated the efficacy and safety of transarterial chemoembolization (TACE) combined with lenvatinib plus programmed death (PD)-1 inhibitor (TACE-L-P) versus TACE combined with sorafenib plus PD-1 inhibitor (TACE-S-P) in the treatment of hepatocellular carcinoma (HCC) with portal vein tumor thrombus (PVTT). METHODS The clinical data of patients with HCC and PVTT treated with TACE-L-P or TACE-S-P from January 2018 to March 2022 were collected. The Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 and modified RECIST (mRECIST) standard were used to evaluate the therapeutic effect. The progression-free survival (PFS) and overall survival (OS) of the two groups were compared. Blood samples were collected before and after treatment to detect the changes of biochemical indicators, and the adverse events (AEs) related to treatment were recorded. RESULTS A total of 165 patients were included in the study, including 80 patients receiving TACE-L-P treatment and 85 patients receiving TACE-S-P. Patients in the TACE-L-P group had longer median OS (21.7 months vs. 15.6 months, P = 0.0027), longer median PFS (6.3 months vs. 3.2 months, P < 0.0001), higher objective response rate (41.25% vs. 30.59%, P = 0.008), and higher disease control rate (86.25% vs. 62.35%, P = 0.008) than those in the TACE-S-P group. Multivariate analysis of the TACE-L-P group showed that VP classification of PVTT, Child-Pugh grade, interleukin-17 (IL-17), vascular endothelial growth factor (VEGF), procalcitonin (PCT), and C-reactive protein (CRP) were independent factors significantly affecting patients' OS (P < 0.05). There was no significant difference in the incidence and severity of AEs between the two groups. CONCLUSION TACE-L-P treatment can improve the survival of patients with HCC and PVTT with an acceptable safety, but higher inflammatory indicators will affect the therapeutic effect.
Collapse
|
63
|
Zou X, Xu Q, You R, Yin G. Efficacy and Safety of TACE Combined with Regorafenib Plus PD-1 Inhibitor in the Treatment of Hepatocellular Carcinoma After Sorafenib Resistance. J Hepatocell Carcinoma 2023; 10:267-279. [PMID: 36815093 PMCID: PMC9940502 DOI: 10.2147/jhc.s399874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Purpose To evaluate the efficacy and safety of TACE combined with regorafenib plus PD-1 inhibitor as a second-line therapy for hepatocellular carcinoma after sorafenib resistance. Materials and Methods The clinical data of 76 patients with hepatocellular carcinoma who were drug-resistant to sorafenib from September 2018 to May 2022 in the tumor intervention department were collected. Among them, 35 patients used TACE combined with regorafenib plus PD-1 inhibitor (TACE-R-P) as second-line treatment, and the remaining 41 patients used TACE combined with regorafenib (TACE-R) as second-line treatment. The mRECIST (modified Response Evaluation Criteria in Solid Tumors) standard was used to evaluate the therapeutic effect. The progression-free survival (PFS) and overall survival (OS) of the two groups were compared. Blood samples were collected before and after treatment to detect the changes in biochemical indicators, and the adverse events (AEs) related to treatment were recorded. Results A total of 76 patients were included in the study, including 35 patients receiving TACE-R-P treatment and 41 patients receiving TACE-R treatment. Patients in the TACE-R-P group had longer median OS (19.7months vs 15.2months, HR:0.7716, 95% CI:0.4767-1.2490, P=0.03), longer median PFS (6.3months vs 3.8months, HR:0.6032, 95% CI:0.3727-0.9763, P=0.0029), higher objective response rate (37.14% vs 19.51%, P=0.001) and higher disease control rate (71.43% vs 48.78%, P=0.001) than those in the TACE-R group. Multivariate analysis showed that Child-Pugh grade (B/A; HR=1.283, 95% CI: 0.623-1.707, P=0.014), PVTT (Yes/No, HR=1.455, 95% CI: 0.977-2.038, P=0.018), extrahepatic metastasis (Yes/No, HR=1.766, 95% CI: 1.135-2.302, P=0.022) and treatment option (TACE-R/TACE-R-P, HR=1.930, 95% CI: 1.461-2.850, P=0.017) were independent prognostic factors for OS. There was no significant difference in the incidence and severity of AEs between the two groups. Conclusion TACE-R-P treatment can be more effective than TACE-R treatment for HCC after sorafenib resistance and can be given priority as a second-line treatment for HCC.
Collapse
Affiliation(s)
- Xinhua Zou
- Department of Tumor Interventional Therapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing City, People’s Republic of China
| | - Qingyu Xu
- Department of Tumor Interventional Therapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing City, People’s Republic of China
| | - Ran You
- Department of Tumor Interventional Therapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing City, People’s Republic of China
| | - Guowen Yin
- Department of Tumor Interventional Therapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing City, People’s Republic of China,Correspondence: Guowen Yin, Tel +86-19868589105, Email
| |
Collapse
|
64
|
Advances in pharmacokinetics and pharmacodynamics of PD-1/PD-L1 inhibitors. Int Immunopharmacol 2023; 115:109638. [PMID: 36587500 DOI: 10.1016/j.intimp.2022.109638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Immune checkpoint inhibitors (ICIs) are a group of drugs designed to improve the therapeutic effects on various types of malignant tumors. Irrespective of monotherapy or combinational therapies as first-line and later-line therapy, ICIs have achieved benefits for various tumors. Programmed cell death protein-1 (PD-1) / ligand 1 (PD-L1) is an immune checkpoint that suppresses antitumor immunity, especially in the tumor microenvironment (TME). PD-1/PD-L1 immune checkpoint inhibitors block tumor-related downregulation of the immune system, thereby enhancing antitumor immunity. In comparison with traditional small-molecule drugs, ICIs exhibit pharmacokinetic characteristics owing to their high molecular weight. Furthermore, different types of ICIs exhibit different pharmacodynamic characteristics. Hence, ICIs have been approved for different indications by the Food and Drug Administration (FDA) and National Medical Products Administration (NMPA). This review summarizes pharmacokinetic and pharmacodynamic studies of PD-1/ PD-L1 inhibitors to provide a reference for rational clinical application.
Collapse
|
65
|
Zeng H, Xu Q, Wang J, Xu X, Luo J, Zhang L, Luo C, Ying J, Li J. The effect of anti-PD-1/PD-L1 antibodies combined with VEGF receptor tyrosine kinase inhibitors versus bevacizumab in unresectable hepatocellular carcinoma. Front Immunol 2023; 14:1073133. [PMID: 36756114 PMCID: PMC9900113 DOI: 10.3389/fimmu.2023.1073133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction Immune checkpoint inhibition (ICI) plus bevacizumab (BEV) is the standard first-line treatment for unresectable hepatocellular carcinoma (uHCC). We aimed to assess the efficacy and safety of ICI plus bevacizumab and ICI plus receptor tyrosine kinase inhibitor (TKI) in this patient population. Methods This retrospective single-institution study enrolled 94 patients with uHCC who received ICI plus TKI or bevacizumab as the first-line treatment. Progression-free survival (PFS), overall survival (OS), objective response rate (ORR), and disease control rate (DCR) were used to evaluate treatment efficacy. RECIST v1.1 criteria were used to calculate the objective clinical response. Common Terminology Criteria for Adverse Events were used to report and categorize adverse events. Results By the last follow-up interview on May 15, 2022, there were 57 deaths, and 19 patients did not develop disease progression. Thirty patients received sintilimab/atezolizumab plus bevacizumab (ICI + BEV group), and 64 received ICI plus TKI (ICI + TKI group). The median OS was 430 days (95% CI, 266-NA) in the ICI+TKI group and 498 days (95% CI, 349-NA) in the ICI+BEV group (HR, 1.20; 95% CI, 0.69-2.07; P = 0.52). There was no significant difference between the two groups in the median PFS (182 vs. 221 days, P=0.67). In the ICI+TKI group, the ORR and DCR were 28.1% and 67.2%, respectively. In the ICI+BEV group, the ORR and DCR were 26.7% and 66.7%, respectively. The overall incidence of adverse events was similar between the two groups. Palmar-plantar erythrodysesthesia syndrome (23[36%]) occurred only in the ICI + TKI group. Patients who received ICI+BEV were more prone to upper gastrointestinal bleeding (2 [7%]), with one patient with grade 4 requiring emergency DSA treatment. Conclusion This study found that ICI+TKI and ICI+BEV as first-line treatments were similar in OS, PFS, and tumor response in uHCC. Different populations are suitable for different regimens because of the different adverse events.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Interventional Radiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qi Xu
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jinyu Wang
- Medical Records and Statistics Department, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaoqing Xu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jun Luo
- Department of Interventional Radiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Lei Zhang
- Radiology Department, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Cong Luo
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jieer Ying
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jingjing Li
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
66
|
Gan L, Lang M, Tian X, Ren S, Li G, Liu Y, Han R, Zhu K, Li H, Wu Q, Cui Y, Zhang W, Fang F, Li Q, Song T. A Retrospective Analysis of Conversion Therapy with Lenvatinib, Sintilimab, and Arterially-Directed Therapy in Patients with Initially Unresectable Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:673-686. [PMID: 37125392 PMCID: PMC10132469 DOI: 10.2147/jhc.s404675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Purpose The purpose of this study was to investigate the triple-combination therapy of lenvatinib plus sintilimab plus arterially-directed therapy as a conversion therapy for initially unresectable hepatocellular carcinoma (HCC). Patients and Methods We retrospectively analyzed data from all HCC patients who underwent lenvatinib plus sintilimab plus arterially-directed therapy at Tianjin Medical University Cancer Hospital between December 2018 and October 2020. Of 98 enrolled patients, 37 patients were classified as potentially resectable. We compared the potentially resectable population (PRP) with the non-potentially resectable population (NPRP). The primary study endpoint was conversion rate, and secondary endpoints included progression-free survival (PFS), overall survival (OS), objective response rate (ORR), disease control rate (DCR), and safety. Results The baseline characteristics were comparable between populations except for a higher proportion of patients with extrahepatic metastases in the NPRP versus PRP (23/61 [37.7%] vs 3/37 [8.1%], respectively; p=0.003). For PRP, the ORR was 67.6% based on RECIST v1.1 (75.7% based on mRECIST), conversion rate was 40.5% (15/37). Of the 15 patients who underwent surgical resection, three achieved complete pathological remission. The median follow-up for all patients was 28 months (range: 2-47). For NPRP, the ORR was 22.9% based on RECIST v1.1 (31.1% based on mRECIST), The median PFS for PRP was significantly longer than that of NPRP (25 vs 13 months, p = 0.0025). The median OS for PRP was significantly longer than that of NPRP (not reached VS 21 months, p=0.014). Hypertension was the most common grade ≥3 adverse reaction in both PRP and NPRP. No new safety signals were observed for any of the treatments. Conclusion The triple-combination therapy of lenvatinib plus sintilimab plus arterially-directed therapy can convert potentially unresectable HCC into resectable disease and improve long-term survival.
