51
|
Chen F, He Y, Yao X, Zho B, Tian S, Yin J, Lu L. CsMOF1-guided regulation of drought-induced theanine biosynthesis in Camellia sinensis. Int J Biol Macromol 2024; 268:131725. [PMID: 38677697 DOI: 10.1016/j.ijbiomac.2024.131725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
The distinctive flavor and numerous health benefits of tea are attributed to the presence of theanine, a special amino acid found in tea plants. Nitrogen metabolite is greatly impacted by drought; however, the molecular mechanism underlying the synthesis of theanine in drought-stricken tea plants is still not clear. Through the drought transcriptome data of tea plants, we have identified a gene CsMOF1 that appears to play a role in theanine biosynthesis under drought stress, presenting a significantly negative correlation with both theanine content and the expression of CsGS1. Further found that CsMOF1 is a transcription factor containing a MYB binding domain, localized in the nucleus. Upon silencing CsMOF1, there was a prominent increase in the level of the theanine and glutamine, as well as the expression of CsGS1, while glutamic acid content decreased significantly. Conversely, overexpression of CsMOF1 yielded opposite effects. Dual luciferase reporter assay and electromobility shift assays demonstrated that CsMOF1 binds to the promoter of CsGS1, thereby inhibiting its activity. These results indicate that CsMOF1 plays a crucial role in theanine biosynthesis in tea plants under drought stress, acting as a transcriptional repressor related to theanine biosynthesis. This study provides new insights into the tissue-specific regulation of theanine biosynthesis and aids with the cultivation of new varieties of tea plants.
Collapse
Affiliation(s)
- Feng Chen
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Yuan He
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Bokun Zho
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Science, Guizhou University, Guiyang 550025, China
| | - Shiyu Tian
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Science, Guizhou University, Guiyang 550025, China
| | - Jie Yin
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China; The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Science, Guizhou University, Guiyang 550025, China.
| | - Litang Lu
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China; The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
52
|
Al-Tabbal J, Al-Harahsheh M, Al-Zou'by JY. Silica nanoparticles as a waste product to alleviate the harmful effects of water stress in wheat. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1626-1642. [PMID: 38644591 DOI: 10.1080/15226514.2024.2342631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Drought is a threat to food security and agricultural sustainability in arid and semi-arid countries. Using wasted silica nanoparticles could minimize water scarcity. A controlled study investigated wheat plant physiological and morphological growth under tap-water irrigation (80-100, 60-80, and 40-60% field capacity). The benefits of S1: 0%, S2: 5%, and S3: 10% nanoparticle silica soil additions were studied. Our research reveals that water stress damages the physiological and functional growth of wheat plants. Plant height decreased by 8.9%, grain yield by 5.4%, and biological yield by 19.2%. These effects were observed when plants were irrigated to 40-60% field capacity vs. control. In plants under substantial water stress (40-60% of field capacity), chlorophyll a (8.04 mg g-1), b (1.5 mg g-1), total chlorophyll (9.55 mg g-1), carotenoids (2.44 mg g-1), and relative water content (54%), Electrolyte leakage (59%), total soluble sugar (1.79 mg g-1 fw), and proline (80.3 mol g-1) were highest. Plants cultivated with silica nanoparticles exhibit better morphological and physiological growth than controls. The largest effect came from maximum silica nanoparticle loading. Silica nanoparticles may increase drought-stressed plant growth and production.
Collapse
Affiliation(s)
- Jalal Al-Tabbal
- Department of Nutrition and Food Processing, Al‑Huson University College, Al-Balqa Applied University, Irbid, Jordan
| | - Mohammad Al-Harahsheh
- Department of Chemical Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Jehad Y Al-Zou'by
- Department of Environmental Engineering, Al‑Huson University College, Al-Balqa Applied University, Irbid, Jordan
| |
Collapse
|
53
|
Wang X, Li X, Zhao W, Hou X, Dong S. Current views of drought research: experimental methods, adaptation mechanisms and regulatory strategies. FRONTIERS IN PLANT SCIENCE 2024; 15:1371895. [PMID: 38638344 PMCID: PMC11024477 DOI: 10.3389/fpls.2024.1371895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Drought stress is one of the most important abiotic stresses which causes many yield losses every year. This paper presents a comprehensive review of recent advances in international drought research. First, the main types of drought stress and the commonly used drought stress methods in the current experiment were introduced, and the advantages and disadvantages of each method were evaluated. Second, the response of plants to drought stress was reviewed from the aspects of morphology, physiology, biochemistry and molecular progression. Then, the potential methods to improve drought resistance and recent emerging technologies were introduced. Finally, the current research dilemma and future development direction were summarized. In summary, this review provides insights into drought stress research from different perspectives and provides a theoretical reference for scholars engaged in and about to engage in drought research.
Collapse
Affiliation(s)
- Xiyue Wang
- College of Agriculture, Northeast Agricultural University, Heilongjiang, Harbin, China
| | - Xiaomei Li
- College of Agriculture, Heilongjiang Agricultural Engineering Vocational College, Heilongjiang, Harbin, China
| | - Wei Zhao
- College of Agriculture, Northeast Agricultural University, Heilongjiang, Harbin, China
| | - Xiaomin Hou
- Millet Research Institute, Qiqihar Sub-Academy of Heilongjiang Academy of Agricultural Sciences, Heilongjiang, Qiqihar, China
| | - Shoukun Dong
- College of Agriculture, Northeast Agricultural University, Heilongjiang, Harbin, China
| |
Collapse
|
54
|
Elnajar M, Aldesuquy H, Abdelmoteleb M, Eltanahy E. Mitigating drought stress in wheat plants (Triticum Aestivum L.) through grain priming in aqueous extract of spirulina platensis. BMC PLANT BIOLOGY 2024; 24:233. [PMID: 38561647 PMCID: PMC10986097 DOI: 10.1186/s12870-024-04905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND The study focuses on the global challenge of drought stress, which significantly impedes wheat production, a cornerstone of global food security. Drought stress disrupts cellular and physiological processes in wheat, leading to substantial yield losses, especially in arid and semi-arid regions. The research investigates the use of Spirulina platensis aqueous extract (SPAE) as a biostimulant to enhance the drought resistance of two Egyptian wheat cultivars, Sakha 95 (drought-tolerant) and Shandawel 1 (drought-sensitive). Each cultivar's grains were divided into four treatments: Cont, DS, SPAE-Cont, and SPAE + DS. Cont and DS grains were presoaked in distilled water for 18 h while SPAE-Cont and SPAE + DS were presoaked in 10% SPAE, and then all treatments were cultivated for 96 days in a semi-field experiment. During the heading stage (45 days: 66 days), two drought treatments, DS and SPAE + DS, were not irrigated. In contrast, the Cont and SPAE-Cont treatments were irrigated during the entire experiment period. At the end of the heading stage, agronomy, pigment fractions, gas exchange, and carbohydrate content parameters of the flag leaf were assessed. Also, at the harvest stage, yield attributes and biochemical aspects of yielded grains (total carbohydrates and proteins) were evaluated. RESULTS The study demonstrated that SPAE treatments significantly enhanced the growth vigor, photosynthetic rate, and yield components of both wheat cultivars under standard and drought conditions. Specifically, SPAE treatments increased photosynthetic rate by up to 53.4%, number of spikes by 76.5%, and economic yield by 190% for the control and 153% for the drought-stressed cultivars pre-soaked in SPAE. Leaf agronomy, pigment fractions, gas exchange parameters, and carbohydrate content were positively influenced by SPAE treatments, suggesting their effectiveness in mitigating drought adverse effects, and improving wheat crop performance. CONCLUSION The application of S. platensis aqueous extract appears to ameliorate the adverse effects of drought stress on wheat, enhancing the growth vigor, metabolism, and productivity of the cultivars studied. This indicates the potential of SPAE as an eco-friendly biostimulant for improving crop resilience, nutrition, and yield under various environmental challenges, thus contributing to global food security.
Collapse
Affiliation(s)
- Mustafa Elnajar
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Heshmat Aldesuquy
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Abdelmoteleb
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Eladl Eltanahy
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
- Algae Biotechnology Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
55
|
Kumar B, Pal M, Yadava P, Kumar K, Langyan S, Jha AK, Singh I. Physiological and biochemical effects of 24-Epibrassinolide on drought stress adaptation in maize ( Zea mays L.). PeerJ 2024; 12:e17190. [PMID: 38560461 PMCID: PMC10981409 DOI: 10.7717/peerj.17190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Maize production and productivity are affected by drought stress in tropical and subtropical ecologies, as the majority of the area under maize cultivation in these ecologies is rain-fed. The present investigation was conducted to study the physiological and biochemical effects of 24-Epibrassinolide (EBR) as a plant hormone on drought tolerance in maize. Two maize hybrids, Vivek hybrid 9 and Bio 9637, were grown under three different conditions: (i) irrigated, (ii) drought, and (iii) drought+EBR. A total of 2 weeks before the anthesis, irrigation was discontinued to produce a drought-like condition. In the drought+EBR treatment group, irrigation was also stopped, and in addition, EBR was applied as a foliar spray on the same day in the drought plots. It was observed that drought had a major influence on the photosynthesis rate, membrane stability index, leaf area index, relative water content, and leaf water potential; this effect was more pronounced in Bio 9637. Conversely, the activities of antioxidant enzymes such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) increased in both hybrids under drought conditions. Specifically, Vivek hybrid 9 showed 74% higher CAT activity under drought conditions as compared to the control. Additionally, EBR application further enhanced the activity of this enzyme by 23% compared to plants under drought conditions. Both hybrids experienced a significant reduction in plant girth due to drought stress. However, it was found that exogenously applying EBR reduced the detrimental effects of drought stress on the plant, and this effect was more pronounced in Bio 9637. In fact, Bio 9637 treated with EBR showed an 86% increase in proline content and a 70% increase in glycine betaine content compared to untreated plants under drought conditions. Taken together, our results suggested EBR enhanced tolerance to drought in maize hybrids. Hence, pre-anthesis foliar application of EBR might partly overcome the adverse effects of flowering stage drought in maize.
Collapse
Affiliation(s)
- Bicky Kumar
- Pusa Campus, ICAR-Indian Institute of Maize Research, New Delhi, India
- Pusa Campus, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Madan Pal
- Pusa Campus, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Pranjal Yadava
- Pusa Campus, ICAR-Indian Institute of Maize Research, New Delhi, India
- Pusa Campus, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Krishan Kumar
- Pusa Campus, ICAR-Indian Institute of Maize Research, New Delhi, India
| | - Sapna Langyan
- Pusa Campus, ICAR-Indian Institute of Maize Research, New Delhi, India
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Ishwar Singh
- Pusa Campus, ICAR-Indian Institute of Maize Research, New Delhi, India
- Crop Science Division, Indian Council of Agricultural Research, New Delhi, Delhi, India
| |
Collapse
|
56
|
Chen F, Jiang F, Okla MK, Abbas ZK, Al-Qahtani SM, Al-Harbi NA, Abdel-Maksoud MA, Gómez-Oliván LM. Nanoparticles synergy: Enhancing wheat (Triticum aestivum L.) cadmium tolerance with iron oxide and selenium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169869. [PMID: 38218476 DOI: 10.1016/j.scitotenv.2024.169869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
Nanotechnology is capturing great interest worldwide due to their stirring applications in various fields and also individual application of iron oxide nanoparticle (FeO - NPs) and selenium nanoparticles (Se - NPs) have been studied in many literatures. However, the combined application of FeO and Se - NPs is a novel approach and studied in only few studies. For this purpose, a pot experiment was conducted to examine various growth and biochemical parameters in wheat (Triticum aestivum L.) under the toxic concentration of cadmium (Cd) i.e., 50 mg kg-1 which were primed with combined application of two levels of FeO and Se - NPs i.e., 15 and 30 mg L-1 respectively. The results showed that the Cd toxicity in the soil showed a significantly (P < 0.05) declined in the growth, gas exchange attributes, sugars, AsA-GSH cycle, cellular fractionation, proline metabolism in T. aestivum. However, Cd toxicity significantly (P < 0.05) increased oxidative stress biomarkers, enzymatic and non-enzymatic antioxidants including their gene expression in T. aestivum. Although, the application of FeO and Se - NPs showed a significant (P < 0.05) increase in the plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds and their gene expression and also decreased the oxidative stress, and Cd uptake. In addition, individual or combined application of FeO and Se - NPs enhanced the cellular fractionation and decreases the proline metabolism and AsA - GSH cycle in T. aestivum. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
- Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Feifei Jiang
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zahid Khorshid Abbas
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salem Mesfir Al-Qahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Leobardo Manuel Gómez-Oliván
- Universidad Autónoma del Estado de México, Paseo Colón, intersección Paseo Tollocan Col. Universidad, CP 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
57
|
Şimşek Ö, Isak MA, Dönmez D, Dalda Şekerci A, İzgü T, Kaçar YA. Advanced Biotechnological Interventions in Mitigating Drought Stress in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:717. [PMID: 38475564 DOI: 10.3390/plants13050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
This comprehensive article critically analyzes the advanced biotechnological strategies to mitigate plant drought stress. It encompasses an in-depth exploration of the latest developments in plant genomics, proteomics, and metabolomics, shedding light on the complex molecular mechanisms that plants employ to combat drought stress. The study also emphasizes the significant advancements in genetic engineering techniques, particularly CRISPR-Cas9 genome editing, which have revolutionized the creation of drought-resistant crop varieties. Furthermore, the article explores microbial biotechnology's pivotal role, such as plant growth-promoting rhizobacteria (PGPR) and mycorrhizae, in enhancing plant resilience against drought conditions. The integration of these cutting-edge biotechnological interventions with traditional breeding methods is presented as a holistic approach for fortifying crops against drought stress. This integration addresses immediate agricultural needs and contributes significantly to sustainable agriculture, ensuring food security in the face of escalating climate change challenges.
Collapse
Affiliation(s)
- Özhan Şimşek
- Horticulture Department, Agriculture Faculty, Erciyes University, Kayseri 38030, Türkiye
| | - Musab A Isak
- Agricultural Sciences and Technology Department, Graduate School of Natural and Applied Sciences, Erciyes University, Kayseri 38030, Türkiye
| | - Dicle Dönmez
- Biotechnology Research and Application Center, Çukurova University, Adana 01330, Türkiye
| | - Akife Dalda Şekerci
- Horticulture Department, Agriculture Faculty, Erciyes University, Kayseri 38030, Türkiye
| | - Tolga İzgü
- National Research Council of Italy (CNR), Institute of BioEconomy, 50019 Florence, Italy
| | - Yıldız Aka Kaçar
- Horticulture Department, Agriculture Faculty, Çukurova University, Adana 01330, Türkiye
| |
Collapse
|
58
|
Jagadeesan Y, Meenakshisundaram S, Pichaimuthu S, Balaiah A. A scientific version of understanding "Why did the chickens cross the road"? - A guided journey through Bacillus spp. towards sustainable agriculture, circular economy and biofortification. ENVIRONMENTAL RESEARCH 2024; 244:117907. [PMID: 38109965 DOI: 10.1016/j.envres.2023.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
The world, a famished planet with an overgrowing population, requires enormous food crops. This scenario compelled the farmers to use a high quantity of synthetic fertilizers for high food crop productivity. However, prolonged usage of chemical fertilizers results in severe adverse effects on soil and water quality. On the other hand, the growing population significantly consumes large quantities of poultry meats. Eventually, this produces a mammoth amount of poultry waste, chicken feathers. Owing to the protein value of the chicken feathers, these wastes are converted into protein hydrolysate and further extend their application as biostimulants for sustained agriculture. The protein profile of chicken feather protein hydrolysate (CFPH) produced through Bacillus spp. was the maximum compared to physical and chemical protein extraction methods. Several studies proved that the application of CFPH and active Bacillus spp. culture to soil and plants results in enhanced plant growth, phytochemical constituents, crop yield, soil nutrients, fertility, microbiome and resistance against diverse abiotic and biotic stresses. Overall, "CFPH - Jack of all trades" and "Bacillus spp. - an active camouflage to the surroundings where they applied showed profound and significant benefits to the plant growth under the most adverse conditions. In addition, Bacillus spp. coheres the biofortification process in plants through the breakdown of metals into metal ions that eventually increase the nutrient value of the food crops. However, detailed information on them is missing. This can be overcome by further real-world studies on rhizoengineering through a multi-omics approach and their interaction with plants. This review has explored the best possible and efficient strategy for managing chicken feather wastes into protein-rich CFPH through Bacillus spp. bioconversion and utilizing the CFPH and Bacillus spp. as biostimulants, biofertilizers, biopesticides and biofortificants. This paper is an excellent report on organic waste management, circular economy and sustainable agriculture research frontier.
