51
|
Zheng M, Pi X, Li H, Cheng S, Su Y, Zhang Y, Man C, Jiang Y. Ganoderma spp. polysaccharides are potential prebiotics: a review. Crit Rev Food Sci Nutr 2022; 64:909-927. [PMID: 35980144 DOI: 10.1080/10408398.2022.2110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The gut microbiota (GM) is a complex ecosystem that is closely linked to host health. Ganoderma spp. polysaccharides (GPs), a major bioactive component of the fungal genus Ganoderma, can modulate the GM, exhibiting various health effects and prebiotic potential. This review comprehensively concluded the structural features and extraction method of GPs. The mechanism of GPs for anti-obesity, anti-diabetes, anti-inflammatory, and anti-cancer were further evaluated. The simulated gastrointestinal digestion of GPs and the utilization mechanism of host microorganisms were discussed. It was found that the physicochemical properties and biological activities of GPs depend on their structural characteristics (molecular weight, monosaccharide composition, glycosidic bonds, etc.). Their extraction method also affects the structure and bioactivities of polysaccharides. GPs supplementation could increase the relative abundance of beneficial bacteria (e.g. Bacteroides, Parabacteroides, Akkermansia, and Bifidobacterium), while reducing that of pathogenic bacteria (e.g. Aerococcus, Ruminococcus), thus promoting health. Moreover, GPs are resistant to digestion in the stomach and small intestine but are digested in the large intestine. Therefore, GPs can be considered as potential prebiotics. However, further studies should investigate how GPs as prebiotics regulate GM and improve host health.
Collapse
Affiliation(s)
- Miao Zheng
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaowen Pi
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Hongxuan Li
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shasha Cheng
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yue Su
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yu Zhang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
52
|
Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther 2022; 7:216. [PMID: 35794109 PMCID: PMC9259665 DOI: 10.1038/s41392-022-01073-0] [Citation(s) in RCA: 294] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
The centenary of insulin discovery represents an important opportunity to transform diabetes from a fatal diagnosis into a medically manageable chronic condition. Insulin is a key peptide hormone and mediates the systemic glucose metabolism in different tissues. Insulin resistance (IR) is a disordered biological response for insulin stimulation through the disruption of different molecular pathways in target tissues. Acquired conditions and genetic factors have been implicated in IR. Recent genetic and biochemical studies suggest that the dysregulated metabolic mediators released by adipose tissue including adipokines, cytokines, chemokines, excess lipids and toxic lipid metabolites promote IR in other tissues. IR is associated with several groups of abnormal syndromes that include obesity, diabetes, metabolic dysfunction-associated fatty liver disease (MAFLD), cardiovascular disease, polycystic ovary syndrome (PCOS), and other abnormalities. Although no medication is specifically approved to treat IR, we summarized the lifestyle changes and pharmacological medications that have been used as efficient intervention to improve insulin sensitivity. Ultimately, the systematic discussion of complex mechanism will help to identify potential new targets and treat the closely associated metabolic syndrome of IR.
Collapse
Affiliation(s)
- Mengwei Li
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaowei Chi
- Development Center for Medical Science & Technology National Health Commission of the People's Republic of China, 100044, Beijing, China
| | - Ying Wang
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Wenwei Xie
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China.
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
53
|
Naseri K, Saadati S, Yari Z, Asbaghi O, Hezaveh ZS, Mafi D, Hoseinian P, Ashtary-Larky D, Hekmatdoost A, de Courten B. Beneficial effects of Probiotic and Synbiotic Supplementation on some Cardiovascular Risk Factors among Individuals with Prediabetes and Type 2 Diabetes Mellitus: A GRADE-assessed systematic review, meta-analysis, and meta-regression of randomized clinical trials. Pharmacol Res 2022; 182:106288. [PMID: 35680009 DOI: 10.1016/j.phrs.2022.106288] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022]
|
54
|
Chauhan A, Semwal DK, Semwal RB, Joshi SK, Adhana RK, Goswami MS. Modulation of gut microbiota with Ayurveda diet and lifestyle: A review on its possible way to treat type 2 diabetes. Ayu 2022; 43:35-44. [PMID: 37655174 PMCID: PMC10468021 DOI: 10.4103/ayu.ayu_7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/06/2021] [Accepted: 04/17/2023] [Indexed: 09/02/2023] Open
Abstract
Background The prevalence of type 2 diabetes (T2D) has increased substantially in the past few decades throughout the world. In India, the epidemic of diabetes continues to increase irrespective of area, status, and age. Despite various scientific societies involved in the treatment of diabetes, still, the burden of diabetes keeps growing. Aims The aim of this work is to explore the Ayurvedic concept of a personalized diet to modulate the gut microbiota for the treatment of T2D. Material and methods A thorough study of literature from online scientific databases including Web of Science, PubMed, Scopus, and Google Scholar as well as from classical texts of Ayurveda was done. A careful compilation was done to extract the valuable output of the personalized diet to modulate the gut microbiota. Results There are various diets used to control blood glucose levels, and their effects are also being studied on the transcriptome or epigenome despite 99.9% genomic similarity among human beings. However, microbiomes have only 10% similarity. Ayurvedic diet is given on the basis of Prakriti (body constitution), therefore, it is also called personalized diet. Conclusion The diets prescribed for T2D in Ayurveda are high in fibers, polyphenols, and complex carbohydrates which enrich butyrate-producing bacteria and decrease lipopolysaccharide-producing bacteria. Hence, there is a need to have a personalized diet to manage the glucose level by enriching beneficial gut microbiota. The approach of a personalized diet associated with gut microbiota can be helpful in maintaining blood sugar in T2D patients.
Collapse
Affiliation(s)
- Ashutosh Chauhan
- Department of Biotechnology, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Deepak Kumar Semwal
- Department of Phytochemistry, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Ruchi Badoni Semwal
- Department of Chemistry, VSKC Government Postgraduate College, Dakpathar, Dehradun, Uttarakhand, India
| | - Sunil Kumar Joshi
- Department of Shalya Tantra, Uttarakhand Ayurved University, Haridwar, Uttarakhand, India
| | - Rajesh Kumar Adhana
- Department of Agad Tantra, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Madhavi Sanjay Goswami
- Department of Rachna Sharir, Uttarakhand Ayurved University, Rishikul Campus, Haridwar, Uttarakhand, India
| |
Collapse
|
55
|
Turroni F, Rizzo SM, Ventura M, Bernasconi S. Cross-talk between the infant/maternal gut microbiota and the endocrine system: a promising topic of research. MICROBIOME RESEARCH REPORTS 2022; 1:14. [PMID: 38045647 PMCID: PMC10688790 DOI: 10.20517/mrr.2021.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/05/2023]
Abstract
The infant gut microbiota is the set of microorganisms colonizing the baby's intestine. This complex ecosystem appears to be related to various physiological conditions of the host and it has also been shown to act as one of the most crucial determinants of infant's health. Furthermore, the mother's endocrine system, through its hormones, can have an effect on the composition of the newborn's gut microbiota. In this perspective, we summarize the recent state of the art on the intricate relationships involving the intestinal microbiota and the endocrine system of mother/baby to underline the need to study the molecular mechanisms that appear to be involved.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| | - Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| | | |
Collapse
|
56
|
Lee DPS, Peng A, Taniasuri F, Tan D, Kim JE. Impact of fiber-fortified food consumption on anthropometric measurements and cardiometabolic outcomes: A systematic review, meta-analyses, and meta-regressions of randomized controlled trials. Crit Rev Food Sci Nutr 2022; 63:8301-8319. [PMID: 35333681 DOI: 10.1080/10408398.2022.2053658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The consumption of processed and refined food lacking in fiber has led to global prevalence of obesity and cardiometabolic diseases. Fiber-fortification into these foods can yield potential health improvements to reduce disease risk. This meta-analyses aimed to evaluate how fiber-fortified food consumption changes body composition, blood pressure, blood lipid-lipoprotein panel, and glycemic-related markers. Searches were performed from 5 databases, with 31 randomized controlled trial eventually analyzed. Hedges' g values (95% confidence interval [CI]) attained from outcome change values were calculated using random-effects model. Fiber-fortified food significantly reduced body weight (-0.31 [-0.59, -0.03]), fat mass (-0.49 [-0.72, -0.26]), total cholesterol (-0.54 [-0.71, -0.36]), low-density lipoprotein cholesterol (-0.49 [-0.65, -0.33]), triglycerides (-0.24 [-0.36, -0.12]), fasting glucose (-0.30 [-0.49, -0.12]), and HbA1c (-0.44 [-0.74, -0.13]). Subgroup analysis differentiated soluble fiber as significantly reducing triglycerides and insulin while insoluble fiber significantly reduced body weight, BMI, and HbA1c. Greater outcome improvements were observed with solid/semi-solid food state than liquid state. Additionally, fiber fortification of <15 g/day induced more health outcome benefits compared to ≥15 g/day, although meta-regression found a dose-dependent improvement to waist circumference (p-value = 0.036). Findings from this study suggest that consuming food fortified with dietary fiber can improve anthropometric and cardiometabolic outcomes.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2053658.
Collapse
Affiliation(s)
- Delia Pei Shan Lee
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Aiwei Peng
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Fransisca Taniasuri
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Denise Tan
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
- Science and Technology Department, Nestlé R&D Center (Pte) Ltd, Singapore, Singapore
| | - Jung Eun Kim
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
57
|
Thouvenot K, Turpin T, Taïlé J, Clément K, Meilhac O, Gonthier MP. Links between Insulin Resistance and Periodontal Bacteria: Insights on Molecular Players and Therapeutic Potential of Polyphenols. Biomolecules 2022; 12:biom12030378. [PMID: 35327570 PMCID: PMC8945445 DOI: 10.3390/biom12030378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes is a metabolic disease mainly associated with insulin resistance during obesity and constitutes a major public health problem worldwide. A strong link has been established between type 2 diabetes and periodontitis, an infectious dental disease characterized by chronic inflammation and destruction of the tooth-supporting tissue or periodontium. However, the molecular mechanisms linking periodontal bacteria and insulin resistance remain poorly elucidated. This study aims to summarize the mechanisms possibly involved based on in vivo and in vitro studies and targets them for innovative therapies. Indeed, during periodontitis, inflammatory lesions of the periodontal tissue may allow periodontal bacteria to disseminate into the bloodstream and reach tissues, including adipose tissue and skeletal muscles that store glucose in response to insulin. Locally, periodontal bacteria and their components, such as lipopolysaccharides and gingipains, may deregulate inflammatory pathways, altering the production of pro-inflammatory cytokines/chemokines. Moreover, periodontal bacteria may promote ROS overproduction via downregulation of the enzymatic antioxidant defense system, leading to oxidative stress. Crosstalk between players of inflammation and oxidative stress contributes to disruption of the insulin signaling pathway and promotes insulin resistance. In parallel, periodontal bacteria alter glucose and lipid metabolism in the liver and deregulate insulin production by pancreatic β-cells, contributing to hyperglycemia. Interestingly, therapeutic management of periodontitis reduces systemic inflammation markers and ameliorates insulin sensitivity in type 2 diabetic patients. Of note, plant polyphenols exert anti-inflammatory and antioxidant activities as well as insulin-sensitizing and anti-bacterial actions. Thus, polyphenol-based therapies are of high interest for helping to counteract the deleterious effects of periodontal bacteria and improve insulin resistance.