Collapse
Affiliation(s)
- Leijuan Gan
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Mengran Lang
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, Hebei, 065001, People’s Republic of China
| | - Xindi Tian
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Shaohua Ren
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Guangtao Li
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Yayue Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Ruyu Han
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Kangwei Zhu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Huikai Li
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Qiang Wu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Yunlong Cui
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Wei Zhang
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Feng Fang
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Qiang Li
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Tianqiang Song
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
- Correspondence: Tianqiang Song, Tel +86-022-23340123, Fax +86 022-23537796, Email
| |
Collapse
|
67
|
Federico P, Giunta EF, Tufo A, Tovoli F, Petrillo A, Daniele B. Resistance to Antiangiogenic Therapy in Hepatocellular Carcinoma: From Molecular Mechanisms to Clinical Impact. Cancers (Basel) 2022; 14:6245. [PMID: 36551730 PMCID: PMC9776845 DOI: 10.3390/cancers14246245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Antiangiogenic drugs were the only mainstay of advanced hepatocellular carcinoma (HCC) treatment from 2007 to 2017. However, primary or secondary resistance hampered their efficacy. Primary resistance could be due to different molecular and/or genetic characteristics of HCC and their knowledge would clarify the optimal treatment approach in each patient. Several molecular mechanisms responsible for secondary resistance have been discovered over the last few years; they represent potential targets for new specific drugs. In this light, the advent of checkpoint inhibitors (ICIs) has been a new opportunity; however, their use has highlighted other issues: the vascular normalization compared to a vessel pruning to promote the delivery of an active cancer immunotherapy and the development of resistance to immunotherapy which leads to a better selection of patients as candidates for ICIs. Nevertheless, the combination of antiangiogenic therapy plus ICIs represents an intriguing approach with high potential to improve the survival of these patients. Waiting for results from ongoing clinical trials, this review depicts the current knowledge about the resistance to antiangiogenic drugs in HCC. It could also provide updated information to clinicians focusing on the most effective combinations or sequential approaches in this regard, based on molecular mechanisms.
Collapse
Affiliation(s)
- Piera Federico
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy
| | - Emilio Francesco Giunta
- Department of Precision Medicine, School of Medicine, University of Study of Campania “L. Vanvitelli”, 80131 Naples, Italy
| | - Andrea Tufo
- Surgical Unit, Ospedale del Mare, 80147 Napoli, Italy
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | - Bruno Daniele
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy
| |
Collapse
|
68
|
Han Z, Yang F, Zhang Y, Wang J, Ni Q, Zhu H, Zhou X, Gao H, Lu J. Prognostic efficacy and prognostic factors of TACE plus TKI with ICIs for the treatment of unresectable hepatocellular carcinoma: A retrospective study. Front Oncol 2022; 12:1029951. [PMID: 36591442 PMCID: PMC9798199 DOI: 10.3389/fonc.2022.1029951] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global challenge due to its high morbidity and mortality rates as well as poor response to treatment. Local combined systemic therapy is widely used in the treatment of unresectable hepatocellular cancer (uHCC). This retrospective study was to investigate the prognostic effect and prognostic factors of transcatheter arterial chemoembolization (TACE) plus tyrosine kinase inhibitors (TKI) with immune checkpoint inhibitors (ICIs) in the treatment of uHCC. A retrospective analysis of 171 patients with uHCC was performed in our hospital from April 27, 2015 to October 18, 2021. According to different treatment options, patients were divided into TACE group (n=45), TACE+TKI group (n=76) and TACE+TKI+ICIs group (n=50). In this study, we found that, the median overall survival (mOS) of TACE+TKI+ICIs group was significantly better than TACE+TKI group and TACE group [24.1 (95% CI 15.1-33.1) months vs 14.9 (95% CI 10.7-19.1) months vs 11.4 (95% CI 8.4-14.5) months, hazard ratio (HR) 0.62; 95% CI 0.47-0.81; P=0.002]. A visible difference in the median progression-free survival (mPFS) interval between the groups was discovered [10.6 (95% CI6.5-14.7) months in TACE+TKI+ICIs group vs. 6.7 (95% CI 5.5-7.9) months in the TACE+TKI group vs. 6 (95% CI 2.3-9.7) months in the TACE group (HR 0.66; 95% CI 0.53-0.83; P<0.001)]. The objective response rates (ORR) in the TACE group, TACE+TKI group, and TACE+TKI+ICIs group were 31.1%, 35.5%, and 42%, and the disease control rate (DCR) were 51.1%, 65.8%, and 80%. There were no adverse events (AEs) of arthralgia, diarrhea, rash, and pruritus in the TACE group. The incidence of grade 3 AEs (Hypertension) in the TACE+TKI+ICIs group was significantly higher than that in TACE+TKI and TACE groups (28% vs 17.1% vs 6.7%, P=0.024), and secondly, the morbidity of rash and pruritus in the TACE+TKI+ICIs group was apparently higher than that in the TACE+TKI group (P<0.05). Multivariate analysis showed that ECOG-PS 2 (HR=2.064, 95%CI 1.335-3.191, P=0.001), Hepatitis B virus (HR=2.539, 95%CI 1.291-4.993, P=0.007), AFP≥400 ng/ml (HR= 1.72, 95%CI 1.12-2.643, P=0.013), neutrophil-lymphocyte ratio (NLR) ≥2.195 (HR=1.669, 95%CI 1.073-2.597, P=0.023) were independent risk factors for OS in uHCC patients. So, TACE+TKI+ICIs therapy can prolong the OS and improve the prognosis of patients effectively, with a well-characterized safety profile.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jun Lu
- *Correspondence: Hengjun Gao, ; Jun Lu,
| |
Collapse
|
69
|
Improved anti-hepatocellular carcinoma effect by enhanced Co-delivery of Tim-3 siRNA and sorafenib via multiple pH triggered drug-eluting nanoparticles. Mater Today Bio 2022; 16:100350. [PMID: 35856043 PMCID: PMC9287642 DOI: 10.1016/j.mtbio.2022.100350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Effective systemic treatment for hepatocellular carcinoma (HCC) remains urgently needed. Sorafenib is the first FDA-approved systemic treatment for HCC. However, individual HCC patents’ response to sorafenib varies greatly. How to enhance the anti-HCC effect of sorafenib is still a significant challenge. T cell immunoglobulin mucin-3 (Tim-3) is a newly identified immune checkpoint molecule and a promising target for HCC treatment. Herein, we developed a novel pH-triggered drug-eluting nanoparticle (CC@SR&SF@PP) for simultaneously delivery of Tim-3 siRNA and sorafenib to HCC in situ. By a single emulsification method, a representative HCC targeted-therapeutic drug sorafenib (SF) was encapsulated into the pH-triggered positive-charged mPEG5K-PAE10K (PP) nanoparticles, followed by condensing of negative-charged Tim-3 siRNA. Then, carboxymethyl chitosan (CMCS), an amphoteric polysaccharide with negative charge in the physiological pH and positive charge in the acidic environment of the tumor, was eventually adsorbed onto the surface of nanoparticles. This co-delivery nanoparticle rapidly and specifically accumulated in the tumor site of the liver and enhanced the targeted, specific and multiple release of siRNA and sorafenib. Enhanced Tim-3 siRNA transfected into tumor cells can not only directly inhibit the growth of tumor cells by knock down the expression Tim-3, but also induce the immune response and enhance the recruitment of cytotoxic T cells to kill tumor cells. The following pH-triggered sorafenib release from SF@PP NPs greatly inhibited the tumor proliferation and angiogenesis, resulting in remarkable tumor growth inhibition in a mouse hepatoma 22 (H22) orthotopic tumor model. Thus, co-delivery of Tim-3 siRNA and sorafenib via this novel pH triggered drug-eluting nanoparticle enhances their anti-tumor efficacy. We expect that such combination treatment strategy will have great potential in future clinical applications.