Collapse
Affiliation(s)
- Yogeswaran Jagadeesan
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Shanmugapriya Meenakshisundaram
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Suthakaran Pichaimuthu
- Genprotic Biopharma Private Limited, SPIC Bioprocess Laboratory, Anna University, Taramani Campus, Taramani, Chennai, Tamilnadu, 600113, India.
| | - Anandaraj Balaiah
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| |
Collapse
|
59
|
Xing C, Lei C, Yang Y, Zhou D, Liu S, Xu J, Liu Z, Wu T, Zhou X, Huang S, Liu W. Drought responses and population differentiation of Calohypnum plumiforme inferred from comparative transcriptome analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108456. [PMID: 38417308 DOI: 10.1016/j.plaphy.2024.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/16/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Bryophytes, known as poikilohydric plants, possess vegetative desiccation-tolerant (DT) ability to withstand water deficit stress. Consequently, they offer valuable genetic resources for enhancing resistance to water scarcity stress. In this research, we examined the physiological, phytohormonal, and transcriptomic changes in DT mosses Calohypnum plumiforme from two populations, with and without desiccation treatment. Comparative analysis revealed population differentiation at physiological, gene sequence, and expression levels. Under desiccation stress, the activities of superoxide dismutase (SOD) and peroxidase (POD) showed significant increases, along with elevation of soluble sugars and proteins, consistent with the transcriptome changes. Notable activation of the bypass pathway of JA biosynthesis suggested their roles in compensating for JA accumulation. Furthermore, our analysis revealed significant correlations among phytohormones and DEGs in their respective signaling pathway, indicating potential complex interplays of hormones in C plumiforme. Protein phosphatase 2C (PP2C) in the abscisic acid signaling pathway emerged as the pivotal hub in the phytohormone crosstalk regulation network. Overall, this study was one of the first comprehensive transcriptome analyses of moss C. plumiforme under slow desiccation rates, expanding our knowledge of bryophyte transcriptomes and shedding light on the gene regulatory network involved in response to desiccation, as well as the evolutionary processes of local adaptation across moss populations.
Collapse
Affiliation(s)
- Chengguang Xing
- Guangdong Key Laboratory of Plant Resources, School of Ecology, Sun Yat-sen University, Shenzhen, 518100, China.
| | - Chunyi Lei
- Department of Scientific Research and Education, Heishiding Nature Reserve, Zhaoqing, 526536, China.
| | - Yuchen Yang
- Guangdong Key Laboratory of Plant Resources, School of Ecology, Sun Yat-sen University, Shenzhen, 518100, China.
| | - Dandan Zhou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China.
| | - Shanshan Liu
- Guangdong Key Laboratory of Plant Resources, School of Ecology, Sun Yat-sen University, Shenzhen, 518100, China.
| | - Jianqu Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Zhiwei Liu
- Guangdong Key Laboratory of Plant Resources, School of Ecology, Sun Yat-sen University, Shenzhen, 518100, China.
| | - Tao Wu
- Guangdong Key Laboratory of Plant Resources, School of Ecology, Sun Yat-sen University, Shenzhen, 518100, China.
| | - Xiaohang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shuzhen Huang
- Guangdong Key Laboratory of Plant Resources, School of Ecology, Sun Yat-sen University, Shenzhen, 518100, China.
| | - Weiqiu Liu
- Guangdong Key Laboratory of Plant Resources, School of Ecology, Sun Yat-sen University, Shenzhen, 518100, China.
| |
Collapse
|
60
|
Bolat I, Korkmaz K, Dogan M, Turan M, Kaya C, Seyed Hajizadeh H, Kaya O. Enhancing drought, heat shock, and combined stress tolerance in Myrobalan 29C rootstocks with foliar application of potassium nitrate. BMC PLANT BIOLOGY 2024; 24:140. [PMID: 38413882 PMCID: PMC10898176 DOI: 10.1186/s12870-024-04811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Drought and heat stress are significant concerns to food security in arid and semi-arid regions, where global warming is predicted to increase both frequency and severity. To cope with these challenges, the use of drought-tolerant plants or technological interventions are essential. In this study, the effects of foliar potassium nitrate (KNO3) application on the stress tolerance and recovery of Myrobalan 29C rootstocks (Prunus cerasifera Ehrh.) were evaluated. These rootstocks are widely recognized for their adaptability and are extensively used in fruit production. To assess their response, the rootstocks were subjected to drought, heat shock, or a combination of both stressors. Additionally, they were treated with 1.0% KNO3 via foliar application. Throughout the stress and recovery periods, various morphological, physiological, and bio-chemical parameters were measured. RESULTS Based on our results, KNO3 treatment improved LRWC, Chl stability, SC, and key stress markers like proline, MDA, H2O2, along with antioxidant enzymes CAT, SOD, POD during both stress and recovery phases. Moreover, our results emphasized KNO3's critical role in hormone regulation under stress. KNO3 application significantly altered hormone levels, notably increasing ABA during drought and heat shock stress, essential for stress response and adaptation. In contrast, IAA, GA, and cytokinin's significantly increased during the recovery phase in KNO3-treated plants, indicating improved growth regulation and stress recovery. In addition, KNO3 application improved the recovery process of the rootstocks by restoring their physiological and biochemical functions. CONCLUSION This study suggests that the application of foliar KNO3 is an effective technique for enhancing the drought and heat tolerance as well as the recovery of Myrobalan 29C rootstocks. These results hold significant value for farmers, policymakers, and researchers, as they offer crucial insights into the development of drought-tolerant crops and the management of climate change's adverse effects on agriculture.
Collapse
Affiliation(s)
- Ibrahim Bolat
- Faculty of Agriculture, Department of Horticulture, Harran University, Sanliurfa, Türkiye
| | - Kubra Korkmaz
- Graduate School of Natural and Applied Sciences, Department of Horticulture, Harran University, Sanliurfa, Türkiye
| | - Meral Dogan
- Graduate School of Natural and Applied Sciences, Department of Horticulture, Harran University, Sanliurfa, Türkiye
| | - Metin Turan
- Faculty of Economy and Administrative Science, Yeditepe University, Istanbul, 34755, Türkiye
| | - Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Türkiye.
| | - Hanifeh Seyed Hajizadeh
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran.
| | - Ozkan Kaya
- Republic of Turkey Ministry of Agriculture and Forestry, Erzincan Horticultural Research Institute, Erzincan, 24060, Türkiye.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
| |
Collapse
|
61
|
Wang N, Wang X, Chen L, Liu H, Wu Y, Huang M, Fang L. Biological roles of soil microbial consortium on promoting safe crop production in heavy metal(loid) contaminated soil: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168994. [PMID: 38043809 DOI: 10.1016/j.scitotenv.2023.168994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Heavy metal(loid) (HM) pollution of agricultural soils is a growing global environmental concern that affects planetary health. Numerous studies have shown that soil microbial consortia can inhibit the accumulation of HMs in crops. However, our current understanding of the effects and mechanisms of inhibition is fragmented. In this review, we summarise extant studies and knowledge to provide a comprehensive view of HM toxicity on crop growth and development at the biological, cellular and the molecular levels. In a meta-analysis, we find that microbial consortia can improve crop resistance and reduce HM uptake, which in turn promotes healthy crop growth, demonstrating that microbial consortia are more effective than single microorganisms. We then review three main mechanisms by which microbial consortia reduce the toxicity of HMs to crops and inhibit HMs accumulation in crops: 1) reducing the bioavailability of HMs in soil (e.g. biosorption, bioaccumulation and biotransformation); 2) improving crop resistance to HMs (e.g. facilitating the absorption of nutrients); and 3) synergistic effects between microorganisms. Finally, we discuss the prospects of microbial consortium applications in simultaneous crop safety production and soil remediation, indicating that they play a key role in sustainable agricultural development, and conclude by identifying research challenges and future directions for the microbial consortium to promote safe crop production.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangxiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanfang Wu
- Palm Eco-Town Development Co., Ltd., Zhengzhou 450000, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
62
|
Rani V, Sengar RS, Chauhan C. Assessment of physio-biochemical assessment and gene expression analysis of sugarcane genotypes under water stress. Mol Biol Rep 2024; 51:315. [PMID: 38376571 DOI: 10.1007/s11033-024-09251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/12/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Sugarcane, an economically important crop cultivated for its unique character of accumulating sucrose into its stalk and the world's major crop according to production quantity. Sugarcane production is negatively influenced by abiotic stresses because it faces all types of environments due to its long-life cycle period. Among the various abiotic stresses, drought is one of the major limiting factors creates obstacle in sugarcane production. Thus, an attempt was made to assess the molecular insights into sugarcane genotypes under water stress. A preliminary screening was done in ten sugarcane genotypes grown under semi-arid region of India through physiological, biochemical and antioxidant responses of these genotypes under two water deficit levels. METHODS In the current study, drought was imposed on ten sugarcane genotypes during their formative stage (110 DAP) by depriving them of irrigation. A pot experiment was carried out to see how several commercial sugarcane genotypes responded to water scarcity. Sugarcane received two treatments, the first after 125 days and the second after 140 days. The physio-biochemical and antioxidant responses recorded were RWC, MSI, SCMR, Proline accumulation, SOD, Catalase, Peroxidase and Lipid peroxidation. The significant variations were recorded in responses of all genotypes. On the basis of physio-biochemical, three genotypes Cos 98,014, Cos 13,235 and Colk 14,201 were selected for differential gene expression pattern analysis. The total RNA was isolated and reverse transcribe to cDNA and real time PCR was performed for expression analysis under 10 genes. RESULTS Under drought conditions, all sugarcane genotypes showed significantly decreased RWC, chlorophyll content, and MSI. However, when water was scarce, proline buildup, malondialdehyde (MDA) contents, enzymatic antioxidant activity (CAT, POD, and SOD), and contents all increased dramatically. Finally, in all physiological and biochemical parameters, Co 98,014 genotype displayed superior adaptation responses to drought stress, followed by Co 018, Cos 13,235, and Colk 14,201. For gene expression analysis out of 21 genes, 10 genes were expressed in sugarcane genotypes, in which 7 genes (Shbbx2, Shbbx3, Shbbx4, Shbbx5, Shbbx8, Shbbx15 and Shbbx20) were upregulated and 3 genes (Shbbx1, Shbbx16 and Shbbx17) were downregulated. CONCLUSION The statistical analysis conducted in this study demonstrated that drought stress had a negative impact on physiological responses, including RWC, SPAD, and MSI, in sugarcane crops. However, it was found that the crops were able to survive in these stress conditions by increasing their biochemical parameters, all while maintaining their growth and function.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Agricultural Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India
- Department of Agriculture, Meerut Institute of Technology, Meerut, 250103, India
| | - R S Sengar
- Department of Agricultural Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India.
| | - Chetan Chauhan
- Department of Floriculture and Landscaping Architecture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India
| |
Collapse
|
63
|
Li G, Zhu G, Liu J, Wang Z, Long H, Zhang R, Yu K. Effects of stable and fluctuating soil water on the agronomic and biological performance of root vegetables. FRONTIERS IN PLANT SCIENCE 2024; 15:1325078. [PMID: 38419780 PMCID: PMC10899879 DOI: 10.3389/fpls.2024.1325078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Compared to fluctuating soil water (FW) conditions, stable soil water (SW) can increase plant water use efficiency (WUE) and improve crop growth and aboveground yield. It is unknown, however, how stable and fluctuating soil water affect root vegetables. Here, the effects of SW and FW were studied on cherry radish in a pot experiment, using negative pressure irrigation and conventional irrigation, respectively. The assessed effects included agronomic parameters, physiological indices, yield, quality and WUE of cherry radish. Results showed that under similarly average soil water contents, compared with FW, SW increased plant photosynthetic rate, stomatal conductance and transpiration rate, decreased leaf proline content by 13.7-73.3% and malondialdehyde content by 12.5-40.0%, and increased soluble sugars content by 6.3-22.1%. Cherry radish had greater biomass accumulation and nutrient uptake in SW than in FW. Indeed, SW increased radish output by 34.6-94.1% with no influence on root/shoot ratio or root quality. In conclusion, soil water stability affected directly the water physiological indicators of cherry radish and indirectly its agronomic attributes and nutrient uptake, which in turn influenced the crop biomass and yield, as well as WUE. This study provides a new perspective for improving agronomy of root crops and WUE through managing soil water stability.
Collapse
Affiliation(s)
- Ge Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
| | - Guolong Zhu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Beijing Liangxiang Lanxin Hydraulic Engineering & Design Co., Ltd, Beijing, China
| | - Jian Liu
- Department of Soil and Land Use, Norwegian Institute of Bioeconomy Research (NIBIO), Viken, Norway
| | - Zhuan Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaiyu Long
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Renlian Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kefan Yu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
64
|
Raza MAS, Aslam MU, Valipour M, Iqbal R, Haider I, Mustafa AEZMA, Elshikh MS, Ali I, Roy R, Elshamly AMS. Seed priming with selenium improves growth and yield of quinoa plants suffering drought. Sci Rep 2024; 14:886. [PMID: 38195846 PMCID: PMC10776843 DOI: 10.1038/s41598-024-51371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Drought stress is a worldwide threat to the productivity of crops, especially in arid and semi-arid zones of the world. In the present study, the effect of selenium (Se) seed priming on the yield of quinoa under normal and drought conditions was investigated. A pot trial was executed to enhance the drought tolerance in quinoa by Se seed priming (0, 3, 6, and 9 mg Se L-1). The plants were exposed to water stress at three different growth stages of quinoa, viz. multiple leaf, flowering, and seed filling. It was noticed that drought significantly affected the yield components of quinoa, however, Se priming improved the drought tolerance potential and yield of quinoa by maintaining the plant water status. Se priming significantly increased main panicle length (20.29%), main panicle weight (26.43%), and thousand grain weight (15.41%) as well as the gas exchange parameters (transpiration rate (29.74%), stomatal conductance (35.29%), and photosynthetic rate (28.79%), total phenolics (29.36%), leaf chlorophyll contents (35.97%), water relations (leaf relative water contents (14.55%), osmotic potential (10.32%), water potential (38.35%), and turgor potential (31.37%), and economic yield (35.99%) under drought stress. Moreover, Se priming markedly improved grain quality parameters i.e., phosphorus, potassium, and protein contents by 21.28%, 18.92%, and 15.04%, respectively. The principal component analysis connected the various study scales and showed the ability of physio-biochemical factors to describe yield fluctuations in response to Se seed priming under drought conditions. In conclusion, a drought at the seed-filling stage has a far more deleterious impact among other critical growth stages and seed priming with Se (6 mg L-1) was found more effective in alleviating the detrimental effects of drought on the grain yield of quinoa.