Collapse
Affiliation(s)
- Katy Thouvenot
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Teva Turpin
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Janice Taïlé
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Karine Clément
- Nutrition and Obesity, Systemic Approaches (NutriOmics), INSERM, Sorbonne Université, 75013 Paris, France
| | - Olivier Meilhac
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Marie-Paule Gonthier
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
- Correspondence: ; Tel.: +33-262-693-92-08-55
| |
Collapse
|
58
|
Méndez-García LA, Bueno-Hernández N, Cid-Soto MA, De León KL, Mendoza-Martínez VM, Espinosa-Flores AJ, Carrero-Aguirre M, Esquivel-Velázquez M, León-Hernández M, Viurcos-Sanabria R, Ruíz-Barranco A, Cota-Arce JM, Álvarez-Lee A, De León-Nava MA, Meléndez G, Escobedo G. Ten-Week Sucralose Consumption Induces Gut Dysbiosis and Altered Glucose and Insulin Levels in Healthy Young Adults. Microorganisms 2022; 10:microorganisms10020434. [PMID: 35208888 PMCID: PMC8880058 DOI: 10.3390/microorganisms10020434] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Sucralose consumption alters microbiome and carbohydrate metabolism in mouse models. However, there are no conclusive studies in humans. Our goals were to examine the effect of sucralose consumption on the intestinal abundance of bacterial species belonging to Actinobacteria, Bacteroidetes, and Firmicutes and explore potential associations between microbiome profiles and glucose and insulin blood levels in healthy young adults. In this open-label clinical trial, volunteers randomly drank water, as a control (n = 20), or 48 mg sucralose (n = 20), every day for ten weeks. At the beginning and the end of the study, participants were subjected to an oral glucose tolerance test (OGTT) to measure serum glucose and insulin every 15 min for 3 h and provided fecal samples to assess gut microbiota using a quantitative polymerase chain reaction. Sucralose intake altered the abundance of Firmicutes without affecting Actinobacteria or Bacteroidetes. Two-way ANOVA revealed that volunteers drinking sucralose for ten weeks showed a 3-fold increase in Blautia coccoides and a 0.66-fold decrease in Lactobacillus acidophilus compared to the controls. Sucralose consumption increased serum insulin and the area under the glucose curve compared to water. Long-term sucralose ingestion induces gut dysbiosis associated with altered insulin and glucose levels during an OGTT.
Collapse
Affiliation(s)
- Lucía A. Méndez-García
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico, Mexico City 06720, Mexico; (L.A.M.-G.); (R.V.-S.)
| | - Nallely Bueno-Hernández
- Laboratory for Proteomics and Metabolomics, General Hospital of Mexico, Mexico City 06720, Mexico; (N.B.-H.); (K.L.D.L.); (V.M.M.-M.); (A.J.E.-F.); (M.C.-A.); (M.E.-V.); (M.L.-H.)
| | - Miguel A. Cid-Soto
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
| | - Karen L. De León
- Laboratory for Proteomics and Metabolomics, General Hospital of Mexico, Mexico City 06720, Mexico; (N.B.-H.); (K.L.D.L.); (V.M.M.-M.); (A.J.E.-F.); (M.C.-A.); (M.E.-V.); (M.L.-H.)
| | - Viridiana M. Mendoza-Martínez
- Laboratory for Proteomics and Metabolomics, General Hospital of Mexico, Mexico City 06720, Mexico; (N.B.-H.); (K.L.D.L.); (V.M.M.-M.); (A.J.E.-F.); (M.C.-A.); (M.E.-V.); (M.L.-H.)
| | - Aranza J. Espinosa-Flores
- Laboratory for Proteomics and Metabolomics, General Hospital of Mexico, Mexico City 06720, Mexico; (N.B.-H.); (K.L.D.L.); (V.M.M.-M.); (A.J.E.-F.); (M.C.-A.); (M.E.-V.); (M.L.-H.)
| | - Miguel Carrero-Aguirre
- Laboratory for Proteomics and Metabolomics, General Hospital of Mexico, Mexico City 06720, Mexico; (N.B.-H.); (K.L.D.L.); (V.M.M.-M.); (A.J.E.-F.); (M.C.-A.); (M.E.-V.); (M.L.-H.)
| | - Marcela Esquivel-Velázquez
- Laboratory for Proteomics and Metabolomics, General Hospital of Mexico, Mexico City 06720, Mexico; (N.B.-H.); (K.L.D.L.); (V.M.M.-M.); (A.J.E.-F.); (M.C.-A.); (M.E.-V.); (M.L.-H.)
| | - Mireya León-Hernández
- Laboratory for Proteomics and Metabolomics, General Hospital of Mexico, Mexico City 06720, Mexico; (N.B.-H.); (K.L.D.L.); (V.M.M.-M.); (A.J.E.-F.); (M.C.-A.); (M.E.-V.); (M.L.-H.)
| | - Rebeca Viurcos-Sanabria
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico, Mexico City 06720, Mexico; (L.A.M.-G.); (R.V.-S.)
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Julián M. Cota-Arce
- Department of Biomedical Innovation, Center for Scientific Research and Higher Education of Ensenada (CICESE), Baja California 22860, Mexico; (J.M.C.-A.); (A.Á.-L.); (M.A.D.L.-N.)
| | - Angélica Álvarez-Lee
- Department of Biomedical Innovation, Center for Scientific Research and Higher Education of Ensenada (CICESE), Baja California 22860, Mexico; (J.M.C.-A.); (A.Á.-L.); (M.A.D.L.-N.)
| | - Marco A. De León-Nava
- Department of Biomedical Innovation, Center for Scientific Research and Higher Education of Ensenada (CICESE), Baja California 22860, Mexico; (J.M.C.-A.); (A.Á.-L.); (M.A.D.L.-N.)
| | - Guillermo Meléndez
- Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
- Correspondence: (G.M.); (G.E.); Tel.: +52-552-789-2000 (ext. 5646) (G.E.)
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico, Mexico City 06720, Mexico; (L.A.M.-G.); (R.V.-S.)
- Correspondence: (G.M.); (G.E.); Tel.: +52-552-789-2000 (ext. 5646) (G.E.)
| |
Collapse
|
59
|
Mora-Janiszewska O, Faryniak-Zuzak A, Darmochwał-Kolarz D. Epigenetic Links between Microbiota and Gestational Diabetes. Int J Mol Sci 2022; 23:1831. [PMID: 35163753 PMCID: PMC8837149 DOI: 10.3390/ijms23031831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is considered a significant and increasing worldwide problem. The growing body of evidence on this topic has allowed us to point out that a hostile intrauterine environment in mothers with GDM via epigenetic mechanisms induces "diabetogenic" and "obesogenic" changes in an offspring's DNA. This sets a vicious intergenerational cycle of metabolic diseases in motion, gradually deteriorating the health of the human population. One of the most important participants of this process seems to be altered microbiota. There is a chance that the identification of specific epigenetic marks may provide a key for future diagnostic, prognostic and therapeutic solutions in the field of personalised medicine. Given the reversibility of most epigenetic changes, there is an opportunity to improve the long-term health of the human population. In this manuscript, we aim to summarise available data on epigenetic changes among women suffering from GDM and their progeny, in association with alterations in the microbiome.
Collapse
|
60
|
Price CA, Jospin G, Brownell K, Eisen JA, Laraia B, Epel ES. Differences in gut microbiome by insulin sensitivity status in Black and White women of the National Growth and Health Study (NGHS): A pilot study. PLoS One 2022; 17:e0259889. [PMID: 35045086 PMCID: PMC8769296 DOI: 10.1371/journal.pone.0259889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/28/2021] [Indexed: 12/22/2022] Open
Abstract
The prevalence of overweight and obesity is greatest amongst Black women in the U.S., contributing to disproportionately higher type 2 diabetes prevalence compared to White women. Insulin resistance, independent of body mass index, tends to be greater in Black compared to White women, yet the mechanisms to explain these differences are not completely understood. The gut microbiome is implicated in the pathophysiology of obesity, insulin resistance and cardiometabolic disease. Only two studies have examined race differences in Black and White women, however none characterizing the gut microbiome based on insulin sensitivity by race and sex. Our objective was to determine if gut microbiome profiles differ between Black and White women and if so, determine if these race differences persisted when accounting for insulin sensitivity status. In a pilot cross-sectional analysis, we measured the relative abundance of bacteria in fecal samples collected from a subset of 168 Black (n = 94) and White (n = 74) women of the National Growth and Health Study (NGHS). We conducted analyses by self-identified race and by race plus insulin sensitivity status (e.g. insulin sensitive versus insulin resistant as determined by HOMA-IR). A greater proportion of Black women were classified as IR (50%) compared to White women (30%). Alpha diversity did not differ by race nor by race and insulin sensitivity status. Beta diversity at the family level was significantly different by race (p = 0.033) and by the combination of race plus insulin sensitivity (p = 0.038). Black women, regardless of insulin sensitivity, had a greater relative abundance of the phylum Actinobacteria (p = 0.003), compared to White women. There was an interaction between race and insulin sensitivity for Verrucomicrobia (p = 0.008), where among those with insulin resistance, Black women had four fold higher abundance than White women. At the family level, we observed significant interactions between race and insulin sensitivity for Lachnospiraceae (p = 0.007) and Clostridiales Family XIII (p = 0.01). Our findings suggest that the gut microbiome, particularly lower beta diversity and greater Actinobacteria, one of the most abundant species, may play an important role in driving cardiometabolic health disparities of Black women, indicating an influence of social and environmental factors on the gut microbiome.
Collapse
Affiliation(s)
- Candice A. Price
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Guillaume Jospin
- Genome Center, University of California Davis, Davis, CA, United States of America
| | - Kristy Brownell
- Center for Obesity Assessment, Study and Treatment, University of California, San Francisco, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Jonathan A. Eisen
- Genome Center, University of California Davis, Davis, CA, United States of America
- Department of Evolution and Ecology, University of California, Davis, CA, United States of America
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, United States of America
| | - Barbara Laraia
- Center for Obesity Assessment, Study and Treatment, University of California, San Francisco, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Elissa S. Epel
- Department of Psychiatry, University of California, San Francisco, CA, United States of America
| |
Collapse
|
61
|
Abstract
As the gut microbiota exerts various effects on the intestinal milieu which influences distant organs and pathways, it is considered to be a full-fledged endocrine organ. The microbiota plays a major role in the reproductive endocrine system throughout a woman's lifetime by interacting with estrogen, androgens, insulin, and other hormones. Imbalance of the gut microbiota composition can lead to several diseases and conditions, such as pregnancy complications, adverse pregnancy outcomes, polycystic ovary syndrome (PCOS), endometriosis, and cancer; however, research on the mechanisms is limited. More effort should be concentrated on exploring the potential causes and underlying the mechanisms of microbiota-hormone-mediated disease, and providing novel therapeutic and preventive strategies.As the gut microbiota exerts various effects on the intestinal milieu which influences distant organs and pathways, it is considered to be a full-fledged endocrine organ. The microbiota plays a major role in the reproductive endocrine system throughout a woman's lifetime by interacting with estrogen, androgens, insulin, and other hormones. Imbalance of the gut microbiota composition can lead to several diseases and conditions, such as pregnancy complications, adverse pregnancy outcomes, polycystic ovary syndrome (PCOS), endometriosis, and cancer; however, research on the mechanisms is limited. More effort should be concentrated on exploring the potential causes and underlying the mechanisms of microbiota-hormone-mediated disease, and providing novel therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Xinyu Qi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
| | - Chuyu Yun
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yanli Pang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China,CONTACT Yanli Pang M.D.,Ph.D Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China,Jie Qiao M.D., Ph.D Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
62
|
Ota T, Ishikawa T, Sakakida T, Endo Y, Matsumura S, Yoshida J, Hirai Y, Mizushima K, Oka K, Doi T, Okayama T, Inoue K, Kamada K, Uchiyama K, Takagi T, Konishi H, Naito Y, Itoh Y. Treatment with broad-spectrum antibiotics upregulates Sglt1 and induces small intestinal villous hyperplasia in mice. J Clin Biochem Nutr 2022; 70:21-27. [PMID: 35068677 PMCID: PMC8764108 DOI: 10.3164/jcbn.21-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Although extensive evidence indicates that the gut microbiota plays a crucial role in regulating glucose homeostasis, the exact regulatory mechanism remains unclear. This study aimed to investigate the effect of broad-spectrum antibiotics on the expression of glucose transporters, histomorphology of the small intestine, and glucose metabolism in mice. C57BL/6 mice were administered drinking water with or without a broad-spectrum antibiotic combination for 4 weeks. Thereafter, an oral glucose tolerance test was performed. Body weight, small intestine histopathology, mRNA levels of glucose transporters (SGLT1 and GLUT2) and intestinal transcription factors (CDX1 and CDX2) were evaluated. SGLT1 and CDX1 were upregulated in the small intestine upon antibiotic administration compared with that in the control group. The height and surface area of the jejunal villi were significantly higher upon antibiotic administration than in the control group. Fasting glucose levels were significantly higher upon antibiotic administration than in the control group. The present results indicate that treatment with broad-spectrum antibiotics upregulates SGLT1 and CDX1 and induces hyperplasia in the small intestine, thus increasing fasting blood glucose levels. Our results further the current understanding of the effects of broad-spectrum antibiotics on the gut microbiota and glucose homeostasis that may have future clinical implications.