Collapse
|
70
|
He L, Xu K, Niu L, Lin L. Astragalus polysaccharide (APS) attenuated PD-L1-mediated immunosuppression via the miR-133a-3p/MSN axis in HCC. PHARMACEUTICAL BIOLOGY 2022; 60:1710-1720. [PMID: 36086826 PMCID: PMC9467620 DOI: 10.1080/13880209.2022.2112963] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
CONTEXT Astragalus polysaccharide (APS) is a new tumour therapeutic drug, that has an inhibitory effect on a variety of solid tumours. Tumour cell immunosuppression is related to the up-regulation of programmed death ligand 1 (PD-L1). However, whether APS exerts its antitumor effect by regulating PD-L1 remains unclear. OBJECTIVE To explore whether APS exerts its antineoplastic effect via regulating PD-L1-mediated immunosuppression in hepatocellular carcinoma (HCC). MATERIALS AND METHODS SMMC-7721 cells were subcutaneous injected into BALB/C mice for HCC model establishment. Mice were intraperitoneally injected with 100, 200 and 400 mg/kg APS for 12 days. Immunohistochemistry (IHC) was performed to assess CD8+ T cells' rate and PD-L1 level in HCC tissues. HCC cells were pre-treated with 0.1, 0.5 and 1 mg/mL APS for 4 h, then were treated with 10 ng/mL IFN-γ 24 h. PD-L1 level and cell apoptosis was detected by flow cytometry. PD-L1 and Moesin (MSN) proteins were measured by western blot. MiR-133a-3p and MSN mRNA levels were assessed by qRT-PCR. The targets of miR-133a-3p were predicted by starBase, and which was verified by dual-luciferase reporter assay. RESULTS Our findings illustrated that APS dose-dependently inhibited HCC growth tested with IC50 values of 4.2 mg/mL, and IFN-γ-induced PD-L1 expression and attenuated PD-L1-mediated immunosuppression in HCC cells. APS attenuated PD-L1-mediated immunosuppression via miR-133a-3p in HCC cells. Besides, miR-133a-3p targeted to MSN, and MSN inhibited the antitumor effect of APS by maintaining the stability of PD-L1. Moreover, APS attenuated PD-L1-mediated immunosuppression via the miR-133a-3p/MSN axis. CONCLUSIONS APS attenuated PD-L1-mediated immunosuppression via miR-133a-3p/MSN axis to develop an antitumor effect. APS may be an effective drug for HCC treatment.
Collapse
Affiliation(s)
- Lihua He
- Department of Oncology, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Kecheng Xu
- Department of Oncology, Fuda Cancer Hospital, Guangzhou, China
| | - Lizhi Niu
- Department of Oncology, Fuda Cancer Hospital, Guangzhou, China
| | - Lizhu Lin
- Division of Oncology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- CONTACT Lizhu Lin Division of Oncology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, No.16, JichangRoad, Guangzhou510504, Guangdong Province, P.R. China
| |
Collapse
|
71
|
Rizzo A, Carloni R, Ricci AD, Cusmai A, Laforgia M, Calabrò C, Ungaro V, Oreste D, Sollitto M, Palmiotti G, Brandi G. Treatment-related adverse events of first-line immunotherapy versus sorafenib for advanced hepatocellular carcinoma: a meta-analysis. Expert Opin Drug Saf 2022; 22:323-329. [PMID: 36426773 DOI: 10.1080/14740338.2023.2152793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Riccardo Carloni
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni - 15, Bologna, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, “Saverio de Bellis” Research Hospital, Castellana Grotte, Italy
| | - Antonio Cusmai
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Mariarita Laforgia
- S.C. Farmacia e U.Ma.C.A., Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II-Bari, Bari, Italy
| | - Concetta Calabrò
- S.C. Farmacia e U.Ma.C.A., Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II-Bari, Bari, Italy
| | - Valentina Ungaro
- S.C. Farmacia e U.Ma.C.A., Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II-Bari, Bari, Italy
| | - Donato Oreste
- Radiology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Mario Sollitto
- Radiology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Gennaro Palmiotti
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni - 15, Bologna, Italy
| |
Collapse
|
72
|
De Lorenzo S, Tovoli F, Trevisani F. Mechanisms of Primary and Acquired Resistance to Immune Checkpoint Inhibitors in Patients with Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:4616. [PMID: 36230538 PMCID: PMC9564277 DOI: 10.3390/cancers14194616] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and a relevant global health problem. Immune checkpoint inhibitors (ICIs) represent the most effective systemic treatment for HCC. However, due to primary resistance, approximately 40% of HCC patients do not achieve a disease control with ICIs. Moreover, a similar proportion will experience disease progression after an initial response caused by secondary resistance. This review describes the mechanisms of primary and secondary resistance and reports the ongoing therapeutic strategies to overcome these obstacles.
Collapse
Affiliation(s)
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Franco Trevisani
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Unit of Semeiotics, Liver and Alcohol-Related Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
73
|
Lorusso D, Danesi R, Locati LD, Masi G, De Giorgi U, Gadducci A, Pignata S, Sabbatini R, Savarese A, Valabrega G, Zamagni C, Colombo N. Optimizing the use of lenvatinib in combination with pembrolizumab in patients with advanced endometrial carcinoma. Front Oncol 2022; 12:979519. [PMID: 36212444 PMCID: PMC9535356 DOI: 10.3389/fonc.2022.979519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction The combination of lenvatinib plus pembrolizumab demonstrated a relevant clinical benefit in patients with endometrial carcinoma. The safety profile was consistent with the established profiles of each drug in monotherapy, with the most frequent adverse events being hypertension, an on-target effect, hypothyroidism, diarrhea, nausea, vomiting, loss of appetite, fatigue, and weight loss. Areas covered We first review the rationale based on the combination of a VEGFR inhibitor and an immune checkpoint inhibitor, highlighting the main pharmacokinetic and pharmacodynamic features of lenvatinib. Next, we focus on the common adverse events associated with lenvatinib and guide how to optimally prevent, detect, and manage them, while minimizing interruptions during lenvatinib treatment. Discussion The side effects profile of lenvatinib is very well known, being similar across different tumor types. Most toxicities can be preventable. An appropriate, proactive, and thorough management of lenvatinib toxicities during treatment is required to maximize potential lenvatinib efficacy. Adverse events should be detected as early as possible, by both carefully monitoring the patient from lenvatinib initiation and preventing their occurrence. Patients should be followed also during treatment as some adverse events, e.g., cardiac dysfunction might appear later. Increased awareness on risk to benefit ratio among clinicians would be helpful to avoid dose interruptions or discontinuation of lenvatinib, with preferring other medical interventions and supportive care.
Collapse
Affiliation(s)
- Domenica Lorusso
- Department of Clinical Research Planning, Fondazione Policlinico Universitario A Gemelli Istituto di Ricerca e Cura a carattere scientifico (IRCCS), Rome, Italy
- Department of Life Science and Public Health, Catholic University of Sacred Heart, Rome, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Deborah Locati
- Translational Oncology Unit, Istituto di Ricerca e Cura a carattere scientifico (IRCCS) Istituti Clinici Scientifici (ICS) Maugeri, Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Gianluca Masi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto di Ricerca e Cura a carattere scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST), Dino Amadori, Meldola, Italy
| | - Angiolo Gadducci
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Pisa, Italy
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori Istituto di Ricerca e Cura a carattere scientifico (IRCCS) “Fondazione Giovanni Pascale”, Naples, Italy
| | - Roberto Sabbatini
- Department of Urology and Gynecology, Istituto Nazionale Tumori Istituto di Ricerca e Cura a carattere scientifico (IRCCS) “Fondazione Giovanni Pascale”, Naples, Italy
| | - Antonella Savarese
- Division of Medical Oncology 1, Istituto di Ricerca e Cura a carattere scientifico (IRCCS) -Regina Elena National Cancer Institute, Rome, Italy
| | - Giorgio Valabrega
- University of Torino-Struttura Complessa a Direzione Universitaria (S.C.D.U.) Oncologia Azienda Ospedaliera (A.O) Ordine Mauriziano-Ospedale Umberto I, Torino, Italy
| | - Claudio Zamagni
- Addarii Medical Oncology, Istituto di Ricerca e Cura a carattere scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Nicoletta Colombo
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
- Department of Oncological Gynecology, European Institute of Oncology (IEO) Istituto di Ricerca e Cura a carattere scientifico (IRCCS), Milan, Italy
| |
Collapse
|
74
|
Valery M, Cervantes B, Samaha R, Gelli M, Smolenschi C, Fuerea A, Tselikas L, Klotz-Prieux C, Hollebecque A, Boige V, Ducreux M. Immunotherapy and Hepatocellular Cancer: Where Are We Now? Cancers (Basel) 2022; 14:cancers14184523. [PMID: 36139683 PMCID: PMC9497386 DOI: 10.3390/cancers14184523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy has demonstrated its effectiveness in many cancers. In hepatocellular carcinoma (HCC), promising results shown in the first phase II studies evaluating anti-PD-1 or anti-PD-L1 monotherapies resulted in their approval in the United States. Approval was not obtained in Europe; subsequent randomized studies in first- or second-line treatment did not confirm these initial results. However, first data with immunotherapy plus antiangiogenic treatments or dual immunotherapy combinations were positive. In this context, the combination of bevacizumab and atezolizumab took the lead. The IMbrave150 trial revealed an improved objective response rate (ORR), progression-free survival, and overall survival with this combination versus the previous standard, sorafenib. Subsequent results of dual immunotherapy with the anti-CTLA-4 and anti-PD-1 monotherapies tremelimumab and durvalumab (also superior to sorafenib monotherapy) confirmed the value of using a combination in first-line treatment. These significant therapeutic advances, and the increase in ORR, raise two main questions. Whereas response was very limited with previous treatments, the ORR reported with these new combinations are between 20% and 30%. This raises the question of whether immunotherapy (ICI single agent, combination of ICI with antiangiogenic agent or other antitumoral treatment) can be used in patients beyond those in BCLC group C, the traditional candidate group for systemic therapy. We have thus seen an increasing number of patients previously treated with trans-arterial chemoembolization (BCLC group B) receiving these new treatments, and we develop the results of several studies combining loco-regional therapies and immunotherapy-based systemic treatments. The other major question is that of how and when to use these medical treatments as "adjuvants" to interventional radiology or surgery; the results of several works are discussed for this purpose. In this review, we cover all of these points in a fairly comprehensive manner.