Collapse
Affiliation(s)
| | - Muhammad Usman Aslam
- Department of Agronomy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO, 80217, USA
| | - Rashid Iqbal
- Department of Agronomy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Imran Haider
- National Research Center of Intercropping, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Abd El-Zaher M A Mustafa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Iftikhar Ali
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Rana Roy
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-Universität Zu Kiel, 24118, Kiel, Germany.
- Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Ayman M S Elshamly
- Water Studies and Research Complex, National Water Research Center, Cairo, 81525, Egypt
| |
Collapse
|
65
|
Bibi S, Ullah S, Hafeez A, Khan MN, Javed MA, Ali B, Din IU, Bangash SAK, Wahab S, Wahid N, Zaman F, Alhag SK, El-Rahim IHAA, Ahmed AE, Selim S. Exogenous Ca/Mg quotient reduces the inhibitory effects of PEG induced osmotic stress on Avena sativa L. BRAZ J BIOL 2024; 84:e264642. [DOI: 10.1590/1519-6984.264642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/18/2022] Open
Abstract
Abstract Drought is one of the most damaging abiotic stress that hinder plant growth and development. The present study aimed to determine the effects of various Ca/Mg quotients under polyethylene glycol (PEG)–induced osmotic stress on growth, uptake and translocation of Ca and Mg in Avena sativa (L). Plants were grown in nutrient solution supplemented with three different Ca/Mg molar quotients (0.18, 2, and 4). After 30 days plants were exposed to two different PEG (Polyethylene glycol) concentrations (0.6 MPa & 0.2 MPa) for 8 days, and solutions were renewed after 4 days. A solution containing Ca and Mg nutrients has mitigated the negative impact caused via osmotic stress on relative growth rate (RGR), absolute growth rate (AGR), crop growth rate (CGR), leaf area ratio (LAR), Leaf index ratio (LAI), root-shoot ratio (RSR), water use efficiency (WUE) and net assimilation rate (NAR). In addition, it adversely affected germination parameters, including final emergence percentage (FEP), mean germination time (MGT), Timson germination Index (TGI), germination rate index (GRI) and percent field capacity (%FC), of oat (Avena sativa L.). Mg and Ca in shoot and root and Ca translocation factor decreased with increasing Ca in solution, while Mg translocation factor increased with increasing Ca in nutrient solution. In this work, the combined effects of various Ca/Mg quotients and osmotic stress produced by polyethylene glycol (PEG) in different concentrations (0.6 MPa, 0.2 MPa) on the growth and element uptake of Avena sativa L. are examined. As a result, the Ca/Mg Quotient may naturally combat the moderate drought stress experienced by field crops.
Collapse
Affiliation(s)
- S. Bibi
- University of Peshawar, Pakistan
| | - S. Ullah
- University of Peshawar, Pakistan
| | | | - M. N. Khan
- Agriculture University Public School and College, Pakistan; Islamia College Peshawar, Pakistan
| | - M. A. Javed
- Institute of Industrial Biotechnology, Pakistan
| | - B. Ali
- Quaid-i-Azam University, Pakistan
| | - I. U. Din
- Institute of Biotechnology and Genetic Engineering, Pakistan
| | | | - S. Wahab
- Quaid-i-Azam University, Pakistan
| | - N. Wahid
- Quaid-i-Azam University, Pakistan
| | - F. Zaman
- Islamia College Peshawar, Pakistan
| | - S. K. Alhag
- King Khalid University, Saudi Arabia; Ibb University, Yemen
| | | | - A. E. Ahmed
- King Khalid University, Saudi Arabia; South Valley University, Egypt
| | | |
Collapse
|
66
|
Al-Huqail AA, Alghanem SMS, Alhaithloul HAS, Saleem MH, Abeed AHA. Combined exposure of PVC-microplastic and mercury chloride (HgCl 2) in sorghum (Pennisetum glaucum L.) when its seeds are primed titanium dioxide nanoparticles (TiO 2-NPs). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7837-7852. [PMID: 38170361 DOI: 10.1007/s11356-023-31733-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
The present work studied the impact of different levels of PVC-microplastics (PVC-MPs), namely 0 (no PVC-MPs), 2, and 4 mg L-1, along with mercury (Hg) levels of 0 (no Hg), 10, and 25 mg kg-1 in the soil, while concurrently applying titanium dioxide-nanoparticles (TiO2-NPs) at 0 (no TiO2-NPs), 50, and 100 µg mL-1 to sorghum (Pennisetum glaucum L.) plants. This study aimed to examine plant growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress indicators, and the response of various antioxidants (enzymatic and non-enzymatic) and their specific gene expression, proline metabolism, the AsA-GSH cycle, and cellular fractionation in the plants. The research outcomes indicated that elevated levels of PVC-MPs and Hg stress in the soil notably reduced plant growth and biomass, photosynthetic pigments, and gas exchange attributes. However, PVC-MPs and Hg stress also induced oxidative stress in the roots and shoots of the plants by increasing malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL) which also induced increased compounds of various enzymatic and non-enzymatic antioxidants and also the gene expression and sugar content. Furthermore, a significant increase in proline metabolism, the AsA-GSH cycle, and the pigmentation of cellular components was observed. Although, the application of TiO2-NPs showed a significant increase in plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and their gene expression and also decreased oxidative stress. In addition, the application of TiO2-NPs enhanced cellular fractionation and decreased the proline metabolism and AsA-GSH cycle in P. glaucum plants. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
- Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | | | | | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
67
|
Naz R, Khan MS, Hafeez A, Fazil M, Khan MN, Ali B, Javed MA, Imran M, Shati AA, Alfaifi MY, Elbehairi SEI, Ahmed AE. Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted industrial soils. BRAZ J BIOL 2024; 84:e264473. [DOI: 10.1590/1519-6984.264473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/25/2022] [Indexed: 12/18/2022] Open
Abstract
Abstract The present study was carried out in Hayat Abad Industrial Estate located in Peshawar to assess the levels of cadmium (Cd) that were present in the soil as well as the plant parts (Roots and shoots). To evaluate the phytoremediation potential of the plants different factors i.e. Bioconcentration Factor (BCF), Translocation Factor (TF), and Bioaccumulation Coefficient were determined. These plants were grown in their native habitats (BAC). We have analysed, cadmium concentration from soil which are collected from 50 different locations ranged from 11.54 mg/Kg (the lowest) to 89.80 mg/Kg (highest). The maximum concentration (89.80 mg/Kg) of cadmium was found in HIE-ST-16L Marble City and HIE-ST-7 Bryon Pharma (88.51 mg/Kg) while its minimum concentration (12.47 mg/Kg) were detected in the soil of Site (HIE-ST-14L Royal PVC Pipe) and (11.54 mg/Kg) at the site (HIE-ST-11 Aries Pharma). Most plant species showed huge potential for plant based approaches like phyto-extraction and phytoremediation. They also showed the potential for phyto-stabilization as well. Based on the concentration of cadmium the most efficient plants for phytoextraction were Cnicus benedictus, Parthenium hysterophorus, Verbesina encelioides, Conyza canadensis, Xanthium strumarium, Chenopodium album, Amaranthus viridis, Chenopodiastrum murale, Prosopis juliflora, Convolvulus arvensis, Stellaria media, Arenaria serpyllifolia, Cerastium dichotomum, Chrozophora tinctoria, Mirabilis jalapa, Medicago polymorpha, Lathyrus aphaca, Dalbergia sissoo, Melilotus indicus and Anagallis arvensis. The cadmium heavy metals in the examined soil were effectively removed by these plant species. Cerastium dichotomum, and Chenopodium murale were reported to be effective in phyto-stabilizing Cd based on concentrations of selected metals in roots and BCFs, TFs, and BACs values.
Collapse
Affiliation(s)
- R. Naz
- Islamia College, Pakistan
| | | | | | | | - M. N. Khan
- Islamia College, Pakistan; The University of Agriculture, Pakistan
| | - B. Ali
- Quaid-i-Azam University, Pakistan
| | | | | | | | | | - S. E. I. Elbehairi
- King Khalid University, Saudi Arabia; Egyptian Organization for Biological Products and Vaccines – VACSERA Holding Company, Egypt
| | - A. E. Ahmed
- King Khalid University, Saudi Arabia; South Valley University, Egypt
| |
Collapse
|
68
|
Zou P, Wang L, Liu F, Yan Z, Chen X. Effect of interfering TOR signaling pathway on the biosynthesis of terpenoids in Salvia miltiorrhiza Bge. PLANT SIGNALING & BEHAVIOR 2023; 18:2199644. [PMID: 37039834 PMCID: PMC10101657 DOI: 10.1080/15592324.2023.2199644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The TOR (Target of Rapamycin) signaling pathway, which takes TOR kinase as the core, regulates the absorption, distribution, and recycling of nutrients by integrating metabolic network and other signaling pathways, thus participating in the plant growth-defense trade-off. While terpenoids play an important role in plant growth, development, stress response, and signal transduction. The effect of the TOR signaling pathway on terpenoid biosynthesis in plants has yet to be studied in detail. In this study, the tissue culture seedlings of Salvia miltiorrhiza were treated with the TOR inhibitor AZD8055. The results show that the roots of the control group had begun to grow on the 8th day, while the seedlings treated with AZD8055 had no rooting signs. Combined with the expression changes of genes related to the TOR signaling pathway in the first 8 days, samples on the 3rd, 6th, and 8th days were selected for RNA-Seq analysis. Through RNA-Seq analysis, a total of 50,689 unigenes were obtained from the samples of these three periods, of which 4088 unigenes showed differential expression. The function enrichment and time-series analysis of differentially expressed genes (DEGs) showed that the main influence of the TOR signal pathway on plant growth-related processes was gradually transmitted with treatment time after TOR was inhibited. Pathway enrichment analysis of DEGs showed that the genes in the biosynthesis of terpenoids, such as diterpenoid and carotenoid biosynthetic pathways, could be regulated. Compared with other stages, DEGs related to terpenoid biosynthesis were mainly regulated in the S2 stage. In addition, the genes involved in terpenoid skeleton biosynthesis was also considerably enriched in the S2 stage, according to the results of gene set enrichment analysis (GSEA) of unigenes. Inhibition of the TOR signaling pathway may affect the biosynthesis of terpenoid signaling molecules, inhibit gibberellin's biosynthesis, and promote abscisic acid's biosynthesis. This study has discussed the effect of interfering with the TOR pathway on terpenoid biosynthesis in S. miltiorrhiza from the perspective of omics and provides new insight into the interaction between the terpenoid biosynthesis pathway and the growth-defense trade-off of medicinal plants.
Collapse
Affiliation(s)
- Peijin Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lin Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhuyun Yan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- CONTACT Xin Chen School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan611171, China
| |
Collapse
|
69
|
Luqman M, Shahbaz M, Maqsood MF, Farhat F, Zulfiqar U, Siddiqui MH, Masood A, Aqeel M, Haider FU. Effect of strigolactone on growth, photosynthetic efficiency, antioxidant activity, and osmolytes accumulation in different maize ( Zea mays L.) hybrids grown under drought stress. PLANT SIGNALING & BEHAVIOR 2023; 18:2262795. [PMID: 37767863 PMCID: PMC10730227 DOI: 10.1080/15592324.2023.2262795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Drought alters plant physiology, morphology, and biochemical pathways, necessitating effective mitigation strategies. Strigolactones (SLs) are phytohormones known to enhance plant growth under abiotic stress. However, their specific impact on drought stress in maize remains unclear. This study aimed to determine the optimal SL concentration for mitigating drought stress in two maize hybrids (HY-1898, FH-1046). Maize plants were subjected to 60% field capacity drought stress in a pot experiment. After 40 d, different concentrations (0, 0.001, 0.01, and 0.1 mg L-1) of the synthetic SL analogue GR24 were applied to evaluate their effects on growth features, photosynthesis attributes, and osmolyte accumulation in the maize hybrids. Results showed that exogenous SL application significantly increased photosynthetic pigments in maize hybrids under drought stress. Chlorophyll content, gas exchange characteristics, net CO2 assimilation rate, stomatal conductance, water use efficiency, and antioxidant activities were enhanced by GR24. Leaf ascorbic acid and total phenolics also increased with SL application. Organic osmolytes, such as glycine betaine and free proline, were elevated in both maize hybrids under drought stress. Yield-related parameters, including cob diameter, cob weight, number of seeds per cob, and number of seeds per plant, were significantly increased by GR24 under drought stress. Our findings highlight the potential of GR24 foliar application to mitigate drought stress and promote maize growth and grain yield in a concentration-dependent manner. The minimum effective SL concentration against drought stress was determined to be 0.01 mg L-1. Overall, foliar application of GR24 could serve as a sustainable approach for drought tolerance in agriculture.
Collapse
Affiliation(s)
- Muhammad Luqman
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | | | - Fozia Farhat
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Atifa Masood
- The department of Botany, University of Lahore, Sargodha, Pakistan
| | - Muhammad Aqeel
- State key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Fasih Ullah Haider
- Ecology, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Ecology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
70
|
Kausar A, Zahra N, Zahra H, Hafeez MB, Zafer S, Shahzadi A, Raza A, Djalovic I, Prasad PVV. Alleviation of drought stress through foliar application of thiamine in two varieties of pea ( Pisum sativum L.). PLANT SIGNALING & BEHAVIOR 2023; 18:2186045. [PMID: 37016728 PMCID: PMC10012936 DOI: 10.1080/15592324.2023.2186045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Drought stress poorly impacts many morphological and physio-biochemical processes in plants. Pea (Pisum sativum L.) plants are highly nutritious crops destined for human consumption; however, their productivity is threatened under drought stress. Thiamine (vitamin B1) is well-known essential micronutrient, acting as a cofactor in key metabolic processes. Therefore, this study was designed to examine the protective effect of foliar application of thiamine (0, 250, and 500 ppm) on two varieties of pea plants under drought stress. Here, we conducted the pot experiment at the Government College Women University, Faisalabad, to investigate the physio-biochemical and morphological traits of two pea varieties (sarsabz and metior) grown under drought stress and thiamine treatment. Drought stress was applied to plants after germination period of 1 month. Results showed that root fresh and dry weight, shoot fresh and dry weight, number of pods, leaf area, total soluble sugars, total phenolics, total protein contents, catalase, peroxidase, and mineral ions were reduced against drought stress. However, the application of thiamine (both 250 and 500 ppm) overcome the stress and also enhances these parameters, and significantly increases the antioxidant activities (catalase and peroxidase). Moreover, the performance of sarsabz was better under control and drought stress conditions than metior variety. In conclusion, the exogenous application of thiamine enabled the plants to withstand drought stress conditions by regulating several physiological and biochemical mechanisms. In agriculture, it is a great latent to alleviate the antagonistic impact of drought stress on crops through the foliar application of thiamine.
Collapse
Affiliation(s)
- Abida Kausar
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | - Noreen Zahra
- Department of Botany, Government College Women University, Faisalabad, Pakistan
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Hina Zahra
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | | | - Sara Zafer
- Department of Botany, GC University, Faisalabad, Pakistan
| | - Abida Shahzadi
- Department of Economics, Government College University, Faisalabad, Pakistan
| | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - PV Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
71
|
Sharma A, Choudhary P, Chakdar H, Shukla P. Molecular insights and omics-based understanding of plant-microbe interactions under drought stress. World J Microbiol Biotechnol 2023; 40:42. [PMID: 38105277 DOI: 10.1007/s11274-023-03837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The detrimental effects of adverse environmental conditions are always challenging and remain a major concern for plant development and production worldwide. Plants deal with such constraints by physiological, biochemical, and morphological adaptations as well as acquiring mutual support of beneficial microorganisms. As many stress-responsive traits of plants are influenced by microbial activities, plants have developed a sophisticated interaction with microbes to cope with adverse environmental conditions. The production of numerous bioactive metabolites by rhizospheric, endo-, or epiphytic microorganisms can directly or indirectly alter the root system architecture, foliage production, and defense responses. Although plant-microbe interactions have been shown to improve nutrient uptake and stress resilience in plants, the underlying mechanisms are not fully understood. "Multi-omics" application supported by genomics, transcriptomics, and metabolomics has been quite useful to investigate and understand the biochemical, physiological, and molecular aspects of plant-microbe interactions under drought stress conditions. The present review explores various microbe-mediated mechanisms for drought stress resilience in plants. In addition, plant adaptation to drought stress is discussed, and insights into the latest molecular techniques and approaches available to improve drought-stress resilience are provided.