Collapse
Affiliation(s)
- Takayuki Ota
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Tomoki Sakakida
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Yuki Endo
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Shinya Matsumura
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Juichirou Yoshida
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Yasuko Hirai
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Kaname Oka
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Toshifumi Doi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Tetsuya Okayama
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Ken Inoue
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Kazuhiro Kamada
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Hideyuki Konishi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| |
Collapse
|
63
|
Li J, Van Der Pol W, Eraslan M, McLain A, Cetin H, Cetin B, Morrow C, Carson T, Yarar-Fisher C. Comparison of the gut microbiome composition among individuals with acute or long-standing spinal cord injury vs. able-bodied controls. J Spinal Cord Med 2022; 45:91-99. [PMID: 32496944 PMCID: PMC8890582 DOI: 10.1080/10790268.2020.1769949] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective: Compare the gut microbiome composition among individuals with acute spinal cord injury (A-SCI), long-standing SCI (L-SCI), vs. able-bodied (AB) controls.Design: Cross-sectional study.Setting: The University of Alabama at Birmingham.Participants: Seven adults with A-SCI (36 ± 12 years, 2F/5M, C4-T10, and American Spinal Injury Association Impairment Scale [AIS] A-D), 25 with L-SCI (46 ± 13 years, 6F/19M, C4-L1, and AIS A-D), and 25 AB controls (42 ± 13 years, 9F/16M).Methods: Stool samples were collected after a median of 7 days and 18 years after injury in the A-SCI and L-SCI groups, respectively. Gut microbiome composition was analyzed using the 16S rRNA sequencing technique and QIIME software. The abundances of bacteria communities among groups were compared using the Kruskal-Wallis test adjusted for age.Results: Several alpha diversity indices were different among groups (Chao1, Observed species, and Phylogenetic Diversity), but not others (Shannon and Simpson). Beta diversity differed among each pair of groups (P < 0.05). A number of microbial communities were differentially abundant among the groups (P < 0.05).Conclusion: Our results revealed differences in the gut microbiome composition among groups. Compared to the AB controls, the SCI groups demonstrated microbiome profiles that shared features linked to metabolic syndrome, inflammation-related bowel disorders, depressive disorders, or antibiotics use, whereas the L-SCI group's microbiome included features linked to reduced physical activity compared to the A-SCI and AB controls. Our results provided preliminary data and a scientific foundation for future studies investigating the impact of the gut microbiome composition on long-term health in individuals with SCI.
Collapse
Affiliation(s)
- Jia Li
- Departments of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Aabama
| | - William Van Der Pol
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, Aabama
| | - Mualla Eraslan
- Departments of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Aabama
| | - Amie McLain
- Departments of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Aabama
| | - Hatice Cetin
- Department of Physiotherapy and Rehabilitation, Hacettepe University, Turkey
| | - Baris Cetin
- Department of Physiotherapy and Rehabilitation, Hacettepe University, Turkey
| | - Casey Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Aabama
| | - Tiffany Carson
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Aabama
| | - Ceren Yarar-Fisher
- Departments of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Aabama,Correspondence to: Ceren Yarar-Fisher, PhD. University of Alabama at Birmingham, 503 Shelby Biomedical Research Building 1825 University Blvd., Birmingham, AL35233.
| |
Collapse
|
64
|
Li JP, Wu QF, Ma SC, Wang JM, Wei B, Xi Y, Han CC, Li L, He H, Liu HH. Effect of feed restriction on the intestinal microbial community structure of growing ducks. Arch Microbiol 2021; 204:85. [PMID: 34958398 DOI: 10.1007/s00203-021-02636-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 11/25/2022]
Abstract
In poultry, feed restriction is common feeding management to limit poultry nutrients intake so that poultry only intake the essential energy, meeting the basic need of growth and development. Our study investigated whether feeding restriction affects the diversity of the intestinal microbiota of growing breeding ducks. In this research, the 60-120-day-old ducks were raised in restricted and free-feeding groups. After slaughtering, the carcass traits and the cecal contents were collected for 16S rRNA sequencing analysis. After feeding restriction, the growth rate of ducks was limited, the weight and rate of abdominal fat decreased, and the rate of chest and leg muscles increased. In addition, feeding restriction can also change the diversity of intestinal microorganisms in breeding ducks, such as the increase of Firmicutes abundance and the decrease of Bacteroidetes abundance. After analyzing of correlation, significant correlations between gut microbiota and carcass phenotypes were found. The results indicated that gut microbiota might be involved in the life activities associated with phenotypic changes. This study proved the effect of feeding methods on the intestinal microbiota of ducks, providing a theoretical basis of the microbial angle for raising ducks in a feeding-restricted period.
Collapse
Affiliation(s)
- Jun-Peng Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Qi-Fan Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Sheng-Chao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Jian-Mei Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Bin Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Chun-Chun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - He-He Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China.
| |
Collapse
|
65
|
Influence of Diet and Levels of Zonulin, Lipopolysaccharide and C-Reactive Protein on Cardiometabolic Risk Factors in Young Subjects. Nutrients 2021; 13:nu13124472. [PMID: 34960024 PMCID: PMC8706658 DOI: 10.3390/nu13124472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 11/17/2022] Open
Abstract
A western diet and increased intestinal permeability may contribute to systemic inflammation and the development of cardio-metabolic alterations. The aim of this study was to assess the relationship between diet, biomarkers of intestinal permeability, and chronic low-grade inflammation on the cardiometabolic profile. A cross-sectional study was carried out in 238 young subjects aged 18–29 years, divided into two groups: with <3 cardiometabolic risk factors (CRF) and ≥3 risk factors. Anthropometric parameters, biochemical profile, and serum levels of zonulin, lipopolysaccharide (LPS), and high-sensitivity C-reactive protein (hs-CRP) were measured, and the macronutrient intake was evaluated. Interaction models showed elevated glucose levels in the presence of high biomarker levels: zonulin ≥51.6 ng/mL plus LPS ≥ 1.35 EU/mL (β = 1.1, p = 0.006), and LPS ≥1.35 EU/mL plus hs-CRP ≥ 4.3 mg/L (β = 1.2, p = 0.007). In addition, triglyceride levels increased in the presence of LPS ≥ 1.35 EU/mL and hs-CRP ≥ 4.3 mg/L (β = 3.9, p = 0.01). Despite having increased biomarker levels, a higher consumption of water (≥2100 mL), polyunsaturated fatty acids (≥6.0 g), or fiber (≥30 g) decreased triglyceride (β = −9.6, p = 0.03), total cholesterol (β = −5.1, p = 0.01), and LDL-C levels (β = −7.7, p = 0.01). These findings suggest that the increased consumption of water, PUFA and fiber may improve lipid profile in subjects with intestinal permeability dysfunction or low-grade systemic inflammation.
Collapse
|
66
|
Zhang H, Qi C, Zhao Y, Lu M, Li X, Zhou J, Dang H, Cui M, Miao T, Sun J, Li D. Depletion of gut secretory immunoglobulin A coated Lactobacillus reuteri is associated with gestational diabetes mellitus-related intestinal mucosal barrier damage. Food Funct 2021; 12:10783-10794. [PMID: 34609395 DOI: 10.1039/d1fo02517a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Changes in secretory immunoglobulin A (SIgA) coated bacteria from early to late pregnancy were associated with the development of gestational diabetes mellitus (GDM). SIgA coated beneficial gut bacteria, which are depleted in GDM, are potential probiotics for the prevention of GDM. We investigated blood biochemistry, chronic inflammation, mucosal barrier biomarkers and faecal SIgA coated microbiota in healthy early pregnancy (T1H, n = 50), late pregnancy (T3H, n = 30) and women with GDM (T3D, n = 27). The "leaky gut" markers, zonulin and lipopolysaccharide (LPS), significantly increased in T3D compared to the T3H group. The Shannon index of SIgA coated microbiota was elevated in late pregnancy compared to early pregnancy and was the highest in the T3D group (p < 0.001). The T3D group was enriched in SIgA coated Escherichia and Streptococcus and depleted in Lactobacillus and Bifidobacterium. Blood glucose (BG) positively correlated with zonulin (p < 0.001) and LPS (p < 0.05). Lactobacillus reuteri negatively correlated with BG (p < 0.05), zonulin (p < 0.05) and LPS (p < 0.01). Lactobacillus reuteri QS01 isolated from the feces of T1H significantly reduced LPS released by the gut microbiota of GDM individuals in vitro. In conclusion, GDM may be related to intestinal mucosal damage and inflammation-induced dysbiosis of SIgA coated microbiota. SIgA coated L. reuteri can reduce the level of LPS of GDM in vitro.
Collapse
Affiliation(s)
- Haowen Zhang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Ce Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Yuning Zhao
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Mengyao Lu
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Xinyue Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Jingbo Zhou
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Hongyang Dang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Mengjun Cui
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Tingting Miao
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213004, Jiangsu Province, China
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
67
|
Abstract
The interaction between the gut and its eventual trillions of microbe inhabitants during microbial colonization, represents a critical time period for establishing the overall health and wellbeing of an individual. The gut microbiome represents a diverse community of microbes that are critical for many physiological roles of the host including host metabolism. These processes are controlled by a fine-tuned chemical cross talk between the host and microbiota. Although the exact mechanisms behind this cross talk remains elusive, microbiota induced epigenetic mechanisms like DNA methylation and histone modifications may be key. This review presents our perspective on the epigenome as a mediator for host-microbiota cross talk, as well as methodology to study epigenetics, the role of dysbiosis in disease, and how the gut microbiome-host axis may be used in personal medicine.
Collapse
|
68
|
Ghorbani Y, Schwenger KJP, Allard JP. Manipulation of intestinal microbiome as potential treatment for insulin resistance and type 2 diabetes. Eur J Nutr 2021; 60:2361-2379. [PMID: 33651137 DOI: 10.1007/s00394-021-02520-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Increasing evidence suggests that the intestinal microbiome (IM) and bacterial metabolites may influence glucose homeostasis, energy expenditure and the intestinal barrier integrity and lead to the presence of systemic low-grade inflammation, all of which can contribute to insulin resistance (IR) and type 2 diabetes (T2D). The purpose of this review is to explore the role of the IM and bacterial metabolites in the pathogenesis and treatment of these conditions. RESULTS This review summarizes research focused on how to modulate the IM through diet, prebiotics, probiotics, synbiotics and fecal microbiota transplant in order to treat IR and T2D. CONCLUSION There is an abundance of evidence suggesting a role for IM in the pathogenesis of IR and T2D based on reviewed studies using various methods to modulate IM and metabolites. However, the results are inconsistent. Future research should further assess this relationship.
Collapse
Affiliation(s)
- Yasaman Ghorbani
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital, University Health Network, Toronto, Canada
| | | | - Johane P Allard
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Toronto General Hospital, University Health Network, Toronto, Canada.
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada.