Collapse
Affiliation(s)
- Marine Valery
- Département de Médecine Oncologique, Gustave Roussy, F-94805 Villejuif, France
- Correspondence:
| | - Baptiste Cervantes
- Département de Médecine Oncologique, Gustave Roussy, F-94805 Villejuif, France
| | - Ramy Samaha
- Département de Médecine Oncologique, Gustave Roussy, F-94805 Villejuif, France
| | - Maximiliano Gelli
- Département d’Anesthésie, Chirurgie et Interventionnel, Gustave Roussy, F-94805 Villejuif, France
| | - Cristina Smolenschi
- Département de Médecine Oncologique, Gustave Roussy, F-94805 Villejuif, France
- Département d’Innovation Thérapeutique, Gustave Roussy, F-94805 Villejuif, France
| | - Alina Fuerea
- Département de Médecine Oncologique, Gustave Roussy, F-94805 Villejuif, France
| | - Lambros Tselikas
- Département d’Anesthésie, Chirurgie et Interventionnel, Gustave Roussy, F-94805 Villejuif, France
| | | | - Antoine Hollebecque
- Département de Médecine Oncologique, Gustave Roussy, F-94805 Villejuif, France
- Département d’Innovation Thérapeutique, Gustave Roussy, F-94805 Villejuif, France
| | - Valérie Boige
- Département de Médecine Oncologique, Gustave Roussy, F-94805 Villejuif, France
| | - Michel Ducreux
- Département de Médecine Oncologique, Gustave Roussy, F-94805 Villejuif, France
- Inserm Unité Dynamique des Cellules Tumorales, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
| |
Collapse
|
75
|
Wang H, Shi F, Zheng S, Zhao M, Pan Z, Xiong L, Zheng L. Feasibility of hepatocellular carcinoma treatment based on the tumor microenvironment. Front Oncol 2022; 12:896662. [PMID: 36176401 PMCID: PMC9513472 DOI: 10.3389/fonc.2022.896662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The incidence of liver cancer is extremely high worldwide and poses a serious threat to human life and health. But at present, apart from radiotherapy, chemotherapy, liver transplantation, and early resection, sorafenib was the main systemic therapy proven to have clinical efficacy for unresectable liver cancer (HCC) until 2017. Despite the emerging immunotherapy in the past decade with immune inhibitors such as PD - 1 being approved and applied to clinical treatment, there are still some patients with no response. This review aims to elucidate the mechanisms underlying the tumor microenvironment of hepatocellular carcinoma and thus analyze the effectiveness of targeting the tumor microenvironment to improve the therapeutic efficacy of hepatocellular carcinoma, including the effectiveness and feasibility of immunotherapy, tumor oncolytic viruses and anti-vascular proliferation therapy.
Collapse
Affiliation(s)
- Haiqiang Wang
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fan Shi
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zimeng Pan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li Xiong
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Internal Medicine, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Lihong Zheng,
| |
Collapse
|
76
|
Zhong Y, Huo H, Dai S, Li S. Efficacy and safety of immune checkpoint inhibitors-combined antiangiogenic drugs in the treatment of hepatocellular carcinoma: A systematic review and meta analysis. Front Oncol 2022; 12:964779. [PMID: 36059696 PMCID: PMC9433548 DOI: 10.3389/fonc.2022.964779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundHepatocellular carcinoma is a pathological type of liver cancer and accounts for the majority of primary liver cancers. We conducted a meta-analysis to evaluate the efficacy and safety of immune checkpoint inhibitors in combination with antiangiogenic drugs in the treatment of hepatocellular carcinoma.MethodsWe searched scientific literature databases and clinical trials databases through May 2022 for required studies. Progression-free survival was taken as the main outcome, and overall survival, response rate and adverse events as secondary outcomes. These data were extracted, combined and used for meta-analysis to compare the treatment effect and safety of immune checkpoint inhibitors combined with antiangiogenic drugs in patients with advanced/unresectable/metastatic hepatocellular carcinoma.ResultsThis study included 3 randomized controlled trials and 6 single-arm trials of immune checkpoint inhibitors in combination with antiangiogenic drugs in hepatocellular carcinoma. Meta-analysis showed that compared with single use, combination of the two can significantly improve PFS (HR=5.93, 95% CI=5.41, 6.45) and OS (HR=15.84, 95% CI=15.39, 16.28). The ORR and DOR of patients with combination therapy were HR=19.11, 95% CI=15.99, 22.22 and HR=12.26, 95% CI=10.32, 14.21, respectively. Common adverse reactions to combination therapy included hypertension (26.8%), diarrhea (23.6%), fatigue (23.8%), decreased appetite (22.8%), hypothyroidism (9.9%), and rash (14.5%).ConclusionIn the treatment of advanced/unresectable/metastatic hepatocellular carcinoma, immune checkpoint inhibitors combined with antiangiogenic drugs achieved better survival benefits than alone. In addition, the combination therapy has tolerable safety.
Collapse
Affiliation(s)
- Yu Zhong
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Hong Huo
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| | - Shuqi Dai
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Su Li
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
- *Correspondence: Su Li,
| |
Collapse
|
77
|
Duan X, Xu X, Zhang Y, Gao Y, Zhou J, Li J. DDR1 functions as an immune negative factor in colorectal cancer by regulating tumor-infiltrating T cell through IL-18. Cancer Sci 2022; 113:3672-3685. [PMID: 35969377 PMCID: PMC9633303 DOI: 10.1111/cas.15533] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 12/01/2022] Open
Abstract
Immunotherapies represented by programmed cell death protein 1/programmed cell death ligand 1 (PD‐1/PD‐L1) immune checkpoint inhibitors have made great progress in the field of anticancer treatment, but most colorectal cancer patients do not benefit from immunotherapy. Discoidin domain receptor 1 (DDR1), a tyrosine kinase receptor, is activated by collagen binding and overexpressed in various malignancies. However, the role of DDR1 in colorectal cancer and immunoregulation remains unclear. In this study, we found DDR1 is highly expressed in colorectal cancer tissues and negatively associated with patient survival. We demonstrated that DDR1 promotes colorectal tumor growth only in vivo. Mechanistically, DDR1 is a negative immunomodulator in colorectal cancer and is involved in low infiltration of CD4+ and CD8+ T cells by inhibiting IL‐18 synthesis. We also reported that DDR1 enhances the expression of PD‐L1 through activating the c‐Jun amino terminal kinase (JNK) signaling pathway. In conclusion, our findings elucidate the immunosuppressive role of DDR1 in colorectal cancer, which may represent a novel target to enhance the efficacy of immunotherapy in colorectal cancer.
Collapse
Affiliation(s)
- Xiaofan Duan
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Xiaoxiao Xu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Yumei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Yuan Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Jiuli Zhou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
78
|
He Q, Guo P, Bo Z, Yu H, Yang J, Wang Y, Chen G. Noncoding RNA-mediated molecular bases of chemotherapy resistance in hepatocellular carcinoma. Cancer Cell Int 2022; 22:249. [PMID: 35945536 PMCID: PMC9361533 DOI: 10.1186/s12935-022-02643-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
Despite the significant progress in decreasing the occurrence and mortality of hepatocellular carcinoma (HCC), it remains a public health issue worldwide on the basis of its late presentation and tumor recurrence. To date, apart from surgical interventions, such as surgical resection, liver transplantation and locoregional ablation, current standard antitumor protocols include conventional cytotoxic chemotherapy. However, due to the high chemoresistance nature, most current therapeutic agents show dismal outcomes for this refractory malignancy, leading to disease relapse. Nevertheless, the molecular mechanisms involved in chemotherapy resistance remain systematically ambiguous. Herein, HCC is hierarchically characterized by the formation of primitive cancer stem cells (CSCs), progression of epithelial-mesenchymal transition (EMT), unbalanced autophagy, delivery of extracellular vesicles (EVs), escape of immune surveillance, disruption of ferroptosis, alteration of the tumor microenvironment and multidrug resistance-related signaling pathways that mediate the multiplicity and complexity of chemoresistance. Of note, anecdotal evidence has corroborated that noncoding RNAs (ncRNAs) extensively participate in the critical physiological processes mentioned above. Therefore, understanding the detailed regulatory bases that underlie ncRNA-mediated chemoresistance is expected to yield novel insights into HCC treatment. In the present review, a comprehensive summary of the latest progress in the investigation of chemotherapy resistance concerning ncRNAs will be elucidated to promote tailored individual treatment for HCC patients.
Collapse
Affiliation(s)
- Qikuan He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Pengyi Guo
- Department of Cardiothoracic Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, 315199, Zhejiang, China
| | - Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Haitao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jinhuan Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
79
|
Feng MY, Chan LL, Chan SL. Drug Treatment for Advanced Hepatocellular Carcinoma: First-Line and Beyond. Curr Oncol 2022; 29:5489-5507. [PMID: 36005172 PMCID: PMC9406660 DOI: 10.3390/curroncol29080434] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has high mortality. The option of systemic therapy has increased significantly over the past five years. Sorafenib was the first multikinase inhibitor, introduced in 2007, as a treatment option for HCC, and it was the only effective systemic treatment for more than ten years. It was not until 2017 that several breakthroughs were made in the development of systemic strategies. Lenvatinib, another multikinase inhibitor, stood out successfully after sorafenib, and has been applied to clinical use in the first-line setting. Other multikinase inhibitors such as regorafenib, ramucirumab and cabozantinib, were approved in quick succession as second-line therapies. Concurrently, immune checkpoint inhibitors (ICIs) have readily become established treatments for many solid tumors, including HCC. The most studied ICIs to date, target programmed cell death-1 (PD-1), its ligand PD-L1, and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). These ICIs have demonstrated efficacy in treating advanced HCC. More recently, combination of bevacizumab and atezolizumab (ICI targeting PD-L1) was approved as the gold-standard first-line therapy. Combination of ICIs with nivolumab and ipilimumab was also approved in the second-line setting for those who failed sorafenib. At the moment, numerous clinical trials in advanced HCC are underway, which will bring continuous change to the management, and increase the survival, for patients with advanced HCC. Our review article: (1) summarizes United States Food and Drug Administration (US FDA) approved systemic therapies in advanced HCC, (2) reports the evidence of currently approved treatments, (3) discusses potential drugs/drug combinations being currently tested in phase III clinical trials, and (4) proposes possible future directions in drug development for advanced HCC.