Collapse
Affiliation(s)
- Aditya Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Prassan Choudhary
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
72
|
Toor MD, Kizilkaya R, Ullah I, Koleva L, Basit A, Mohamed HI. Potential Role of Vermicompost in Abiotic Stress Tolerance of Crop Plants: a Review. JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION 2023; 23:4765-4787. [DOI: 10.1007/s42729-023-01476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/06/2023] [Indexed: 10/26/2023]
|
73
|
El Haddad N, En-nahli Y, Choukri H, Aloui K, Mentag R, El-Baouchi A, Hejjaoui K, Rajendran K, Smouni A, Maalouf F, Kumar S. Metabolic Mechanisms Underlying Heat and Drought Tolerance in Lentil Accessions: Implications for Stress Tolerance Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3962. [PMID: 38068599 PMCID: PMC10708188 DOI: 10.3390/plants12233962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 04/12/2024]
Abstract
Climate change has significantly exacerbated the effects of abiotic stresses, particularly high temperatures and drought stresses. This study aims to uncover the mechanisms underlying heat and drought tolerance in lentil accessions. To achieve this objective, twelve accessions were subjected to high-temperature stress (32/20 °C), while seven accessions underwent assessment under drought stress conditions (50% of field capacity) during the reproductive stage. Our findings revealed a significant increase in catalase activity across all accessions under both stress conditions, with ILL7814 and ILL7835 recording the highest accumulations of 10.18 and 9.33 under drought stress, respectively, and 14 µmol H2O2 mg protein-1 min-1 under high temperature. Similarly, ascorbate peroxidase significantly increased in all tolerant accessions due to high temperatures, with ILL6359, ILL7835, and ILL8029 accumulating the highest values with up 50 µmol ascorbate mg protein-1 min-1. In contrast, no significant increase was obtained for all accessions subjected to water stress, although the drought-tolerant accessions accumulated more APX activity (16.59 t to 25.08 µmol ascorbate mg protein-1 min-1) than the sensitive accessions. The accessions ILL6075, ILL7814, and ILL8029 significantly had the highest superoxide dismutase activity under high temperature, while ILL6363, ILL7814, and ILL7835 accumulated the highest values under drought stress, each with 22 to 25 units mg protein-1. Under both stress conditions, ILL7814 and ILL7835 recorded the highest contents in proline (38 to 45 µmol proline/g FW), total flavonoids (0.22 to 0.77 mg QE g-1 FW), total phenolics (7.50 to 8.79 mg GAE g-1 FW), total tannins (5.07 to 20 µg CE g-1 FW), and total antioxidant activity (60 to 70%). Further, ILL7814 and ILL6338 significantly recorded the highest total soluble sugar content under high temperature (71.57 and 74.24 mg g-1, respectively), while ILL7835 achieved the maximum concentration (125 mg g-1) under drought stress. The accessions ILL8029, ILL6104, and ILL7814 had the highest values of reducing sugar under high temperature with 0.62 to 0.79 mg g-1, whereas ILL6075, ILL6363, and ILL6362 accumulated the highest levels of this component under drought stress with 0.54 to 0.66 mg g-1. Overall, our findings contribute to a deeper understanding of the metabolomic responses of lentil to drought and heat stresses, serving as a valuable reference for lentil stress tolerance breeding.
Collapse
Affiliation(s)
- Noureddine El Haddad
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco; (Y.E.-n.); (H.C.); (K.A.)
- Laboratoire de Biotechnologie et de Physiologie Végétales, Centre de Recherche BioBio, Faculté des Sciences, Mohammed V University Rabat, Rabat 10112, Morocco;
| | - Youness En-nahli
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco; (Y.E.-n.); (H.C.); (K.A.)
- Materials Science Center, Ecole Normale Supérieure, LPCMIO, Mohammed V University of Rabat, Rabat 10100, Morocco
- AgroBioSciences Program (AgBS), College of Sustainable Agriculture and Environmental Science (CSAES), University Mohammed VI Polytechnic (UM6P), Ben Guerir 43150, Morocco; (A.E.-B.); (K.H.)
| | - Hasnae Choukri
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco; (Y.E.-n.); (H.C.); (K.A.)
- Laboratoire de Biotechnologie et de Physiologie Végétales, Centre de Recherche BioBio, Faculté des Sciences, Mohammed V University Rabat, Rabat 10112, Morocco;
| | - Khawla Aloui
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco; (Y.E.-n.); (H.C.); (K.A.)
- Laboratory of Ecology and Environment, Ben M’Sick Faculty of Sciences, University Hassan II, Casablanca 20800, Morocco
| | - Rachid Mentag
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research (INRA), Rabat 10090, Morocco;
| | - Adil El-Baouchi
- AgroBioSciences Program (AgBS), College of Sustainable Agriculture and Environmental Science (CSAES), University Mohammed VI Polytechnic (UM6P), Ben Guerir 43150, Morocco; (A.E.-B.); (K.H.)
| | - Kamal Hejjaoui
- AgroBioSciences Program (AgBS), College of Sustainable Agriculture and Environmental Science (CSAES), University Mohammed VI Polytechnic (UM6P), Ben Guerir 43150, Morocco; (A.E.-B.); (K.H.)
| | - Karthika Rajendran
- Vellore Institute of Technology (VIT), VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore 632014, India;
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et de Physiologie Végétales, Centre de Recherche BioBio, Faculté des Sciences, Mohammed V University Rabat, Rabat 10112, Morocco;
| | - Fouad Maalouf
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut 1108 2010, Lebanon;
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), New Delhi 110012, India;
| |
Collapse
|
74
|
Tran CTM, Al Azzawi TNI, Khan M, Ali S, Moon YS, Yun BW. Brevundimonas vesicularis (S1T13) Mitigates Drought-Stress-Associated Damage in Arabidopsis thaliana. Int J Mol Sci 2023; 24:16590. [PMID: 38068913 PMCID: PMC10705876 DOI: 10.3390/ijms242316590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Drought stress is a significant threat to agricultural productivity and poses challenges to plant survival and growth. Research into microbial plant biostimulants faces difficulties in understanding complicated ecological dynamics, molecular mechanisms, and specificity; to address these knowledge gaps, collaborative efforts and innovative strategies are needed. In the present study, we investigated the potential role of Brevundimonas vesicularis (S1T13) as a microbial plant biostimulant to enhance drought tolerance in Arabidopsis thaliana. We assessed the impact of S1T13 on Col-0 wild-type (WT) and atnced3 mutant plants under drought conditions. Our results revealed that the inoculation of S1T13 significantly contributed to plant vigor, with notable improvements observed in both genotypes. To elucidate the underlying mechanisms, we studied the role of ROS and their regulation by antioxidant genes and enzymes in plants inoculated with S1T13. Interestingly, the inoculation of S1T13 enhanced the activities of GSH, SOD, POD, and PPO by 33, 35, 41, and 44% in WT and 24, 22, 26, and 33% in atnced3, respectively. In addition, S1T13 upregulated the expression of antioxidant genes. This enhanced antioxidant machinery played a crucial role in neutralizing ROS and protecting plant cells from oxidative damage during drought stress. Furthermore, we investigated the impact of S1T13 on ABA and drought-stress-responsive genes. Similarly, S1T13 modulated the production of ABA and expression of AO3, ABA3, DREB1A, and DREB2A by 31, 42, 37, 41, and 42% in WT and 20, 29, 27, 38, and 29% in atnced3. The improvement in plant vigor, coupled with the induction of the antioxidant system and modulation of ABA, indicates the pivotal role of S1T13 in enhancing the drought stress tolerance of the plants. Conclusively, the current study provides valuable insights for the application of multitrait S1T13 as a novel strain to improve drought stress tolerance in plants and could be added to the consortium of biofertilizers.
Collapse
Affiliation(s)
- Can Thi My Tran
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea (T.N.I.A.A.)
| | | | - Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea; (M.K.); (Y.-S.M.)
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea; (M.K.); (Y.-S.M.)
| | - Yong-Sun Moon
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea; (M.K.); (Y.-S.M.)
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea (T.N.I.A.A.)
| |
Collapse
|
75
|
Nagayoshi H, Murayama N, Kim V, Kim D, Takenaka S, Yamazaki H, Guengerich FP, Shimada T. Oxidation of Naringenin, Apigenin, and Genistein by Human Family 1 Cytochrome P450 Enzymes and Comparison of Interaction of Apigenin with Human P450 1B1.1 and Scutellaria P450 82D.1. Chem Res Toxicol 2023; 36:1778-1788. [PMID: 37783573 PMCID: PMC11497155 DOI: 10.1021/acs.chemrestox.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Naringenin, an initial synthesized flavanone in various plant species, is further utilized for production of many biologically active flavonoids, e.g., apigenin, eriodictyol, and genistein, by various plant enzymes including cytochrome P450s (P450s or CYPs). We examined how these flavonoids are oxidized by human P450 family 1 and 2A enzymes. Naringenin was principally oxidized at the 3'-position to form eriodictyol by CYP1 enzymes more efficiently than by CYP2A enzymes, and the resulting eriodictyol was further oxidized to two penta-hydroxylated products. In contrast to plant P450 enzymes, these human P450s did not mediate the desaturation of naringenin and eriodictyol to give apigenin and luteolin, respectively. Apigenin was oxidized at the C3' and C6 positions to form luteolin and scutellarein by these P450s. CYP1B1.1 and 1B1.3 had high activities in apigenin 6-hydroxylation with a homotropic cooperative manner, as has been observed previously in chrysin 6-hydroxylation (Nagayoshi et al., Chem. Res. Toxicol. 2019, 32, 1268-1280). Molecular docking analysis suggested that CYP1B1 had two apigenin binding sites and showed similarities in substrate recognition sites to plant CYP82D.1, one of the enzymes in catalyzing apigenin and chrysin 6-hydroxylations in Scutellaria baicalensis. The present results suggest that human CYP1 enzymes and CYP2A13 in some reactions have important roles in the oxidation of naringenin, eriodictyol, apigenin, and genistein and that human CYP1B1 and Scutellaria CYP82D.1 have similarities in their SRS regions, catalyzing 6-hydroxylation of both apigenin and chrysin.
Collapse
Affiliation(s)
- Haruna Nagayoshi
- Food Chemistry Section, Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka 537-0025, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Korea
| | - Shigeo Takenaka
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Metropolitan University, Habikino, Osaka 583-8555, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Tsutomu Shimada
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Metropolitan University, Habikino, Osaka 583-8555, Japan
| |
Collapse
|
76
|
Jia X, Zhang Q, Wang Y, Zhang Y, Li M, Cheng P, Chen M, Lin S, Zou J, Ye J, Wang H. Changes of physiological characteristics, element accumulation and hormone metabolism of tea leaves in response to soil pH. FRONTIERS IN PLANT SCIENCE 2023; 14:1266026. [PMID: 38034585 PMCID: PMC10687463 DOI: 10.3389/fpls.2023.1266026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Soil acidification is very likely to affect the growth of tea trees and reduce tea yield. In this study, we analyzed the effects of soils with different pH on the physiological characteristics of tea leaves and determined the multi-element content and hormone metabolomes of tea leaves by ICP-MS and LC-MS/MS, based on which we further analyzed their interaction. The results showed that increasing soil pH (3.29~5.32) was beneficial to increase the available nutrient content of the rhizosphere soil of tea tree, improve the antioxidant enzyme activity and photosynthesis capacity of tea tree leaves, and promote the growth of tea tree. Orthogonal partial least squares discriminant analysis (OPLS-DA) and bubble characteristics analysis were used to screen key elements and hormones for the effect of pH on tea leaves, which were further analyzed by redundancy analysis (RDA) and interaction network. The results showed that an increase in soil pH (3.29~5.32) favored the accumulation of seven key elements (C, K, Ca, Mg, Mn, P, S) in tea tree leaves, which in turn promoted the synthesis of six key hormones (salicylic acid, salicylic acid 2-O-β-glucoside, tryptamine, 2-oxindole-3-acetic acid, indole-3-acetic acid, trans-zeatin-O-glucoside). It can be seen that the increase in soil pH (3.29~5.32) enhanced the resistance of the tea tree itself, improved the photosynthesis ability of the tea tree, and effectively promoted the growth of the tea tree.
Collapse
Affiliation(s)
- Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhua Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan, China
| | - Meihui Chen
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Jishuang Zou
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
77
|
Pandey P, Tripathi A, Dwivedi S, Lal K, Jhang T. Deciphering the mechanisms, hormonal signaling, and potential applications of endophytic microbes to mediate stress tolerance in medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1250020. [PMID: 38034581 PMCID: PMC10684941 DOI: 10.3389/fpls.2023.1250020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The global healthcare market in the post-pandemic era emphasizes a constant pursuit of therapeutic, adaptogenic, and immune booster drugs. Medicinal plants are the only natural resource to meet this by supplying an array of bioactive secondary metabolites in an economic, greener and sustainable manner. Driven by the thrust in demand for natural immunity imparting nutraceutical and life-saving plant-derived drugs, the acreage for commercial cultivation of medicinal plants has dramatically increased in recent years. Limited resources of land and water, low productivity, poor soil fertility coupled with climate change, and biotic (bacteria, fungi, insects, viruses, nematodes) and abiotic (temperature, drought, salinity, waterlogging, and metal toxicity) stress necessitate medicinal plant productivity enhancement through sustainable strategies. Plants evolved intricate physiological (membrane integrity, organelle structural changes, osmotic adjustments, cell and tissue survival, reclamation, increased root-shoot ratio, antibiosis, hypersensitivity, etc.), biochemical (phytohormones synthesis, proline, protein levels, antioxidant enzymes accumulation, ion exclusion, generation of heat-shock proteins, synthesis of allelochemicals. etc.), and cellular (sensing of stress signals, signaling pathways, modulating expression of stress-responsive genes and proteins, etc.) mechanisms to combat stresses. Endophytes, colonizing in different plant tissues, synthesize novel bioactive compounds that medicinal plants can harness to mitigate environmental cues, thus making the agroecosystems self-sufficient toward green and sustainable approaches. Medicinal plants with a host set of metabolites and endophytes with another set of secondary metabolites interact in a highly complex manner involving adaptive mechanisms, including appropriate cellular responses triggered by stimuli received from the sensors situated on the cytoplasm and transmitting signals to the transcriptional machinery in the nucleus to withstand a stressful environment effectively. Signaling pathways serve as a crucial nexus for sensing stress and establishing plants' proper molecular and cellular responses. However, the underlying mechanisms and critical signaling pathways triggered by endophytic microbes are meager. This review comprehends the diversity of endophytes in medicinal plants and endophyte-mediated plant-microbe interactions for biotic and abiotic stress tolerance in medicinal plants by understanding complex adaptive physiological mechanisms and signaling cascades involving defined molecular and cellular responses. Leveraging this knowledge, researchers can design specific microbial formulations that optimize plant health, increase nutrient uptake, boost crop yields, and support a resilient, sustainable agricultural system.
