51
|
Prabhakar S, Qiao Y, Canova A, Tse DB, Pine R. IFN-αβ Secreted during Infection Is Necessary but Not Sufficient for Negative Feedback Regulation of IFN-αβ Signaling byMycobacterium tuberculosis. THE JOURNAL OF IMMUNOLOGY 2005; 174:1003-12. [PMID: 15634924 DOI: 10.4049/jimmunol.174.2.1003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IFN-alphabeta functions in the transition from innate to adaptive immunity and may impinge on the interaction of Mycobacterium tuberculosis with its host. Infection by M. tuberculosis causes IFN-alphabeta secretion and down-regulation of IFN-alphabeta signaling in human APC and the human monocytic cell line THP-1, which provides a model for these studies. Neutralization of secreted IFN-alphabeta prevents inhibition of IFN-alpha signaling during infection, but several lines of evidence distinguish inhibition due to infection from a negative feedback response to only IFN-alphabeta. First, greater inhibition of IFN-alpha-stimulated STAT-1 tyrosine phosphorylation occurs 3 days postinfection than 1 or 3 days after IFN-alphabeta pretreatment. Second, LPS also induces IFN-alphabeta secretion and causes IFN-alphabeta-dependent down-regulation of IFN-alpha signaling, yet the inhibition differs from that caused by infection. Third, IFN-alpha signaling is inhibited when cells are grown in conditioned medium collected from infected cells 1 day postinfection, but not if it is collected 3 days postinfection. Because IFN-alphabeta is stable, the results with conditioned medium suggest the involvement of an additional, labile substance during infection. Further characterizing signaling for effects of infection, we found that cell surface IFN-alphabeta receptor is not reduced by infection, but that infection increases association of protein tyrosine phosphatase 1c with the receptor and with tyrosine kinase 2. Concomitantly, IFN-alpha stimulation of tyrosine kinase 2 tyrosine phosphorylation and kinase activity decreases in infected cells. Moreover, infection reduces the abundance of JAK-1 and tyrosine-phosphorylated JAK-1. Thus, the distinctive down-regulation of IFN-alpha signaling by M. tuberculosis occurs together with a previously undescribed combination of inhibitory intracellular events.
Collapse
|
52
|
Abstract
For a long time, the family of type I interferons (IFN-alpha/beta) has received little attention outside the fields of virology and tumor immunology. In recent years, IFN-alpha/beta regained the interest of immunologists, due to the phenotypic and functional characterization of IFN-alpha/beta-producing cells, the definition of novel immunomodulatory functions and signaling pathways of IFN-alpha/beta, and the observation that IFN-alpha/beta not only exerts antiviral effects but is also relevant for the pathogenesis or control of certain bacterial and protozoan infections. This review summarizes the current knowledge on the production and function of IFN-alpha/beta during non-viral infections in vitro and in vivo.
Collapse
Affiliation(s)
- Christian Bogdan
- Institute of Medical Microbiology and Hygiene, Department of Microbiology and Hygiene, University of Freiburg, Freiburg, Germany.
| | | | | |
Collapse
|
53
|
Emori Y, Ikeda T, Ohashi T, Masuda T, Kurimoto T, Takei M, Kannagi M. Inhibition of human immunodeficiency virus type 1 replication by Z-100, an immunomodulator extracted from human-type tubercle bacilli, in macrophages. J Gen Virol 2004; 85:2603-2613. [PMID: 15302954 DOI: 10.1099/vir.0.80046-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Z-100 is an arabinomannan extracted from Mycobacterium tuberculosis that has various immunomodulatory activities, such as the induction of interleukin 12, interferon gamma (IFN-gamma) and beta-chemokines. The effects of Z-100 on human immunodeficiency virus type 1 (HIV-1) replication in human monocyte-derived macrophages (MDMs) are investigated in this paper. In MDMs, Z-100 markedly suppressed the replication of not only macrophage-tropic (M-tropic) HIV-1 strain (HIV-1JR-CSF), but also HIV-1 pseudotypes that possessed amphotropic Moloney murine leukemia virus or vesicular stomatitis virus G envelopes. Z-100 was found to inhibit HIV-1 expression, even when added 24 h after infection. In addition, it substantially inhibited the expression of the pNL43lucDeltaenv vector (in which the env gene is defective and the nef gene is replaced with the firefly luciferase gene) when this vector was transfected directly into MDMs. These findings suggest that Z-100 inhibits virus replication, mainly at HIV-1 transcription. However, Z-100 also downregulated expression of the cell surface receptors CD4 and CCR5 in MDMs, suggesting some inhibitory effect on HIV-1 entry. Further experiments revealed that Z-100 induced IFN-beta production in these cells, resulting in induction of the 16-kDa CCAAT/enhancer binding protein (C/EBP) beta transcription factor that represses HIV-1 long terminal repeat transcription. These effects were alleviated by SB 203580, a specific inhibitor of p38 mitogen-activated protein kinases (MAPK), indicating that the p38 MAPK signalling pathway was involved in Z-100-induced repression of HIV-1 replication in MDMs. These findings suggest that Z-100 might be a useful immunomodulator for control of HIV-1 infection.
Collapse
Affiliation(s)
- Yutaka Emori
- Central Research Laboratories, Zeria Pharmaceutical Co. Ltd, 2512-1 Oshikiri, Kohnan-machi, Ohsato-gun, Saitama 360-0111, Japan
- Department of Immunotherapeutics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tamako Ikeda
- Department of Immunotherapeutics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takashi Ohashi
- Department of Immunotherapeutics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takao Masuda
- Department of Immunotherapeutics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tadashi Kurimoto
- Central Research Laboratories, Zeria Pharmaceutical Co. Ltd, 2512-1 Oshikiri, Kohnan-machi, Ohsato-gun, Saitama 360-0111, Japan
| | - Mineo Takei
- Central Research Laboratories, Zeria Pharmaceutical Co. Ltd, 2512-1 Oshikiri, Kohnan-machi, Ohsato-gun, Saitama 360-0111, Japan
| | - Mari Kannagi
- Department of Immunotherapeutics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
54
|
Nolan A, Weiden MD, Thurston G, Gold JA. Vascular endothelial growth factor blockade reduces plasma cytokines in a murine model of polymicrobial sepsis. Inflammation 2004; 28:271-8. [PMID: 16134000 PMCID: PMC3417046 DOI: 10.1007/s10753-004-6050-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Numerous cytokines, including vascular endothelial growth factor (VEGF), are implicated in the pathogenesis of sepsis. While overexpression of VEGF produces pulmonary capillary leak, the role of VEGF in sepsis is less clear. We investigated VEGF in sepsis, utilizing a VEGF trap (VEGF(T)). Polymicrobial sepsis was induced in C57BL/6 mice by cecal ligation and puncture (CLP) and resulted in significantly increased plasma VEGF levels (234 vs. 46 pg/mL; p = 0.03). Inhibition of VEGF had no effect on mortality or lung leak but did attenuate plasma IL-6 (120 vs. 236 ng/mL; p = 0.02) and IL-10 (16 vs. 41 ng/mL; p = 0.03). These alterations in inflammatory cytokines were associated with increased levels of the dominant negative inhibitory C/EBPbeta. In vitro, VEGF stimulated IL-6, IL-10 and reduced the inhibitory isoform of C/EBPbeta in cultured macrophages. Together these data suggest VEGF can regulate inflammatory cytokine production in murine polymicrobial sepsis, via regulation of C/EBPbeta.