- Department of Medicine, University of Toronto, Toronto, Canada.
- Department of Medicine, Division of Gastroenterology, Toronto General Hospital, 585 University Avenue, 9N-973, Toronto, ON, M5G 2N2, Canada.
| |
Collapse
|
69
|
Liaqat I, Durrani AI, Zafar U, Rubab S, Faheem M, Mubin M, Raza C, Aftab N. Role of modified diet and gut microbiota in metabolic endotoxemia in mice. Arch Microbiol 2021; 203:5085-5093. [PMID: 34302505 DOI: 10.1007/s00203-021-02491-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
This study was aimed at investigating the effect of cultured gut microbiota (GM) from obese humans coupled HFD in inducing metabolic endotoxemia in humanized mice. In total, 30 strains were isolated from 10 stool samples of obese patients. Following morphological and biochemical characterization, 16S rRNA gene sequencing of six abundant isolates identified these Klebsiella aerogenes, Levilactobacillus brevis, Escherichia coli, Staphylococcus aureus, Bacillus cereus and Bacillus subtilis (MZ052089-MZ052094). In vivo trial using above isolates, known as human gut microbiota (HGM), was performed for six months. Sixteen mice were distributed into four groups, i.e., G1 (control) mice fed with chow diet, group 2 (G2) with HFD, group 3 (G3) with HFD + HGM and group 4 (G4) with chow diet + HGM. Body mass index (BMI) and plasma endotoxins were measured pre- and post-experiment. In vivo study revealed that HFD + HGM caused significant increase (3.9 g/cm at 20 weeks) in the body weight and BMI (0.4 g/cm post-experiment) of G3 mice compared to the other groups. One-way ANOVA showed significantly higher level of endotoxins (2.41, 4.08 and 3.7 mmol/L) in mice groups G2, G3 and G4, respectively, indicating onset of metabolic endotoxemia. Cecal contents of experimental mice groups showed a shift in microbial diversity as observed by all isolates belonging to either Firmicutes or Bacteroidetes phyla, respectively. In conclusion, current study reported that minor alteration in GM composition through HFD feeding and cultured GM transfer has significant impact in development of metabolic endotoxemia, possibly via modified intestinal permeability.
Collapse
Affiliation(s)
- Iram Liaqat
- Microbiology Lab, Department of Zoology, GC University, Lahore, Pakistan.
| | | | - Urooj Zafar
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Saima Rubab
- Department of Pharmacognosy, Lahore Pharmacy College, LMDC Lahore, Lahore, Pakistan
| | - Mehwish Faheem
- Microbiology Lab, Department of Zoology, GC University, Lahore, Pakistan
| | - Muhammad Mubin
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Chand Raza
- Microbiology Lab, Department of Zoology, GC University, Lahore, Pakistan
| | - Nauman Aftab
- Institute of Industrial Biotechnology, GC University, Lahore, Pakistan
| |
Collapse
|
70
|
Chen F, Chen Z, Chen M, Chen G, Huang Q, Yang X, Yin H, Chen L, Zhang W, Lin H, Ou M, Wang L, Chen Y, Lin C, Xu W, Yin G. Reduced stress-associated FKBP5 DNA methylation together with gut microbiota dysbiosis is linked with the progression of obese PCOS patients. NPJ Biofilms Microbiomes 2021; 7:60. [PMID: 34267209 PMCID: PMC8282850 DOI: 10.1038/s41522-021-00231-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disease in females that is characterized by hyperandrogenemia, chronic anovulation, and polycystic ovaries. However, the exact etiology and pathogenesis of PCOS are still unknown. The aim of this study was to clarify the bacterial, stress status, and metabolic differences in the gut microbiomes of healthy individuals and patients with high body mass index (BMI) PCOS (PCOS-HB) and normal BMI PCOS (PCOS-LB), respectively. Here, we compared the gut microbiota characteristics of PCOS-HB, PCOS-LB, and healthy controls by 16S rRNA gene sequencing, FK506-binding protein 5 (FKBP5) DNA methylation and plasma metabolite determination. Clinical parameter comparisons indicated that PCOS patients had higher concentrations of total testosterone, androstenedione, dehydroepiandrosterone sulfate, luteinizing hormone, and HOMA-IR while lower FKBP5 DNA methylation. Significant differences in bacterial diversity and community were observed between the PCOS and healthy groups but not between the PCOS-HB and PCOS-LB groups. Bacterial species number was negatively correlated with insulin concentrations (both under fasting status and 120 min after glucose load) and HOMA-IR but positively related to FKBP5 DNA methylation. Compared to the healthy group, both PCOS groups had significant changes in bacterial genera, including Prevotella_9, Dorea, Maihella, and Slackia, and plasma metabolites, including estrone sulfate, lysophosphatidyl choline 18:2, and phosphatidylcholine (22:6e/19:1). The correlation network revealed the complicated interaction of the clinical index, bacterial genus, stress indices, and metabolites. Our work links the stress responses and gut microbiota characteristics of PCOS disease, which might afford perspectives to understand the progression of PCOS.
Collapse
Affiliation(s)
- Fu Chen
- Department of Clinical Nutrition, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Zhangran Chen
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Minjie Chen
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Laboratory of Molecular Cardiology and Laboratory of Molecular Imaging, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Guishan Chen
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Qingxia Huang
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Xiaoping Yang
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Huihuang Yin
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Laboratory of Molecular Cardiology and Laboratory of Molecular Imaging, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Lan Chen
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Weichun Zhang
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Hong Lin
- Department of Reproductive Center, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Miaoqiong Ou
- Department of Clinical Nutrition, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Luanhong Wang
- Department of Gynecological tumor, Tumor Hospital Affiliated to Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yongsong Chen
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Chujia Lin
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Wencan Xu
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Guoshu Yin
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China.
| |
Collapse
|
71
|
Gadour E, Hassan Z, Gadour R. A Comprehensive Review of Transaminitis and Irritable Bowel Syndrome. Cureus 2021; 13:e16583. [PMID: 34322359 PMCID: PMC8300593 DOI: 10.7759/cureus.16583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
We observed in the literature that irritable bowel syndrome (IBS) may be linked to irregular parameters of the metabolic system (MS) and liver function. For that reason, we conducted this systematic review to comprehensively analyze the association of transaminitis (elevated alanine transaminase (ALT)) with IBS. This review was designed by following methods described in the Cochrane Handbook for Systematic Reviews of Interventions. Published peer-reviewed journal articles were included. Data were extracted based on study design, age, gender, author, date of publication or availability online, publication type, participants, gender (M/F), and types of IBS. Our electronic multiple databases yielded a total of 519 preliminary studies; we then removed duplicate studies and left with 326 studies. After reviewing the full text of these articles, a total of 83 studies were eliminated and lastly, three studies were selected for this systematic review for quantitative and qualitative analysis. All the enrolled subjects in included studies were diagnosed with IBS by the Rome II and III criteria and among these sub-jects, 50.4% had IBS-D, 13.8% had IBS-C, 30.3% had IBS-M, and 3.5% had IBS-U. The prevalence of elevated ALT with other liver enzymes (γ-GT levels and aspartate aminotransferase (AST)) in patients with irritable bowel syndrome whether their body mass index (BMI) was high or not (16.9% vs. 7.7%; p=0.015) and γ-GT (24.1% vs. 11.5%; p=0.037), Lee et al., 2016. The IBS-D subtype was seen more commonly in patients whose alcohol intake was significantly high however their study data showed no significant change in elevation of ALT. The upper limits normal values for serum liver enzymes were de-fined as 41 international per liter in males and 31 international units per liter in females for ALT. No significant relationships were observed between IBS status and elevated γ-GT (OR, 1.647; 95% CI, 0.784-3.461). The review study proposes a potential relation between elevated ALT levels, MS, and IBS, and this review might be the first review in IBS patients to observe the association of elevated ALT in the IBS population. Although further additional trials with a large sample size will be required to confirm these results. Furthermore, for assessing the efficacy of the manipulation of gut microbiota ran-domized controlled trials in a large population of IBS patients are needed to establish a causal-resultant relationship between IBS, MS, and liver damage.
Collapse
Affiliation(s)
- Eyad Gadour
- Gastroenterology and Hepatology, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, GBR
| | - Zeinab Hassan
- Department of Medicine, Stockport Hospital NHS Foundation Trust, Manchester, GBR
| | - Rajaey Gadour
- Responsible Medical Services, The National Ambulance, Abu Dhabi, ARE
| |
Collapse
|
72
|
Nie Q, Hu J, Gao H, Li M, Sun Y, Chen H, Zuo S, Fang Q, Huang X, Yin J, Nie S. Bioactive Dietary Fibers Selectively Promote Gut Microbiota to Exert Antidiabetic Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7000-7015. [PMID: 34139119 DOI: 10.1021/acs.jafc.1c01465] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High intake of dietary fibers was found to be inversely associated with type-2 diabetes (T2D), whereas the difference among different dietary fibers on T2D remains unclear. Therefore, we have investigated the effects of different dietary fibers on T2D. Nine types of dietary fibers were used to investigate and evaluate their effects on type-2 diabetic rats via physiology, genomics, and metabolomics. We found that supplementation with β-glucan, arabinogalactan, guar gum, apple pectin, glucomannan, and arabinoxylan significantly reduced the fasting blood glucose, whereas carrageenan, xylan, and xanthan gum did not affect glycemic control in diabetic rats. Also, bioactive dietary fibers (β-glucan, arabinogalactan, guar gum, and apple pectin) associated with the increased butyric acid level and abundance of beneficial bacteria (Lachnobacterium, Parabacteroides, Faecalibacterium, Akkermansia, and some butyric acid-producing bacteria), as well as improved host metabolism by decreasing 12α-hydroxylated bile acids, acylcarnitines, and amino acids (leucine, phenylalanine, citrulline, etc.), thereby exert beneficial effects on T2D. It was also found that β-glucan might attenuate insulin resistance via downregulation of Prevotella copri-mediated biosynthesis of branched-chain amino acids in T2D. Together, our study uncovered the effects of different dietary fibers on T2D, along with their potential mechanism.
Collapse
Affiliation(s)
- Qixing Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - He Gao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510320, China
| | - Mingzhi Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Yonggan Sun
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Haihong Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Sheng Zuo
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Qingying Fang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| |
Collapse
|
73
|
Yang Y, Chi L, Lai Y, Hsiao YC, Ru H, Lu K. The gut microbiome and arsenic-induced disease-iAs metabolism in mice. Curr Environ Health Rep 2021; 8:89-97. [PMID: 33852125 PMCID: PMC8728881 DOI: 10.1007/s40572-021-00305-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW This review summarizes inorganic arsenic (iAs) metabolism and toxicity in mice and the gut microbiome and how iAs and the gut microbiome interact to induce diseases. RECENT FINDINGS Recently, a variety of studies have started to reveal the interactions between iAs and the gut microbiome. Evidence shows that gut bacteria can influence iAs biotransformation and disease risks. The gut microbiome can directly metabolize iAs, and it can also indirectly be involved in iAs metabolism through the host, such as altering iAs absorption, cofactors, and genes related to iAs metabolism. Many factors, such as iAs metabolism influenced by the gut microbiome, and microbiome metabolites perturbed by iAs can lead to different disease risks. iAs is a widespread toxic metalloid in environment, and iAs toxicity has become a global health issue. iAs is subject to metabolic reactions after entering the host body, including methylation, demethylation, oxidation, reduction, and thiolation. Different arsenic species, including trivalent and pentavalent forms and inorganic and organic forms, determine their toxicity. iAs poisoning is predominately caused by contaminated drinking water and food, and chronic arsenic toxicity can cause various diseases. Therefore, studies of iAs metabolism are important for understanding iAs associated disease risks.
