51
|
Mohamed TM, Youssef MAM, Bakry AA, El-Keiy MM. Alzheimer's disease improved through the activity of mitochondrial chain complexes and their gene expression in rats by boswellic acid. Metab Brain Dis 2021; 36:255-264. [PMID: 33159653 DOI: 10.1007/s11011-020-00639-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
The foremost neurodegenerative disease is Alzheimer's (AD), which is characterized as a gradual decrease in memory, cognitive function, and also personal changes occurred. This study aims to assess the role of boswellic bioactive component in control Alzheimer's disease through enhancing mitochondrial electron transport chain complexes in the rat model. Rats were divided into five equal groups: the control group (G1), boswellic acid control group (G2), AD disease group (G3), boswellic acid -pre-treated group (G4) and boswellic acid-treated group (G5). At the end of the experiment, blood glucose level, tau protein, different neurochemicals parameters (dopamine, acetylcholine), L-malondialdehyde (MDA) levels, and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities was determined. Also, GLUT2 and mitochondrial electron transport chain complexes were evaluated. As a result, an increase in hippocampus glucose, tau protein expression, MDA and GLUT2 in the AD group (G3) compared to control groups (G1 and G2) has been recorded. These parameters were declined after pre (G4) and treated (G5) by boswellic acid. The neurochemicals, antioxidants parameters, four mitochondrial chain complexes activities and their gene expression in the hippocampus of the AD group were decreased compared to the control groups (G1 and G2). In contrast, pre and treated groups by boswellic acid (G4 and G5, respectively) have shown an increase in antioxidants parameters, and the activities of four mitochondrial complexes, with the best improvement in the pre-treated group (G4), then treated group (G5). In conclusion; the boswellic acid improved the antioxidant and mitochondrial complexes in Alzheimer's disease.
Collapse
Affiliation(s)
- Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | | | - Azza A Bakry
- Food Technology Research Institute, Agricultural Research Centre, Giza, Egypt
| | - Mai M El-Keiy
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
52
|
Wu C, Liu J, Ma J, Yan Q, Jiang Z. Neoagarotetraose extends the lifespan of Caenorhabditis elegans through AMPK mediated signaling pathways and activation of autophagy. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
53
|
Ahn MY, Yoon HJ, Hwang JS, Jin JM, Park KK. The role of noble bumblebee (Bombus terrestris) queen glycosaminoglycan in aged rat and gene expression profile based on DNA microarray. Toxicol Res 2021; 37:85-98. [PMID: 33489860 DOI: 10.1007/s43188-020-00065-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023] Open
Abstract
Glycosaminoglycans (GAGs) have been used to diminish the deleterious effects associated with aging by preventing the destruction of cartilage, bone, discs, and skin. The objective of this study was to evaluate the anti-aging effect of a newly prepared GAG derived from bumblebee (Bombus terrestris) queen (BTQG, 10 mg/kg). Gryllus bimaculatus (Gb, cricket) GAG (GbG, 10 mg/kg) or glucosamine sulfate (GS) was used as a positive control. N-glycans derived from BTQG contained hexose polymers including Hex4HexNAc3Pen1, Hex9, and Hex5HexNAc3dHex2 as the primary components. The GAGs were intraperitoneally administered to 14-month-old aged rats for 1 month. BTQG reduced the serum levels of free fatty acid, alkaline phosphatase (ALP), glutamate pyruvate transaminase (GPT), creatinine, and blood urea nitrogen (BUN), showing hepato-and renal-protective effects with anti-lipidemic activities comparable to GS. The changes of gene expression profile of liver tissue by cDNA microarray showed the simultaneous upregulation of 36 genes in the BTQG-treated rat group compared to the control group, including secretogranin II (Scg2), Activator (AP)-1-regulated protein-related reactive oxygen species (ROS) DNA damage repair, metallothionein 1a, and alpha-2 macroglobulin. The BTQG-treated group also showed 417 downregulated genes, including vimentin, moesin, and mitochondrial carbonic anhydrase. Insect glycosaminoglycan from the bumblebee (B. terrestris) queen may help decelerate the aging stage by ameliorating the aging effects on circulation, and liver and kidney function.
Collapse
Affiliation(s)
- Mi Young Ahn
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), 166 Nongsaengmyung-Ro, Iseo-Myun, Wanju-Gun, 55365 Korea
| | - Hyung Joo Yoon
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), 166 Nongsaengmyung-Ro, Iseo-Myun, Wanju-Gun, 55365 Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), 166 Nongsaengmyung-Ro, Iseo-Myun, Wanju-Gun, 55365 Korea
| | - Jang Mi Jin
- Korean Basic Science Institute, Ochang, 28119 Korea
| | | |
Collapse
|
54
|
Satitsri S, Muanprasat C. Chitin and Chitosan Derivatives as Biomaterial Resources for Biological and Biomedical Applications. Molecules 2020; 25:molecules25245961. [PMID: 33339290 PMCID: PMC7766609 DOI: 10.3390/molecules25245961] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Abstract
Chitin is a long-chain polymer of N-acetyl-glucosamine, which is regularly found in the exoskeleton of arthropods including insects, shellfish and the cell wall of fungi. It has been known that chitin can be used for biological and biomedical applications, especially as a biomaterial for tissue repairing, encapsulating drug for drug delivery. However, chitin has been postulated as an inducer of proinflammatory cytokines and certain diseases including asthma. Likewise, chitosan, a long-chain polymer of N-acetyl-glucosamine and d-glucosamine derived from chitin deacetylation, and chitosan oligosaccharide, a short chain polymer, have been known for their potential therapeutic effects, including anti-inflammatory, antioxidant, antidiarrheal, and anti-Alzheimer effects. This review summarizes potential utilization and limitation of chitin, chitosan and chitosan oligosaccharide in a variety of diseases. Furthermore, future direction of research and development of chitin, chitosan, and chitosan oligosaccharide for biomedical applications is discussed.