Collapse
Affiliation(s)
- Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Shweta Dwivedi
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanhaiya Lal
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tripta Jhang
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
78
|
Yao P, Zhang C, Zhang D, Qin T, Xie X, Liu Y, Liu Z, Bai J, Bi Z, Cui J, Liang J, Sun C. Characterization and Identification of Drought-Responsive ABA-Aldehyde Oxidase (AAO) Genes in Potato ( Solanum tuberosum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3809. [PMID: 38005706 PMCID: PMC10674669 DOI: 10.3390/plants12223809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Abscisic acid (ABA) is an important stress hormone that affects plants' tolerance to stress. Changes in the content of abscisic can have an impact on plant responses to abiotic stress. The abscisic acid aldehyde oxidase (AAO) plays a crucial role in the final step in the synthesis of abscisic acid; therefore, understanding the function of the AAO gene family is of great significance for insight into plants' response to abiotic stresses. In this study, Solanum tuberosum AAO (StAAO) members were exhaustively explored using genome databases, and nine StAAOs were identified. Chromosomal location analysis indicated that StAAO genes mapped to 4 of the 14 potato chromosomes. Further analyses of gene structure and motif composition showed that members of the specific StAAO subfamily showed relatively conserved characteristics. Phylogenetic relationship analysis indicated that StAAOs proteins were divided into three major clades. Promoter analysis showed that most StAAO promoters contained cis-elements related to abiotic stress response and plant hormones. The results of tissue-specific expression analysis indicated that StAAO4 was predominantly expressed in the roots. Analysis of transcriptome data revealed that StAAO2/4/6 genes responded significantly to drought treatments. Moreover, further qRT-PCR analysis results indicated that StAAO2/4/6 not only significantly responded to drought stress but also to various phytohormone (ABA, SA, and MeJA) and abiotic stresses (salt and low temperature), albeit with different expression patterns. In summary, our study provides comprehensive insights into the sequence characteristics, structural properties, evolutionary relationships, and expression patterns of the StAAO gene family. These findings lay the foundation for a deeper understanding of the StAAO gene family and offer a potential genetic resource for breeding drought-resistant potato varieties.
Collapse
Affiliation(s)
- Panfeng Yao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
| | - Chunli Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Dan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
| | - Tianyuan Qin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaofei Xie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Junmei Cui
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
| | - Jingwen Liang
- Planning and Finance Department, Gansu Agricultural University, Lanzhou 730070, China;
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
79
|
Hameed S, Atif M, Perveen S. Role of gibberellins, neem leaf extract, and serine in improving wheat growth and grain yield under drought-triggered oxidative stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1675-1691. [PMID: 38162918 PMCID: PMC10754809 DOI: 10.1007/s12298-023-01402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
The foliar application of gibberellins (GA3), neem leaf extract (NLE) and serine can be proven as effective growth regulating agents to counter drought stress-related deleterious effects. The literature about the collaborative role of these substances in foliar spray application under drought stress is not available to this date. No single report is available in literature on combine foliar application of GA3, NLE, and serine in improving wheat growth and yield under drought-triggered oxidative stress. The objective of this study was to induct tolerance against drought stress in order to sustain maximum growth and yield of wheat varieties (Anaj-2017 and Galaxy-2013) with foliar applications of GA3, NLE, and serine. The current field trial was designed to disclose the protective role of these substances in wheat varieties (Anaj-2017 and Galaxy-2013) under water-deficit stress. Two irrigation levels, i.e., control (normal irrigation) and water stress (water deficit irrigation), and 5 levels of GA3, NLE and serine i.e., control (water spray), GA3 (10.0 ppm), NLE (10.0%), serine (9.5 mM), and mixture (GA3 + NLE + serine) in a 1:1:1 ratio was applied. Application of these substances improved the pigments (Chlorophyll a, b), carotenoids, growth, biomass, and grain yield traits of both wheat varieties under water-deficit stress. Activities of antioxidant enzymes (POD, CAT and SOD), and non-enzymatic antioxidants (proline, total phenolic contents, anthocyanin and free amino acids) were up-regulated under drought stress and with foliar spray treatments. The foliar applications of these substances reduced the drought triggered overproduction of lipid peroxidation (MDA) and H2O2. The study found that Galaxy-2013 variety is more tolerant to drought stress than Anaj-2017, while co-applied treatments (GA3 + NLE + serine) were shown to be the most effective among all applications. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01402-9.
Collapse
Affiliation(s)
- Sidra Hameed
- Department of Botany, Government College University, Faisalabad, 38000 Pakistan
| | - Muhammad Atif
- Department of Botany, Government College University, Faisalabad, 38000 Pakistan
| | - Shagufta Perveen
- Department of Botany, Government College University, Faisalabad, 38000 Pakistan
| |
Collapse
|
80
|
Al-Huqail AA, Saleem MH, Ali B, Azeem M, Mumtaz S, Yasin G, Marc RA, Ali S. Efficacy of priming wheat ( Triticum aestivum) seeds with a benzothiazine derivative to improve drought stress tolerance. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:915-931. [PMID: 36803683 DOI: 10.1071/fp22140] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
We evaluated the effects of different concentrations (0.05 and 0.15mM) of a benzothiazine (BTh) derivative on wheat (Triticum aestivum L.) in normal (100% field water capacity, FWC) and drought (60% FWC) conditions. Various morphological and physiological characteristics, and the uptake of osmo-protectants and nutrients were measured under the two FWC conditions. Results show that the drought conditions significantly reduced plant growth, affected plant composition, reduced the concentrations of photosynthetic pigments and affected gaseous exchange attributes, stomatal behaviour, and uptake fluxes of essential nutrients, while increasing the contents of different osmo-protectants and enzymatic and non-enzymatic antioxidants to decrease the production of reactive oxygen species (ROS) within the cells/tissues. However, seed priming with BTh reduced water stress conditions by increasing plant growth and biomass, photosynthetic pigments, stomatal behaviour, different gaseous exchange attributes, and uptake fluxes of essential nutrients compared with unprimed plants. In addition, the plant has a strong antioxidant defense system, which further increased its activities under BTh derivative treatments, to scavenge ROS production and maintain cell turgor under water stress conditions. In conclusion, drought stress-induced oxidative stress and altered the growth of T. aestivum , whereas seed priming increased plant growth and antioxidant production by improving the plant tolerance to drought. We suggest that seed priming with a BTh derivative as an effective priming technique in T. aestivum for reducing drought stress tends to benefit a grower in terms of better growth to fulfil the market demand for food cereals.
Collapse
Affiliation(s)
- Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Azeem
- Department of Biology, College of Science, University of Bahrain, Bahrain
| | - Sahar Mumtaz
- Department of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mana stur Street, Cluj-Napoca 400372, Romania
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad 38000, Pakistan; and Department of Biological Sciences and Technology, China Medical University, Taichung City 40402, Taiwan
| |
Collapse
|
81
|
Yu X, Liu Y, Cao P, Zeng X, Xu B, Luo F, Yang X, Wang X, Wang X, Xiao X, Yang L, Lei T. Morphological Structure and Physiological and Biochemical Responses to Drought Stress of Iris japonica. PLANTS (BASEL, SWITZERLAND) 2023; 12:3729. [PMID: 37960085 PMCID: PMC10648531 DOI: 10.3390/plants12213729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023]
Abstract
Drought is among the most important abiotic stresses on plants, so research on the physiological regulation mechanisms of plants under drought stress can critically increase the economic and ecological value of plants in arid regions. In this study, the effects of drought stress on the growth status and biochemical indicators of Iris japonica were explored. Under drought stress, the root system, leaves, rhizomes, and terrestrial stems of plants were sequentially affected; the root system was sparse and slender; and the leaves lost their luster and gradually wilted. Among the physiological changes, the increase in the proline and soluble protein content of Iris japonica enhanced the cellular osmotic pressure and reduced the water loss. In anatomical structures, I. japonica chloroplasts were deformed after drought treatment, whereas the anatomical structures of roots did not substantially change. Plant antioxidant systems play an important role in maintaining cellular homeostasis; but, as drought stress intensified, the soluble sugar content of terrestrial stems was reduced by 55%, and the ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase (MDHAR) activities of leaves and the MDHAR activity of roots were reduced by 29%, 40%, 22%, and 77%, respectively. Overall, I. japonica was resistant to 63 days of severe drought stress and resisted drought through various physiological responses. These findings provide a basis for the application of I. japonica in water-scarce areas.
Collapse
Affiliation(s)
- Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (P.C.); (X.Z.); (B.X.); (F.L.); (X.Y.); (X.W.); (X.W.); (L.Y.); (T.L.)
| | - Yujia Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (P.C.); (X.Z.); (B.X.); (F.L.); (X.Y.); (X.W.); (X.W.); (L.Y.); (T.L.)
| | - Panpan Cao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (P.C.); (X.Z.); (B.X.); (F.L.); (X.Y.); (X.W.); (X.W.); (L.Y.); (T.L.)
| | - Xiaoxuan Zeng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (P.C.); (X.Z.); (B.X.); (F.L.); (X.Y.); (X.W.); (X.W.); (L.Y.); (T.L.)
| | - Bin Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (P.C.); (X.Z.); (B.X.); (F.L.); (X.Y.); (X.W.); (X.W.); (L.Y.); (T.L.)
| | - Fuwen Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (P.C.); (X.Z.); (B.X.); (F.L.); (X.Y.); (X.W.); (X.W.); (L.Y.); (T.L.)
| | - Xuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (P.C.); (X.Z.); (B.X.); (F.L.); (X.Y.); (X.W.); (X.W.); (L.Y.); (T.L.)
| | - Xiantong Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (P.C.); (X.Z.); (B.X.); (F.L.); (X.Y.); (X.W.); (X.W.); (L.Y.); (T.L.)
| | - Xiaoyu Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (P.C.); (X.Z.); (B.X.); (F.L.); (X.Y.); (X.W.); (X.W.); (L.Y.); (T.L.)
| | - Xue Xiao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Lijuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (P.C.); (X.Z.); (B.X.); (F.L.); (X.Y.); (X.W.); (X.W.); (L.Y.); (T.L.)
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (P.C.); (X.Z.); (B.X.); (F.L.); (X.Y.); (X.W.); (X.W.); (L.Y.); (T.L.)
| |
Collapse
|
82
|
Tashakorizadeh M, Golkar P, Vahabi MR, Ghorbanpour M. Physiological and biochemical mechanisms of grain yield loss in fumitory (Fumaria parviflora Lam.) exposed to copper and drought stress. Sci Rep 2023; 13:17934. [PMID: 37863928 PMCID: PMC10589251 DOI: 10.1038/s41598-023-45103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
Soil contamination with heavy metals adversely affects plants growth, development and metabolism in many parts of the world including arid and semi-arid regions. The aim of this study was to investigate the single and combined effects of drought and copper (Cu) stresses on seed yield, and biochemical traits of Fumaria parviflora in a split - factorial experiment at Research Field of Payam-E-Noor university of Kerman during 2019. The collected seeds from two Cu contaminated regions were evaluated under drought and Cu (0, 50, 150, 300, and 400 mg/kg) stresses. Drought stress levels were depletion of 50% (D1), 70% (D2) and 85% (D3) soil available water. The individual effects of drought and copper stresses were similar to each other as both reduced seed yield. The highest seed yield was observed at Cu concentration of 50 mg/kg under non-drought stress conditions. The maximum values of malondialdehyde (0.47 µmol/g), proline (2.45 µmol/g FW), total phenolics (188.99 mg GAE/g DW) and total flavonoids (22.1 mg QE/g DW) were observed at 400 mg/kg Cu treatment. However, the strongest antioxidant activity (83.95%) through DPPH assay, and the highest total soluble carbohydrate (115.23 mg/g DW) content were observed at 300 and 150 mg/kg Cu concentration under severe drought stress, respectively. The highest amount of anthocyanin (2.18 µmol/g FW) was observed at 300 mg/kg Cu and moderate drought stress. The findings of this study showed a high tolerance of F. parviflora plant to moderate drought stress and Cu exposure up to 150 mg/kg by modulating defense mechanisms, where grain yield was slightly lower than that of control. The results could also provide a criterion for the selection of tolerance species like F. parviflora for better acclimatization under Cu mines and/or agricultural contaminated soils subjected to drought stress.
Collapse
Affiliation(s)
- Mansoureh Tashakorizadeh
- Forests and Rangelands Research Department, Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Kerman, Iran
| | - Pooran Golkar
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 8415683111, Iran.
| | - Mohammad Reza Vahabi
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
83
|
Shaffique S, Hussain S, Kang SM, Imran M, Injamum-Ul-Hoque M, Khan MA, Lee IJ. Phytohormonal modulation of the drought stress in soybean: outlook, research progress, and cross-talk. FRONTIERS IN PLANT SCIENCE 2023; 14:1237295. [PMID: 37929163 PMCID: PMC10623132 DOI: 10.3389/fpls.2023.1237295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
Phytohormones play vital roles in stress modulation and enhancing the growth of plants. They interact with one another to produce programmed signaling responses by regulating gene expression. Environmental stress, including drought stress, hampers food and energy security. Drought is abiotic stress that negatively affects the productivity of the crops. Abscisic acid (ABA) acts as a prime controller during an acute transient response that leads to stomatal closure. Under long-term stress conditions, ABA interacts with other hormones, such as jasmonic acid (JA), gibberellins (GAs), salicylic acid (SA), and brassinosteroids (BRs), to promote stomatal closure by regulating genetic expression. Regarding antagonistic approaches, cytokinins (CK) and auxins (IAA) regulate stomatal opening. Exogenous application of phytohormone enhances drought stress tolerance in soybean. Thus, phytohormone-producing microbes have received considerable attention from researchers owing to their ability to enhance drought-stress tolerance and regulate biological processes in plants. The present study was conducted to summarize the role of phytohormones (exogenous and endogenous) and their corresponding microbes in drought stress tolerance in model plant soybean. A total of n=137 relevant studies were collected and reviewed using different research databases.
Collapse
Affiliation(s)
- Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhamad Imran
- Biosafety Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju, Republic of Korea
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Science, Qurtaba University of Science and Information Technology, Peshawar, Pakistan
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
84
|
Biju S, Fuentes S, Gupta D. Novel insights into the mechanism(s) of silicon-induced drought stress tolerance in lentil plants revealed by RNA sequencing analysis. BMC PLANT BIOLOGY 2023; 23:498. [PMID: 37848813 PMCID: PMC10580624 DOI: 10.1186/s12870-023-04492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Lentil is an essential cool-season food legume that offers several benefits in human nutrition and cropping systems. Drought stress is the major environmental constraint affecting lentil plants' growth and productivity by altering various morphological, physiological, and biochemical traits. Our previous research provided physiological and biochemical evidence showing the role of silicon (Si) in alleviating drought stress in lentil plants, while the molecular mechanisms are still unidentified. Understanding the molecular mechanisms of Si-mediated drought stress tolerance can provide fundamental information to enhance our knowledge of essential gene functions and pathways modulated by Si during drought stress in plants. Thus, the present study compared the transcriptomic characteristics of two lentil genotypes (drought tolerant-ILL6002; drought sensitive-ILL7537) under drought stress and investigated the gene expression in response to Si supplementation using high-throughput RNA sequencing. RESULTS This study identified 7164 and 5576 differentially expressed genes (DEGs) from drought-stressed lentil genotypes (ILL 6002 and ILL 7537, respectively), with Si treatment. RNA sequencing results showed that Si supplementation could alter the expression of genes related to photosynthesis, osmoprotection, antioxidant systems and signal transduction in both genotypes under drought stress. Furthermore, these DEGs from both genotypes were found to be associated with the metabolism of carbohydrates, lipids and proteins. The identified DEGs were also linked to cell wall biosynthesis and vasculature development. Results suggested that Si modulated the dynamics of biosynthesis of alkaloids and flavonoids and their metabolism in drought-stressed lentil genotypes. Drought-recovery-related DEGs identified from both genotypes validated the role of Si as a drought stress alleviator. This study identified different possible defense-related responses mediated by Si in response to drought stress in lentil plants including cellular redox homeostasis by reactive oxygen species (ROS), cell wall reinforcement by the deposition of cellulose, lignin, xyloglucan, chitin and xylan, secondary metabolites production, osmotic adjustment and stomatal closure. CONCLUSION Overall, the results suggested that a coordinated interplay between various metabolic pathways is required for Si to induce drought tolerance. This study identified potential genes and different defence mechanisms involved in Si-induced drought stress tolerance in lentil plants. Si supplementation altered various metabolic functions like photosynthesis, antioxidant defence system, osmotic balance, hormonal biosynthesis, signalling, amino acid biosynthesis and metabolism of carbohydrates and lipids under drought stress. These novel findings validated the role of Si in drought stress mitigation and have also provided an opportunity to enhance our understanding at the genomic level of Si's role in alleviating drought stress in plants.