Collapse
Affiliation(s)
- Yifei Yang
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hongyu Ru
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
74
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Laparra JM, Boscá L. NOD1-Targeted Immunonutrition Approaches: On the Way from Disease to Health. Biomedicines 2021; 9:519. [PMID: 34066406 PMCID: PMC8148154 DOI: 10.3390/biomedicines9050519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Immunonutrition appears as a field with great potential in modern medicine. Since the immune system can trigger serious pathophysiological disorders, it is essential to study and implement a type of nutrition aimed at improving immune system functioning and reinforcing it individually for each patient. In this sense, the nucleotide-binding oligomerization domain-1 (NOD1), one of the members of the pattern recognition receptors (PRRs) family of innate immunity, has been related to numerous pathologies, such as cancer, diabetes, or cardiovascular diseases. NOD1, which is activated by bacterial-derived peptidoglycans, is known to be present in immune cells and to contribute to inflammation and other important pathways, such as fibrosis, upon recognition of its ligands. Since immunonutrition is a significant developing research area with much to discover, we propose NOD1 as a possible target to consider in this field. It is relevant to understand the cellular and molecular mechanisms that modulate the immune system and involve the activation of NOD1 in the context of immunonutrition and associated pathological conditions. Surgical or pharmacological treatments could clearly benefit from the synergy with specific and personalized nutrition that even considers the health status of each subject.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas (CIBERehd), 28029 Madrid, Spain
| | - José M. Laparra
- Madrid Institute for Advanced studies in Food (IMDEA Food), Ctra. Cantoblanco 8, 28049 Madrid, Spain;
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
| |
Collapse
|
75
|
Kunysz M, Mora-Janiszewska O, Darmochwał-Kolarz D. Epigenetic Modifications Associated with Exposure to Endocrine Disrupting Chemicals in Patients with Gestational Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22094693. [PMID: 33946662 PMCID: PMC8124363 DOI: 10.3390/ijms22094693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Gestational diabetes mellitus (GDM) remains a significant clinical and public health issue due to its increasing prevalence and the possibility for numerous short- and long-term complications. The growing incidence of GDM seems to coincide with the widespread use of endocrine disrupting chemicals (EDCs). The extensive production and common use of these substances in everyday life has resulted in constant exposure to harmful substances from the environment. That may result in epigenetic changes, which may manifest themselves also after many years and be passed on to future generations. It is important to consider the possible link between environmental exposure to endocrine disrupting chemicals (EDCs) during pregnancy, epigenetic mechanisms and an increased risk for developing gestational diabetes mellitus (GDM). This manuscript attempts to summarize data on epigenetic changes in pregnant women suffering from gestational diabetes in association with EDCs. There is a chance that epigenetic marks may serve as a tool for diagnostic, prognostic, and therapeutic measures.
Collapse
|
76
|
López-Salazar V, Tapia MS, Tobón-Cornejo S, Díaz D, Alemán-Escondrillas G, Granados-Portillo O, Noriega L, Tovar AR, Torres N. Consumption of soybean or olive oil at recommended concentrations increased the intestinal microbiota diversity and insulin sensitivity and prevented fatty liver compared to the effects of coconut oil. J Nutr Biochem 2021; 94:108751. [PMID: 33915261 DOI: 10.1016/j.jnutbio.2021.108751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/20/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
Diets rich in mono or polyunsaturated fats have been associated with a healthy phenotype, but there is controversial evidence about coconut oil (CO), which is rich in saturated medium-chain fatty acids. Therefore, the purpose of the present work was to study whether different types of oils rich in polyunsaturated (soybean oil, SO), monounsaturated (olive oil, OO), or saturated fatty acids (coconut oil, CO) can regulate the gut microbiota, insulin sensitivity, inflammation, mitochondrial function in wild type and PPARα KO mice. The group that received SO showed the highest microbial diversity, increase in Akkermansia muciniphila, high insulin sensitivity and low grade inflammation, The OO group showed similar insulin sensitivity and insulin signaling than SO, increase in Bifidobacterium, increase in fatty acid oxidation and low grade inflammation. The CO consumption led to the lowest bacterial diversity, a 9-fold increase in the LPS concentration leading to metabolic endotoxemia, hepatic steatosis, increased lipogenesis, highest LDL-cholesterol concentration and the lowest respiratory capacity and fatty acid oxidation in the mitochondria. The absence of PPARα decreased alpha diversity and increased LPS concentration particularly in the CO group, and increased insulin sensitivity in the groups fed SO or OO. These results indicate that consuming mono or polyunsaturated fatty acids produced health benefits at the recommended intake but a high concentration of oils (three times the recommended oil intake in rodents) significantly decreased the microbial alpha-diversity independent of the type of oil.
Collapse
Affiliation(s)
- Valeria López-Salazar
- Institute for Diabetes and Cancer IDC Helmholtz Center, Munich, Germany; Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, CP 14080, México.
| | - Mónica Sánchez Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, CP 14080, México.
| | - Sandra Tobón-Cornejo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, CP 14080, México.
| | - Daniel Díaz
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico.
| | - Gabriela Alemán-Escondrillas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, CP 14080, México.
| | - Omar Granados-Portillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, CP 14080, México.
| | - Lilia Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, CP 14080, México.
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, CP 14080, México.
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, CP 14080, México.
| |
Collapse
|
77
|
Seifi N, Jafarzadeh Esfahani A, Sedaghat A, Rezvani R, Khadem-Rezaiyan M, Nematy M, Safarian M. Effect of gut microbiota modulation on feeding tolerance of enterally fed critically ill adult patients: a systematic review. Syst Rev 2021; 10:95. [PMID: 33794994 PMCID: PMC8016507 DOI: 10.1186/s13643-021-01633-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The objective of this systematic review was to evaluate the effect of pre-, pro-, and synbiotics on feeding tolerance of enterally fed critically ill adult patients. METHODS MEDLINE, Science Direct, Web of Knowledge, and the Cochrane Central Register of Controlled Trials were searched up to November 2019. English language randomized controlled trials reporting the effect of pre, pro or synbiotics on the feeding tolerance of enterally fed critically ill adult patients were included. RESULTS Overall, 15 papers were selected for review. Among six studies reporting the energy intake, only two studies showed significantly higher energy intake in the prebiotic-receiving groups. Among four RCTs reporting frequency or time to achieve the target calorie, only one found a significant effect of probiotics to reduce the time to achieve a target dose of calorie. About the prevalence or duration of diarrhea, 7 out of 12 RCTs reported a beneficial effect. All but one study found no beneficial effects for gut microbiota manipulation on clinical endpoints including length of stay (LOS) in hospital and intensive care unit (ICU). CONCLUSION It should be noticed that the heterogeneity in study designs, product format, and ICU patient populations makes it difficult to draw any general conclusion. Overall, it seems that pre, pro, or synbiotics have no significant beneficial effect on feeding tolerance and clinical endpoints in critically ill adults, but they may reduce the prevalence or duration of diarrhea.
Collapse
Affiliation(s)
- Najmeh Seifi
- Department of Nutrition, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Jafarzadeh Esfahani
- Department of Nutrition, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Sedaghat
- Department of Anesthesiology, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Reza Rezvani
- Department of Nutrition, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khadem-Rezaiyan
- Department of Community Medicine, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Nematy
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Safarian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
78
|
Amin AM. The metabolic signatures of cardiometabolic diseases: Does the shared metabotype offer new therapeutic targets? LIFESTYLE MEDICINE 2021. [DOI: 10.1002/lim2.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Arwa M. Amin
- Department of Clinical and Hospital Pharmacy College of Pharmacy Taibah University Medina Saudi Arabia
| |
Collapse
|
79
|
Diboun I, Al-Mansoori L, Al-Jaber H, Albagha O, Elrayess MA. Metabolomics of Lean/Overweight Insulin-Resistant Females Reveals Alterations in Steroids and Fatty Acids. J Clin Endocrinol Metab 2021; 106:e638-e649. [PMID: 33053159 DOI: 10.1210/clinem/dgaa732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/08/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND The global diabetes epidemic is largely attributed to obesity-triggered metabolic syndrome. However, the impact of insulin resistance (IR) prior to obesity on the high prevalence of diabetes and the molecular mediators remain largely unknown. This study aims to compare the metabolic profiling of apparently healthy lean/overweight participants with IR and insulin sensitivity (IS), and identify the metabolic pathways underlying IR. METHODS In this cross-sectional study, clinical and metabolic data for 200 seemingly healthy young female participants (100 IR and 100 IS) was collected from Qatar Biobank. Orthogonal partial least square analysis was performed to assess the extent of separation between individuals from the 2 groups based on measured metabolites. Classical linear models were used to identify the metabolic signature of IR, followed by elastic-net-regularized generalized linear model (GLMNET) and receiver operating characteristic (ROC) analysis to determine top metabolites associated with IR. RESULTS Compared to lean/overweight participants with IS, those with IR showed increased androgenic steroids, including androsterone glucuronide, in addition to various microbiota byproducts, such as the phenylalanine derivative carboxyethylphenylalanine. On the other hand, participants with IS had elevated levels of long-chain fatty acids. A ROC analysis suggested better discriminatory performance using 20 metabolites selected by GLMNET in comparison to the classical clinical traits (area under curve: 0.93 vs 0.73, respectively). CONCLUSION Our data confirm the multifactorial mechanism of IR with a diverse spectrum of emerging potential biomarkers, including steroids, long-chain fatty acids, and microbiota metabolites. Further studies are warranted to validate these markers for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ilhame Diboun
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | | | - Hend Al-Jaber
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | - Omar Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | | |
Collapse
|
80
|
Lee NY, Shin MJ, Youn GS, Yoon SJ, Choi YR, Kim HS, Gupta H, Han SH, Kim BK, Lee DY, Park TS, Sung H, Kim BY, Suk KT. Lactobacillus attenuates progression of nonalcoholic fatty liver disease by lowering cholesterol and steatosis. Clin Mol Hepatol 2020; 27:110-124. [PMID: 33317254 PMCID: PMC7820205 DOI: 10.3350/cmh.2020.0125] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIMS Nonalcoholic fatty liver disease (NAFLD) is closely related to gut-microbiome. There is a paucity of research on which strains of gut microbiota affect the progression of NAFLD. This study explored the NAFLD-associated microbiome in humans and the role of Lactobacillus in the progression of NAFLD in mice. METHODS The gut microbiome was analyzed via next-generation sequencing in healthy people (n=37) and NAFLD patients with elevated liver enzymes (n=57). Six-week-old male C57BL/6J mice were separated into six groups (n=10 per group; normal, Western, and four Western diet + strains [109 colony-forming units/g for 8 weeks; L. acidophilus, L. fermentum, L. paracasei, and L. plantarum]). Liver/body weight ratio, liver pathology, serum analysis, and metagenomics in the mice were examined. RESULTS Compared to healthy subjects (1.6±4.3), NAFLD patients showed an elevated Firmicutes/Bacteroidetes ratio (25.0±29.0) and a reduced composition of Akkermansia and L. murinus (P<0.05). In the animal experiment, L. acidophilus group was associated with a significant reduction in liver/body weight ratio (5.5±0.4) compared to the Western group (6.2±0.6) (P<0.05). L. acidophilus (41.0±8.6), L. fermentum (44.3±12.6), and L. plantarum (39.0±7.6) groups showed decreased cholesterol levels compared to the Western group (85.7±8.6) (P<0.05). In comparison of steatosis, L. acidophilus (1.9±0.6), L. plantarum (2.4±0.7), and L. paracasei (2.0±0.9) groups showed significant improvement of steatosis compared to the Western group (2.6±0.5) (P<0.05). CONCLUSION Ingestion of Lactobacillus, such as L. acidophilus, L. fermentum, and L. plantarum, ameliorates the progression of nonalcoholic steatosis by lowering cholesterol. The use of Lactobacillus can be considered as a useful strategy for the treatment of NAFLD.