Collapse
|
55
|
Vieira TF, Corrêa RCG, Peralta RA, Peralta-Muniz-Moreira RF, Bracht A, Peralta RM. An Overview of Structural Aspects and Health Beneficial Effects of Antioxidant Oligosaccharides. Curr Pharm Des 2020; 26:1759-1777. [PMID: 32039673 DOI: 10.2174/1381612824666180517120642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Non-digestible oligosaccharides are versatile sources of chemical diversity, well known for their prebiotic actions, found naturally in plants or produced by chemical or enzymatic synthesis or by hydrolysis of polysaccharides. Compared to polyphenols or even polysaccharides, the antioxidant potential of oligosaccharides is still unexplored. The aim of the present work was to provide an up-to-date, broad and critical contribution on the topic of antioxidant oligosaccharides. METHODS The search was performed by crossing the words oligosaccharides and antioxidant. Whenever possible, attempts at establishing correlations between chemical structure and antioxidant activity were undertaken. RESULTS The most representative in vitro and in vivo studies were compiled in two tables. Chitooligosaccharides and xylooligosaccharides and their derivatives were the most studied up to now. The antioxidant activities of oligosaccharides depend on the degree of polymerization and the method used for depolymerization. Other factors influencing the antioxidant strength are solubility, monosaccharide composition, the type of glycosidic linkages of the side chains, molecular weight, reducing sugar content, the presence of phenolic groups such as ferulic acid, and the presence of uronic acid, among others. Modification of the antioxidant capacity of oligosaccharides has been achieved by adding diverse organic groups to their structures, thus increasing also the spectrum of potentially useful molecules. CONCLUSION A great amount of high-quality evidence has been accumulating during the last decade in support of a meaningful antioxidant activity of oligosaccharides and derivatives. Ingestion of antioxidant oligosaccharides can be visualized as beneficial to human and animal health.
Collapse
Affiliation(s)
- Tatiane F Vieira
- Program Post-graduated of Food Science, Universidade Estadual de Maringa, Maringa, PR, Brazil
| | - Rúbia C G Corrêa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.,Program of Master in Science, Technology and Food Safety, Cesumar Institute of Science, Technology and Innovation (ICETI), Centro Universitário de Maringá, Maringá, Paraná, Brazil
| | - Rosely A Peralta
- Department of Chemistry, Universidade Federal de Santa Catarina, SC, Brazil
| | | | - Adelar Bracht
- Program Post-graduated of Food Science, Universidade Estadual de Maringa, Maringa, PR, Brazil.,Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Rosane M Peralta
- Program Post-graduated of Food Science, Universidade Estadual de Maringa, Maringa, PR, Brazil.,Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| |
Collapse
|
56
|
Lan R, Wei L, Chang Q, Wu S, Zhihui Z. Effects of dietary chitosan oligosaccharides on oxidative stress and inflammation response in liver and spleen of yellow-feather broilers exposed to high ambient temperature. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1850215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ruixia Lan
- Department of Animal Science, College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, P.R. China
| | - Linlin Wei
- Department of Animal Science, College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, P.R. China
| | - Qingqing Chang
- Department of Animal Science, College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, P.R. China
| | - Shengnan Wu
- Department of Animal Science, College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, P.R. China
| | - Zhao Zhihui
- Department of Animal Science, College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, P.R. China
| |
Collapse
|
57
|
Wang Y, Cui X, Lin Q, Cai J, Tang L, Liang Y. Active Peptide KF-8 from Rice Bran Attenuates Oxidative Stress in a Mouse Model of Aging Induced by d-Galactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12271-12283. [PMID: 32942847 DOI: 10.1021/acs.jafc.0c04358] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study investigated the effects of a physiologically active peptide derived from rice bran (KF-8) on oxidative stress in d-galactose (d-gal)-induced aging mice and the underlying molecular mechanisms. The aging model was developed by subcutaneously injecting Institute of Cancer Research mice with 250 mg/kg d-gal daily for 12 weeks and simultaneously treating them with 30 mg/kg KF-8. The relative expression levels of Nrf2 and NF-κB in the liver were determined by the western blot. The regulation of Nrf2 and NF-κBp65 by KF-8 was further validated in NIH/3T3 cells. Compared with the control mice, the aging mice had significantly decreased body weights as well as superoxide dismutase and GSH-Px levels (p < 0.05); however, they had increased serum reactive oxygen species and malondialdehyde and 8-hydroxydeoxyguanosine levels accompanied by aortic and brain injuries. They also had elevated RAGE, TLR4, IκB, Bax, and caspase-8 expressions and NF-κB/p65 phosphorylation but reduced BcL-2 expression in the liver. Moreover, in vitro experiments demonstrated that the pretreatment of H2O2-treated NIH/3T3 cells with KF-8 significantly mitigated the NF-κB signaling and attenuated the Nrf2 nuclear transport (both p < 0.05). In conclusion, KF-8 treatment inhibited aging-induced oxidative stress-related organ injury in mice by attenuating NF-κB/p38 signaling and preserving Nrf2 activity.