Collapse
Affiliation(s)
- Anna Nolan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine. New York
| | - Michael D. Weiden
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine. New York
| | | | - Jeffrey A. Gold
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine. New York
| |
Collapse
|
55
|
Hoshino Y, Tse DB, Rochford G, Prabhakar S, Hoshino S, Chitkara N, Kuwabara K, Ching E, Raju B, Gold JA, Borkowsky W, Rom WN, Pine R, Weiden M. Mycobacterium tuberculosis-induced CXCR4 and chemokine expression leads to preferential X4 HIV-1 replication in human macrophages. THE JOURNAL OF IMMUNOLOGY 2004; 172:6251-8. [PMID: 15128813 DOI: 10.4049/jimmunol.172.10.6251] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Opportunistic infections such as pulmonary tuberculosis (TB) increase local HIV-1 replication and mutation. As AIDS progresses, alteration of the HIV-1 gp120 V3 sequence is associated with a shift in viral coreceptor use from CCR5 (CD195) to CXCR4 (CD184). To better understand the effect of HIV/TB coinfection, we screened transcripts from bronchoalveolar lavage cells with high density cDNA arrays and found that CXCR4 mRNA is increased in patients with TB. Surprisingly, CXCR4 was predominately expressed on alveolar macrophages (AM). Mycobacterium tuberculosis infection of macrophages in vitro increased CXCR4 surface expression, whereas amelioration of disease reduced CXCR4 expression in vivo. Bronchoalveolar lavage fluid from TB patients had elevated levels of CCL4 (macrophage inflammatory protein-1beta), CCL5 (RANTES), and CX3CL1 (fractalkine), but not CXCL12 (stromal-derived factor-1alpha). We found that M. tuberculosis infection of macrophages in vitro increased viral entry and RT of CXCR4-using [corrected] HIV-1, but not of CCR5-using [corrected] HIV-1. Lastly, HIV-1 derived from the lung contains CD14, suggesting that they were produced in AM. Our results demonstrate that TB produces a permissive environment for replication of CXCR4-using virus by increasing CXCR4 expression in AM and for suppression of CCR5-using HIV-1 by increasing CC chemokine expression. These changes explain in part why TB accelerates the course of AIDS. CXCR4 inhibitors are a rational therapeutic approach in HIV/TB coinfection.
Collapse
MESH Headings
- Amino Acid Sequence
- Bronchoalveolar Lavage Fluid/immunology
- Bronchoalveolar Lavage Fluid/virology
- Cell Line, Tumor
- Cells, Cultured
- Chemokines, CC/biosynthesis
- Chemokines, CC/genetics
- Chemokines, CC/physiology
- Chemokines, CX3C/biosynthesis
- Chemokines, CX3C/genetics
- Chemokines, CX3C/physiology
- Gene Expression Regulation/immunology
- HIV-1/immunology
- HIV-1/isolation & purification
- HIV-1/pathogenicity
- Humans
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/virology
- Molecular Sequence Data
- Mycobacterium tuberculosis/immunology
- Opportunistic Infections/immunology
- Opportunistic Infections/metabolism
- Opportunistic Infections/virology
- RNA, Messenger/biosynthesis
- Receptors, CCR4
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/physiology
- Species Specificity
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/virology
- Up-Regulation/immunology
- Virus Replication/immunology
Collapse
Affiliation(s)
- Yoshihiko Hoshino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Mariotti S, Teloni R, Iona E, Fattorini L, Romagnoli G, Gagliardi MC, Orefici G, Nisini R. Mycobacterium tuberculosis diverts alpha interferon-induced monocyte differentiation from dendritic cells into immunoprivileged macrophage-like host cells. Infect Immun 2004; 72:4385-92. [PMID: 15271894 PMCID: PMC470689 DOI: 10.1128/iai.72.8.4385-4392.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dendritic cells (DCs) are critical for initiating a pathogen-specific T-cell response. During chronic infections the pool of tissue DCs must be renewed by recruitment of both circulating DC progenitors and in loco differentiating monocytes. However, the interaction of monocytes with pathogens could affect their differentiation. Mycobacterium tuberculosis has been shown to variably interfere with the generation and function of antigen-presenting cells (APCs). In this study we found that when alpha interferon (IFN-alpha) is used as an inductor of monocyte differentiation, M. tuberculosis inhibits the generation of DCs, forcing the generation of immunoprivileged macrophage-like cells instead. Cells derived from M. tuberculosis-infected monocyte-derived macrophages (M. tuberculosis-infected MoMphi) retained CD14 without acquiring CD1 molecules and partially expressed B7.2 but did not up-regulate B7.1 and major histocompatibility complex (MHC) class I and II molecules. They synthesized tumor necrosis factor alpha and interleukin-10 (IL-10) but not IL-12. They also showed a reduced ability to induce proliferation and functional polarization of allogeneic T lymphocytes. Thus, in the presence of IFN-alpha, M. tuberculosis may hamper the renewal of potent APCs, such as DCs, generating a safe habitat for intracellular growth. M. tuberculosis-infected MoMphi, in fact, showed reduced expression of both signal 1 (CD1, MHC classes I and II) and signal 2 (B7.1 and B7.2), which are essential for mycobacterium-specific T-lymphocyte priming and/or activation. These data further suggest that M. tuberculosis has the ability to specifically interfere with monocyte differentiation. This ability may represent an effective M. tuberculosis strategy for eluding immune surveillance and persisting in the host.
Collapse
Affiliation(s)
- Sabrina Mariotti
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanitá, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Barber SA, Herbst DS, Bullock BT, Gama L, Clements JE. Innate immune responses and control of acute simian immunodeficiency virus replication in the central nervous system. J Neurovirol 2004; 10 Suppl 1:15-20. [PMID: 14982734 DOI: 10.1080/753312747] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) can invade the central nervous system (CNS) during acute infection but virus replication is apparently controlled because clinical and pathological manifestations of CNS disease in HIV/SIV-infected individuals usually present later in infection, coincident with immunosuppression and acquired immuno-deficiency syndrome (AIDS). Using an established SIV/macaque model of HIV dementia, the authors recently demonstrated that acute virus replication is down-regulated (to undetectable viral RNA levels) in the brain, but not the periphery, as early as 21 days post inoculation (p.i.). Viral DNA levels in the brain remain constant, suggesting that infected cells persist in the CNS and that replication is inhibited largely at a transcriptional level. In vitro, active replication of HIV in macrophages can be inhibited by treatment with interferon (IFN)beta via a mechanism involving induction of a dominant-negative form of the transcription factor C/EBP (CCAAT/enhancer-binding protein)beta. Because macrophages are the primary cell types infected with HIV/SIV in the CNS and HIV replication in macrophages requires C/EBP sites within the viral long terminal repeat (LTR), the authors considered the possibility that suppression of C/EBP-dependent transcription contributes to the mechanism by which acute HIV/SIV replication is inhibited in the CNS. Here, the authors report that IFNbeta can also inhibit ongoing SIV replication in macaque macrophages in vitro. Further, the authors demonstrate that IFNbeta levels in the brain increase between 7 and 21 days p.i. in parallel with increased expression of the dominant-negative isoform of C/EBPbeta. These results suggest that innate immune responses involving IFNbeta may contribute to the mechanism(s) controlling acute SIV replication in the CNS.