Collapse
Affiliation(s)
- Na Young Lee
- Institue for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, Korea
| | - Min Jea Shin
- Institue for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, Korea
| | - Gi Soo Youn
- Institue for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, Korea
| | - Sang Jun Yoon
- Institue for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, Korea
| | - Ye Rin Choi
- Institue for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, Korea
| | - Hyeong Seop Kim
- Institue for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, Korea
| | - Haripriya Gupta
- Institue for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Korea
| | | | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Tae Sik Park
- Department of Life Science, Gachon University, Sungnam, Korea
| | - Hotaik Sung
- Department of Medicine, College of Medicine, Kyungpook National University, Daegu, Korea
| | | | - Ki Tae Suk
- Institue for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|
81
|
Krolevets TS, Livzan MA, Mozgovoy SI. The Role of the Microbiome and Intestinal Mucosal Barrier in the Development and Progression of Non-Alcoholic Fatty Liver Disease. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2020; 30:42-48. [DOI: 10.22416/1382-4376-2020-30-5-42-48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Aim. To review available data on the role of the microbiome and intestinal mucosal barrier in the development and progression of non-alcoholic fatty liver disease (NAFLD).Key points. The role of the human microbiome in the development and progression of NAFLD is associated with its effects on the risk factors (obesity, insulin resistance, type 2 diabetes), permeability of the intestinal barrier and absorption of such substances as short-chain fatty acids, bile acids, choline and endogenous ethanol. Liver fibrosis constitutes the leading factor determining the prognosis of patients in NAFLD, including cases associated with cardiovascular complications. Changes in the microbiome composition were demonstrated for various degrees of fibrosis in NAFLD.Conclusion. The results of modern studies confirm the formation of a new concept in the pathophysiology of NAFLD, which encourages the development of new therapeutic strategies.
Collapse
|
82
|
Diet, Microbioma, and Diabetes in Aging. CURRENT GERIATRICS REPORTS 2020. [DOI: 10.1007/s13670-020-00339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
83
|
Yu Q, Wu L, Ji J, Feng J, Dai W, Li J, Wu J, Guo C. Gut Microbiota, Peroxisome Proliferator-Activated Receptors, and Hepatocellular Carcinoma. J Hepatocell Carcinoma 2020; 7:271-288. [PMID: 33150145 PMCID: PMC7605923 DOI: 10.2147/jhc.s277870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. HCC incidence rate is sixth and mortality is fourth worldwide. However, HCC pathogenesis and molecular mechanisms remain unclear. The incidence of HCC is associated with genetic, environmental, and metabolic factors. The role of gut microbiota in the pathogenesis of HCC has attracted researchers' attention because of anatomical and functional interactions between liver and intestine. Studies have demonstrated the involvement of gut microbiota in the development of HCC and chronic liver diseases, such as alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), and liver cirrhosis. Peroxisome proliferator-activated receptors (PPARs) are a group of receptors with diverse biological functions. Natural and synthetic PPAR agonists show potential for treatment of NAFLD, liver fibrosis, and HCC. Recent studies have demonstrated that PPARs take part in gut microbiota inhabitation and adaptation. This manuscript reviews the role of gut microbiota in the development of HCC and precancerous diseases, the role of PPARs in modulation of gut microbiota and HCC, and potential of gut microbiota for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
- Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200336, People’s Republic of China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| |
Collapse
|
84
|
Redweik GAJ, Kogut MH, Arsenault RJ, Mellata M. Oral Treatment With Ileal Spores Triggers Immunometabolic Shifts in Chicken Gut. Front Vet Sci 2020; 7:629. [PMID: 33102558 PMCID: PMC7506159 DOI: 10.3389/fvets.2020.00629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
The animal gut is a major site affecting productivity via its role in mediating functions like food conversion and pathogen colonization. Live microorganisms like probiotics are widely used to improve poultry productivity. However, given that chicks receive their microbiota from the environment at-hatch, a bacterial treatment that can stimulate gut immune maturation in early life can benefit animal health. Thus, our lab has begun investigating alternative means to improve poultry health via single inoculation with microbial spores. In this study, we orally-inoculated day-old chicks with ileal scrapings (ISs) enriched for spores via chloroform treatment (SPORE) or non-treated (CON). At 3, 7, and 14 days post-inoculation (dpi), gut permeability was measured via FITC-dextran assay in serum. Additionally, small intestinal scrapings (SISs) were tested for in vitro Salmonella killing and total IgA. Lastly, distal ileum was either fixed or flash-frozen for microscopy or kinome peptide array, respectively. Using bacterial 16S rRNA gene sequencing, SPORE and CON inocula were highly-similar in bacterial composition. However, spores were detected in SPORE but not in CON inoculum. Segmented filamentous bacteria (SFB) filaments were observed in the distal ileum in SPORE birds as early as 3 dpi and all birds at 7 and 14 dpi. Additionally, SFB were detected via PCR in the ceca, colonizing all SPORE birds at 3 dpi. At 3 dpi, SPORE birds exhibited lower gut permeability vs. CON. In SPORE birds, SISs induced greater Salmonella growth in vitro at 3 dpi yet significantly-reduced Salmonella load at 7 and 14 dpi compared to CON in an IgA-independent manner. SPORE distal ileal tissue exhibited unique upregulation of several immunometabolic processes vs. CON birds, including innate (Toll-like receptor, JAK-STAT) and adaptive (T/B cell receptor, TH17 differentiation) immune pathways, PI3K/Akt signaling, mTOR signaling, and insulin-related pathways. Collectively, these data suggest oral inoculation with ileal spores generally-improved gut health. Importance: We report that ileal, spore-forming commensal microbes have potent effects on ileum immunometabolism. Additionally, we identify a functional ileal phenotype in spore-treated chickens, which matched several of the observed immunometabolic changes and was associated with SFB colonization in the ileum.
Collapse
Affiliation(s)
- Graham A J Redweik
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Michael H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, United States
| | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
85
|
Zhou X, Johnson JS, Spakowicz D, Zhou W, Zhou Y, Sodergren E, Snyder M, Weinstock GM. Longitudinal Analysis of Serum Cytokine Levels and Gut Microbial Abundance Links IL-17/IL-22 With Clostridia and Insulin Sensitivity in Humans. Diabetes 2020; 69:1833-1842. [PMID: 32366680 PMCID: PMC7372073 DOI: 10.2337/db19-0592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 04/29/2020] [Indexed: 01/13/2023]
Abstract
Recent studies using mouse models suggest that interaction between the gut microbiome and IL-17/IL-22-producing cells plays a role in the development of metabolic diseases. We investigated this relationship in humans using data from the prediabetes study of the Integrated Human Microbiome Project (iHMP). Specifically, we addressed the hypothesis that early in the onset of metabolic diseases there is a decline in serum levels of IL-17/IL-22, with concomitant changes in the gut microbiome. Clustering iHMP study participants on the basis of longitudinal IL-17/IL-22 profiles identified discrete groups. Individuals distinguished by low levels of IL-17/IL-22 were linked to established markers of metabolic disease, including insulin sensitivity. These individuals also displayed gut microbiome dysbiosis, characterized by decreased diversity, and IL-17/IL-22-related declines in the phylum Firmicutes, class Clostridia, and order Clostridiales This ancillary analysis of the iHMP data therefore supports a link between the gut microbiome, IL-17/IL-22, and the onset of metabolic diseases. This raises the possibility for novel, microbiome-related therapeutic targets that may effectively alleviate metabolic diseases in humans as they do in animal models.
Collapse
Affiliation(s)
- Xin Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
- Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | | | - Daniel Spakowicz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
- Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Yanjiao Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
- Department of Medicine, University of Connecticut Health Center, Farmington, CT
| | | | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|
86
|
Peanut skin extract ameliorates the symptoms of type 2 diabetes mellitus in mice by alleviating inflammation and maintaining gut microbiota homeostasis. Aging (Albany NY) 2020; 12:13991-14018. [PMID: 32699185 PMCID: PMC7425515 DOI: 10.18632/aging.103521] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
In this study, mice with type 2 diabetes mellitus (T2DM) induced by high-fat diet were used to investigate the antidiabetic effect and mechanism of action of peanut skin extract (PSE). Results revealed that the fasting blood glucose, body weight, and food intake of mice with T2DM significantly decreased after they were given PSE. The effects of 80 mg/kg PSE were similar to those of 140 mg/kg metformin (MET). The glucose tolerance and insulin sensitivity of the mice also improved. The composition of intestinal microflora in the mice significantly changed after PSE administration. In particular, no Actinobacteria was detected in the PSE-treated group, and the ratio of Firmicutes to Bacteroidetes was remarkably reduced. PSE also increased the abundance of gut microbiota involved in fatty acid biosynthesis, lipid biosynthesis, and sucrose metabolism. The abundance of gut microbiota related to aminoacyl-tRNA biosynthesis also decreased. Lipopolysaccharide, interleukin (IL)-6, IL-1β and tumor necrosis factor-α in the blood, liver and adipose tissue were reduced by PSE. Similarly, the mRNA expression levels of IkappaB kinase and nuclear factor kappaB in the hypothalamus were reduced by PSE. These results suggested that PSE and MET elicited significant antidiabetic effects by maintaining gut microbiota and inhibiting inflammation.
Collapse
|
87
|
Aguilar T, Nava GM, Olvera-Ramírez AM, Ronquillo D, Camacho M, Zavala GA, Caamaño MC, Acevedo-Whitehouse K, Rosado JL, García OP. Gut Bacterial Families Are Associated with Body Composition and Metabolic Risk Markers in School-Aged Children in Rural Mexico. Child Obes 2020; 16:358-366. [PMID: 32429742 DOI: 10.1089/chi.2019.0312] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Differences in gut microbiota composition have been associated with obesity and metabolic alterations in children. The aim of this study was to analyze the abundance of the main bacterial families of the gut among children according to their body composition and metabolic markers. Methods: A cross-sectional study was conducted with 93 school-aged children (8.4 ± 1.6 years old). Anthropometric and body composition variables were measured and a blood sample was collected to determine glucose, insulin, lipid profile, C-reactive protein, leptin, and cytokines [interleukin 6, interleukin 10 (IL-10), tumor necrosis factor α (TNFα)]. DNA was extracted from stool samples and the abundance of bacterial families (Bacteroidaceae-Porphyromonadaceae-Prevotellaceae, Lactobacillaceae, Enterococcaceae, and Lachnospiraceae-Ruminococcaceae) was determined by qPCR assays. Results: Children with obesity and high waist/height ratio had lower Bacteroidaceae-Porphyromonadaceae-Prevotellaceae and higher abundance of Lactobacillaceae when compared with normal-weight children. TNFα was negatively associated and IL-10 was positively associated with Bacteroidaceae-Porphyromonadaceae-Prevotellaceae. Triglycerides showed a positive relationship with Lachnospiraceae-Ruminococcaceae whereas high-density lipoprotein-cholesterol was negatively associated with Lactobacillaceae. Conclusion: In rural Mexican school-aged children, a low abundance of Bacteroidaceae-Porphyromonadaceae-Prevotellaceae and a high abundance of Lactobacillaceae are associated with obesity and metabolic disturbances.