Collapse
Affiliation(s)
- Yuqian Wang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiaoji Cui
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Jie Cai
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Liuhuan Tang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
58
|
Cheng X, Zheng J, Lin A, Xia H, Zhang Z, Gao Q, Lv W, Liu H. A review: Roles of carbohydrates in human diseases through regulation of imbalanced intestinal microbiota. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
59
|
Yi Z, Luo X, Zhao L. Research Advances in Chitosan Oligosaccharides: From Multiple Biological Activities to Clinical Applications. Curr Med Chem 2020; 27:5037-5055. [PMID: 31309881 DOI: 10.2174/0929867326666190712180147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/12/2019] [Accepted: 06/16/2019] [Indexed: 12/14/2022]
Abstract
Chitosan oligosaccharides (COS), hydrolysed products of chitosan, are low-molecular weight polymers with a positive charge and good biocompatibility. COS have recently been reported to possess various biological activities, including hypoglycaemic, hypolipidaemic, antioxidantantioxidant, immune regulation, anti-inflammatory, antitumour, antibacterial, and tissue engineering activities, exhibiting extensive application prospects. Currently, the biological processes and mechanisms of COS are attractive topics of study, ranging from the genetic, molecular and protein levels. This article reviews the recent discoveries about COS, especially in metabolic regulation, immune function and tissue repair, providing important insights into their multiple biological activities, medical benefits, and therapeutic mechanisms.
Collapse
Affiliation(s)
- Zhen Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao Luo
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
60
|
Tian Z, Lei Z, Chen Y, Chen C, Zhang R, Chen X, Bi J, Sun H. Inhibition Effectiveness of Laser-Cleaned Nanostructured Aluminum Alloys to Sulfate-reducing Bacteria Based on Superwetting and Ultraslippery Surfaces. ACS APPLIED BIO MATERIALS 2020; 3:6131-6144. [PMID: 35021746 DOI: 10.1021/acsabm.0c00714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper is a continued study on laser cleaning removal of marine microbiofouling from Al alloy surfaces. According to our previous study, it is noted that the antifouling functions of the generated laser-cleaned metallic surfaces must be highlighted. In this work, the inhibition effectiveness of the laser-cleaned Al alloy surfaces was evaluated using a type of vital marine microorganism, sulfate-reducing bacteria (SRB) Desulfovibrio desulfuricans subsp. desulfuricans, in a dynamic bacterial solution. Before the immersion tests, the laser-cleaned surfaces with nanostructures were chemically processed into superhydrophilic, superhydrophobic, and ultraslippery surfaces. SRB attachment behaviors as well as inhibition mechanisms of the three surfaces to the SRB settlement were characterized and revealed. The SRB adhering to the above surfaces presented three different morphologies, i.e., broken, dented, and plump cells. Superhydrophilic surfaces unexpectedly showed a not inferior antibacterial ability. A piercing effect of the nanostructures caused nontoxic mechanical damage to the cell membranes. The antiadhesion property of superhydrophobic solid-air hybrid surfaces was unreliable due to the loss of air bubbles. The morphology of the last surviving SRB cells left on the ultraslippery surfaces was basically plump. The stable repellent function of the surfaces was responsible for the vigorous prevention of the adhesion of the SRB. The research results offer an insight into the antibacterial/antiadhesion properties of the laser-cleaned surfaces and a practical value for the periodic service of marine high-end equipment.
Collapse
Affiliation(s)
- Ze Tian
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Zhenglong Lei
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Yanbin Chen
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Ruochen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Xi Chen
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Jiang Bi
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Haoran Sun
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
61
|
Antioxidant activity of selenium-enriched Chrysomyia megacephala (Fabricius) larvae powder and its impact on intestinal microflora in D-galactose induced aging mice. BMC Complement Med Ther 2020; 20:264. [PMID: 32854685 PMCID: PMC7453719 DOI: 10.1186/s12906-020-03058-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022] Open
Abstract
Background The purpose of this study was to assess the antioxidative activity of selenium-enriched Chrysomyia Megacephala (Fabricius) (C. megacephala) larvae powder (SCML) and its impact on the diversity and structure of intestinal microflora in a mouse model of D-galactose (D-gal)-induced oxidative damage. Methods Sixty male ICR mice were equally randomized to a normal control (NC) group, a model group, a positive group, a low-dose SCML (L-SCML) group, a mid-dose SCML (M-SCML) group, and a high-dose SCML (H-SCML) group. Animals in NC and model groups received water, animals in the positive group received 40 mg/Kg vitamin E (VE), and those in the three SCML groups received SCML which include 300, 1000 and 3000 μg/Kg selenium (Se) respectively. An oxidative damage model induced by subcutaneous injection of D-gal for 6 weeks via the neck was established. Serum oxidative stress levels and tissue appearance were evaluated. Tissues oxidative stress levels were detected by commercially available kit. Nuclear erythroid 2-related factor (Nrf2) and gut microbiota were determined by western blot and high throughput sequencing 16S rRNA gene respectively. Results An oxidative damage model was established successfully as represented by a significant elevation of malondialdehyde (MDA) and protein carbonylation, and inhibition of the antioxidants including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC) and glutathione (GSH). It was found that oxidative damage and histological alterations were attenuated, the expression of Kelch-like ECH-associated protein (Keap1) was decreased, and the expression of Nrf2 and hemeoxygenase-1 (HO-1) was increased after SCML treatment. In addition, significant changes were observed in the gut microbiota, including Proteobacteria and the ratio of Bacteroidetes to Firmicutes at the phylum level, as well as Helicobacter, Clostridium and Lactobacillus at the genus level. Conclusion SCML exerted an antioxidative effect in vivo, probably by increasing the antioxidant activity and reducing the production of oxidation products via the Nrf2 signaling pathway. SCML could also redress the intestinal flora imbalance induced by oxidative stress. All these findings suggest that SCML could serve as a functional food and natural drug additive to protect the human body against oxidative damage.