Collapse
Affiliation(s)
- Maple Ye Feng
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Landon L. Chan
- Department of Oncology, Princess Margaret Hospital, Hong Kong, China
| | - Stephen Lam Chan
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
80
|
Treatment of Metastatic Melanoma with a Combination of Immunotherapies and Molecularly Targeted Therapies. Cancers (Basel) 2022; 14:cancers14153779. [PMID: 35954441 PMCID: PMC9367420 DOI: 10.3390/cancers14153779] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Immunotherapies and molecularly targeted therapies have drastically changed the therapeutic approach for unresectable advanced or metastatic melanoma. The majority of melanoma patients have benefitted from these therapies; however, some patients acquire resistance to them. Novel combinations of immunotherapies and molecularly targeted therapies may be more efficient in treating these patients. In this review, we discuss various combination therapies under pre-clinical and clinical development which can reduce toxicity, enhance efficacy, and prevent recurrences in patients with metastatic melanoma. Abstract Melanoma possesses invasive metastatic growth patterns and is one of the most aggressive types of skin cancer. In 2021, it is estimated that 7180 deaths were attributed to melanoma in the United States alone. Once melanoma metastasizes, traditional therapies are no longer effective. Instead, immunotherapies, such as ipilimumab, pembrolizumab, and nivolumab, are the treatment options for malignant melanoma. Several biomarkers involved in tumorigenesis have been identified as potential targets for molecularly targeted melanoma therapy, such as tyrosine kinase inhibitors (TKIs). Unfortunately, melanoma quickly acquires resistance to these molecularly targeted therapies. To bypass resistance, combination treatment with immunotherapies and single or multiple TKIs have been employed and have been shown to improve the prognosis of melanoma patients compared to monotherapy. This review discusses several combination therapies that target melanoma biomarkers, such as BRAF, MEK, RAS, c-KIT, VEGFR, c-MET and PI3K. Several of these regimens are already FDA-approved for treating metastatic melanoma, while others are still in clinical trials. Continued research into the causes of resistance and factors influencing the efficacy of these combination treatments, such as specific mutations in oncogenic proteins, may further improve the effectiveness of combination therapies, providing a better prognosis for melanoma patients.
Collapse
|
81
|
Abstract
The human liver is a complex organ made up of multiple specialized cell types that carry out key physiological functions. An incomplete understanding of liver biology limits our ability to develop therapeutics to prevent chronic liver diseases, liver cancers, and death as a result of organ failure. Recently, single-cell modalities have expanded our understanding of the cellular phenotypic heterogeneity and intercellular cross-talk in liver health and disease. This review summarizes these findings and looks forward to highlighting new avenues for the application of single-cell genomics to unravel unknown pathogenic pathways and disease mechanisms for the development of new therapeutics targeting liver pathology. As these technologies mature, their integration into clinical data analysis will aid in patient stratification and in developing treatment plans for patients suffering from liver disease.
Collapse
Affiliation(s)
- Jawairia Atif
- Ajmera Transplant Centre, Schwartz Reisman Liver Research Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
| | - Cornelia Thoeni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Gary D. Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ian D. McGilvray
- Ajmera Transplant Centre, Schwartz Reisman Liver Research Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sonya A. MacParland
- Ajmera Transplant Centre, Schwartz Reisman Liver Research Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
82
|
Baci D, Cekani E, Imperatori A, Ribatti D, Mortara L. Host-Related Factors as Targetable Drivers of Immunotherapy Response in Non-Small Cell Lung Cancer Patients. Front Immunol 2022; 13:914890. [PMID: 35874749 PMCID: PMC9298844 DOI: 10.3389/fimmu.2022.914890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite some significant therapeutic breakthroughs leading to immunotherapy, a high percentage of patients with non-small cell lung cancer (NSCLC) do not respond to treatment on relapse, thus experiencing poor prognosis and survival. The unsatisfying results could be related to the features of the tumor immune microenvironment and the dynamic interactions between a tumor and immune infiltrate. Host-tumor interactions strongly influence the course of disease and response to therapies. Thus, targeting host-associated factors by restoring their physiologic functions altered by the presence of a tumor represents a new therapeutic approach to control tumor development and progression. In NSCLC, the immunogenic tumor balance is shifted negatively toward immunosuppression due to the release of inhibitory factors as well as the presence of immunosuppressive cells. Among these cells, there are myeloid-derived suppressor cells, regulatory T cells that can generate a tumor-permissive milieu by reprogramming the cells of the hosts such as tumor-associated macrophages, tumor-associated neutrophils, natural killer cells, dendritic cells, and mast cells that acquire tumor-supporting phenotypes and functions. This review highlights the current knowledge of the involvement of host-related factors, including innate and adaptive immunity in orchestrating the tumor cell fate and the primary resistance mechanisms to immunotherapy in NSCLC. Finally, we discuss combinational therapeutic strategies targeting different aspects of the tumor immune microenvironment (TIME) to prime the host response. Further research dissecting the characteristics and dynamic interactions within the interface host-tumor is necessary to improve a patient fitness immune response and provide answers regarding the immunotherapy efficacy, with the aim to develop more successful treatments for NSCLC.
Collapse
Affiliation(s)
- Denisa Baci
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy.,Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elona Cekani
- Medical Oncology Clinic, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Andrea Imperatori
- Center for Thoracic Surgery, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
83
|
Shen DD, Bi YP, Pang JR, Zhao LJ, Zhao LF, Gao Y, Wang B, Liu HM, Liu Y, Wang N, Zheng YC, Liu HM. Generation, secretion and degradation of cancer immunotherapy target PD-L1. Cell Mol Life Sci 2022; 79:413. [PMID: 35819633 PMCID: PMC11073444 DOI: 10.1007/s00018-022-04431-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy is a rapidly developing and effective method for the treatment of a variety of malignancies in recent years. As a significant immune checkpoint, programmed cell death 1 ligand 1 (PD-L1) and its receptor programmed cell death protein 1 (PD-1) play the most significant role in cancer immune escape and cancer immunotherapy. Though PD-L1 have become an important target for drug development and there have been various approved drugs and clinic trials targeting it, and various clinical response rate and adverse reactions prevent many patients from benefiting from it. In recent years, combination trials have become the main direction of PD-1/PD-L1 antibodies development. Here, we summarized PD-L1 biofunctions and key roles in various cancers along with the development of PD-L1 inhibitors. The regulators that are involved in controlling PD-L1 expression including post-translational modification, mRNA level regulation as well as degradation and exosome secretory pathway of PD-L1 were focused. This systematic summary may provide comprehensive understanding of different regulations on PD-L1 as well as a broad prospect for the search of the important regulator of PD-L1. The regulatory factors of PD-L1 can be potential targets for immunotherapy and increase strategies of immunotherapy in combination.
Collapse
Affiliation(s)
- Dan-Dan Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Ya-Ping Bi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Jing-Ru Pang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Li-Juan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Long-Fei Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Bo Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Hui-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Ying Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ning Wang
- The School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yi-Chao Zheng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
84
|
Huang M, Lin Y, Wang C, Deng L, Chen M, Assaraf YG, Chen ZS, Ye W, Zhang D. New insights into antiangiogenic therapy resistance in cancer: Mechanisms and therapeutic aspects. Drug Resist Updat 2022; 64:100849. [PMID: 35842983 DOI: 10.1016/j.drup.2022.100849] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiogenesis is a hallmark of cancer and is required for tumor growth and progression. Antiangiogenic therapy has been revolutionarily developing and was approved for the treatment of various types of cancer for nearly two decades, among which bevacizumab and sorafenib continue to be the two most frequently used antiangiogenic drugs. Although antiangiogenic therapy has brought substantial survival benefits to many cancer patients, resistance to antiangiogenic drugs frequently occurs during clinical treatment, leading to poor outcomes and treatment failure. Cumulative evidence has demonstrated that the intricate interplay among tumor cells, bone marrow-derived cells, and local stromal cells critically allows for tumor escape from antiangiogenic therapy. Currently, drug resistance has become the main challenge that hinders the therapeutic efficacies of antiangiogenic therapy. In this review, we describe and summarize the cellular and molecular mechanisms conferring tumor drug resistance to antiangiogenic therapy, which was predominantly associated with redundancy in angiogenic signaling molecules (e.g., VEGFs, GM-CSF, G-CSF, and IL17), alterations in biological processes of tumor cells (e.g., tumor invasiveness and metastasis, stemness, autophagy, metabolic reprogramming, vessel co-option, and vasculogenic mimicry), increased recruitment of bone marrow-derived cells (e.g., myeloid-derived suppressive cells, tumor-associated macrophages, and tumor-associated neutrophils), and changes in the biological functions and features of local stromal cells (e.g., pericytes, cancer-associated fibroblasts, and endothelial cells). We also review potential biomarkers to predict the response to antiangiogenic therapy in cancer patients, which mainly consist of imaging biomarkers, cellular and extracellular proteins, a certain type of bone marrow-derived cells, local stromal cell content (e.g., pericyte coverage) as well as serum or plasma biomarkers (e.g., non-coding RNAs). Finally, we highlight the recent advances in combination strategies with the aim of enhancing the response to antiangiogenic therapy in cancer patients and mouse models. This review introduces a comprehensive understanding of the mechanisms and biomarkers associated with the evasion of antiangiogenic therapy in cancer, providing an outlook for developing more effective approaches to promote the therapeutic efficacy of antiangiogenic therapy.