Collapse
Affiliation(s)
- Tania Aguilar
- Departamento de Investigación en Nutrición Humana, Facultad de Ciencias Naturales, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Gerardo M Nava
- Departamento de Ciencias de los Alimentos, Facultad de Química, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Andrea M Olvera-Ramírez
- Cuerpo Académico Salud Animal y Microbiología Ambiental, Facultad de Ciencias Naturales, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Dolores Ronquillo
- Departamento de Investigación en Nutrición Humana, Facultad de Ciencias Naturales, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Mariela Camacho
- Departamento de Investigación en Nutrición Humana, Facultad de Ciencias Naturales, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Gerardo A Zavala
- Faculty of Earth and Life Sciences, VU Amsterdam University, Amsterdam, The Netherlands
| | - María C Caamaño
- Departamento de Investigación en Nutrición Humana, Facultad de Ciencias Naturales, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Karina Acevedo-Whitehouse
- Unidad de Microbiología Básica y Aplicada, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Jorge L Rosado
- Departamento de Investigación en Nutrición Humana, Facultad de Ciencias Naturales, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México.,CINDETEC, A.C., Querétaro, México
| | - Olga P García
- Departamento de Investigación en Nutrición Humana, Facultad de Ciencias Naturales, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| |
Collapse
|
88
|
Virtue AT, McCright SJ, Wright JM, Jimenez MT, Mowel WK, Kotzin JJ, Joannas L, Basavappa MG, Spencer SP, Clark ML, Eisennagel SH, Williams A, Levy M, Manne S, Henrickson SE, Wherry EJ, Thaiss CA, Elinav E, Henao-Mejia J. The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Sci Transl Med 2020; 11:11/496/eaav1892. [PMID: 31189717 DOI: 10.1126/scitranslmed.aav1892] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/18/2018] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
The gut microbiota is a key environmental determinant of mammalian metabolism. Regulation of white adipose tissue (WAT) by the gut microbiota is a process critical to maintaining metabolic fitness, and gut dysbiosis can contribute to the development of obesity and insulin resistance (IR). However, how the gut microbiota regulates WAT function remains largely unknown. Here, we show that tryptophan-derived metabolites produced by the gut microbiota controlled the expression of the miR-181 family in white adipocytes in mice to regulate energy expenditure and insulin sensitivity. Moreover, dysregulation of the gut microbiota-miR-181 axis was required for the development of obesity, IR, and WAT inflammation in mice. Our results indicate that regulation of miR-181 in WAT by gut microbiota-derived metabolites is a central mechanism by which host metabolism is tuned in response to dietary and environmental changes. As we also found that MIR-181 expression in WAT and the plasma abundance of tryptophan-derived metabolites were dysregulated in a cohort of obese human children, the MIR-181 family may represent a potential therapeutic target to modulate WAT function in the context of obesity.
Collapse
Affiliation(s)
- Anthony T Virtue
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sam J McCright
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jasmine M Wright
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monica T Jimenez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Walter K Mowel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan J Kotzin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leonel Joannas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Megha G Basavappa
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sean P Spencer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Megan L Clark
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Adam Williams
- Jackson Laboratory for Genomic Medicine, Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Maayan Levy
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sarah E Henrickson
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christoph A Thaiss
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
89
|
Hasain Z, Mokhtar NM, Kamaruddin NA, Mohamed Ismail NA, Razalli NH, Gnanou JV, Raja Ali RA. Gut Microbiota and Gestational Diabetes Mellitus: A Review of Host-Gut Microbiota Interactions and Their Therapeutic Potential. Front Cell Infect Microbiol 2020; 10:188. [PMID: 32500037 PMCID: PMC7243459 DOI: 10.3389/fcimb.2020.00188] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as impaired glucose tolerance recognized during pregnancy. GDM is associated with metabolic disorder phenotypes, such as obesity, low-grade inflammation, and insulin resistance. Following delivery, nearly half of the women with a history of GDM have persistent postpartum glucose intolerance and an increased risk of developing type 2 diabetes mellitus (T2DM), as much as 7-fold. The alarming upward trend may worsen the socioeconomic burden worldwide. Accumulating evidence strongly associates gut microbiota dysbiosis in women with GDM, similar to the T2DM profile. Several metagenomics studies have shown gut microbiota, such as Ruminococcaceae, Parabacteroides distasonis, and Prevotella, were enriched in women with GDM. These microbiota populations are associated with metabolic pathways for carbohydrate metabolism and insulin signaling, suggesting a potential "gut microbiota signature" in women with GDM. Furthermore, elevated expression of serum zonulin, a marker of gut epithelial permeability, during early pregnancy in women with GDM indicates a possible link between gut microbiota and GDM. Nevertheless, few studies have revealed discrepant results, and the interplay between gut microbiota dysbiosis and host metabolism in women with GDM is yet to be elucidated. Lifestyle modification and pharmacological treatment with metformin showed evidence of modulation of gut microbiota and proved to be beneficial to maintain glucose homeostasis in T2DM. Nonetheless, post-GDM women have poor compliance toward lifestyle modification after delivery, and metformin treatment remains controversial as a T2DM preventive strategy. We hypothesized modulation of the composition of gut microbiota with probiotics supplementation may reverse postpartum glucose intolerance in post-GDM women. In this review, we addressed gut microbiota dysbiosis and the possible mechanistic links between the host and gut microbiota in women with GDM. Furthermore, this review highlights the potential therapeutic use of probiotics in post-GDM women as a T2DM preventive strategy.
Collapse
Affiliation(s)
- Zubaidah Hasain
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia.,Faculty of Medicine, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia.,GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Azmi Kamaruddin
- Endocrine Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Nor Azlin Mohamed Ismail
- Department of Obstetrics & Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Huda Razalli
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Dietetic Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Raja Affendi Raja Ali
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Gastroenterology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| |
Collapse
|
90
|
Tsai YL, Tsai WC, Qing Z, Chang CJ. Dichotomous effects of microbial membrane vesicles on the regulation of immunity. MEDICINE IN MICROECOLOGY 2020. [DOI: 10.1016/j.medmic.2020.100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
91
|
Dopamine Signaling in the Suprachiasmatic Nucleus Enables Weight Gain Associated with Hedonic Feeding. Curr Biol 2020; 30:196-208.e8. [PMID: 31902720 DOI: 10.1016/j.cub.2019.11.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 12/30/2022]
Abstract
The widespread availability of energy-dense, rewarding foods is correlated with the increased incidence of obesity across the globe. Overeating during mealtimes and unscheduled snacking disrupts timed metabolic processes, which further contribute to weight gain. The neuronal mechanism by which the consumption of energy-dense food restructures the timing of feeding is poorly understood. Here, we demonstrate that dopaminergic signaling within the suprachiasmatic nucleus (SCN), the central circadian pacemaker, disrupts the timing of feeding, resulting in overconsumption of food. D1 dopamine receptor (Drd1)-null mice are resistant to diet-induced obesity, metabolic disease, and circadian disruption associated with energy-dense diets. Conversely, genetic rescue of Drd1 expression within the SCN restores diet-induced overconsumption, weight gain, and obesogenic symptoms. Access to rewarding food increases SCN dopamine turnover, and elevated Drd1-signaling decreases SCN neuronal activity, which we posit disinhibits downstream orexigenic responses. These findings define a connection between the reward and circadian pathways in the regulation of pathological calorie consumption.
Collapse
|
92
|
Betancourt L, Hume M, Rodríguez F, Nisbet D, Sohail MU, Afanador-Tellez G. Effects of Colombian oregano essential oil (Lippia origanoides Kunth) and Eimeria species on broiler production and cecal microbiota. Poult Sci 2019; 98:4777-4786. [PMID: 30995320 DOI: 10.3382/ps/pez193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
The gut microbiota has an important effect on poultry health and production. The aim of this study was to evaluate the effect of Colombian oregano (COO), Lippia origanoides Kunth, essential oil supplementation on broiler chicken performance and their cecal bacterial microbiome by 16S-based sequencing. Essential oil was extracted by steam distillation and analyzed by Gas chromatography/mass spectrometry. Two COO levels in feed, 0 ppm control (C) and 100 ppm (O), were evaluated in 2 groups of broilers either unchallenged (U) or challenged (E) with a viable attenuated Eimeria (coccidia) oocyte vaccine. Four treatments, UC, UO, EC, and EO, were distributed among 720 one-day-old male Ross broilers randomly placed in 24 pens. Cecal contents DNA was extracted and pyrosequencing was performed following a standard procedure. Pyrosequencing data were processed, and sequence reads were phylogenetically classified. Similarity of membership and structure in the communities were calculated. At the end of the study, the greatest COO effect was found in coccidia-challenged broilers, with an OE body weight of 1,889 ± 52.4 g with respect to 1,799 ± 36.2 g for CE (P < 0.01). Broiler cecal samples were consistent in that phylum Firmicutes and class Clostridia were highly prevalent; COO had no effect on these taxa levels between the 4 treatments (P > 0.05). A positive correlation (P < 0.01) was observed between the Firmicutes:Bacteriodetes phyla ratio against body weight at 35 D of age. This study provided both positive and negative correlations between broiler body weight against some bacterial groups identified, offering perspectives regarding bacterial groups and their impact on host health and metabolism. Lippia origanoides Kunth high thymol content showed a beneficial effect on body weight and the feed conversion ratio in broilers under coccidia challenge.
Collapse
Affiliation(s)
- Liliana Betancourt
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Michael Hume
- United States Department of Agriculture, ARS, FFSRU, College Station, TX 250047, USA
| | | | - David Nisbet
- United States Department of Agriculture, ARS, FFSRU, College Station, TX 250047, USA
| | - Muhammad Umar Sohail
- Government College University, Faisalabad, Pakistan to Qatar University Biomedical Research Center, Doha 2713, Qatar
| | - Germán Afanador-Tellez
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| |
Collapse
|
93
|
Liu J, Hao W, He Z, Kwek E, Zhao Y, Zhu H, Liang N, Ma KY, Lei L, He WS, Chen ZY. Beneficial effects of tea water extracts on the body weight and gut microbiota in C57BL/6J mice fed with a high-fat diet. Food Funct 2019; 10:2847-2860. [PMID: 31062778 DOI: 10.1039/c8fo02051e] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Accumulative evidence has suggested that tea consumption has benefits in reducing body fat and alleviating metabolic syndrome. We hypothesize that benefits of tea consumption can be partially mediated by modulating intestinal microbiota via inhibiting the formation of lipopolysaccharides (LPS) and promoting the production of short chain fatty acids (SCFAs). C57BL/6J mice were fed a high fat diet with the addition of 1% water extracts of green tea, oolong tea and black tea. Results showed that the dietary supplementation of three tea water extracts equally improved the glucose tolerance and reduced a high fat diet-induced gain in weight, hepatic lipids, and white adipose tissue weights. This was accompanied by a significant reduction in plasma LPS and a significant increase in the production of SCFAs. The metagenomic analyses showed that the tea extracts changed the overall composition of gut microbiota and decreased the relative abundance of family Rikenellaceae and Desulfovibrionaceae. In addition, tea water extracts could also change the abundance of key operational taxonomic units (OTUs) including OTU473 (Alistipes), OTU229 (Rikenella), OTU179 (Ruminiclostridium) and OTU264 (Acetatifactor). In conclusion, three tea extracts could improve the glucose tolerance, induce the production of SCFAs and inhibit the production of endotoxin LPS, most likely mediated by modulating gut microbiota.
Collapse
Affiliation(s)
- Jianhui Liu
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Salgaço MK, Oliveira LGS, Costa GN, Bianchi F, Sivieri K. Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Appl Microbiol Biotechnol 2019; 103:9229-9238. [DOI: 10.1007/s00253-019-10156-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022]
|
95
|
Stefanaki C, Michos A, Mastorakos G, Mantzou A, Landis G, Zosi P, Bacopoulou F. Probiotics in Adolescent Prediabetes: A Pilot RCT on Glycemic Control and Intestinal Bacteriome. J Clin Med 2019; 8:1743. [PMID: 31640224 PMCID: PMC6832390 DOI: 10.3390/jcm8101743] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/05/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
Dysbiosis of intestinal ecology could be implicated in prediabetes. The aim of this pilot randomized controlled trial (RCT) was to collect preliminary data on the effects of probiotic supplementation (Vivomixx©) on markers of glucose metabolism, intestinal microbiome composition, and intestinal health indices, of prediabetic adolescents. The intervention group was administered probiotic sachets twice daily for 4 months, while both intervention and control groups received weekly consultation sessions for a healthier lifestyle. Thirty-two participants were recruited (1.3 participants per month) and were randomized (16 in control and 16 in intervention group). Fifteen of them signed the inform consent and never entered the study (6 in control and 9 in intervention group). Thus, seventeen participants completed the study (10 in control and 7 in intervention group), with no serious adverse events. After the 4-month intervention, no difference was observed in the markers of glycemic control between the two groups, although a minor effect was observed for fasting glucose at 1-month, probably due to the initial higher adherence to the probiotic supplements. Modifications of the protocol procedures are warranted because of the high attrition rates and suboptimal compliance that were noted. Future studies and further RCTs with larger samples need to be conducted to fully elucidate the potential effects of probiotics in the glycemic control of prediabetic adolescents.