Collapse
Affiliation(s)
- Sajitha Biju
- School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Sigfredo Fuentes
- School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dorin Gupta
- School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
85
|
Bennis M, Kaddouri K, Badaoui B, Bouhnik O, Chaddad Z, Perez-Tapia V, Lamin H, Alami S, Lamrabet M, Abdelmoumen H, Bedmar EJ, Missbah El Idrissi M. Plant growth promoting activities of Pseudomonas sp. and Enterobacter sp. isolated from the rhizosphere of Vachellia gummifera in Morocco. FEMS Microbiol Ecol 2023; 99:fiad114. [PMID: 37742210 DOI: 10.1093/femsec/fiad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
The Moroccan endemic Vachellia gummifera grows wild under extreme desert conditions. This plant could be used as an alternative fodder for goats, and camels, in order to protect the Argan forests against overgrazing in Central and Southwestern Moroccan semiarid areas. With the aim to improve the V. gummifera population's density in semiarid areas, we proposed its inoculation with performing plant growth-promoting bacteria. Hence, 500 bacteria were isolated from the plant rhizosphere. From these, 291 isolates were retained for plant growth-promoting (PGP) activities assessment. A total of 44 isolates showed the best phosphates solubilization potential, as well as siderophore and auxin production. The combination of REP-PCR (repetitive extragenic palindromic-polymerase chain reaction) fingerprinting, PGP activities, and phenotypic properties, allowed the selection of three strains for the inoculation experiments. The three selected strains' 16S rRNA sequencing showed that they are members of the Enterobacter and Pseudomonas genera. The inoculation with three strains had diverse effects on V. gummifera growth parameters. All single and combined inoculations improved the plant shoot weight by more than 200%, and the root length by up to 139%, while some combinations further improved protein and chlorophyll content, thereby improving the plant's forage value. The three selected strains constitute an effective inoculum for use in the arid and semiarid zones of southern Morocco.
Collapse
Affiliation(s)
- Meryeme Bennis
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Koutar Kaddouri
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Bouabid Badaoui
- Laboratoire de Zoologie et de Biologie Générale, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Omar Bouhnik
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Zohra Chaddad
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Vicente Perez-Tapia
- Departamento de Microbiología del Suelo y Sistemas Simbíoticos Estacíon Experimental del Zaidín, CSIC, Apartado Postal 419, 18008 Granada, Spain
| | - Hanane Lamin
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Soufiane Alami
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Mouad Lamrabet
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Hanaa Abdelmoumen
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Eulogio J Bedmar
- Departamento de Microbiología del Suelo y Sistemas Simbíoticos Estacíon Experimental del Zaidín, CSIC, Apartado Postal 419, 18008 Granada, Spain
| | - Mustapha Missbah El Idrissi
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| |
Collapse
|
86
|
Wang Y, Cao JL, Hashem A, Abd_Allah EF, Wu QS. Serendipita indica mitigates drought-triggered oxidative burst in trifoliate orange by stimulating antioxidant defense systems. FRONTIERS IN PLANT SCIENCE 2023; 14:1247342. [PMID: 37860240 PMCID: PMC10582986 DOI: 10.3389/fpls.2023.1247342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Soil drought is detrimental to plant growth worldwide, particularly by triggering reactive oxygen species (ROS) burst. Serendipita indica (Si), a culturable root-associated endophytic fungus, can assist host plants in dealing with abiotic stresses; however, it is unknown whether and how Si impacts the drought tolerance of citrus plants. To unravel the effects and roles of Si on drought-stressed plants, trifoliate orange (Poncirus trifoliata L. Raf.; a citrus rootstock) seedlings were inoculated with Si and exposed to soil drought, and growth, gas exchange, ROS levels, antioxidant defense systems, and expression of genes encoding antioxidant enzymes and fatty acid desaturases in leaves were measured. Soil drought suppressed plant biomass, whereas Si inoculation significantly increased plant biomass (10.29%-22.47%) and shoot/root ratio (21.78%-24.68%) under ample water and drought conditions, accompanied by improved net photosynthetic rate (105.71%), water use efficiency (115.29%), chlorophyll index (55.34%), and nitrogen balance index (63.84%) by Si inoculation under soil drought. Soil drought triggered an increase in leaf hydrogen peroxide and superoxide anion levels, while Si inoculation significantly reduced these ROS levels under soil drought, resulting in lower membrane lipid peroxidation with respect to malondialdehyde changes. Furthermore, Si-inoculated seedlings under soil drought had distinctly higher levels of ascorbate and glutathione, as well as catalase, peroxidase, and glutathione peroxidase activities, compared with no-Si-inoculated seedlings. Si inoculation increased the expression of leaf PtFAD2, PtFAD6, PtΔ9, PtΔ15, PtFe-SOD, PtCu/Zn-SOD, PtPOD, and PtCAT1 genes under both ample water and soil drought conditions. Overall, Si-inoculated trifoliate orange plants maintained a low oxidative burst in leaves under drought, which was associated with stimulation of antioxidant defense systems. Therefore, Si has great potential as a biostimulant in enhancing drought tolerance in plants, particularly citrus.
Collapse
Affiliation(s)
- Yu Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Jin-Li Cao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
87
|
Byambadorj SO, Hernandez JO, Lkhagvasuren S, Erma G, Sharavdorj K, Park BB, Nyam-Osor B. Leaf morpho-physiological traits of Populus sibirica and Ulmus pumila in different irrigation regimes and fertilizer types. PeerJ 2023; 11:e16107. [PMID: 37790615 PMCID: PMC10544310 DOI: 10.7717/peerj.16107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Background The impacts of climate change, such as increased soil dryness and nutrient deficiency, highlight the need for environmentally sustainable restoration of forests and groundwater resources. However, it is important to consider that extensive afforestation efforts may lead to a depletion of groundwater supply due to higher evapotranspiration rates, exacerbating water scarcity issues. Consequently, we conducted a study to examine how the fast-growing tree species Populus sibirica (Horth ex Tausch) and Ulmus pumila (L.) respond morpho-physiologically to varying watering regimes and types of fertilizers, aiming to better understand their specific water and nutrient requirements. Methods We used two-year-old nursery-growth seedlings (N = 512) of P. sibirica and U. pumila with initial root collar diameter (RCD) and the height of 0.51 ± 0.02 mm and 68 ± 2.94 cm and 0.33 ± 0.01 mm and 51 ± 1.14 cm, respectively. The leaf area (LA), specific leaf area (SLA), chlorophyll concentration, stomatal conductance (gs), chlorophyll fluorescence, and predawn and midday leaf water potential were measured across treatments. Four different irrigation regimes and two different fertilizer types were applied: no irrigation (control, 0 L h-1), 2 L h-1 = 0.25 mm m-2, 4 L h-1 = 0.5 mm m-2, 8 L h-1 = 1.0 mm m-2 and 120 g and 500 g tree-1 of NPK and compost (COMP). Twelve plots (600 m2) were established in the study site for each species and treatments. Results During the first growing season (2021), the LA of P. sibirica was larger in the 4-8 L h-1 without fertilizer, but it was smaller in the 4 L h-1+ COMP during the second growing season (2022). The 2 L h-1 without fertilizer and 2 L h-1 + NPK had larger LA compared with the control (CONT) for the first and second growing seasons, respectively, for U. pumila. P. sibirica seedlings at 4 L h-1 without fertilizer had the highest SLA for 2021 and at 2 L h-1 + NPK for 2022, whereas CONT and 4 L h-1 had the highest SLA than the other treatments for 2021 and 2022 growing seasons, respectively, for U. pumila. The chlorophyll concentration of P. sibirica seedlings in the first year was generally higher in CONT, while the 2 L h-1 without any fertilizer yielded a significantly higher chlorophyll concentration of U. pumila. Chlorophyll fluorescence parameters (PIABS and Fm) were generally lower in CONT with/without NPK or COMP for both species. The CONT with NPK/COMP generally had a higher gs compared with the other treatments in both experimental periods for U. pumila, whereas CONT and 2 L h-1+ NPK-treated P. sibirica seedlings had a significantly greater gs during the first year and second year, respectively. The predawn and midday leaf water potentials of both species were generally the lowest in CONT, followed by 2 L h-1+ NPK/COMP during the first growing season, but a different pattern was observed during the second growing season. Overall, the morpho-physiological traits of the two species were affected by watering and fertilizer treatments, and the magnitude of the effects varied depending on growing season, amount of irrigation, and fertilizer type, and their interactions.
Collapse
Affiliation(s)
- Ser-Oddamba Byambadorj
- Laboratory of Forest Genetics and Ecophysiology, National University of Mongolia, Ulaanbaatar, Mongolia
- Department of Environment and Forest Resources, College of Agriculture and Life Science, Chungnam National University, Deajeon, South Korea
| | - Jonathan Ogayon Hernandez
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines, Los Baños, Philippines
| | - Sarangua Lkhagvasuren
- Laboratory of Forest Genetics and Ecophysiology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Ge Erma
- Laboratory of Forest Genetics and Ecophysiology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Khulan Sharavdorj
- Crop Ecology Laboratory, College of Agriculture and Life Science, Chungnam National University, Deajeon, South Korea
| | - Byung Bae Park
- Department of Environment and Forest Resources, College of Agriculture and Life Science, Chungnam National University, Deajeon, South Korea
| | - Batkhuu Nyam-Osor
- Laboratory of Forest Genetics and Ecophysiology, National University of Mongolia, Ulaanbaatar, Mongolia
| |
Collapse
|
88
|
Zhong X, Su G, Zeng Q, Li G, Xu H, Wu H, Zhou H, Zhou X. Preparation of Salicylic Acid-Functionalized Nanopesticides and Their Applications in Enhancing Salt Stress Resistance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43282-43293. [PMID: 37672316 DOI: 10.1021/acsami.3c06398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Soil salinization is one of the global ecological and environmental problems that are tremendously threatening to the sustainable development of agriculture and food supply. In this work, a facile strategy was proposed to enhance the salt stress resistance of plants by preparing salicylic acid (SA)-functionalized mesoporous silica nanocarriers loaded with emamectin benzoate (EB). The obtained nanopesticides demonstrated a particle size of less than 300 nm. As an endogenous plant hormone, the grafting of SA in this nanopesticide system improved the uptake and translocation of pesticides in cucumber plants by 145.06%, and the applications of such nanopesticides enhanced the salt stress resistance of plants. This phenomenon was accounted for by the SA-functionalized nanopesticides increasing the superoxide dismutase and peroxidase activities (640 and 175%, respectively) and reducing the malondialdehyde content (54.10%), correspondingly alleviating the accumulation of reactive oxygen species and cell damage in plants. The above results were also confirmed by Evans blue staining and NBT staining experiments on cucumber leaves. In addition, these nanopesticides exhibited high insecticidal toxicity, and they also demonstrated biosafety toward nontarget organisms due to their sustained release property. Therefore, this work developed a biosafe SA-functionalized nanopesticide system, and these newly developed nanopesticides have potential in the agricultural field for enhancing salt stress resistance of plants.
Collapse
Affiliation(s)
- Ximing Zhong
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, PR China
| | - Guofeng Su
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, PR China
| | - Qiye Zeng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, PR China
| | - Guangze Li
- Shenzhen Noposion Agrochemicals Co., Ltd., Shenzhen 518102, Guangdong, PR China
| | - Hua Xu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, PR China
| | - Honghong Wu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Hongjun Zhou
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, PR China
| | - Xinhua Zhou
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, PR China
| |
Collapse
|
89
|
Haq IU, Ullah S, Amin F, Nafees M, Shah W, Ali B, Iqbal R, Kaplan A, Ali MA, Elshikh MS, Ercisli S. Physiological and Germination Responses of Muskmelon ( Cucumis melo L.) Seeds to Varying Osmotic Potentials and Cardinal Temperatures via a Hydrothermal Time Model. ACS OMEGA 2023; 8:33266-33279. [PMID: 37744846 PMCID: PMC10515359 DOI: 10.1021/acsomega.3c01100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/09/2023] [Indexed: 09/26/2023]
Abstract
Climatic changes have a direct negative impact on the growth, development, and productivity of crops. The water potential (ψ) and temperature (T) are important limiting factors that influence the rate of seed germination and growth indices. To examine how the germination of seed responds to changes in water potential and temperature, the hydrotime model and hydrothermal model (HTT) have been employed. The HTT calculates the concept of germination time across temperatures, between Tb-To, with alteration, and between Tb-Tc, in supra-optimal ranges. The seeds of Cucumis melo L. were germinated in the laboratory for a hydro-thermal time experiment. Seeds were sown in Petri dishes containing a double-layered filter paper at different osmotic potentials (0, -0.2, -0.4, -0.6, and -0.8 MPa) by providing PEG 6000 (drought stress enhancer) at different temperatures (15, 20, 25, 30, and 35 °C). The controlled replicate was treated with 10 mL of distilled water and the rest with 10 mL of PEG solution. Results indicated that the seed vigor index (SVI-II) was highest at 15 °C with 0 MPa and lowest at 30 °C with -0.2 MPa. However, the highest activity was shown at 15 °C by catalase (CAT) and guaiacol peroxidase (GPX) at (-0.6 MPa), while the lowest values of CAT and GPX were recorded for control at 35 °C with -0.8 MPa at 35 °C, respectively. Germination energy was positively correlated with germination index (GI), germination percentage (G%), germination rate index, seed vigor index-I (SVI-I), mean moisture content (MMC), and root shoot ratio (RSR) and had a negative correlation with mean germination rate, percent moisture content of shoot and root, CAT, superoxide dismutase, peroxidase ascorbate peroxidase, and GPX. In conclusion, thermal and hydrotime models correctly predicted muskmelon germination time in response to varying water potential and temperature. The agronomic attributes were found to be maximum at 30 °C and minimum at 15 °C.