Collapse
Affiliation(s)
- Sheila A Barber
- Department of Comparative Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
58
|
Gold JA, Hoshino Y, Hoshino S, Jones MB, Nolan A, Weiden MD. Exogenous gamma and alpha/beta interferon rescues human macrophages from cell death induced by Bacillus anthracis. Infect Immun 2004; 72:1291-7. [PMID: 14977930 PMCID: PMC356021 DOI: 10.1128/iai.72.3.1291-1297.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
During the recent bioterrorism-related outbreaks, inhalational anthrax had a 45% mortality in spite of appropriate antimicrobial therapy, underscoring the need for better adjuvant therapies. The variable latency between exposure and development of disease suggests an important role for the host's innate immune response. Alveolar macrophages are likely the first immune cells exposed to inhalational anthrax, and the interferon (IFN) response of these cells comprises an important arm of the host innate immune response to intracellular infection with Bacillus anthracis. Furthermore, IFNs have been used as immunoadjuvants for treatment of another intracellular pathogen, Mycobacterium tuberculosis. We established a model of B. anthracis infection with the Sterne strain (34F(2)) which contains lethal toxin (LeTx). 34F(2) was lethal to murine and human macrophages. Treatment with IFNs significantly improved cell viability and reduced the number of germinated intracellular spores. Infection with 34F(2) failed to induce the latent transcription factors signal transducer and activators of transcription 1 (STAT1) and ISGF-3, which are central to the IFN response. Furthermore, 34F(2) reduced STAT1 activation in response to exogenous alpha/beta IFN, suggesting direct inhibition of IFN signaling. Even though 34F(2) has LeTx, there was no mitogen-activated protein kinase kinase 3 cleavage and p38 was normally induced, suggesting that these early effects of B. anthracis infection in macrophages are independent of LeTx. These data suggest an important role for both IFNs in the control of B. anthracis and the potential benefit of using exogenous IFN as an immunoadjuvant therapy.
Collapse
Affiliation(s)
- Jeffrey A Gold
- Division of Pulmonary and Critical Care Medicine, Sackler Institute of Biomedical Studies, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
59
|
Raju B, Hoshino Y, Kuwabara K, Belitskaya I, Prabhakar S, Canova A, Gold JA, Condos R, Pine RI, Brown S, Rom WN, Weiden MD. Aerosolized gamma interferon (IFN-gamma) induces expression of the genes encoding the IFN-gamma-inducible 10-kilodalton protein but not inducible nitric oxide synthase in the lung during tuberculosis. Infect Immun 2004; 72:1275-83. [PMID: 14977928 PMCID: PMC356013 DOI: 10.1128/iai.72.3.1275-1283.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gamma interferon (IFN-gamma) is critical in the immune response against Mycobacterium tuberculosis. In an ongoing trial of aerosol IFN-gamma in conjunction with standard drug therapy, we have observed activation of IFN signaling in bronchoalveolar lavage (BAL) cells from tuberculosis (TB) patients. We hypothesized that aerosol IFN-gamma treatment of pulmonary TB would increase expression of genes important for the control of TB. We investigated the expression of downstream genes by measuring inducible nitric oxide synthase (iNOS) and the chemokine IFN-inducible 10-kDa protein (IP-10) by real-time quantitative reverse transcription-PCR. In vitro, M. tuberculosis induced IP-10, and IFN-gamma stimulated this further, with no effect on iNOS expression. We studied 21 patients with pulmonary TB and 7 healthy subjects. Similar to the in vitro model, IP-10 mRNA was increased in BAL cells from TB patients and was augmented after treatment with aerosolized IFN-gamma. TB was also associated with elevated iNOS mRNA, but aerosolized IFN-gamma did not further enhance expression. Genomic analysis identified 1,300 of 4,058 genes expressed in BAL cells from six TB patients before and after 1 month of therapy, including aerosolized IFN-gamma. However, only 15 genes were differentially regulated by IFN-gamma. We conclude that iNOS and IP-10 mRNA expression is increased in TB but that aerosol IFN-gamma treatment increases expression of few genes in the human lung.
Collapse
Affiliation(s)
- Bindu Raju
- Bellevue Chest Service and Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Environmental Medicine, New York University School of Medicine, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Qiao Y, Prabhakar S, Canova A, Hoshino Y, Weiden M, Pine R. Posttranscriptional Inhibition of Gene Expression byMycobacterium tuberculosisOffsets Transcriptional Synergism with IFN-γ and Posttranscriptional Up-Regulation by IFN-γ. THE JOURNAL OF IMMUNOLOGY 2004; 172:2935-43. [PMID: 14978096 DOI: 10.4049/jimmunol.172.5.2935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Host defense against Mycobacterium tuberculosis requires the cytokine IFN-gamma and IFN regulatory factor 1 (IRF-1), a transcription factor that is induced to high levels by IFN-gamma. Therefore, we chose to study regulation of IRF-1 expression as a model for effects of M. tuberculosis on response to IFN-gamma. We found that IRF-1 mRNA abundance increased far more than transcription rate in human monocytic THP-1 cells stimulated by IFN-gamma, but less than transcription rate in cells infected by M. tuberculosis. IFN-gamma stimulation of infected cells caused a synergistic increase in IRF-1 transcription, yet IRF-1 mRNA abundance was similar in uninfected and infected cells stimulated by IFN-gamma, as was the IRF-1 protein level. Comparable infection by Mycobacterium bovis bacillus Calmette-Guérin failed to induce IRF-1 expression and had no effect on the response to IFN-gamma. We also examined the kinetics of transcription, the mRNA t(1/2), and the distribution of IRF-1 transcripts among total nuclear RNA, poly(A) nuclear RNA, and poly(A) cytoplasmic RNA pools in cells that were infected by M. tuberculosis and/or stimulated by IFN-gamma. Our data suggest that infection by M. tuberculosis inhibits RNA export from the nucleus. Moreover, the results indicate that regulated entry of nascent transcripts into the pool of total nuclear RNA affects IRF-1 expression and that this process is stimulated by IFN-gamma and inhibited by M. tuberculosis. The ability of infection by M. tuberculosis to limit the increase in IRF-1 mRNA expression that typically follows transcriptional synergism may contribute to the pathogenicity of M. tuberculosis.
Collapse
Affiliation(s)
- Yaming Qiao
- Public Health Research Institute and Public Health Research Institute Tuberculosis Center, Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
61
|
Gold JA, Hoshino Y, Tanaka N, Rom WN, Raju B, Condos R, Weiden MD. Surfactant protein A modulates the inflammatory response in macrophages during tuberculosis. Infect Immun 2004; 72:645-50. [PMID: 14742504 PMCID: PMC321592 DOI: 10.1128/iai.72.2.645-650.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis leads to immune activation and increased human immunodeficiency virus type 1 (HIV-1) replication in the lung. However, in vitro models of mycobacterial infection of human macrophages do not fully reproduce these in vivo observations, suggesting that there are additional host factors. Surfactant protein A (SP-A) is an important mediator of innate immunity in the lung. SP-A levels were assayed in the human lung by using bronchoalveolar lavage (BAL). There was a threefold reduction in SP-A levels during tuberculosis only in the radiographically involved lung segments, and the levels returned to normal after 1 month of treatment. The SP-A levels were inversely correlated with the percentage of neutrophils in BAL fluid, suggesting that low SP-A levels were associated with increased inflammation in the lung. Differentiated THP-1 macrophages were used to test the effect of decreasing SP-A levels on immune function. In the absence of infection with Mycobacterium tuberculosis, SP-A at doses ranging from 5 to 0.01 micro g/ml inhibited both interleukin-6 (IL-6) production and HIV-1 long terminal repeat (LTR) activity. In macrophages infected with M. tuberculosis, SP-A augmented both IL-6 production and HIV-1 LTR activity. To better understand the effect of SP-A, we measured expression of CAAT/enhancer binding protein beta (C/EBPbeta), a transcription factor central to the regulation of IL-6 and the HIV-1 LTR. In macrophages infected with M. tuberculosis, SP-A reduced expression of a dominant negative isoform of C/EBPbeta. These data suggest that SP-A has pleiotropic effects even at the low concentrations found in tuberculosis patients. This protein augments inflammation in the presence of infection and inhibits inflammation in uninfected macrophages, protecting uninvolved lung segments from the deleterious effects of inflammation.