Collapse
|
62
|
Chang Q, Lu Y, Lan R. Chitosan oligosaccharide as an effective feed additive to maintain growth performance, meat quality, muscle glycolytic metabolism, and oxidative status in yellow-feather broilers under heat stress. Poult Sci 2020; 99:4824-4831. [PMID: 32988519 PMCID: PMC7598338 DOI: 10.1016/j.psj.2020.06.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/17/2020] [Accepted: 06/08/2020] [Indexed: 11/09/2022] Open
Abstract
This study investigated the effects of dietary chitosan oligosaccharides (COS) supplementation on growth performance; corticosterone, growth hormone, and insulin-like growth factor-1 concentration; relative organ weight; liver function; meat quality; muscle glycolytic metabolism; and oxidative status in yellow-feather broilers under heat stress. A total of 108 35-day-old Chinese yellow-feather broilers (BW, 470.31 ± 13.15 g) was randomly allocated to 3 dietary treatments as follow: control group, basal diet and raised under normal temperature (24°C); HS group, basal diet and raised under cycle heat stress (34°C from 10:00 to 18:00 and 24°C for the rest time); and HSC group, basal diet with 200 mg/kg COS supplementation and raised under cycle heat stress. Each treatment had 6 replication pens and 6 broilers per pen. Results indicated that heat stress decreased ADG, ADFI, gain:feed ratio, the relative weight of thymus, bursa of Fabricius, pancreas, proventriculus, gizzard, and liver, growth hormone concentration, pH24h, muscle glycogen content, muscle superoxide dismutase and glutathione peroxidase activity, as well as increased corticosterone, alanine aminotransferase and aspartate aminotransferase level, cooking loss, muscle lactate and malondialdehyde content. Compared with the HS group, broilers in the HSC group had higher ADG, the relative weight of thymus, bursa of Fabricius, and liver, growth hormone concentration, pH24h, muscle glycogen content, muscle superoxide dismutase and glutathione peroxidase activity, and lower serum corticosterone, alanine aminotransferase and aspartate aminotransferase level, cooking loss, and muscle lactate and malondialdehyde content. In conclusion, the results suggested that COS could be used as an effective feed additive to maintain growth performance, liver function, meat quality, muscle glycolytic metabolism, and oxidative status of yellow-feather broilers under heat stress. The improved meat quality is possibly through reducing muscle glycolysis metabolism and improving muscle oxidative status by dietary COS supplementation in broilers under heat stress.
Collapse
Affiliation(s)
- Qingqing Chang
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong P.R. China
| | - Yiqi Lu
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong P.R. China
| | - Ruixia Lan
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong P.R. China.
| |
Collapse
|
63
|
Zhao J, Cao Q, Xing M, Xiao H, Cheng Z, Song S, Ji A. Advances in the Study of Marine Products with Lipid-Lowering Properties. Mar Drugs 2020; 18:E390. [PMID: 32726987 PMCID: PMC7459887 DOI: 10.3390/md18080390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
With twice the number of cancer's deaths, cardiovascular diseases have become the leading cause of death worldwide. Atherosclerosis, in particular, is a progressive, chronic inflammatory cardiovascular disease caused by persistent damage to blood vessels due to elevated cholesterol levels and hyperlipidemia. This condition is characterized by an increase in serum cholesterol, triglycerides, and low-density lipoprotein, and a decrease in high-density lipoprotein. Although existing therapies with hypolipidemic effects can improve the living standards of patients with cardiovascular diseases, the drugs currently used in clinical practice have certain side effects, which insists on the need for the development of new types of drugs with lipid-lowering effects. Some marine-derived substances have proven hypolipidemic activities with fewer side effects and stand as a good alternative for drug development. Recently, there have been thousands of studies on substances with lipid-lowering properties of marine origin, and some are already implemented in clinical practice. Here, we summarize the active components of marine-derived products having a hypolipidemic effect. These active constituents according to their source are divided into algal, animal, plant and microbial and contribute to the development and utilization of marine medicinal products with hypolipidemic effects.
Collapse
Affiliation(s)
- Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Zeyu Cheng
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
64
|
Anestopoulos I, Kiousi DE, Klavaris A, Galanis A, Salek K, Euston SR, Pappa A, Panayiotidis MI. Surface Active Agents and Their Health-Promoting Properties: Molecules of Multifunctional Significance. Pharmaceutics 2020; 12:E688. [PMID: 32708243 PMCID: PMC7407150 DOI: 10.3390/pharmaceutics12070688] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Surface active agents (SAAs) are molecules with the capacity to adsorb to solid surfaces and/or fluid interfaces, a property that allows them to act as multifunctional ingredients (e.g., wetting and dispersion agents, emulsifiers, foaming and anti-foaming agents, lubricants, etc.) in a widerange of the consumer products of various industrial sectors (e.g., pharmaceuticals, cosmetics, personal care, detergents, food, etc.). Given their widespread utilization, there is a continuously growing interest to explore their role in consumer products (relevant to promoting human health) and how such information can be utilized in order to synthesize better chemical derivatives. In this review article, weaimed to provide updated information on synthetic and biological (biosurfactants) SAAs and their health-promoting properties (e.g., anti-microbial, anti-oxidant, anti-viral, anti-inflammatory, anti-cancer and anti-aging) in an attempt to better define some of the underlying mechanism(s) by which they exert such properties.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.E.K.); (A.G.)
| | - Despoina Eugenia Kiousi
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.E.K.); (A.G.)
| | - Ariel Klavaris
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus;
| | - Alex Galanis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.E.K.); (A.G.)
| | - Karina Salek
- Institute of Mechanical, Process & Energy Engineering, Heriot Watt University, Edinburgh EH14 4AS, UK; (K.S.); (S.R.E.)
| | - Stephen R. Euston
- Institute of Mechanical, Process & Energy Engineering, Heriot Watt University, Edinburgh EH14 4AS, UK; (K.S.); (S.R.E.)