Collapse
Affiliation(s)
- Ijaz ul Haq
- Department
of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Sami Ullah
- Department
of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Fazal Amin
- Department
of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Nafees
- Department
of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Wadood Shah
- Biological
Sciences Research Division, Pakistan Forest
Institute, Peshawar 25120, Pakistan
| | - Baber Ali
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur Pakistan, Bahawalpur 63100, Pakistan
- Department
of Agroecology-Climate and Water, Aarhus
University, Blichers
Allé 20, 8830 Tjele, Denmark
| | - Alevcan Kaplan
- Department
of Crop and Animal Production, Sason Vocational School, Batman Universitesi, Batman 72060, Turkey
| | - Mohammad Ajmal Ali
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh11451, Saudi Arabia
| | - Mohamed S. Elshikh
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh11451, Saudi Arabia
| | - Sezai Ercisli
- Department
of Horticulture, Agricultural Faculty, Ataturk
Universitesi, Erzurum25240, Turkiye
- HGF
Agro, Ata Teknokent, Erzurum25240 ,Turkiye
| |
Collapse
|
90
|
Raza MAS, Ibrahim MA, Ditta A, Iqbal R, Aslam MU, Muhammad F, Ali S, Çiğ F, Ali B, Muhammad Ikram R, Muzamil MN, Rahman MHU, Alwahibi MS, Elshikh MS. Exploring the recuperative potential of brassinosteroids and nano-biochar on growth, physiology, and yield of wheat under drought stress. Sci Rep 2023; 13:15015. [PMID: 37696905 PMCID: PMC10495435 DOI: 10.1038/s41598-023-42007-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/04/2023] [Indexed: 09/13/2023] Open
Abstract
Drought stress as a result of rapidly changing climatic conditions has a direct negative impact on crop production especially wheat which is the 2nd staple food crop. To fulfill the nutritional demand under rapidly declining water resources, there is a dire need to adopt a precise, and efficient approach in the form of different amendments. In this regard, the present study investigated the impact of nano-biochar (NBC) and brassinosteroids (BR) in enhancing the growth and productivity of wheat under different drought stress conditions. The field study comprised different combinations of amendments (control, NBC, BR, and NBC + BR) under three irrigation levels (D0, D1 and D2). Among different treatments, the synergistic approach (NBC + BR) resulted in the maximum increase in different growth and yield parameters under normal as well as drought stress conditions. With synergistic approach (NBC + BR), the maximum plant height (71.7 cm), spike length (17.1), number of fertile tillers m-2 (410), no. of spikelets spike-1 (19.1), no. of grains spike-1 (37.9), 1000 grain weight (37 g), grain yield (4079 kg ha-1), biological yield (10,502 kg ha-1), harvest index (43.5). In the case of physiological parameters such as leaf area index, relative water contents, chlorophyll contents, and stomatal conductance were maximally improved with the combined application of NBC and BR. The same treatment caused an increase of 54, 10, and 7% in N, P, and K contents in grains, respectively compared to the control treatment. Similarly, the antioxidant response was enhanced in wheat plants under drought stress with the combined application of NBC and BR. In conclusion, the combined application of NBC and BR caused a significant increase in the growth, physiological and yield attributes of wheat under drought stress.
Collapse
Affiliation(s)
- Muhammad Aown Sammar Raza
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Arif Ibrahim
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal Dir (U), Sheringal, KPK, Pakistan
- School of Biological Sciences, the University of Western Australia, Perth, WA, 6009, Australia
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Usman Aslam
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Faqeer Muhammad
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Shehzad Ali
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fatih Çiğ
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | | | - Muhammed Habib Ur Rahman
- Department of Agronomy, MNS-University of Agriculture, Multan, Pakistan.
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
- Department of Seed Science and Technology, Institute of Plant Breeding and Biotechnology (IPBB), MNS-University of Agriculture, Multan, Pakistan.
| | - Mona S Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
91
|
Theerawitaya C, Praseartkul P, Taota K, Tisarum R, Samphumphuang T, Singh HP, Cha-Um S. Investigating high throughput phenotyping based morpho-physiological and biochemical adaptations of indian pennywort (Centella asiatica L. urban) in response to different irrigation regimes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107927. [PMID: 37544120 DOI: 10.1016/j.plaphy.2023.107927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Indian pennywort (Centella asiatica L. Urban; Apiaceae) is a herbaceous plant used as traditional medicine in several regions worldwide. An adequate supply of fresh water in accordance with crop requirements is an important tool for maintaining the productivity and quality of medicinal plants. The objective of this study was to find a suitable irrigation schedule for improving the morphological and physiological characteristics, and crop productivity of Indian pennywort using high-throughput phenotyping. Four treatments were considered based on irrigation schedules (100, 75, 50, and 25% of field capacity denoted by I100 [control], I75, I50, and I25, respectively). The number of leaves, plant perimeter, plant volume, and shoot dry weight were sustained in I75 irrigated plants, whereas adverse effects on plant growth parameters were observed when plants were subjected to I25 irrigation for 21 days. Leaf temperature (Tleaf) was also retained in I75 irrigated plants, when compared with control. An increase of 2.0 °C temperature was detected in the Tleaf of plants under I25 irrigation treatment when compared with control. The increase in Tleaf was attributed to a decreased transpiration rate (R2 = 0.93), leading to an elevated crop water stress index. Green reflectance and leaf greenness remained unchanged in plants under I75 irrigation, while significantly decreased under I50 and I25 irrigation. These decreases were attributed to declined leaf osmotic potential, increased non-photochemical quenching, and inhibition of net photosynthetic rate (Pn). The asiatic acid and total centellosides in the leaf tissues, and centellosides yield of plants under I75 irrigation were retained when compared with control, while these parameters were regulated to maximal when exposed to I50 irrigation. Based on the results, I75 irrigation treatment was identified as the optimum irrigation schedule for Indian pennywort in terms of sustained biomass and a stable total centellosides. However, further validation in the field trials at multiple locations and involving different crop rotations is recommended to confirm these findings.
Collapse
Affiliation(s)
- Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Patchara Praseartkul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Kanyarat Taota
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
92
|
Riyazuddin R, Singh K, Iqbal N, Labhane N, Ramteke P, Singh VP, Gupta R. Unveiling the biosynthesis, mechanisms, and impacts of miRNAs in drought stress resilience in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107978. [PMID: 37660607 DOI: 10.1016/j.plaphy.2023.107978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Drought stress is one of the most serious threats to sustainable agriculture and is predicted to be further intensified in the coming decades. Therefore, understanding the mechanism of drought stress tolerance and the development of drought-resilient crops are the major goals at present. In recent years, noncoding microRNAs (miRNAs) have emerged as key regulators of gene expressions under drought stress conditions and are turning out to be the potential candidates that can be targeted to develop drought-resilient crops in the future. miRNAs are known to target and decrease the expression of various genes to govern the drought stress response in plants. In addition, emerging evidence also suggests a regulatory role of long non-coding RNAs (lncRNAs) in the regulation of miRNAs and the expression of their target genes by a process referred as miRNA sponging. In this review, we present the regulatory roles of miRNAs in the modulation of drought-responsive genes along with discussing their biosynthesis and action mechanisms. Additionally, the interactive roles of miRNAs with phytohormone signaling components have also been highlighted to present the global view of miRNA functioning under drought-stress conditions.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary.
| | - Kalpita Singh
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary; Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, H-2462, Martonvásár, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Nitin Labhane
- Department of Botany, Bhavan's College Andheri West, Mumbai, 400058, India.
| | - Pramod Ramteke
- Department of Biotechnology, Dr. Ambedkar College, Nagpur, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Ravi Gupta
- College of General Education, Kookmin University, 02707, Seoul, Republic of Korea.
| |
Collapse
|
93
|
Balko C, Torres AM, Gutierrez N. Variability in drought stress response in a panel of 100 faba bean genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1236147. [PMID: 37719225 PMCID: PMC10499557 DOI: 10.3389/fpls.2023.1236147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023]
Abstract
Faba bean is an important protein crop for food and feed worldwide and provides a range of advantages in crop rotations. Its limited use in modern agriculture is mainly due to the high fluctuations in yield. A well known limiting factor in most legumes, and particularly in faba bean, is the high sensitivity to water shortage, which is further aggravated by climate change. The present study was undertaken to exploit the genetic variation in drought stress response in a faba bean collection of 100 accessions with diverse origins and to assess selection criteria for identifying drought tolerant genotypes. Physiological, phenological and yield related traits evaluated under drought or water-sufficient conditions responded significantly to the end-terminated drought stress. Comparison of yield relations showed the advantage of using a stress tolerance index (STI) to identify genotypes combining high yield potential with high stress yield. With regard to physiological traits, SPAD (chlorophyll content) values were significantly related to yield as well as to STI, while the other traits also contributed to different extents to variation in yield formation. Among the yield related traits, seeds per plant proved to be the most important trait followed by pods per plant. Interestingly, the eight genotypes with the best STI performance use different strategies to cope with drought stress.
Collapse
Affiliation(s)
- Christiane Balko
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Sanitz, Germany
| | - Ana M. Torres
- Área de Mejora Vegetal y Biotecnología, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Centro Alameda del Obispo, Córdoba, Spain
| | - Natalia Gutierrez
- Área de Mejora Vegetal y Biotecnología, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Centro Alameda del Obispo, Córdoba, Spain
| |
Collapse
|
94
|
Iqbal B, Hussain F, khan MS, Iqbal T, Shah W, Ali B, Al Syaad KM, Ercisli S. Physiology of gamma-aminobutyric acid treated Capsicum annuum L. (Sweet pepper) under induced drought stress. PLoS One 2023; 18:e0289900. [PMID: 37590216 PMCID: PMC10434925 DOI: 10.1371/journal.pone.0289900] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
There is now widespread agreement that global warming is the source of climate variability and is a global danger that poses a significant challenge for the 21st century. Climate crisis has exacerbated water deficit stress and restricts plant's growth and output by limiting nutrient absorption and raising osmotic strains. Worldwide, Sweet pepper is among the most important vegetable crops due to its medicinal and nutritional benefits. Drought stress poses negative impacts on sweet pepper (Capsicum annuum L.) growth and production. Although, γ aminobutyric acid (GABA) being an endogenous signaling molecule and metabolite has high physio-molecular activity in plant's cells and could induce tolerance to water stress regimes, but little is known about its influence on sweet pepper development when applied exogenously. The current study sought to comprehend the effects of foliar GABA application on vegetative development, as well as physiological and biochemical constituents of Capsicum annuum L. A Field experiment was carried out during the 2021 pepper growing season and GABA (0, 2, and 4mM) concentrated solutions were sprayed on two Capsicum annuum L. genotypes including Scope F1 and Mercury, under drought stress of 50% and 30% field capacity. Results of the study showed that exogenous GABA supplementation significantly improved vegetative growth attributes such as, shoot and root length, fresh and dry weight, as well as root shoot ratio (RSR), and relative water content (RWC) while decreasing electrolyte leakage (EL). Furthermore, a positive and significant effect on chlorophyll a, b, a/b ratio and total chlorophyll content (TCC), carotenoids content (CC), soluble protein content (SPC), soluble sugars content (SSC), total proline content (TPC), catalase (CAT), and ascorbate peroxidase (APX) activity was observed. The application of GABA at 2mM yielded the highest values for these variables. In both genotypes, peroxidase (POD) and superoxide dismutase (SOD) content increased with growing activity of those antioxidant enzymes in treated plants compared to non-treated plants. In comparison with the rest of GABA treatments, 2mM GABA solution had the highest improvement in morphological traits, and biochemical composition. In conclusion, GABA application can improve development and productivity of Capsicum annuum L. under drought stress regimes. In addition, foliar applied GABA ameliorated the levels of osmolytes and the activities of antioxidant enzymes involved in defense mechanism.
Collapse
Affiliation(s)
- Babar Iqbal
- Department of Chemical & Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, Pakistan
| | - Fida Hussain
- Department of Chemical & Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, Pakistan
- Department of Botany, Islamia College Peshawar, Peshawar, Pakistan
| | | | - Taimur Iqbal
- Faculty of Crop Protection Sciences, Department of Plant Pathology, University of Agriculture, Peshawar, Pakistan
| | - Wadood Shah
- Biological Sciences Research Division, Pakistan Forest Institute, Peshawar, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Aazam University, Islamabad, Pakistan
| | - Khalid M. Al Syaad
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sezai Ercisli
- Faculty of Agriculture, Department of Horticulture, Ataturk University, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, Türkiye
| |
Collapse
|
95
|
Turan M, Ekinci M, Argin S, Brinza M, Yildirim E. Drought stress amelioration in tomato ( Solanum lycopersicum L.) seedlings by biostimulant as regenerative agent. FRONTIERS IN PLANT SCIENCE 2023; 14:1211210. [PMID: 37662171 PMCID: PMC10469020 DOI: 10.3389/fpls.2023.1211210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
Drought adversely affects many physiological and biochemical events of crops. This research was conducted to investigate the possible effects of biostimulants containing plant growth-promoting rhizobacteria (PGPR) on plant growth parameters, chlorophyll content, membrane permeability (MP), leaf relative water content (LRWC), hydrogen peroxide (H2O2), proline, malondialdehyde (MDA), hormone content, and antioxidant enzymes (catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD)) activity of tomato (Solanum lycopersicum L.) seedlings under different irrigation levels. This study was carried out under controlled greenhouse conditions with two irrigation levels (D0: 100% of field capacity and D1: 50% of field capacity) and three biostimulant doses (B0: 0, B1: 4 L ha-1, and B2: 6 L ha-1). The results of the study show that drought stress negatively influenced the growth and physiological characteristics of tomato seedlings while biostimulant applications ameliorated these parameters. Water deficit conditions (50% of field capacity) caused decrease in indole acetic acid (IAA), gibberellic acid (GA), salicylic acid (SA), cytokine, zeatin, and jasmonic acid content of tomato seedlings by ratios of 83%, 93%, 82%, 89%, 50%, and 57%, respectively, and shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, plant height, stem diameter, and leaf area decreased by 43%, 19%, 39%, 29%, 20%, 18%, and 50%, respectively, compared to the control (B0D0). In addition, 21%, 16%, 21%, and 17% reductions occurred in LRWC, chlorophyll a, chlorophyll b, and total chlorophyll contents with drought compared to the control, respectively. Biostimulant applications restored the plant growth, and the most effective dose was 4 L ha-1 under drought condition. Amendment of biostimulant into the soil also enhanced organic matter and the total N, P, Ca, and Cu content of the experiment soil. In conclusion, 4 L ha-1 biostimulant amendment might be a promising approach to mitigate the adverse effects of drought stress on tomato.
Collapse
Affiliation(s)
- Metin Turan
- Department of Agricultural Trade and Management, Faculty of Economy and Administrative Sciences, Yeditepe University, Istanbul, Türkiye
| | - Melek Ekinci
- Department of Horticulture, Faculty of Agriculture, Atatürk University, Erzurum, Türkiye
| | - Sanem Argin
- Department of Agricultural Trade and Management, Faculty of Economy and Administrative Sciences, Yeditepe University, Istanbul, Türkiye
| | | | - Ertan Yildirim
- Department of Horticulture, Faculty of Agriculture, Atatürk University, Erzurum, Türkiye
- Atatürk University Plant Production Application and Research Center, Erzurum, Türkiye
| |
Collapse
|
96
|
Guedes WA, Nobre RG, Soares LADA, de Lima GS, Gheyi HR, Fernandes PD, Ferreira APN, da Silva AAR, de Azevedo CAV, Silva DV, de Medeiros JF. Irrigation Strategies with Controlled Water Deficit in Two Production Cycles of Cotton. PLANTS (BASEL, SWITZERLAND) 2023; 12:2892. [PMID: 37631104 PMCID: PMC10458130 DOI: 10.3390/plants12162892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Water scarcity is one of the main abiotic factors that limit agricultural production. In this sense, the identification of genotypes tolerant to water deficit associated with irrigation management strategies is extremely important. In this context, the objective of this study was to evaluate the morphology, production, water consumption, and water use efficiency of colored fiber cotton genotypes submitted to irrigation strategies with a water deficit in the phenological phases. Two experiments were conducted in succession. In the first experiment, a randomized block design was used in a 3 × 7 factorial scheme, corresponding to three colored cotton genotypes (BRS Rubi, BRS Jade, and BRS Safira) in seven irrigation management strategies with 40% of the real evapotranspiration (ETr) varying the phenological stages. In the second experiment, the same design was used in a 3 × 10 factorial arrangement (genotypes × irrigation management strategies). The water deficit in the vegetative phase can be used in the first year of cotton cultivation. Among the genotypes, 'BRS Jade' is the most tolerant to water deficit in terms of phytomass accumulation and fiber production.