Collapse
Affiliation(s)
- Jeffrey A Gold
- Division of Pulmonary and Critical Care Medicine, New York University School of Medicine and Bellevue Hospital Chest Service, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Rohr O, Marban C, Aunis D, Schaeffer E. Regulation of HIV-1 gene transcription: from lymphocytes to microglial cells. J Leukoc Biol 2003; 74:736-49. [PMID: 12960235 DOI: 10.1189/jlb.0403180] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcription is a crucial step for human immunodeficiency virus type 1 (HIV-1) expression in all infected host cells, from T lymphocytes, thymocytes, monocytes, macrophages, and dendritic cells in the immune system up to microglial cells in the central nervous system. To maximize its replication, HIV-1 adapts transcription of its integrated proviral genome by ideally exploiting the specific cellular environment and by forcing cellular stimulatory events and impairing transcriptional inhibition. Multiple cell type-specific interplays between cellular and viral factors perform the challenge for the virus to leave latency and actively replicate in a great diversity of cells, despite the variability of its long terminal repeat region in different HIV strains. Knowledge about the molecular mechanisms underlying transcriptional regulatory events helps in the search for therapeutic agents that target the step of transcription in anti-HIV strategies.
Collapse
Affiliation(s)
- Olivier Rohr
- Institut National de la Santé Recherche Médicale Unité, Strasbourg, France
| | | | | | | |
Collapse
|
63
|
Komuro I, Yokota Y, Yasuda S, Iwamoto A, Kagawa KS. CSF-induced and HIV-1-mediated distinct regulation of Hck and C/EBPbeta represent a heterogeneous susceptibility of monocyte-derived macrophages to M-tropic HIV-1 infection. J Exp Med 2003; 198:443-53. [PMID: 12900520 PMCID: PMC2194092 DOI: 10.1084/jem.20022018] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Revised: 06/13/2003] [Accepted: 06/13/2003] [Indexed: 11/17/2022] Open
Abstract
Granulocyte/macrophage colony-stimulating factor (GM-CSF)-induced monocyte-derived macrophages (GM-MPhi) are permissive to M-tropic HIV-1 entry, but inhibit viral replication at posttranscriptional and translational levels, whereas M-CSF-induced macrophages (M-MPhi) produce a large amount of HIV-1. M-MPhi express a high level of Hck and a large isoform of C/EBPbeta, and HIV-1 infection increases the expression of Hck but not of C/EBPbeta. GM-MPhi express a high level of C/EBPbeta and a low level of Hck, and HIV-1 infection drastically increases the expression of a short isoform of C/EBPbeta but decreases that of Hck. Treatment of M-MPhi with antisense oligonucleotide for Hck (AS-Hck) not only suppresses the expression of Hck, but also stimulates the induction of the short isoform of C/EBPbeta and inhibits the viral replication. Treatment of GM-MPhi with a moderate amount of AS-C/EBPbeta not only inhibits the expression of the small isoform of C/EBPbeta preferentially, but also stimulates the induction of Hck and stimulates the virus production at a high rate. These results suggest that CSF-induced and HIV-1-mediated distinct regulation of Hck and small isoform of C/EBPbeta represent the heterogeneous susceptibility of tissue MPhi to HIV-1 infection, and the regulation of Hck and C/EBPbeta are closely related and these two molecules affect one another.
Collapse
Affiliation(s)
- Iwao Komuro
- Department of Immunology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | |
Collapse
|
64
|
Prabhakar S, Qiao Y, Hoshino Y, Weiden M, Canova A, Giacomini E, Coccia E, Pine R. Inhibition of response to alpha interferon by Mycobacterium tuberculosis. Infect Immun 2003; 71:2487-97. [PMID: 12704120 PMCID: PMC153238 DOI: 10.1128/iai.71.5.2487-2497.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We previously reported that infection by Mycobacterium tuberculosis, the causative agent of tuberculosis, leads to secretion of alpha/beta interferon (IFN-alpha/beta). While IFN-alpha/beta ordinarily stimulates formation of signal transducer and stimulator of transcription-1 (STAT-1) homodimers and IFN-stimulated gene factor-3 (ISGF-3), only ISGF-3 is found in infected human monocytes and macrophages. We have now investigated the basis for this unusual profile of transcription factor activation and its consequences for regulation of transcription, as well as the impact of infection on response to IFN-alpha. After infection, IFN-alpha stimulation of STAT-1 homodimers is inhibited in monocytes and macrophages, while stimulation of ISGF-3 increases in monocytes but tends to decline in macrophages. Effects of infection on the abundance of ISGF-3 subunits, STAT-1, STAT-2, and interferon regulatory factor 9, and on tyrosine phosphorylation of STAT-1 and STAT-2 explain the observed changes in DNA-binding activity, which correlate with increased or inhibited transcription of genes regulated by ISGF-3 and STAT-1. Infection by Mycobacterium bovis BCG does not inhibit IFN-alpha-stimulated tyrosine phosphorylation of STAT-1, formation of homodimers, or transcription of genes regulated by STAT-1 homodimers, suggesting that inhibition of the response to IFN-alpha/beta by M. tuberculosis is an aspect of pathogenicity. Thus, this well-known feature of infection by pathogenic viruses may also be a strategy employed by pathogenic bacteria.
Collapse
|
65
|
Bahr GM, Darcissac ECA, Mouton Y. Discordant effects of interleukin-2 on viral and immune parameters in human immunodeficiency virus-1-infected monocyte-derived mature dendritic cells. Clin Exp Immunol 2003; 132:289-96. [PMID: 12699419 PMCID: PMC1808691 DOI: 10.1046/j.1365-2249.2003.02143.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2003] [Indexed: 11/20/2022] Open
Abstract
Use of interleukin-2 (IL-2) in the immunotherapy of human immunodeficiency virus (HIV) has frequently resulted in the restoration of CD4 lymphocyte counts but not of virus-specific responses. We reasoned that the absence of reconstituted functional immune parameters could be related to the inability of IL-2 to correct HIV-induced dysfunctions in antigen-presenting cells. In this study, we used in vitro-differentiated monocyte-derived macrophages (MDMs) and mature dendritic cells (MDDCs), acutely infected with primary HIV-1 isolates, to analyse the effects of IL-2 on virus replication, co-receptor expression, and cytokine or chemokine release. Stimulation of MDMs with IL-2 had no measurable effect on HIV-1 replication, on cytokine secretion, or on CD4 and CXCR4 gene expression. Moreover, although a significant down-regulation of CCR5 mRNA expression could be repeatedly detected in MDMs, this IL-2-mediated effect was not of substantial magnitude to affect virus replication. On the other hand, IL-2 stimulation of MDDCs dramatically increased HIV-1 replication and this effect was highly evident on low-replicating, CXCR4-dependent isolates. Nevertheless, the HIV-enhancing activity of IL-2 in MDDCs was not accompanied by any measurable change in cytokine or chemokine release, in virus receptor and co-receptor mRNA accumulation, or in the surface expression of a battery of receptors implicated in virus entry, cell activation or costimulatory function. Taken together, these findings point to a role for IL-2 in inducing virus purging from dendritic cell reservoirs but indicate no relevant potential of the cytokine in restoring defective elements of innate immunity in HIV infection.