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.E.K.); (A.G.)
| | - Mihalis I. Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| |
Collapse
|
65
|
Wang Y, Xiong Y, Zhang A, Zhao N, Zhang J, Zhao D, Yu Z, Xu N, Yin Y, Luan X, Xiong Y. Oligosaccharide attenuates aging-related liver dysfunction by activating Nrf2 antioxidant signaling. Food Sci Nutr 2020; 8:3872-3881. [PMID: 32724648 PMCID: PMC7382186 DOI: 10.1002/fsn3.1681] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Chitosan oligosaccharide (COS) is the depolymerized product of chitosan possessing various biological activities and protective effects against inflammation and oxidative injury. The aim of the present study was to investigate the antioxidant effects of COS supplements on aging-related liver dysfunction. We found that COS treatment significantly attenuated elevated liver function biomarkers and oxidative stress biomarkers and decreased antioxidative enzyme activities in liver tissues in D-galactose (D-gal)-treated mice. Furthermore, COS treatment significantly upregulated the expression of Nrf2 and its downstream target genes HO-1, NQO1, and CAT. Moreover, in vitro experiments showed that COS treatment played a vital role in protecting H2O2-exposed L02 cells against oxidative stress by activating Nrf2 antioxidant signaling. These data indicate that COS could protect against D-gal-induced hepatic aging by activating Nrf2 antioxidant signaling, which may provide novel applications for the prevention and treatment of aging-related hepatic dysfunction.
Collapse
Affiliation(s)
- Yueming Wang
- Department of AnatomySchool of Basic MedicineBinzhou Medical UniversityYantaiChina
| | - Yanlei Xiong
- Department of PathologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Aiping Zhang
- Department of ImmunologySchool of Basic MedicineBinzhou Medical UniversityYantaiChina
| | - Nannan Zhao
- Department of ImmunologySchool of Basic MedicineBinzhou Medical UniversityYantaiChina
| | - Jiashen Zhang
- Department of AnatomySchool of Basic MedicineBinzhou Medical UniversityYantaiChina
| | - Dongmei Zhao
- Department of AnatomySchool of Basic MedicineBinzhou Medical UniversityYantaiChina
| | - Zhenhai Yu
- Department of AnatomySchool of Basic MedicineBinzhou Medical UniversityYantaiChina
| | - Ning Xu
- Department of AnatomySchool of Basic MedicineBinzhou Medical UniversityYantaiChina
| | - Yancun Yin
- Department of AnatomySchool of Basic MedicineBinzhou Medical UniversityYantaiChina
| | - Xiying Luan
- Department of ImmunologySchool of Basic MedicineBinzhou Medical UniversityYantaiChina
| | - Yanlian Xiong
- Department of AnatomySchool of Basic MedicineBinzhou Medical UniversityYantaiChina
| |
Collapse
|
66
|
Mao CC, Cai X. Nanomaterials and Aging. Curr Stem Cell Res Ther 2020; 16:57-65. [PMID: 32321409 DOI: 10.2174/1574888x15666200422103916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
As the proportion of the elderly population increases, more and more people suffer from aging-related diseases. Even if aging is inevitable, prolonging the time of healthy aging, delaying the progression of aging-related diseases, and the incidence of morbidity can greatly alleviate the pressure on individuals and society. Current research and exploration in the field of materials related to aging are expanding tremendously. Here, we present a summary of recent research in the field of nanomaterials relevant to aging. Some nanomaterials, such as silica nanomaterials (NMs) and carbon nanotubes, cause damage to the cells similar to aging processes. Other nanomaterials such as fullerenes and metalbased nanomaterials can protect the body from endogenous and exogenous harmful substances such as ROS by virtue of their excellent reducing properties. Another new type of nucleic acid nanomaterial, tetrahedral framework nucleic acids, works effectively against cell damage. This material selectively clears existing senescent cells in the tissue and thus prevents the development of the chronic inflammatory environment caused by senescent cells secreting senescence-associated secretory phenotype to the surroundings. We believe that nanomaterials have tremendous potential to advance the understanding and treatment of aging-related disorders, and today's research only represents the beginning stages.