Collapse
Affiliation(s)
- Maohua Huang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Yuning Lin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Chenran Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Minfeng Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for Biotechnology, St. John's University, NY 11439, USA.
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
85
|
Correlation of CT Perfusion Parameters and Vascular Endothelial Growth Factor (VEGF) and Basic Fibroblast Growth Factor (BFGF) in Patients with Primary Liver Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4548922. [PMID: 35656468 PMCID: PMC9155910 DOI: 10.1155/2022/4548922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022]
Abstract
Objective To investigate the correlation of CT perfusion-related parameters with serum vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (BFGF) in patients with primary liver cancer. Methods A total of 100 patients with primary liver cancer who were treated in our hospital from June 2019 to June 2021 were selected as the observation group, and 90 patients with benign liver lesions during the same period were selected as the control group. The CT perfusion-related parameters (perfusion volume and perfusion index) and serum VEGF and BFGF levels were compared between the two groups. Pearson correlation was used to analyze the correlation between CT perfusion-related parameters and serum VEGF and BFGF levels. Results Compared to the control group, significantly higher HAP and lower HPP and TLP were observed in the observation group. The perfusion volume indexes of patients with different stages of liver cancer in the observation group were statistically different (P < 0.05). Compared to the control group, the observation group witnessed significantly higher HAPI and lower HPPI. There were statistically significant differences in the perfusion index of patients with different stages of primary liver cancer in the observation group (P < 0.05). The serum VEGF and BFGF levels in the observation group were significantly higher than those in the control group, and the serum VEGF and BFGF levels in patients with different stages of primary liver cancer in the observation group were statistically different (P < 0.05). Pearson correlation analysis showed that HAP and HAPI were positively correlated with VEGF and BFGF (r = 0.986, P ≤ 0.001; r = 0.983, P ≤ 0.001), and HPP, TLP, and HPPI were negatively correlated with VEGF and BFGF (r = −0.992, P ≤ 0.001; r = -0.993, P ≤ 0.001; r = −0.995, P ≤ 0.001). Conclusion CT perfusion-related parameters and serum VEGF and BFGF levels in patients with primary liver cancer are abnormally expressed, and there is a strong correlation between the two, which might aid clinical diagnosis and treatment.
Collapse
|
86
|
Zhao LP, Hu JH, Hu D, Wang HJ, Huang CG, Luo RH, Zhou ZH, Huang XY, Xie T, Lou JS. Hyperprogression, a challenge of PD-1/PD-L1 inhibitors treatments: potential mechanisms and coping strategies. Biomed Pharmacother 2022; 150:112949. [PMID: 35447545 DOI: 10.1016/j.biopha.2022.112949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
Immunotherapy is now a mainstay in cancer treatments. Programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) immune checkpoint inhibitor (ICI) therapies have opened up a new venue of advanced cancer immunotherapy. However, hyperprogressive disease (HPD) induced by PD-1/PD-L1 inhibitors caused a significant decrease in the overall survival (OS) of the patients, which compromise the efficacy of PD-1/PD-L1 inhibitors. Therefore, HPD has become an urgent issue to be addressed in the clinical uses of PD-1/PD-L1 inhibitors. The mechanisms of HPD remain unclear, and possible predictive factors of HPD are not well understood. In this review, we summarized the potential mechanisms of HPD and coping strategies that can effectively reduce the occurrence and development of HPD.
Collapse
Affiliation(s)
- Li-Ping Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chang-Gang Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ru-Hua Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
87
|
Bejjani AC, Finn RS. Hepatocellular Carcinoma: Pick the Winner-Tyrosine Kinase Inhibitor Versus Immuno-oncology Agent-Based Combinations. J Clin Oncol 2022; 40:2763-2773. [PMID: 35649192 DOI: 10.1200/jco.21.02605] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The treatment landscape for advanced hepatocellular carcinoma has changed dramatically over the past 4 years. We now have numerous options for patients in frontline, second-line, and beyond. The most significant impact has been the introduction of immunotherapy into our treatment paradigms. We now have regimens that induce consistent double-digit objective response rates and markedly improve overall survival (OS) with favorable side effect profiles. The combination of atezolizumab and bevacizumab has demonstrated that the combination of targeting programmed death-ligand 1 and the vascular endothelial growth factor axis can improve outcomes versus sorafenib in the IMBrave150 study. Results from the COSMIC-312 study evaluating the multikinase vascular endothelial growth factor receptor, hepatocyte growth factor receptor, and AXL tyrosine kinase receptor inhibitor cabozantinib in combination with atezolizumab improved progression-free survival versus sorafenib, but at this time, there is no improvement in OS and response rates were lower than expected. Additional data with similar combinations are awaited on the basis of encouraging early-phase data. In addition, the combination of cytotoxic T-lymphocyte-associated protein 4 and programmed cell death-1/programmed death-ligand 1 targeting is yielding similar promising early results, and the phase III HIMALAYA study met its primary end points of improving OS versus sorafenib for durvalumab plus tremelimumab and demonstrated noninferiority for single-agent durvalumab as well. However, this combination did not improve progression-free survival and objective response rates with this combination did not seem significantly different from that with single-agent durvalumab. Although there are still knowledge gaps in this rapidly changing landscape, we will address some of the important questions relevant to making therapeutic decisions in the management of advanced hepatocellular carcinoma in the modern era on the basis of our current knowledge of the safety and efficacy of these evolving regimens. The goal is to provide clinicians with the knowledge needed to optimize outcomes for their patients.
Collapse
Affiliation(s)
- Anthony C Bejjani
- Hematology-Oncology Division, Department of Medicine, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA
| | - Richard S Finn
- Division of Hematology/Oncology, Department of Medicine, Geffen School of Medicine at UCLA, Santa Monica, CA
| |
Collapse
|
88
|
Rizzo A, Ricci AD. Predictors of response for hepatocellular carcinoma immunotherapy: is there anything on the horizon? EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2022. [DOI: 10.1080/23808993.2022.2075724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello,” I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Angela Dalia Ricci
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
89
|
Kudo M. Combination Immunotherapy with Anti-PD-1/PD-L1 Antibody plus Anti-VEGF Antibody May Promote Cytotoxic T Lymphocyte Infiltration in Hepatocellular Carcinoma, Including in the Noninflamed Subclass. Liver Cancer 2022; 11:185-191. [PMID: 35949296 PMCID: PMC9218634 DOI: 10.1159/000524977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
|
90
|
Wang Y, Zheng XD, Zhu GQ, Li N, Zhou CW, Yang C, Zeng MS. Crosstalk Between Metabolism and Immune Activity Reveals Four Subtypes With Therapeutic Implications in Clear Cell Renal Cell Carcinoma. Front Immunol 2022; 13:861328. [PMID: 35479084 PMCID: PMC9035905 DOI: 10.3389/fimmu.2022.861328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/22/2022] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by metabolic dysregulation and distinct immunological signatures. The interplay between metabolic and immune processes in the tumor microenvironment (TME) causes the complexity and heterogeneity of immunotherapy responses observed during ccRCC treatment. Herein, we initially identified two distinct metabolic subtypes (C1 and C2 subtypes) and immune subtypes (I1 and I2 subtypes) based on the occurrence of differentially expressed metabolism-related prognostic genes and immune-related components. Notably, we observed that immune regulators with upregulated expression actively participated in multiple metabolic pathways. Therefore, we further delineated four immunometabolism-based ccRCC subtypes (M1, M2, M3, and M4 subtypes) according to the results of the above classification. Generally, we found that high metabolic activity could suppress immune infiltration. Immunometabolism subtype classification was associated with immunotherapy response, with patients possessing the immune-inflamed, metabolic-desert subtype (M3 subtype) that benefits the most from immunotherapy. Moreover, differences in the shifts in the immunometabolism subtype after immunotherapy were observed in the responder and non-responder groups, with patients from the responder group transferring to subtypes with immune-inflamed characteristics and less active metabolic activity (M3 or M4 subtype). Immunometabolism subtypes could also serve as biomarkers for predicting immunotherapy response. To decipher the genomic and epigenomic features of the four subtypes, we analyzed multiomics data, including miRNA expression, DNA methylation status, copy number variations occurrence, and somatic mutation profiles. Patients with the M2 subtype possessed the highest VHL gene mutation rates and were more likely to be sensitive to sunitinib therapy. Moreover, we developed non-invasive radiomic models to reveal the status of immune activity and metabolism. In addition, we constructed a radiomic prognostic score (PRS) for predicting ccRCC survival based on the seven radiomic features. PRS was further demonstrated to be closely linked to immunometabolism subtype classification, immune score, and tumor mutation burden. The prognostic value of the PRS and the association of the PRS with immune activity and metabolism were validated in our cohort. Overall, our study established four immunometabolism subtypes, thereby revealing the crosstalk between immune and metabolic activities and providing new insights into personal therapy selection.