Collapse
Affiliation(s)
- G M Bahr
- Laboratoire d'Immunologie Moléculaire de l'Infection et de l'Inflammation, Institut Pasteur de Lille, Lille, France.
| | | | | |
Collapse
|
66
|
Condos R, Raju B, Canova A, Zhao BY, Weiden M, Rom WN, Pine R. Recombinant gamma interferon stimulates signal transduction and gene expression in alveolar macrophages in vitro and in tuberculosis patients. Infect Immun 2003; 71:2058-64. [PMID: 12654826 PMCID: PMC152019 DOI: 10.1128/iai.71.4.2058-2064.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis is the seventh leading cause of morbidity and mortality in the world, with eight million cases per year. Animal and human studies demonstrate an enrichment of CD4 cells at sites of disease, with a more favorable clinical course when there is a Th1 response with the presence of gamma interferon (IFN-gamma). We previously treated patients who had multidrug-resistant tuberculosis with recombinant IFN-gamma (rIFN-gamma) in aerosol form and were able to convert smear-positive cases to smear negative with 12 treatments over 1 month. We hypothesized that rIFN-gamma would induce signal transducer and activator of transcription (STAT) and interferon regulatory factor (IRF) binding activity in alveolar macrophages (AM). AM treated in vitro showed clear upregulation of STAT-1 and IRF-1 by rIFN-gamma. STAT-1 was not activated and IRF-1 was only weakly induced after 1 day of infection by Mycobacterium tuberculosis TN913. In bronchoalveolar lavage (BAL) cells obtained from 10 of 10 tuberculosis patients 10 +/- 2 days post-antituberculosis treatment, there was no detectable STAT-1 or IRF-1 DNA-binding activity. After 4 weeks of treatment with rIFN-gamma aerosol in addition to the antituberculosis drugs, 10 of 10 patients had increased STAT-1, IRF-1, and/or IRF-9 DNA-binding activity in BAL cells from lung segments shown radiographically to be involved and in those shown to be uninvolved. Symptoms and chest radiographs improved, and amounts of macrophage inflammatory cytokines and human immunodeficiency virus type 1 (HIV-1) viral loads (in five of five HIV-1-coinfected patients) declined in the second BAL specimens. rIFN-gamma aerosol induces signal transduction and gene expression in BAL cells and should be evaluated for efficacy in a randomized, controlled clinical trial.
Collapse
Affiliation(s)
- Rany Condos
- Bellevue Chest Service and Division of Pulmonary and Critical Care Medicine, Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
67
|
Perez-Bercoff D, David A, Sudry H, Barré-Sinoussi F, Pancino G. Fcgamma receptor-mediated suppression of human immunodeficiency virus type 1 replication in primary human macrophages. J Virol 2003; 77:4081-94. [PMID: 12634367 PMCID: PMC150663 DOI: 10.1128/jvi.77.7.4081-4094.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Permissiveness of monocytes and macrophages to human immunodeficiency virus (HIV) infection is modulated by various stimuli. In this study we demonstrate that stimulation of primary monocytes and monocyte-derived macrophages (MDM) through the receptors for the Fc portion of immunoglobulin G (IgG) (FcgammaR) inhibits HIV type 1 (HIV-1) replication. Viral p24 production was decreased by 1.5 to 3 log units in MDM infected with both R5 and X4 HIV-1 strains upon stimulation by immobilized IgG but not upon stimulation by soluble IgG or by F(ab')(2) IgG fragments. Although MDM activation by immobilized IgG induced high levels of macrophage-derived chemokine secretion as well as a sustained down-regulation of CD4 and a transient decrease in CCR5 expression, these factors did not appear to play a major role in the suppression of HIV-1 replication. Single-cycle infection of FcgammaR-stimulated MDM with HIV-1 virions pseudotyped with either HIV-1 R5 or vesicular stomatitis virus G envelopes was inhibited, suggesting a postentry restriction of viral replication. PCR analyses of HIV-1 DNA intermediate replication forms suggested that reverse transcription is not affected by stimulation with immobilized human IgG, at least during the first replication cycle. The accumulation of PCR products corresponding to nuclear unintegrated two-long-terminal-repeat circles and the relative decrease of integrated HIV-1 DNA signals suggest an inhibition of proviral integration. Our data, showing that FcgammaR-mediated activation of MDM is a potent mechanism of HIV-1 suppression, raise the possibility that FcgammaR cross-linking by immune complexes may contribute to the control of viral replication in macrophages.
Collapse
|
68
|
Lande R, Giacomini E, Grassi T, Remoli ME, Iona E, Miettinen M, Julkunen I, Coccia EM. IFN-alpha beta released by Mycobacterium tuberculosis-infected human dendritic cells induces the expression of CXCL10: selective recruitment of NK and activated T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1174-82. [PMID: 12538673 DOI: 10.4049/jimmunol.170.3.1174] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently reported that dendritic cells (DC) infected with Mycobacterium tuberculosis (Mtb) produce Th1/IFN-gamma-inducing cytokines, IFN-alpha beta and IL-12. In the present article, we show that maturing Mtb-infected DC express high levels of CCR7 and they become responsive to its ligand CCL21. Conversely, CCR5 expression was rapidly lost from the cell surface following Mtb infection. High levels of CCL3 and CCL4 were produced within 8 h after infection, which is likely to account for the observed CCR5 down-modulation on Mtb-infected DC. In addition, Mtb infection stimulated the secretion of CXCL9 and CXCL10. Interestingly, the synthesis of CXCL10 was mainly dependent on the Mtb-induced production of IFN-alpha beta. Indeed, IFN-alpha beta neutralization down-regulated CXCL10 expression, whereas the expression of CXCL9 appeared to be unaffected. The chemotactic activity of the Mtb-infected DC supernatants was evaluated by migration assays using activated NK, CD4(+), and CD8(+) cells that expressed both CCR5 and CXCR3. Mtb-induced expression of CCL3, CCL4, CXCL9, and CXCL10 was involved in the stimulation of NK and T cell migration. In accordance with the data on the IFN-alpha beta-induced expression of CXCL10, neutralization of IFN-alpha beta significantly reduced the chemotactic activity of the supernatant from Mtb-infected DC. This indicates that IFN-alpha beta may modulate the immune response through the expression of CXCL10, which along with CXCL9, CCL3, and CCL4 participates in the recruitment and selective homing of activated/effector cells, which are known to accumulate at the site of Mtb infection and take part in the formation of the granulomas.
Collapse
Affiliation(s)
- Roberto Lande
- Laboratory of Immunology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Zachar V, Fink T, Koppelhus U, Ebbesen P. Role of placental cytokines in transcriptional modulation of HIV type 1 in the isolated villous trophoblast. AIDS Res Hum Retroviruses 2002; 18:839-47. [PMID: 12201906 DOI: 10.1089/08892220260190317] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During pregnancy, a complex cytokine network is present at the maternal-fetal interface in order to support normal growth and development of the placenta and fetus. HIV can frequently infect placental trophoblast but the impact of cytokines produced locally by the placenta and decidua on virus expression and replication is unknown. We comprehensively assayed the cytokines typically present in the placental microenvironment for their potential to modulate HIV transcriptional activation in the isolated trophoblast cells employing a transient transfection assay with luciferase as a reporter gene. Long terminal repeats (LTRs) of two divergent virus strains, HIV-1 LAI and HIV-1 NDK, were used to analyze virus-specific features. Four cytokines, epidermal growth factor (EGF), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 1 beta (IL-1 beta), and tumor necrosis factor alpha (TNF-alpha), were found to stimulate promoters of both viruses, whereas interferon alpha (IFN-alpha) and IFN-beta were found to suppress the transcription driven from both promoters. The differences observed between the two viruses did not reach a statistically significant level. None of the remaining cytokines, including EGF; GM-CSF; insulin-like growth factor I (IGF-I); IFN-alpha, IFN-beta, and IFN-gamma; IL-1 alpha, IL-1 beta, IL-2, IL-6, and IL-10; leukemia inhibitory factor (LIF); macrophage colony-stimulating factor (M-CSF); platelet-derived growth factor BB (PDGF-BB); transforming growth factor beta (TGF-beta); and TNF-alpha, affected transcriptional expression of the promoter constructs. Our results demonstrate that the local balance of cytokines may be critical for activation of HIV in the syncytiotrophoblast-cytotrophoblast layer and thus play an important role in the transmission of virus across the placental barrier.