Collapse
Affiliation(s)
- Chen-Chen Mao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
67
|
Chen X, Li D, Sun H, Wang W, Wu H, Kong W, Kong W. Relieving ferroptosis may partially reverse neurodegeneration of the auditory cortex. FEBS J 2020; 287:4747-4766. [PMID: 32112499 DOI: 10.1111/febs.15266] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/31/2019] [Accepted: 02/26/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Xi Chen
- Department of Otorhinolaryngology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Dan Li
- Department of Otorhinolaryngology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Hai‐Ying Sun
- Department of Otorhinolaryngology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Wen‐Wen Wang
- Department of Otorhinolaryngology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Han Wu
- Department of Otorhinolaryngology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Wen Kong
- Department of Endocrinology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Wei‐Jia Kong
- Department of Otorhinolaryngology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
68
|
Yang GX, Huang Y, Zheng LL, Zhang L, Su L, Wu YH, Li J, Zhou LC, Huang J, Tang Y, Wang R, Ma L. Design, synthesis and evaluation of diosgenin carbamate derivatives as multitarget anti-Alzheimer’s disease agents. Eur J Med Chem 2020; 187:111913. [DOI: 10.1016/j.ejmech.2019.111913] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
|
69
|
Li X, Gao J, Yu Z, Jiang W, Sun W, Yu C, Sun J, Wang C, Chen J, Jing S, Li H. Regulatory Effect of Anwulignan on the Immune Function Through Its Antioxidation and Anti-Apoptosis in D-Galactose-Induced Aging Mice. Clin Interv Aging 2020; 15:97-110. [PMID: 32099340 PMCID: PMC6996228 DOI: 10.2147/cia.s237601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/01/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Aging is a spontaneous and inevitable phenomenon of biology, which can lead to the gradual deterioration of tissues and organs. One of the age-related deterioration processes is immunosenescence, which leads to changes in the function of immune systems, including immune cells and associated cytokines. A proper modulation of immune responses can improve the age-related immunosenescence process and then reach healthy aging. Schisandra sphenanthera, a traditional Chinese medicine, has been used as both a medicine and a nutritional supplement for thousands of years. Anwulignan, a monomer compound of Schisandra sphenanthera lignans, has been reported to possess an immunomodulatory effect. Therefore, this study was designed to further explore whether Anwulignan could also modulate the immune functions in aging model mice and the underlying mechanism. METHODS D-galactose (D-gal) is often used as an inducer of immunosenescence in animals. In this study, a mice model was created by subcutaneous D-gal (220 mg kg-1) for successive 42 days. Then, the blood and spleen tissue samples were taken for the analysis and observation of cytokine levels, immunoglobulin levels, leukocyte numbers, and the phagocytic activity of macrophages, as well as the histological changes, the proliferation ability of lymphocytes, and the biochemical parameters in the spleen tissue. RESULTS Anwulignan significantly increased the serum levels of IL-2, IL-4, IFN-γ, lgG, lgM, and lgA, decreased the content of TNF-α and IL-6 in the aging mice, and increased the blood leukocyte number, the phagocytic activity, the lymphocyte proliferation, and the spleen index in vitro. Anwulignan also significantly increased the activities of SOD and GSH-Px, decreased the contents of MDA and 8-OHdG in the spleen tissue, up-regulated the expressions of Nrf2, HO-1, and Bcl2, down-regulated the expressions of Keap1, Caspase-3, and Bax in the spleen cells, and reduced the apoptosis of spleen lymphocytes. CONCLUSION Anwulignan can restore the immune function that is declined in D-gal-induced aging mice partly related to its antioxidant capacity by activating the Nrf2/ARE pathway and downstream enzymes, as well as its anti-apoptotic effect by regulating Caspase-3 and the ratio of Bcl2 to Bax in the spleen.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Jiaqi Gao
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Zepeng Yu
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Weihai Jiang
- Affiliated Hospital of Beihua University, Jilin, Jilin132011, People’s Republic of China
| | - Wei Sun
- Affiliated Hospital of Beihua University, Jilin, Jilin132011, People’s Republic of China
| | - Chunyan Yu
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Jinghui Sun
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Shu Jing
- Affiliated Hospital of Beihua University, Jilin, Jilin132011, People’s Republic of China
| | - He Li
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| |
Collapse
|
70
|
Yuan F, Gao Z, Liu W, Li H, Zhang Y, Feng Y, Song X, Wang W, Zhang J, Huang C, Jia L. Characterization, Antioxidant, Anti-Aging and Organ Protective Effects of Sulfated Polysaccharides from Flammulina velutipes. Molecules 2019; 24:molecules24193517. [PMID: 31569331 PMCID: PMC6803911 DOI: 10.3390/molecules24193517] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023] Open
Abstract
As an irreversible and complex degenerative physiological process, the treatment for aging seems strategically necessary, and polysaccharides play important roles against aging owing to their abundant bioactivities. In this paper, the antioxidant and anti-aging activities of Flammulina velutipes polysaccharides (FPS) and its sulfated FPS (SFPS) on d-galactose-induced aging mice were investigated. The in vitro antioxidant activities demonstrated that SFPS had strong reducing power and superior scavenging effects on 2, 2-diphenylpicrylhydrazyl (DPPH), hydroxyl radicals and the chelating activities of Fe2+. The in vivo animal experiments manifested that the SFPS showed superior antioxidant and protective abilities against the d-galactose-induced aging by increasing the antioxidant enzyme activities, decreasing lipid peroxidation, improving the inflammatory response and ameliorating the anile condition of mice. Furthermore, the structural analysis of SFPS was investigated through FT-IR, NMR, and HPLC analysis, and the results indicated that SFPS was a homogeneous heteropolysaccharide with a weight-average molecular weight of 2.81 × 103 Da. Furthermore, SFPS has also changed in characteristic functional groups and monosaccharide composition compared to FPS. These results suggested that sulfated modification could enhance the anti-oxidation, anti-aging and protective activities of F. velutipes polysaccharides, which may provide references for the development of functional foods and natural medicines.
Collapse
Affiliation(s)
- Fangfang Yuan
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Science, Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture, Jinan 250100, China.
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Zheng Gao
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Wenbo Liu
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Huaping Li
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Yiwen Zhang
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Yanbo Feng
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Xinling Song
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Wenshuai Wang
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Jianjun Zhang
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Chunyan Huang
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Science, Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture, Jinan 250100, China.
| | - Le Jia
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| |
Collapse
|
71
|
D-Galactose-induced accelerated aging model: an overview. Biogerontology 2019; 20:763-782. [PMID: 31538262 DOI: 10.1007/s10522-019-09837-y] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
To facilitate the process of aging healthily and prevent age-related health problems, efforts to properly understand aging mechanisms and develop effective and affordable anti-aging interventions are deemed necessary. Systemic administration of D-galactose has been established to artificially induce senescence in vitro and in vivo as well as for anti-aging therapeutic interventions studies. The aim of this article is to comprehensively discuss the use of D-galactose to generate a model of accelerated aging and its possible underlying mechanisms involved in different tissues/organs.