Collapse
Affiliation(s)
- Wellinghton Alves Guedes
- Postgraduate Program in Soil and Water Management, Federal Rural University of the Semi-Arid Region, Mossoró 59780-000, RN, Brazil; (W.A.G.); (A.P.N.F.); (D.V.S.); (J.F.d.M.)
| | - Reginaldo Gomes Nobre
- Postgraduate Program in Soil and Water Management, Federal Rural University of the Semi-Arid Region, Mossoró 59780-000, RN, Brazil; (W.A.G.); (A.P.N.F.); (D.V.S.); (J.F.d.M.)
| | | | - Geovani Soares de Lima
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (G.S.d.L.); (H.R.G.); (P.D.F.); (A.A.R.d.S.); (C.A.V.d.A.)
| | - Hans Raj Gheyi
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (G.S.d.L.); (H.R.G.); (P.D.F.); (A.A.R.d.S.); (C.A.V.d.A.)
| | - Pedro Dantas Fernandes
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (G.S.d.L.); (H.R.G.); (P.D.F.); (A.A.R.d.S.); (C.A.V.d.A.)
| | - Ana Paula Nunes Ferreira
- Postgraduate Program in Soil and Water Management, Federal Rural University of the Semi-Arid Region, Mossoró 59780-000, RN, Brazil; (W.A.G.); (A.P.N.F.); (D.V.S.); (J.F.d.M.)
| | - André Alisson Rodrigues da Silva
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (G.S.d.L.); (H.R.G.); (P.D.F.); (A.A.R.d.S.); (C.A.V.d.A.)
| | - Carlos Alberto Vieira de Azevedo
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (G.S.d.L.); (H.R.G.); (P.D.F.); (A.A.R.d.S.); (C.A.V.d.A.)
| | - Daniel Valadão Silva
- Postgraduate Program in Soil and Water Management, Federal Rural University of the Semi-Arid Region, Mossoró 59780-000, RN, Brazil; (W.A.G.); (A.P.N.F.); (D.V.S.); (J.F.d.M.)
| | - José Francismar de Medeiros
- Postgraduate Program in Soil and Water Management, Federal Rural University of the Semi-Arid Region, Mossoró 59780-000, RN, Brazil; (W.A.G.); (A.P.N.F.); (D.V.S.); (J.F.d.M.)
| |
Collapse
|
97
|
Shumaila, Ullah S, Shah W, Hafeez A, Ali B, Khan S, Ercisli S, Al-Ghamdi AA, Elshikh MS. Biochar and Seed Priming Technique with Gallic Acid: An Approach toward Improving Morpho-Anatomical and Physiological Features of Solanum melongena L. under Induced NaCl and Boron Stresses. ACS OMEGA 2023; 8:28207-28232. [PMID: 38173954 PMCID: PMC10763624 DOI: 10.1021/acsomega.3c01720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/12/2023] [Indexed: 01/05/2024]
Abstract
Dynamic shifts in climatic patterns increase soil salinity and boron levels, which are the major abiotic factors that affect plant growth and secondary metabolism. The present study assessed the role of growth regulators, including biochar (5 g kg-1) and gallic acid (GA, 2 mM), in altering leaf morpho-anatomical and physiological responses of Solanum melongena L. exposed to boron (25 mg kg-1) and salinity stresses (150 mM NaCl). These growth regulators enhanced leaf fresh weight (LFW) (70%), leaf dry weight (LDW) (20%), leaf area (LA), leaf area index (LAI) (85%), leaf moisture content (LMC) (98%), and relative water content (RWC) (115%) under salinity and boron stresses. Physiological attributes were analyzed to determine the stress levels and antioxidant protection. Photosynthetic pigments were negatively affected by salinity and boron stresses along with a nonsignificant reduction in trehalose, GA, osmoprotectant, and catalase (CAT) and ascorbate peroxidase (APX) activity. These parameters were improved by biochar application to soil and presoaking seeds in GA (p < 0.05) in both varieties of S. melongena L. Scanning electron microscopy (SEM) and light microscopy revealed that application of biochar and GA improved the stomatal regulation, trichome density, epidermal vigor, stomata size (SS) (13 381 μm), stomata index (SI) (354 mm2), upper epidermis thickness (UET) (123 μm), lower epidermis thickness (LET) (153 μm), cuticle thickness (CT) (11.4 μm), trichome density (TD) (23 per mm2), vein islet number (VIN) (14 per mm2), vein termination number (VTN) (19 per mm2), midrib thickness (MT) (5546 μm), and TD (27.4 mm2) under salinity and boron stresses. These results indicate that the use of inexpensive and easily available biochar and seed priming with GA can improve morpho-anatomical and physiological responses of S. melongena L. under oxidative stress conditions.
Collapse
Affiliation(s)
- Shumaila
- Department
of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Sami Ullah
- Department
of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Wadood Shah
- Biological
Sciences Research Division, Pakistan Forest
Institute, Peshawar 25120, Pakistan
| | - Aqsa Hafeez
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Baber Ali
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shahid Khan
- Crops,
Environment and Land Use Programme, Crop Science Department, Teagasc, Carlow R93 XE12, Ireland
| | - Sezai Ercisli
- Department
of Horticulture, Agricultural Faculty, Ataturk
Universitesi, 25240 Erzurum, Turkey
- HGF
Agro, Ata Teknokent, 25240 Erzurum, Turkey
| | - Abdullah Ahmed Al-Ghamdi
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S. Elshikh
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
98
|
Wang N, Qi F, Wang F, Lin Y, Xiaoyang C, Peng Z, Zhang B, Qi X, Deyholos MK, Zhang J. Evaluation of Differentially Expressed Genes in Leaves vs. Roots Subjected to Drought Stress in Flax ( Linum usitatissimum L.). Int J Mol Sci 2023; 24:12019. [PMID: 37569394 PMCID: PMC10419004 DOI: 10.3390/ijms241512019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Drought stress is a common environmental challenge that plants face, severely constraining plant growth and reducing crop yield and quality. Several studies have highlighted distinct responses between monocotyledonous and dicotyledonous plants. However, the mechanisms underlying flax tolerance to abiotic stress, such as drought, remain unclear. In this study, we investigated the morphological, physiological, and biochemical characteristics and the genome-wide gene expression of oil flax and fiber flax in response to drought stress. The results revealed that drought stress caused significant wilting of flax leaves. Within the first 24 h of stress, various physiological and biochemical characteristics exhibited rapid responses. These included fresh weight, relative water content (RWC), proline, soluble protein, soluble sugar, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in the leaves or roots of flax. Additionally, drought stress led to a significant rise in lignin content in fiber flax. In addition, the transcriptome analysis demonstrated genome-wide variations in gene expression induced by drought stress. Specifically, genes associated with photosynthesis, proline biosynthesis, and phytohormone metabolism exhibited significant differences in expression levels under stress conditions in flax. These findings highlight the rapid response of flax to drought stress within a short-term period. Our experiment also revealed that, although there were variations in the levels of small compound content or gene expression between Longya10 and Fany under drought stress, most stress-resistance responses were similar. Furthermore, the results provide additional evidence supporting the existence of mechanisms underlying the response to drought stress in plants.
Collapse
Affiliation(s)
- Ningning Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (F.Q.); (F.W.); (Y.L.); (C.X.); (B.Z.)
| | - Fan Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (F.Q.); (F.W.); (Y.L.); (C.X.); (B.Z.)
| | - Fu Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (F.Q.); (F.W.); (Y.L.); (C.X.); (B.Z.)
| | - Yujie Lin
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (F.Q.); (F.W.); (Y.L.); (C.X.); (B.Z.)
| | - Chunxiao Xiaoyang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (F.Q.); (F.W.); (Y.L.); (C.X.); (B.Z.)
| | - Zhanwu Peng
- Information Center, Jilin Agricultural University, Changchun 130000, China;
| | - Bi Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (F.Q.); (F.W.); (Y.L.); (C.X.); (B.Z.)
| | - Xin Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (F.Q.); (F.W.); (Y.L.); (C.X.); (B.Z.)
| | - Michael K. Deyholos
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada;
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (F.Q.); (F.W.); (Y.L.); (C.X.); (B.Z.)
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada;
| |
Collapse
|
99
|
Din I, Khan S, Khan FU, Khan M, Khan MN, Hafeez A, Wahab S, Wahid N, Ali B, Qasim UB, Manan F, Alwahibi MS, Elshikh MS, Ercisli S, Khalifa EMA. Genetic Characterization of Advance Bread Wheat Lines for Yield and Stripe Rust Resistance. ACS OMEGA 2023; 8:25988-25998. [PMID: 37521679 PMCID: PMC10372943 DOI: 10.1021/acsomega.3c01981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Wheat (Triticum aestivum L.) is a prominent grain crop. The goal of the current experiment was to examine the genetic potential of advanced bread wheat genotypes for yield and stripe rust resistance. Ninety-three bread wheat genotypes including three varieties (Kohat-2017, Pakistan-2013, and Morocco) were field tested in augmented design as observational nurseries at three locations (i.e., Kohat, Nowshera, and Peshawar) during the 2018-19 crop season. Various parameters related to yield and stripe rust resistance showed significant differences among genotypes for most of the characters with few exceptions. The analysis of variance revealed significant variations for all the genotypes for all the traits at all three sites with few exceptions where nonsignificant differences were noticed among genotypes. Averaged over three locations, genotypes exhibiting maximum desirable values for yield and yield components were KT-86 (325 tillers) for tillers m-2, KT-50 (2.86 g) for grain weight spike-1, KT-49 (41.6 g) for 1000-grain weight, KT-50 (74 grains) for grains spikes-1, KT-55 (4.76 g) for spike weight, and KT-36 and KT-072 (4586 kg ha-1) for grain yield. Correlation analysis revealed that grain yield had a significant positive correlation with grain spike-1 and grain weight spike-1 at Kohat, with grains spike-1, tillers m-2, and grain weight spike-1 at Nowshera, and with plant height, spike weight, 1000-grain weight, and tillers m-2 at Peshawar. Molecular marker data and host response in the field at the adult stage revealed that Yr15 and Yr10 are both still effective in providing adequate resistance to wheat against prevalent races of stripe rust. Four lines showing desirable lower average coefficient of infection (ACI) values without carrying Yr15 and Yr10 genes show the presence of unique/new resistance gene(s) in the genetic composition of these four lines. Genotype KT-072 (4586 kg ha-1 and 1.3 ACI), KT-07 (4416 kg ha-1 and 4.3 ACI), KT-10 (4346 kg ha-1 and 1.0 ACI), and KT-62 (4338 kg ha-1 and 2.7 ACI) showed maximum values for grain yield and low desirable ACI values, and these lines could be recommended for general cultivation after procedural requirements of variety release.
Collapse
Affiliation(s)
- Israr
Ud Din
- The
University of Agriculture Peshawar, Institute
of Biotechnology and Genetic Engineering, Peshawar 25130, Pakistan
| | - Salman Khan
- Department
of Biotechnology, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Fahim Ullah Khan
- Department
of Agriculture, Hazara University, Mansehra 21120, Pakistan
| | - Majid Khan
- The
University of Agriculture Peshawar, Institute
of Biotechnology and Genetic Engineering, Peshawar 25130, Pakistan
| | - Muhammad Nauman Khan
- Department
of Botany, Islamia College Peshawar, Peshawar 25120, Pakistan
- University
Public School, University of Peshawar, Peshawar 25120, Pakistan
| | - Aqsa Hafeez
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sana Wahab
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Nazima Wahid
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Baber Ali
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Umair Bin Qasim
- Department
of Plant Breeding & Genetics, The University
of Agriculture Peshawar, Peshawar 25130, Pakistan
| | - Fazal Manan
- Department
of Plant Pathology, North Dakota State University, Fargo, North Dakota 58108-6050, United
States
| | - Mona S Alwahibi
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sezai Ercisli
- Department
of Horticulture Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye
- HGF
Agro, Ata Teknokent, Erzurum 25240, Türkiye
| | - Ebaa Mohamed Ali Khalifa
- Agriculture
Research Center, Wheat Research Department, Field Crop Research Institute, Giza 3725005, Egypt
| |
Collapse
|
100
|
Rasool A, Ghani A, Nawaz R, Ahmad S, Shahzad K, Rebi A, Ali B, Zhou J, Ahmad MI, Tahir MF, Alwahibi MS, Elshikh MS, Ercisli S. Effects of Poultry Manure on the Growth, Physiology, Yield, and Yield-Related Traits of Maize Varieties. ACS OMEGA 2023; 8:25766-25779. [PMID: 37521629 PMCID: PMC10373454 DOI: 10.1021/acsomega.3c00880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/18/2023] [Indexed: 08/01/2023]
Abstract
Industries play a significant role in the improvement of lifestyle and in the development of a country. However, the byproducts from these industries are a source of environmental pollution. The proper use of the byproducts of these industries can help to cope with environmental pollution. Some byproducts have high nutritional content and are good for crop plants. The purpose of this research was to investigate the effect of different rates of poultry manure on the soil chemical properties, growth, and yield of maize. A pot experiment was conducted in the botanical garden of the Department of Botany, University of Sargodha, Pakistan to investigate the effect of various treatments of poultry manure (0, 25, 50, 75, and 100 g/pot) on the morphological, physiological, and yield attributes of two maize varieties, Pearl and MMRI. Treatment T1 was a mixture of soil and 75 g/pot poultry manure, T2 was a mixture of soil and 50 g/pot poultry manure, T3 was a mixture of soil and 25 g/pot poultry manure, and T4 was 100 g/pot poultry manure. Soil without any industrial byproduct (100% soil only) was used as the control (T0). The results revealed that the use of poultry manure enhanced the physical properties of the soil. Available P and soil organic matter were improved in soil amended with poultry manure. It is evident from the results that the vegetative growth of both maize varieties was significantly enhanced by growing in soil amended with poultry manure as compared to their respective control. Similar responses were also recorded for the physiological attributes of leaf area, photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency of both varieties. Yield and yield-contributing traits of both maize varieties were significantly improved by growing plants in soil amended with 50 and 75 g/pot of poultry manure. It is also inferred that the use of 50 g/pot poultry manure in soil amendment is an eco-friendly and economically effective option for maize growers of arid and semiarid regions to enhance the kernel yield and profit per annum. Poultry manure could be useful to ameliorate the adverse effects of salinity stress on all parameters, particularly the grain yield. Furthermore, this would be a useful and economical method for the safe disposal of byproducts.
Collapse
Affiliation(s)
- Ayesha Rasool
- Department
of Botany, University of Sargodha, Sargodha 40100, Pakistan
| | - Abdul Ghani
- Department
of Botany, University of Sargodha, Sargodha 40100, Pakistan
| | - Rab Nawaz
- Department
of Botany, University of Sargodha, Sargodha 40100, Pakistan
| | - Saliha Ahmad
- Department
of Biology, Case Western Reserve University, Cleveland, Ohio 44106-7078, United
States
| | - Khurram Shahzad
- Department
of Botany, University of Sargodha, Sargodha 40100, Pakistan
| | - Ansa Rebi
- Jianshui
Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Baber Ali
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Jinxing Zhou
- Jianshui
Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | | | - Muhammad Faran Tahir
- Department
of Plant Pathology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mona S. Alwahibi
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S. Elshikh
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sezai Ercisli
- Department
of Horticulture, Agricultural Faculty, Ataturk
Universitesi, Erzurum 25240, Türkiye
- HGF
Agro, Ata Teknokent, Erzurum 25240, Türkiye
| |
Collapse
|