Collapse
Affiliation(s)
- Vladimir Zachar
- Department of Health Science and Technology, Aalborg University, 8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
70
|
Hayashi T, Kaneda T, Toyama Y, Kumegawa M, Hakeda Y. Regulation of receptor activator of NF-kappa B ligand-induced osteoclastogenesis by endogenous interferon-beta (INF-beta ) and suppressors of cytokine signaling (SOCS). The possible counteracting role of SOCSs- in IFN-beta-inhibited osteoclast formation. J Biol Chem 2002; 277:27880-6. [PMID: 12023971 DOI: 10.1074/jbc.m203836200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone resorption and the immune system are correlated with each other, and both are controlled by a variety of common cytokines produced in the bone microenvironments. Among these immune mediators, the involvement of type I interferons (IFNs) in osteoclastic bone resorption remains unknown. In this study, we investigated the participation of IFN-beta and suppressors of cytokine signaling (SOCS)-1 and -3 in osteoclastogenesis. Addition of exogenous IFN-beta to osteoclast progenitors (bone-derived monocytes/macrophages) inhibited their differentiation toward osteoclasts induced by the receptor activator of NF-kappaB ligand (RANKL) and macrophage colony-stimulating factor with/without transforming growth factor-beta, where inhibition was associated with down-regulation of the gene expressions of molecules related to osteoclast differentiation. In addition, RANKL induced the expression of IFN-beta; furthermore, neutralizing antibody against type I IFNs accelerated the osteoclast formation, indicating type I IFNs as potential intrinsic inhibitors. On the other hand, RANKL also induced the expression of SOCS-1 and -3, suppressors of the IFN signaling. Pretreatment with RANKL for a sufficient time for the induction of SOCSs attenuated phosphorylation of STAT-1 in response to IFN-beta in osteoclast progenitors, causing a decrease in the binding activity of nuclear extracts toward the interferon-stimulated response element. mRNA levels of STAT-1, STAT-2, and IFN-stimulated gene factor-3gamma, comprising IFN-stimulated gene factor-3, were not altered by RANKL. Thus, although the inhibitory cytokine such as IFN-beta is produced in response to RANKL, the inhibition of osteoclastogenesis may be rescued by the induction of signaling suppressors such as SOCSs.
Collapse
Affiliation(s)
- Toshikichi Hayashi
- Department of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | | | | | | | | |
Collapse
|
71
|
Rice J, Connor R, Worgall S, Moore JP, Leopold PL, Kaner RJ, Crystal RG. Inhibition of HIV-1 replication in alveolar macrophages by adenovirus gene transfer vectors. Am J Respir Cell Mol Biol 2002; 27:214-9. [PMID: 12151313 DOI: 10.1165/ajrcmb.27.2.4696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To assess the hypothesis that infection of alveolar macrophages (AM) with adenovirus (Ad) gene transfer vectors might prevent subsequent human immunodeficiency virus (HIV)-1 replication in AM, AM isolated from normal volunteers were infected with increasing doses of first generation (E1(-)) Ad vectors, followed 72 h later by infection with HIV-1(JRFL), an R5/M-tropic strain that preferentially uses the CCR5 coreceptor. As a measure of HIV-1 replication, p24 Ag was quantified by enzyme-linked imunosorbent assay in supernatants on Days 4 to 14 after HIV-1infection. Pretreatment of the AM with an Ad vector resulted in a dose- and time-dependent suppression of subsequent HIV-1 replication. The Ad vector inhibition of HIV-1 replication was independent of the transgene in the Ad vector expression cassette and E4 genes in the Ad backbone. Moreover, it did not appear to be secondary to a soluble factor released by the AM, nor was it overridden by the concomitant transfer of the CCR5 or CXCR4 receptors to the AM before HIV-1 infection. These observations have implications regarding pulmonary host responses associated with HIV-1 infection, as well as possibly uncovering new therapeutic strategies against HIV-1 infection.
Collapse
Affiliation(s)
- Joshua Rice
- Division of Pulmonary and Critical Care Medicine, Department of Microbiology and Immunology, and Institute of Genetic Medicine, Weill Medical College of Cornell University, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Remoli ME, Giacomini E, Lutfalla G, Dondi E, Orefici G, Battistini A, Uzé G, Pellegrini S, Coccia EM. Selective expression of type I IFN genes in human dendritic cells infected with Mycobacterium tuberculosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:366-74. [PMID: 12077266 DOI: 10.4049/jimmunol.169.1.366] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type I IFN regulates different aspects of the immune response, inducing a cell-mediated immunity. We have recently shown that the infection of dendritic cells (DC) with Mycobacterium tuberculosis (Mtb) induces IFN-alpha. In this work we have monitored a rapid induction of IFN-beta followed by the delayed production of the IFN-alpha1 and/or -alpha13 subtypes. The Mtb infection rapidly activates the NF-kappaB complex and stimulates the phosphorylation of IFN regulatory factor (IRF)-3, events known to induce IFN-beta expression in viral infection. In turn, the autocrine production of IFN-beta induces the IFN-stimulated genes that contain binding sites for activated STATs in their promoters. Among the IFN-stimulated genes induced in DC through STAT activation are IRF-1 and IRF-7. The expression of IRF-1 appears to be dependent on the sequential activation of NF-kappaB and STAT-1. Once expressed, IRF-1 may further stimulate the transcription of IFN-beta. Induction of IRF-7 is also regulated at the transcriptional level through the binding of phosphorylated STAT-1 and STAT-2, forming the IFN-stimulated gene factor-3 complex. In turn, the IRF-1 and IRF-7 expression appears to be required for the delayed induction of the IFN-alpha1/13 genes. Although correlative, our results strongly support the existence of a cascade of molecular events in Mtb-infected DC. Upon infection, constitutively expressed NF-kappaB and IRF-3 are activated and likely contribute to the rapid IFN-beta expression. In turn, IFN-beta-induced IRF-1 and IRF-7 may cooperate toward induction of IFN-alpha1/13 if infection persists and these factors are activated.
Collapse
|
73
|
Akagawa KS. Functional heterogeneity of colony-stimulating factor-induced human monocyte-derived macrophages. Int J Hematol 2002; 76:27-34. [PMID: 12138892 DOI: 10.1007/bf02982715] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Macrophages have various functions and play a critical role in host defense and the maintenance of homeostasis. However, macrophages are heterogeneous and exhibit a wide range of phenotypes with regard to their morphology, cell surface antigen expression, and function. When blood monocytes are cultured in medium alone in vitro, monocytes die, and colony-stimulating factors (CSFs) such as macrophage (M)-CSF or granulocyte-macrophage (GM)-CSF are necessary for their survival and differentiation into macrophages. However, M-CSF-induced monocyte-derived macrophages (M-Mphi) and GM-CSF-induced monocyte-derived macrophages (GM-Mphi) are distinct in their morphology, cell surface antigen expression, and functions, including Fcgamma receptor mediated-phagocytosis, H2O2 production, H2O2 sensitivity, catalase activity, susceptibility to human immunodeficiency virus type 1 and Mycobacterium tuberculosis, and suppressor activity. The characteristics of GM-Mphi resemble those of human alveolar macrophages.