Collapse
|
72
|
Dong C, Liu S, Cheng X, Wang Q, Jiang S, Wang G. Design, synthesis, and preliminary biological evaluation of catalpol propionates as antiaging drugs. BMC Chem 2019; 13:109. [PMID: 31453572 PMCID: PMC6702743 DOI: 10.1186/s13065-019-0626-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
In this paper, catalpol propionylated analogs (CPs) were designed as drug ligands of glutathione peroxidase (GSH-Px) based on molecular docking (MD) using Surflex-Docking method. The calculated total scores (Total_score) and C log P of CPs are higher than that of catalpol, which show that the CPs maybe served as potential lead compounds as new antiaging drugs. Furthermore, the maximum Total_score of isomers in one group CPs is often not that the molecule with minimum energy structure. These show that the CPs docking with GSH-Px maybe not only affected by the molecular energy, but also affected by their conformations. The CPs were synthesized by esterification of catalpol with propionic anhydride using pyridine as solvent and acid banding agent, DMAP as catalyst, reaction at specific temperature. The synthesized perpropionylated catalpol analog (CP-6) was determined by NMR, FT-IR, HRMS, and HPLC, and the synthesis process was optimized by means of orthogonal experimental design. Subsequently, CP-6 was screened for cells viability by MTT assay, the results show that the CP-6 can effectively reversed STZ-induced reduction of cells viability, and CP-6 has potential antiaging activity.
Collapse
Affiliation(s)
- Chunhong Dong
- 1Henan University of Chinese Medicine, Zhengzhou, 450046 Henan China
| | - Shuanglin Liu
- 1Henan University of Chinese Medicine, Zhengzhou, 450046 Henan China
| | - Xiaodong Cheng
- 2Department of Applied Chemistry, Zhengzhou University of Light Industry, Zhengzhou, 450002 Henan China
| | - Qiang Wang
- 3High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou, 450002 Henan China
| | - Shiqing Jiang
- 1Henan University of Chinese Medicine, Zhengzhou, 450046 Henan China
| | - Guoqing Wang
- 2Department of Applied Chemistry, Zhengzhou University of Light Industry, Zhengzhou, 450002 Henan China
| |
Collapse
|
73
|
Liu J, Guo D, Fan Y, Sun J, Cheng J, Shi Y. Experimental study on the antioxidant activity of Malus hupehensis (Pamp.) Rehd extracts in vitro and in vivo. J Cell Biochem 2019; 120:11878-11889. [PMID: 30784120 DOI: 10.1002/jcb.28469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/17/2018] [Indexed: 01/24/2023]
Abstract
Extracts of Malus hupehensis (Pamp.) Rehder, containing flavonoids with good antioxidant and antiliver injury properties, possess various biological activities. The aim of this study was to explore the antioxidant activity of these extracts in vitro and in vivo. The antioxidant activity of the extracts was studied using scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, and superoxide free radicals and by inhibiting mushroom tyrosinase activity in vitro. An in vivo antioxidant experiment was performed using a rat-aging model. Aging was induced in rats with D-galactose through treating them at doses of extracts about 150, 300, and 600 mg·kg-1 ·day-1 . The Malus hupehensis extracts showed high antioxidant activity; the IC50 values of DPPH radicals, ABTS radicals, superoxide radicals, and mushroom tyrosinase inhibition were 19.00 μg/mL, 303.94 μg/mL, and 3.71 mg/mL, and 1.16 mg/mL, respectively. Our experiments showed that the extracts significantly increased the activity of antioxidant enzymes in the serum and tissue homogenate in vivo, and that the effects were positively correlated with the dose, compared with the activity observed in controls. Histopathological observation also confirmed that the extracts had protective effects after oxidative injury in rat tissues. In conclusion, the extracts of M. hupehensis showed effective antioxidant activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Ji Liu
- Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dongyan Guo
- Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yu Fan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Sun
- Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiangxue Cheng
- Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yajun Shi
- Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
74
|
Chen W, Tan H, Liu Q, Zheng X, Zhang H, Liu Y, Xu L. A Review: The Bioactivities and Pharmacological Applications of Phellinus linteus. Molecules 2019; 24:molecules24101888. [PMID: 31100959 PMCID: PMC6572527 DOI: 10.3390/molecules24101888] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Phellinus linteus is a popular medicinal mushroom that is widely used in China, Korea, Japan, and other Asian countries. P. linteus comprises various bioactive components, such as polysaccharides, triterpenoids, phenylpropanoids, and furans, and has proven to be an effective therapeutic agent in traditional Chinese medicine for the treatment and the prevention of various diseases. A number of studies have reported that P. linteus possesses many biological activities useful for pharmacological applications, including anticancer, anti-inflammatory, immunomodulatory, antioxidative, and antifungal activities, as well as antidiabetic, hepatoprotective, and neuroprotective effects. This review article briefly presents the recent progress made in understanding the bioactive components, biological activities, pharmacological applications, safety, and prospects of P. linteus, and provides helpful references and promising directions for further studies of P. linteus.