Collapse
Affiliation(s)
- Charikleia Stefanaki
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece.
- Department of Pediatrics, General Hospital of Piraeus 'Aghios Panteleimon', 18454 Piraeus, Greece.
- Unit of Endocrinology, Diabetes mellitus, and Metabolism, School of Medicine, National and Kapodistrian University of Athens, Aretaieion Hospital, 11528 Athens, Greece.
| | - Athanasios Michos
- Division of Infectious Diseases, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - George Mastorakos
- Unit of Endocrinology, Diabetes mellitus, and Metabolism, School of Medicine, National and Kapodistrian University of Athens, Aretaieion Hospital, 11528 Athens, Greece.
| | - Aimilia Mantzou
- Unit of Clinical and Translational Research in Endocrinology, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece.
| | - Georgios Landis
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece.
| | - Paraskevi Zosi
- Department of Pediatrics, General Hospital of Piraeus 'Aghios Panteleimon', 18454 Piraeus, Greece.
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece.
- Unit of Clinical and Translational Research in Endocrinology, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece.
| |
Collapse
|
96
|
Higarza SG, Arboleya S, Gueimonde M, Gómez-Lázaro E, Arias JL, Arias N. Neurobehavioral dysfunction in non-alcoholic steatohepatitis is associated with hyperammonemia, gut dysbiosis, and metabolic and functional brain regional deficits. PLoS One 2019; 14:e0223019. [PMID: 31539420 PMCID: PMC6754158 DOI: 10.1371/journal.pone.0223019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the most prevalent diseases worldwide. While it has been suggested to cause nervous impairment, its neurophysiological basis remains unknown. Therefore, the aim of this study is to unravel the effects of NASH, through the interrelationship of liver, gut microbiota, and nervous system, on the brain and human behavior. To this end, 40 Sprague-Dawley rats were divided into a control group that received normal chow and a NASH group that received a high-fat, high-cholesterol diet. Our results show that 14 weeks of the high-fat, high-cholesterol diet induced clinical conditions such as NASH, including steatosis and increased levels of ammonia. Rats in the NASH group also demonstrated evidence of gut dysbiosis and decreased levels of short-chain fatty acids in the gut. This may explain the deficits in cognitive ability observed in the NASH group, including their depressive-like behavior and short-term memory impairment characterized in part by deficits in social recognition and prefrontal cortex-dependent spatial working memory. We also reported the impact of this NASH-like condition on metabolic and functional processes. Brain tissue demonstrated lower levels of metabolic brain activity in the prefrontal cortex, thalamus, hippocampus, amygdala, and mammillary bodies, accompanied by a decrease in dopamine levels in the prefrontal cortex and cerebellum and a decrease in noradrenalin in the striatum. In this article, we emphasize the important role of ammonia and gut-derived bacterial toxins in liver-gut-brain neurodegeneration and discuss the metabolic and functional brain regional deficits and behavioral impairments in NASH.
Collapse
Affiliation(s)
- Sara G. Higarza
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Asturias, Spain
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Asturias, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Institute of Dairy Products of the Principality of Asturias (IPLA-CSIC), Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Institute of Dairy Products of the Principality of Asturias (IPLA-CSIC), Asturias, Spain
| | - Eneritz Gómez-Lázaro
- Department of Basic Psychological Processes and their Development, Basque Country University, San Sebastián, Basque Country, Spain
| | - Jorge L. Arias
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Asturias, Spain
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Asturias, Spain
| | - Natalia Arias
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Asturias, Spain
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, United Kingdom
| |
Collapse
|
97
|
Abstract
Aging is a natural process of organismal decay that underpins the development of myriad diseases and disorders. Extensive efforts have been made to understand the biology of aging and its regulation, but most studies focus solely on the host organism. Considering the pivotal role of the microbiota in host health and metabolism, we propose viewing the host and its microbiota as a single biological entity whose aging phenotype is influenced by the complex interplay between host and bacterial genetics. In this review we present how the microbiota changes as the host ages, but also how the intricate relationship between host and indigenous bacteria impacts organismal aging and life span. In addition, we highlight other microbiota-dependent mechanisms that potentially regulate aging, and present experimental animal models for addressing these questions. Importantly, we propose microbiome dysbiosis as an additional hallmark and biomarker of aging.
Collapse
Affiliation(s)
- Bianca Bana
- Institute of Structural and Molecular Biology, University College London and Birkbeck, University of London, London WC1E 6BT, United Kingdom
| | - Filipe Cabreiro
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom; .,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| |
Collapse
|
98
|
Jayarathne S, Stull AJ, Park OH, Kim JH, Thompson L, Moustaid-Moussa N. Protective Effects of Anthocyanins in Obesity-Associated Inflammation and Changes in Gut Microbiome. Mol Nutr Food Res 2019; 63:e1900149. [PMID: 31389663 DOI: 10.1002/mnfr.201900149] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Obesity is a complex disease and a major public health epidemic. Chronic, low-grade inflammation is a common underlying feature of obesity and associated metabolic diseases; adipose tissue is a major contributor to this systemic inflammation. Evidence shows that obesity-associated inflammation may originate from gut dysfunction, including changes in intestinal bacteria or microbiome profiles. Increasingly, food and plant bioactive compounds with antioxidant and anti-inflammatory properties are proposed to ameliorate obesity-associated inflammation. Among these, the health-promoting effects of anthocyanin-rich foods are of interest here. Specifically, this review summarizes the reported benefits of anthocyanins in obesity-associated inflammation and underlying molecular mechanisms, including the role of gut microbiome and cell signaling pathways regulated by anthocyanins both in vivo and in vitro.
Collapse
Affiliation(s)
- Shasika Jayarathne
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,College of Human Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409, USA
| | - April J Stull
- Department of Human Ecology, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Oak-Hee Park
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,College of Human Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jung Han Kim
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Leslie Thompson
- Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409, USA.,Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,College of Human Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
99
|
Maternal exercise before and during pregnancy alleviates metabolic dysfunction associated with high-fat diet in pregnant mice, without significant changes in gut microbiota. Nutr Res 2019; 69:42-57. [PMID: 31670066 DOI: 10.1016/j.nutres.2019.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
Although maternal exercise before and during pregnancy is beneficial, the effects of exercise on microbiota changes during pregnancy are unknown. Here we tested the hypothesis that maternal exercise before and during pregnancy would positively affect glucose homeostasis, pancreatic cell function, and gut microbiota dysbiosis in high-fat diet (HFD) fed dams. Female C57BL/6 mice were fed either a HFD or a low-fat diet (LFD) for 12 weeks. The HFD mice were split into two groups for 4 weeks prior to pregnancy initiation and throughout the pregnancy: sedentary (HFD) or exercised (HFD + Ex). Food intake, body weight, body composition, and glucose and insulin tolerance were measured. At gestation day 19, blood, pancreas, gonadal visceral and subcutaneous fat, plantaris muscle, and cecum were collected for analysis. Both HFD and HFD + Ex mice had impaired glucose clearance compared to LFD mice at 15 days of gestation. No changes were found in pancreatic α- or β-cell health. HFD + Ex mice had significantly reduced visceral fat mass, serum insulin, and leptin levels and increased high-density lipoprotein levels, compared to HFD-fed mice. In contrast to our hypothesis, microbiota diversity and composition were not different among groups. The relative abundance of five bacterial phyla, such as Firmicutes, Bacteroidetes, Verrucomicrobia, Deferribacteres, and Actinobacteria, were not significantly altered with diet or exercise during pregnancy. Our findings suggest that maternal exercise prevents excess visceral fat accumulation, hyperinsulinemia, and hyperleptinemia associated with a HFD, but not through the alterations of gut microbiota composition or diversity during pregnancy.
Collapse
|
100
|
Yarar-Fisher C, Li J, McLain A, Gower B, Oster R, Morrow C. Utilizing a low-carbohydrate/high-protein diet to improve metabolic health in individuals with spinal cord injury (DISH): study protocol for a randomized controlled trial. Trials 2019; 20:466. [PMID: 31362773 PMCID: PMC6664761 DOI: 10.1186/s13063-019-3520-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background Metabolic disorders (e.g., impaired glucose tolerance, insulin resistance, and type 2 diabetes) are more prevalent in people with spinal cord injury (SCI) than able-bodied individuals. Dietary modification is a more cost-effective treatment option than pharmacological therapies for reducing the risk of metabolic dysfunction. Lowering carbohydrate, increasing protein, and maintaining a proper dietary fat intake are expected to induce favorable adaptations in glucose control, body fat distribution, and the composition of the gut microbiome. However, dietary modification has not been rigorously investigated in people with SCI. The purpose of this study is to determine if an 8-week low-carbohydrate/high-protein (LC/HP) dietary intervention will show improvements in clinically important metrics of metabolic function, body composition, the composition of gut bacteria, and quality of life. Methods/design We intend to recruit 100 participants with chronic traumatic SCI (3 years postinjury, C5–L2, American Spinal Injury Association impairment scale A–D, and aged 18–65 years) and insulin resistance, impaired glucose tolerance or untreated type 2 diabetes and randomly assign them to an 8-week LC/HP dietary intervention group or a control group. The daily LC/HP dietary intervention includes ~ 30% total energy as protein (1.6 g/kg per day) with a carbohydrate-to-protein ratio < 1.5 and fat intake set at ~ 30% of the total energy intake. The control group does not receive any dietary intervention and are continuing with their regular daily diets. Glucose tolerance, insulin sensitivity, β-cell function, body composition, gut microbiome composition, and quality of life measures are assessed at week 1, before starting the LC/HP dietary intervention, and at week 8, after completion of the LC/HP dietary intervention. Discussion New information derived from this project will result in the development of a low-cost, simple, self-administered LC/HP dietary intervention for improving metabolic function in individuals with chronic SCI, improved understanding of the composition of gut bacteria in SCI, and how a LC/HP dietary intervention alters gut bacteria composition. In addition, this project will improve our understanding of the relationship between metabolic function and quality of life in individuals with long-standing SCI. Trial registration ClinicalTrials.gov, NCT03207841. Registered on 5 June 2017. Electronic supplementary material The online version of this article (10.1186/s13063-019-3520-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ceren Yarar-Fisher
- Department of Physical Medicine and Rehabilitation, UAB School of Medicine, 190 Spain Rehabilitation Center, 1717 6th Avenue South, Birmingham, AL, 35233, USA.
| | - Jia Li
- Department of Physical Medicine and Rehabilitation, UAB School of Medicine, 190 Spain Rehabilitation Center, 1717 6th Avenue South, Birmingham, AL, 35233, USA
| | - Amie McLain
- Department of Physical Medicine and Rehabilitation, UAB School of Medicine, 190 Spain Rehabilitation Center, 1717 6th Avenue South, Birmingham, AL, 35233, USA
| | - Barbara Gower
- Department of Nutrition Sciences, UAB School of Health Professions, 1675 University Blvd., Webb 624C, Birmingham, AL, 35294, USA
| | - Robert Oster
- Department of Medicine/Division of Preventive Medicine, UAB School of Medicine, Medical Towers 642, 1717 11th Avenue South, Birmingham, AL, 35205, USA
| | - Casey Morrow
- Department of Cell, Developmental, and Integrative Biology, UAB School of Medicine, 1918 University Blvd, MCLM 680, Birmingham, AL, 35233, USA
| |
Collapse
|