Collapse
Affiliation(s)
- Kiyoko S Akagawa
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
74
|
Qiao Y, Prabhakar S, Coccia EM, Weiden M, Canova A, Giacomini E, Pine R. Host defense responses to infection by Mycobacterium tuberculosis. Induction of IRF-1 and a serine protease inhibitor. J Biol Chem 2002; 277:22377-85. [PMID: 11948194 DOI: 10.1074/jbc.m202965200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alveolar macrophages and newly recruited monocytes are targets of infection by Mycobacterium tuberculosis. Therefore, we examined the expression of interferon regulatory factor 1 (IRF-1), which plays an important role in host defense against M. tuberculosis, in undifferentiated and differentiated cells. Infection induced IRF-1 in both. IRF-1 from undifferentiated, uninfected monocytic cell lines was modified during extraction to produce specific species that were apparently smaller than intact IRF-1. After infection by M. tuberculosis or differentiation, intact IRF-1 was recovered. Subcellular fractions were assayed for the ability to modify IRF-1 or inhibit its modification. A serine protease on the cytoplasmic surface of an organelle or vesicle in the "lysosomal/mitochondrial" fraction from undifferentiated cells was responsible for the modification of IRF-1. Thus, the simplest explanation of the modification is cleavage of IRF-1 by the serine protease. Recovery of intact IRF-1 correlated with induction of a serine protease inhibitor that was able to significantly reduce the modification of IRF-1. The inhibitor was present in the cytoplasm of M. tuberculosis-infected or -differentiated cells. It is likely that induction of both IRF-1 and the serine protease inhibitor in response to infection by M. tuberculosis represent host defense mechanisms.
Collapse
Affiliation(s)
- Yaming Qiao
- Public Health Research Institute, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Bonder CS, Davies KVL, Liu X, Hertzog PJ, Woodcock JM, Finlay-Jones JJ, Hart PH. Endogenous interferon-alpha production by differentiating human monocytes regulates expression and function of the IL-2/IL-4 receptor gamma chain. Cytokine 2002; 17:187-96. [PMID: 11991671 DOI: 10.1006/cyto.2001.0994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro monocyte-derived macrophages (MDMac) and synovial fluid macrophages from inflamed joints differ from monocytes in their responses to interleukin 4 (IL-4). While IL-4 can suppress LPS-induced interleukin beta (IL-beta) and tumour necrosis factor alpha (TNF-alpha) production by monocytes, IL-4 can suppress LPS-induced IL-1 beta, but not TNFalpha production by the more differentiated cells. Recently we reported a correlation between the ability of IL-4 to regulate TNFalpha production by monocytes and the expression of the IL-4 receptor gamma chain or gamma common (gamma c chain). Like MDMac, interferon alpha (IFNalpha)-treated monocytes expressed less IL-4 receptor gamma c chain, reduced levels of IL-4-activated STAT6 and IL-4 could not suppress LPS-induced TNFalpha production. In addition, like monocytes and MDMac, IFNalpha-treated monocytes expressed normal levels of the IL-4 receptor alpha chain and IL-4 significantly suppressed LPS-induced IL-1 beta production. With addition of IFNalpha-neutralizing antibodies, the ability of IL-4 to suppress LPS-induced TNFalpha production with prolonged monocyte culture was restored. Detection of IFNalpha in synovial fluids from inflamed joints further implicates IFNalpha in the inability of IL-4 to suppress TNFalpha production by synovial fluid macrophages. This study identifies a mechanism for the differential expression of gamma c and varied responses to IL-4 by human monocytes compared with MDMac.
Collapse
Affiliation(s)
- Claudine S Bonder
- Department of Microbiology and Infectious Diseases, School of Medicine, Flinders University, Adelaide, GPO Box 2100, Australia 5001
| | | | | | | | | | | | | |
Collapse
|
76
|
Hoshino Y, Nakata K, Hoshino S, Honda Y, Tse DB, Shioda T, Rom WN, Weiden M. Maximal HIV-1 replication in alveolar macrophages during tuberculosis requires both lymphocyte contact and cytokines. J Exp Med 2002; 195:495-505. [PMID: 11854362 PMCID: PMC2193627 DOI: 10.1084/jem.20011614] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
HIV-1 replication is markedly upregulated in alveolar macrophages (AM) during pulmonary tuberculosis (TB). This is associated with loss of an inhibitory CCAAT enhancer binding protein beta (C/EBPbeta) transcription factor and activation of nuclear factor (NF)-kappaB. Since the cellular immune response in pulmonary TB requires lymphocyte--macrophage interaction, a model system was developed in which lymphocytes were added to AM. Contact between lymphocytes and AM reduced inhibitory C/EBPbeta, activated NF-kappaB, and enhanced HIV-1 replication. If contact between lymphocytes and macrophages was prevented, inhibitory C/EBPbeta expression was maintained and the HIV-1 long terminal repeat (LTR) was not maximally stimulated although NF-kappaB was activated. Antibodies that cross-linked macrophage expressed B-7, and vascular cell adhesion molecule and CD40 were used to mimic lymphocyte contact. All three cross-linking antibodies were required to abolish inhibitory C/EBPbeta expression. However, the HIV-1 LTR was not maximally stimulated and NF-kappaB was not activated. Maximal HIV-1--LTR stimulation required both lymphocyte-derived soluble factors, and cross-linking of macrophage expressed costimulatory molecules. High level HIV-1--LTR stimulation was also achieved when IL-1beta, IL-6, and TNF-beta were added to macrophages with cross-linked costimulatory molecules. Contact between activated lymphocytes and macrophages is necessary to down-regulate inhibitory C/EBPbeta, thereby derepressing the HIV-1 LTR. Lymphocyte-derived cytokines activate NF-kappaB, further enhancing the HIV-1 LTR.
Collapse
Affiliation(s)
- Yoshihiko Hoshino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
Tuberculosis is the most prevalent infectious disease and causes more deaths than any other, yet only 5%-10% of people infected by the causative agent, Mycobacterium tuberculosis, will develop the disease. Thus, natural resistance among humans is the norm. Fundamental immune responses to M. tuberculosis are being elucidated, including induction of interferon regulatory factor-1 (IRF-1). Moreover, IRF-1 has been found necessary for normal resistance to infection by mycobacteria in mice. Roles for IRF-1 in a plethora of immune system functions have been described. This review considers molecular responses to infection by M. tuberculosis that might account for induction of IRF-1 and highlights putative connections between immunomodulatory functions of IRF-1 and immune responses relevant to infection by M. tuberculosis. However, the complexity inherent in pleiotropy and redundancy limits the ability to draw firm conclusions. In many cases, it remains to be demonstrated that a particular function of IRF-1 is the basis for a known response to infection. For example, although IRF-1 is required for a Th1 cell-mediated, adaptive immune response in some circumstances, it is not known if the Th1 response to infection by M. tuberculosis requires IRF-1. Conversely, some known contributions by IRF-1 to fundamental aspects of the immune system are not yet proven relevant in the host response to infection. For example, it is not known if control of T cell subset development by IRF-1 is significant for host defense against M. tuberculosis. Functions of other IRF that overlap with or are distinct from the functions of IRF-1 also could be important for the immune response to M. tuberculosis.
Collapse
Affiliation(s)
- Richard Pine
- Public Health Research Institute, New York, NY 10016, USA.
| |
Collapse
|
78
|
Abstract
Pulmonary macrophages with a key role in defence against respiratory infection are a heterogeneous family of cells with phagocytic, antigen processing and immunomodulatory functions. Macrophages are important in both innate and acquired immunity in the respiratory tract, and have a role in lung defence against viruses, bacteria, mycobacteria and fungi. Interactions of pathogens with lung macrophages is strongly influenced by soluble immune components including complement, collectins and immunoglobulins. Macrophage function can be modulated by cytokines, environmental exposures, recent and chronic infection including HIV infection, drug therapy and gene transfer.