Collapse
Affiliation(s)
- Wenhua Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Huiying Tan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Qian Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xiaohua Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Hua Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yuhong Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Lingchuan Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
75
|
Yuan X, Zheng J, Jiao S, Cheng G, Feng C, Du Y, Liu H. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydr Polym 2019; 220:60-70. [PMID: 31196551 DOI: 10.1016/j.carbpol.2019.05.050] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Chitosan oligosaccharides (COS) are the degraded products of chitin or chitosan prepared by chemical or enzymatic hydrolysis. As compared to chitosan, COS not only exhibit some specific physicochemical properties such as excellent water solubility, biodegradability and biocompatibility, but also have a variety of functionally biological activities including anti-inflammation, anti-bacteria, immunomodulation, neuroprotection and so on. This review aims to summarize the preparation and structural characterization methods of COS, and will discuss the application of COS or their derivatives to human health, animal husbandry and agricultural production. COS have been demonstrated to prevent the occurrence of human health-related diseases, enhance the resistance to diseases of livestock and poultry, and improve the growth and quality of crops in plant cultivation. Overall, COS have presented a broad developmental potential and application prospect in the healthy field that deserves further exploration.
Collapse
Affiliation(s)
- Xubing Yuan
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Junping Zheng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Gong Cheng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Cui Feng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Hongtao Liu
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
76
|
Effects of sulforaphane on D-galactose-induced liver aging in rats: Role of keap-1/nrf-2 pathway. Eur J Pharmacol 2019; 855:40-49. [PMID: 31039346 DOI: 10.1016/j.ejphar.2019.04.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
Aging; a biological phenomenon characterized by progressive decline in cellular functions, is considered as a major risk factor of various liver diseases that plays as an adverse prognostic role, thus increasing mortality rate. However, diet is the main environmental factor that has a major impact on the aging process whereas; sulforaphane (SFN), an isothiocyanate organosulfur compound in cruciferous vegetables, has been reported with myriad biological effects. In the present study, SFN antiaging properties were evaluated on D-galactose (D-Gal)-induced liver aging in rats. For this purpose, forty adult male Wistar rats were divided into five groups. All animals, except the normal control, were intraperitoneally injected with D-Gal (300 mg/kg/day for 5 days a week) for six consecutive weeks. In the hepatoprotective groups, animals received oral SFN (0.5, 1.0 and 2.0 mg/kg) for 6 weeks concurrently with D-GAL. SFN administration improved liver biomarkers through decreasing serum levels of AST, ALT, total and direct bilirubin when compared to D-Gal-aging group. SFN significantly increased hepatic GSH level as well as catalase and glutathione-S-transferase activities while counteracted the elevation in hepatic oxidative stress markers; MDA, NO and protein carbonyl in aged rats. SFN abrogated the dysregulation in hepatic Keap-1, Nrf-2 and HO-1and limited the elevation of TNF-α and TGF-β concentrations in aging liver. Histopathologically, SFN decreased the intensity of hepatic fibrous proliferation in D-Gal-induced aging. In conclusion, SFN has shown hepatic anti-aging potential through promoting the antioxidant machinery via regulating Keap-1, Nrf-2 and HO-1 and antioxidant enzyme activities as well as ameliorating oxidative stress, hampering the inflammatory cytokines; TNF-ɑ and TGF-β, and limiting hepatic fibrosis in a dose dependent manner.
Collapse
|
77
|
Wang K, Su Y, Liang Y, Song Y, Wang L. Oral DhHP-6 for the Treatment of Type 2 Diabetes Mellitus. Int J Mol Sci 2019; 20:ijms20061517. [PMID: 30917579 PMCID: PMC6470840 DOI: 10.3390/ijms20061517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with pancreatic β-cell dysfunction which can be induced by oxidative stress. Deuterohemin-βAla-His-Thr-Val-Glu-Lys (DhHP-6) is a microperoxidase mimetic that can scavenge reactive oxygen species (ROS) in vivo. In our previous studies, we demonstrated an increased stability of linear peptides upon their covalent attachment to porphyrins. In this study, we assessed the utility of DhHP-6 as an oral anti-diabetic drug in vitro and in vivo. DhHP-6 showed high resistance to proteolytic degradation in vitro and in vivo. The degraded DhHP-6 product in gastrointestinal (GI) fluid retained the enzymatic activity of DhHP-6, but displayed a higher permeability coefficient. DhHP-6 protected against the cell damage induced by H2O2 and promoted insulin secretion in INS-1 cells. In the T2DM model, DhHP-6 reduced blood glucose levels and facilitated the recovery of blood lipid disorders. DhHP-6 also mitigated both insulin resistance and glucose tolerance. Most importantly, DhHP-6 promoted the recovery of damaged pancreas islets. These findings suggest that DhHP-6 in physiological environments has high stability against enzymatic degradation and maintains enzymatic activity. As DhHP-6 lowered the fasting blood glucose levels of T2DM mice, it thus represents a promising candidate for oral administration and clinical therapy.
Collapse
Affiliation(s)
- Kai Wang
- School of life Sciences, Jilin University, Changchun 130012, China.
| | - Yu Su
- School of life Sciences, Jilin University, Changchun 130012, China.
| | - Yuting Liang
- School of life Sciences, Jilin University, Changchun 130012, China.
| | - Yanhui Song
- School of life Sciences, Jilin University, Changchun 130012, China.
| | - Liping Wang
- School of life Sciences, Jilin University, Changchun 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin University, Changchun 130012, China.
| |
Collapse
|
78
|
Suo H, Liu S, Li J, Ding Y, Wang H, Zhang Y, Zhao X, Song JL. Lactobacillus paracasei ssp. paracasei YBJ01 reduced d-galactose–induced oxidation in male Kuming mice. J Dairy Sci 2018; 101:10664-10674. [DOI: 10.3168/jds.2018-14758] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
|