Collapse
Affiliation(s)
- Yi Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin-De Zheng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gui-Qi Zhu
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Na Li
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chang-Wu Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Meng-Su Zeng, ; Chun Yang,
| | - Meng-Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Meng-Su Zeng, ; Chun Yang,
| |
Collapse
|
91
|
Long Noncoding RNA Hotair Promotes the Progression and Immune Escape in Laryngeal Squamous Cell Carcinoma through MicroRNA-30a/GRP78/PD-L1 Axis. J Immunol Res 2022; 2022:5141426. [PMID: 35419461 PMCID: PMC9001128 DOI: 10.1155/2022/5141426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/29/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Homeobox (HOX) transcript antisense RNA (Hotair) is elevated in many cancers significantly. However, the oncogenic role of Hotair in human laryngeal squamous cell carcinoma (LSCC) is still unknown. Thus, we explored the expression profile of Hotair and its function in LSCC. We observed high expression levels of Hotair in six LSCC cell lines compared to the human nasopharyngeal epithelial cell line. Knockdown of Hotair inhibited proliferation and enhanced apoptosis of Tu212 and Hep-2 cell lines in vitro. Moreover, the overexpression of hsa-miR-30a-5p inhibited the expression of GRP78 and PD-L1, but Hotair overexpression in LSCC cells rescues both proteins. Furthermore, the impacts of hsa-miR-30a-5p upregulation on the apoptosis and proliferation of LSCC cells were rescued by overexpression of Hotair. Finally, we combined si-Hotair and a VEGF inhibitor to treat LSCC cells in vitro or in vivo and surprisingly observed a significant inhibition of LSCC growth. In summary, these results indicate that Hotair displays an oncogenic role in both malignancy and immune escape in LSCC related to hsa-miR-30a-5p/GRP78/PD-L1 signaling. Therefore, Hotair may be a potential target for treating LSCC.
Collapse
|
92
|
Rizzo A, Cusmai A, Gadaleta-Caldarola G, Palmiotti G. Which role for predictors of response to immune checkpoint inhibitors in hepatocellular carcinoma? Expert Rev Gastroenterol Hepatol 2022; 16:333-339. [PMID: 35403533 DOI: 10.1080/17474124.2022.2064273] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) remains a frequently diagnosed malignancy worldwide, still representing an important cause of cancer-related death. Recent years have seen the emergence of novel systemic treatments for HCC patients, including immune checkpoint inhibitors (ICIs). Nonetheless, several questions regarding HCC immunotherapy remain unanswered, especially in terms of biochemical predictors of response. AREAS COVERED In the current paper, we will discuss available evidence regarding predictive biomarkers of response to HCC immunotherapy. A literature search was conducted in January 2022 of Pubmed/Medline, Cochrane library, and Scopus databases. EXPERT OPINION The identification of predictive biomarkers represents an unmet need in HCC patients receiving ICIs. The HCC medical community is called to further efforts aimed to elucidate the effective role of PD-L1 expression, TMB, MSI, gut microbiota, and other emerging biomarkers.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico "Don Tonino Bello," I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Antonio Cusmai
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico "Don Tonino Bello," I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Gennaro Gadaleta-Caldarola
- Medical Oncology Unit, 'Mons. R. Dimiccoli' Hospital, Barletta (BT), Azienda Sanitaria Locale Barletta, 76121, Italy
| | - Gennaro Palmiotti
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico "Don Tonino Bello," I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy
| |
Collapse
|
93
|
Tumor Microenvironment of Hepatocellular Carcinoma: Challenges and Opportunities for New Treatment Options. Int J Mol Sci 2022; 23:ijms23073778. [PMID: 35409139 PMCID: PMC8998420 DOI: 10.3390/ijms23073778] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
The prevalence of liver cancer is constantly rising, with increasing incidence and mortality in Europe and the USA in recent decades. Among the different subtypes of liver cancers, hepatocellular carcinoma (HCC) is the most commonly diagnosed liver cancer. Besides advances in diagnosis and promising results of pre-clinical studies, HCC remains a highly lethal disease. In many cases, HCC is an effect of chronic liver inflammation, which leads to the formation of a complex tumor microenvironment (TME) composed of immune and stromal cells. The TME of HCC patients is a challenge for therapies, as it is involved in metastasis and the development of resistance. However, given that the TME is an intricate system of immune and stromal cells interacting with cancer cells, new immune-based therapies are being developed to target the TME of HCC. Therefore, understanding the complexity of the TME in HCC will provide new possibilities to design novel and more effective immunotherapeutics and combinatorial therapies to overcome resistance to treatment. In this review, we describe the role of inflammation during the development and progression of HCC by focusing on TME. We also describe the most recent therapeutic advances for HCC and possible combinatorial treatment options.
Collapse
|
94
|
Chan LL, Chan SL. Novel Perspectives in Immune Checkpoint Inhibitors and the Management of Non-Alcoholic Steatohepatitis-Related Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14061526. [PMID: 35326677 PMCID: PMC8946632 DOI: 10.3390/cancers14061526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors have revolutionised the systemic treatment of advanced hepatocellular carcinoma. Although phase III trials, testing single agent nivolumab and pembrolizumab, failed to meet their primary endpoints, the combination of atezolizumab and bevacizumab has demonstrated a remarkable objective response and unprecedented survival benefits, replacing sorafenib as the standard first-line treatment for advanced hepatocellular carcinoma. Despite these successes observed in immune checkpoint inhibitors in the management of advanced hepatocellular carcinoma, not all patients responded to treatment, which has led to the search of risk factors and biomarkers that could predict the response to immune checkpoint inhibitors. Recent translational studies have begun to shed light on the impact of an underlying liver disease, namely NASH, which might affect the response to immune checkpoint inhibitors. In addition, antidrug-antibody and gene expression assays have demonstrated promises in predicting the response to immune checkpoint inhibitors. In this article, we will provide an overview of the use of ICI in the management of advanced HCC, review the evidence that surrounds the recent controversy regarding NASH-HCC, and discuss potential biomarkers that predict the response to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Landon L. Chan
- Department of Oncology, Princess Margaret Hospital, Hong Kong, China;
| | - Stephen L. Chan
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-3505-2166
| |
Collapse
|
95
|
Yang S, Cai C, Wang H, Ma X, Shao A, Sheng J, Yu C. Drug delivery strategy in hepatocellular carcinoma therapy. Cell Commun Signal 2022; 20:26. [PMID: 35248060 PMCID: PMC8898478 DOI: 10.1186/s12964-021-00796-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
AbstractHepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, with high rates of recurrence and death. Surgical resection and ablation therapy have limited efficacy for patients with advanced HCC and poor liver function, so pharmacotherapy is the first-line option for those patients. Traditional antitumor drugs have the disadvantages of poor biological distribution and pharmacokinetics, poor target selectivity, high resistance, and high toxicity to nontargeted tissues. Recently, the development of nanotechnology has significantly improved drug delivery to tumor sites by changing the physical and biological characteristics of drugs and nanocarriers to improve their pharmacokinetics and biological distribution and to selectively accumulate cytotoxic agents at tumor sites. Here, we systematically review the tumor microenvironment of HCC and the recent application of nanotechnology in HCC.
Collapse
|
96
|
Li Q, Cao M, Yuan G, Cheng X, Zang M, Chen M, Hu X, Huang J, Li R, Guo Y, Ruan J, Chen J. Lenvatinib Plus Camrelizumab vs. Lenvatinib Monotherapy as First-Line Treatment for Unresectable Hepatocellular Carcinoma: A Multicenter Retrospective Cohort Study. Front Oncol 2022; 12:809709. [PMID: 35280760 PMCID: PMC8907842 DOI: 10.3389/fonc.2022.809709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Background Combining an antiangiogenic agent with an anti-PD-1 agent is a promising strategy for unresectable hepatocellular carcinoma (HCC). Aims To explore the effectiveness and tolerability of lenvatinib plus camrelizumab vs. lenvatinib monotherapy as a first-line treatment for unresectable HCC. Methods This multicenter, retrospective cohort study included patients with unresectable HCC treated with oral lenvatinib 8 mg daily and intravenous camrelizumab 200 mg every 3 weeks (L+C group) or lenvatinib 12 mg or 8 mg daily (L group) in four Chinese centers between September 2018 and February 2020. Tumor response was evaluated according to RECIST 1.1 and mRECIST. The outcomes included objective response rate (ORR), overall survival (OS), 1-year OS rate, progression-free survival (PFS), and safety. Results By March 31, 2021, 92 patients were finally included, with 48 and 44 in the L+C and L groups, respectively. ORR was significantly higher in the L+C group than in the L group (RECIST 1.1: 37.5% vs. 13.6%, P=0.009; mRECIST: 41.7% vs. 20.5%, P=0.029). Median OS and 95% confidence interval (CI) was 13.9 (13.3-18.3) months in the L group and not reached in the L+C group (P=0.015). The 1-year survival rate was 79.2% and 56.8% in the L+C and L groups, respectively. Median PFS was 10.3 (6.6-14.0) months and 7.5 (5.7-9.3) months in the L+C and L groups, respectively (P=0.0098). Combined therapy vs. monotherapy was independently associated with a prolonged OS (hazard ratio=0.380, 95% CI=: 0.196-0.739, P=0.004) and a prolonged PFS (hazard ratio=0.454, 95%CI=0.282-0.731, P=0.001). The safety profile was comparable between the two groups. The most common adverse event in the L+C and L groups was loss of appetite (41.7% vs. 40.9%, P=0.941). Three patients in the L+C group and two in the L group terminated treatment owing to adverse events. Conclusion First-line lenvatinib plus camrelizumab showed better effectiveness than lenvatinib alone in patients with unresectable HCC.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengran Cao
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Guosheng Yuan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Cheng
- Zengcheng Branch of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengya Zang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Chen
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyun Hu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Huang
- Zengcheng Branch of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yabing Guo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jinzhang Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
97
|
West HJ, McCleland M, Cappuzzo F, Reck M, Mok TS, Jotte RM, Nishio M, Kim E, Morris S, Zou W, Shames D, Das Thakur M, Shankar G, Socinski MA. Clinical efficacy of atezolizumab plus bevacizumab and chemotherapy in KRAS-mutated non-small cell lung cancer with STK11, KEAP1, or TP53 comutations: subgroup results from the phase III IMpower150 trial. J Immunother Cancer 2022; 10:jitc-2021-003027. [PMID: 35190375 PMCID: PMC8862451 DOI: 10.1136/jitc-2021-003027] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 01/09/2023] Open
Abstract
Background The efficacy of atezolizumab (A) and/or bevacizumab (B) with carboplatin/paclitaxel (CP) chemotherapy was explored in the phase III, randomized IMpower150 study in patients with non-squamous non-small cell lung cancer (NSCLC) according to KRAS mutations (mKRAS) and co-occurring STK11, KEAP1, or TP53 mutations. Methods Mutation status was determined by circulating tumor DNA next-generation sequencing. Overall survival (OS) and progression-free survival (PFS) were analyzed in a mutation-evaluable intention-to-treat population (MEP; n=920) and SP263 (programmed cell death ligand 1 (PD-L1)) biomarker-evaluable population (n=774). Results Within the mKRAS population (24.5% of MEP), ABCP showed numerical improvements vs BCP in median OS (19.8 vs 9.9 months; HR 0.50; 95% CI 0.34 to 0.72) and PFS (8.1 vs 5.8 months; HR 0.42; 95% CI 0.29 to 0.61)—greater than with ACP (OS: 11.7 vs 9.9 months; HR 0.63; 95% CI 0.43 to 0.91; PFS: 4.8 vs 5.8 months; HR 0.80; 95% CI 0.56 to 1.13) vs BCP. Across PD-L1 subgroups in mKRAS patients, OS and PFS were longer with ABCP vs BCP, but OS with ACP was similar to BCP in PD-L1-low and PD-L1-negative subgroups. Conversely, in KRAS-WT patients, OS was longer with ACP than with ABCP or BCP across PD-L1 subgroups. KRAS was frequently comutated with STK11, KEAP1, and TP53; these subgroups conferred different prognostic outcomes. Within the mKRAS population, STK11 and/or KEAP1 mutations were associated with inferior OS and PFS across treatments compared with STK11-WT and/or KEAP1-WT. In mKRAS patients with co-occurring mSTK11 and/or mKEAP1 (44.9%) or mTP53 (49.3%), survival was longer with ABCP than with ACP or BCP. Conclusions These analyses support previous findings of mutation of STK11 and/or KEAP1 as poor prognostic indicators. While clinical efficacy favored ABCP and ACP vs BCP in these mutational subgroups, survival benefits were greater in the mKRAS and KEAP1-WT and STK11-WT population vs mKRAS and mKEAP1 and mSTK11 population, suggesting both prognostic and predictive effects. Overall, these results suggest that atezolizumab combined with bevacizumab and chemotherapy is an efficacious first-line treatment in metastatic NSCLC subgroups with mKRAS and co-occurring STK11 and/or KEAP1 or TP53 mutations and/or high PD-L1 expression.