Collapse
Affiliation(s)
- S B Gordon
- Wellcome Trust Research Laboratory, University of Malawi, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | | |
Collapse
|
79
|
Warwick-Davies J, Watson AJ, Griffin GE, Krishna S, Shattock RJ. Enhancement of Mycobacterium tuberculosis-induced tumor necrosis factor alpha production from primary human monocytes by an activated T-cell membrane-mediated mechanism. Infect Immun 2001; 69:6580-7. [PMID: 11598025 PMCID: PMC100030 DOI: 10.1128/iai.69.11.6580-6587.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis alone induces small, donor-variable amounts of tumor necrosis factor alpha (TNF-alpha) from primary human monocytes in vitro. However, TNF-alpha release is increased 5- to 500-fold when fixed activated T cells (FAT) or their isolated, unfixed membranes are added to this system. This FAT-induced synergy was at least as potent as that induced by gamma interferon (IFN-gamma) at 100 U/ml. FAT-enhanced TNF-alpha production is at least in part transcriptionally mediated, as reflected by quantitative changes in TNF-alpha mRNA between 2 and 6 h poststimulation. Unlike IFN-gamma-cocultured cells, FAT-treated monocytes appeared not to have enhanced TNF-alpha message stability, suggesting that de novo transcription may be involved in this effect. Furthermore, M. tuberculosis alone induced only minimal DNA binding of monocyte NF-kappaB, but cells treated with M. tuberculosis and FAT potentiated NF-kappaB activity more effectively. It is therefore possible that one mechanism by which FAT synergize with M. tuberculosis to stimulate TNF-alpha production is via NF-kappaB-enhanced transcription. These data strongly suggest that in the interaction of cells involved in the immune response to M. tuberculosis, T-cell stimulation of monocyte TNF-alpha production involves a surface membrane interaction(s) as well as soluble mediators.
Collapse
Affiliation(s)
- J Warwick-Davies
- Department of Infectious Diseases, St. George's Hospital Medical School, London, United Kingdom.
| | | | | | | | | |
Collapse
|
80
|
Lawn SD, Butera ST, Folks TM. Contribution of immune activation to the pathogenesis and transmission of human immunodeficiency virus type 1 infection. Clin Microbiol Rev 2001; 14:753-77, table of contents. [PMID: 11585784 PMCID: PMC89002 DOI: 10.1128/cmr.14.4.753-777.2001] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The life cycle of human immunodeficiency virus type 1 (HIV-1) is intricately related to the activation state of the host cells supporting viral replication. Although cellular activation is essential to mount an effective host immune response to invading pathogens, paradoxically the marked systemic immune activation that accompanies HIV-1 infection in vivo may play an important role in sustaining phenomenal rates of HIV-1 replication in infected persons. Moreover, by inducing CD4+ cell loss by apoptosis, immune activation may further be central to the increased rate of CD4+ cell turnover and eventual development of CD4+ lymphocytopenia. In addition to HIV-1-induced immune activation, exogenous immune stimuli such as opportunistic infections may further impact the rate of HIV-1 replication systemically or at localized anatomical sites. Such stimuli may also lead to genotypic and phenotypic changes in the virus pool. Together, these various immunological effects on the biology of HIV-1 may potentially enhance disease progression in HIV-infected persons and may ultimately outweigh the beneficial aspects of antiviral immune responses. This may be particularly important for those living in developing countries, where there is little or no access to antiretroviral drugs and where frequent exposure to pathogenic organisms sustains a chronically heightened state of immune activation. Moreover, immune activation associated with sexually transmitted diseases, chorioamnionitis, and mastitis may have important local effects on HIV-1 replication that may increase the risk of sexual or mother-to-child transmission of HIV-1. The aim of this paper is to provide a broad review of the interrelationship between immune activation and the immunopathogenesis, transmission, progression, and treatment of HIV-1 infection in vivo.
Collapse
Affiliation(s)
- S D Lawn
- HIV and Retrovirology Branch, Division of AIDS, STD, and TB Laboratory Research, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, Atlanta, Georgia, USA.
| | | | | |
Collapse
|
81
|
Toossi Z, Johnson JL, Kanost RA, Wu M, Luzze H, Peters P, Okwera A, Joloba M, Mugyenyi P, Mugerwa RD, Aung H, Ellner JJ, Hirsch CS. Increased replication of HIV-1 at sites of Mycobacterium tuberculosis infection: potential mechanisms of viral activation. J Acquir Immune Defic Syndr 2001; 28:1-8. [PMID: 11579270 DOI: 10.1097/00042560-200109010-00001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tuberculosis (TB) enhances HIV-1 replication and the progression to AIDS in dually infected patients. We employed pleural TB as a model to understand the interaction of the host with HIV-1 during active TB, at sites of Mycobacterium tuberculosis (MTB) infection. HIV-1 replication was enhanced both in the cellular (pleural compared with blood mononuclear cells) and acellular (pleural fluid compared with plasma) compartments of the pleural space. Several potential mechanisms for expansion of HIV-1 in situ were found, including augmentation in expression of tumor necrosis factor (TNF)-alpha and the HIV-1 noninhibitory beta-chemokine (MCP-1), low presence of HIV-1 inhibitory beta-chemokines (MIP-1 alpha, MIP-1 beta, and RANTES [regulated on activation, normal T expressed and secreted]), and upregulation in expression of the HIV-1 coreceptor, CCR5, by pleural fluid mononuclear cells. Thus, at sites of MTB infection, conditions are propitious both for transcriptional activation of HIV-1 in latently infected mononuclear cells, and facilitation of viral infection of newly recruited cells. These mechanisms may contribute to enhanced viral burden and dissemination during TB infection.
Collapse
Affiliation(s)
- Z Toossi
- Department of Medicine, Case Western Reserve University, University Hospitals of Cleveland and Veterans Administration Medical Center, Cleveland, Ohio, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Giacomini E, Iona E, Ferroni L, Miettinen M, Fattorini L, Orefici G, Julkunen I, Coccia EM. Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:7033-41. [PMID: 11390447 DOI: 10.4049/jimmunol.166.12.7033] [Citation(s) in RCA: 315] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophages and dendritic cells (DC) play an essential role in the initiation and maintenance of immune response to pathogens. To analyze early interactions between Mycobacterium tuberculosis (Mtb) and immune cells, human peripheral blood monocyte-derived macrophages (MDM) and monocyte-derived dendritic cells (MDDC) were infected with Mtb. Both cells were found to internalize the mycobacteria, resulting in the activation of MDM and maturation of MDDC as reflected by enhanced expression of several surface Ags. After Mtb infection, the proinflammatory cytokines TNF-alpha, IL-1, and IL-6 were secreted mainly by MDM. As regards the production of IFN-gamma-inducing cytokines, IL-12 and IFN-alpha, was seen almost exclusively from infected MDDC, while IL-18 was secreted preferentially by macrophages. Moreover, Mtb-infected MDM also produce the immunosuppressive cytokine IL-10. Because IL-10 is a potent inhibitor of IL-12 synthesis from activated human mononuclear cells, we assessed the inhibitory potential of this cytokine using soluble IL-10R. Neutralization of IL-10 restored IL-12 secretion from Mtb-infected MDM. In line with these findings, supernatants from Mtb-infected MDDC induced IFN-gamma production by T cells and enhanced IL-18R expression, whereas supernatants from MDM failed to do that. Neutralization of IFN-alpha, IL-12, and IL-18 activity in Mtb-infected MDDC supernatants by specific Abs suggested that IL-12 and, to a lesser extent, IFN-alpha and IL-18 play a significant role in enhancing IFN-gamma synthesis by T cells. During Mtb infection, macrophages and DC may have different roles: macrophages secrete proinflammatory cytokines and induce granulomatous inflammatory response, whereas DC are primarily involved in inducing antimycobacterial T cell immune response.
Collapse
Affiliation(s)
- E Giacomini
- Laboratories of. Immunology and Bacteriology and Medical Mycology, Istituto Superiore di Sanità, Rome, Italy. Department of Virology, National Public Health Institute, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|