Collapse
Affiliation(s)
- Howard Jack West
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | | | - Federico Cappuzzo
- Oncology Department, Istituto Nazionale Tumori "Regina Elena", Rome, Italy
| | - Martin Reck
- Department of Thoracic Oncology, LungenClinic Airway Research Center North, German Center for Lung Research, Grosshansdorf, Germany
| | - Tony Sk Mok
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Robert M Jotte
- Department of Medical Oncology, Rocky Mountain Cancer Centers, Denver, Colorado, USA.,US Oncology, Houston, Texas, USA
| | - Makoto Nishio
- Thoracic Medical Oncology Department, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eugene Kim
- Genentech Inc, South San Francisco, California, USA
| | - Stefanie Morris
- Product Development Medical Affairs, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Wei Zou
- Genentech Inc, South San Francisco, California, USA
| | - David Shames
- Genentech Inc, South San Francisco, California, USA
| | | | | | - Mark A Socinski
- Thoracic Oncology, AdventHealth Cancer Institute, Orlando, Florida, USA
| |
Collapse
|
98
|
Modulation of the tumour microenvironment in hepatocellular carcinoma by tyrosine kinase inhibitors: from modulation to combination therapy targeting the microenvironment. Cancer Cell Int 2022; 22:73. [PMID: 35148789 PMCID: PMC8840552 DOI: 10.1186/s12935-021-02435-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide. Tyrosine kinase inhibitors (TKIs) remain the backbone of systematic therapy for advanced hepatocellular carcinoma. Sorafenib and lenvatinib are currently approved as first-line therapeutic drugs, and regorafenib and cabozantinib are applied as second-line treatments. With inhibition of angiogenesis as the main target, TKIs exert a profound effect on the tumour microenvironment (TME). The TME is a complex mixture of cellular and noncellular components surrounding the tumour mass, and is associated with tumour progression partially through the epithelial-mesenchymal transition. Specifically, the TME of HCC is characterized by profound extracellular matrix remodelling and an immunosuppressive microenvironment. The purpose of this review is to provide a summary of TME remodelling mediated by four Food and Drug Administration approved TKIs in HCC and thus summarize the rationale and potential targets for combination therapy. The modulatory effect of TKIs on the TME of HCC was reported to enhance the antitumour effect of TKIs through pyroptosis of macrophages and subsequent natural killer cell activation, T cell activation, regulatory T cell reduction in HCC. Meanwhile, TKIs also induce drug resistance via M2 polarization and accumulation, recruitment of tumour-associated neutrophils, and induction of the epithelial-mesenchymal transition. In conclusion, the effect of TKIs on TME can enhance its antitumour effect, but might also partially contribute to the drug resistance that hinders the progression of TKIs as treatment for HCC. Additionally, the effect of TKIs also provides the rationale for combination therapy, including combining TKIs with immune checkpoint inhibitors, to facilitate increased drug efficacy of TKIs.
Collapse
|
99
|
Kampoli K, Foukas PG, Ntavatzikos A, Arkadopoulos N, Koumarianou A. Interrogating the interplay of angiogenesis and immunity in metastatic colorectal cancer. World J Methodol 2022; 12:43-53. [PMID: 35117981 PMCID: PMC8790311 DOI: 10.5662/wjm.v12.i1.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/17/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Colon cancer is the third most common malignancy and the fifth most frequent cause of death from neoplastic disease worldwide. At the time of diagnosis, more than 20% of patients already have metastatic disease. In the last 20 years, the natural course of the disease has changed due to major changes in the management of metastatic disease such as the advent of novel surgical and local therapy approaches as well as the introduction of novel chemotherapy drugs and targeted agents such as anti-epidermal growth factor receptor, anti-BRAF and antiangiogenics. Angiogenesis is a complex biological process of new vessel formation from existing ones and is an integral component of tumor progression supporting cancer cells to grow, proliferate and metastasize. Many molecules are involved in this proangiogenic process, such as vascular endothelial growth factor and its receptors on endothelial cells. A well-standardized methodology that is applied to assess angiogenesis in the tumor microenvironment is microvascular density by using immunohistochemistry with antibodies against endothelial CD31, CD34 and CD105 antigens. Even smaller molecules, such as the microRNAs, which are small non-coding RNAs, are being studied for their usefulness as surrogate biomarkers of angiogenesis and prognosis. In this review, we will discuss recent advances regarding the investigation of angiogenesis, the crosstalk between elements of the immune microenvironment and angiogenesis and how a disorganized tumor vessel network affects the trafficking of CD8+ T cells in the tumor bed. Furthermore, we will present recent data from clinical trials that combine antiangiogenic therapies with immune checkpoint inhibitors in colorectal cancer.
Collapse
Affiliation(s)
- Katerina Kampoli
- Hematology Oncology Unit, The Fourth Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari 12462, Athens, Greece
| | - Periklis G Foukas
- The Second Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari 12462, Athens, Greece
| | - Anastasios Ntavatzikos
- Hematology Oncology Unit, The Fourth Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari 12462, Athens, Greece
| | - Nikolaos Arkadopoulos
- The Fourth Surgical Clinic, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari 12462, Athens, Greece
| | - Anna Koumarianou
- Hematology Oncology Unit, The Fourth Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari 12462, Athens, Greece
| |
Collapse
|
100
|
Vogt-Koyanagi-Harada syndrome-like uveitis after nivolumab administration as a treatment for ovarian cancer. Doc Ophthalmol 2022; 144:153-162. [PMID: 34997406 DOI: 10.1007/s10633-021-09862-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE To report a case of Vogt-Koyanagi-Harada (VKH) syndrome-like posterior uveitis after nivolumab administration to treat an ovarian cancer with an electrophysiological finding. A 61-year-old woman with ovarian cancer (stage 3A) and salpingo-oophorectomy surgery history visited the clinic complaining of blurred vision in both eyes. She had been enrolled a clinical trial using nivolumab in patients with ovarian cancer. She received four cycles of nivolumab administration and experienced blurred vision one week before the initial visit. There was no remarkable finding in the anterior segment and the vitreous body. Multiple subretinal fluid accumulations and serous retinal detachment were identified on the posterior pole. Subretinal fluid with choroidal folding was noted in optical coherence tomography, and multiple leakage points were also observed in wide-field fundus fluorescein angiography. Therefore, intravenous high-dose steroid pulse therapy was applied under the diagnosis of VKH syndrome-like posterior uveitis induced by an immunotherapy agent. After steroid therapy, the subretinal fluid was absorbed completely, and the patient's visual acuity was recovered to the normal range. The amplitudes in the multifocal electroretinogram were also restored after the treatment. CONCLUSION Nivolumab is a human IgG4 monoclonal antibody and an immune checkpoint inhibitor. It is associated with the upregulation of T-cell activity by interfering with the interaction between the programmed death-1 (PD-1) receptor and the PD-ligand. Targeted therapy using immunotherapy agents has been widely used for malignant melanoma, lung cancer, renal cell carcinoma, and other cancers. However, immunotherapy agents such as nivolumab can induce autoimmune-related adverse events including uveitis. This report suggests that VKH syndrome-like posterior uveitis could be induced by nivolumab administration for an ovarian cancer treatment, which was resolved by steroid pulse therapy.
Collapse
|