51
|
Abstract
We set up a polarized cell culture model to study the pathogenicity of a common respiratory tract pathogen, Chlamydia pneumoniae. Immunofluorescence staining of ZO-1 (a tight junction protein) and Na(+)K(+) ATPase (a protein pump localized at the basolateral membrane in the polarized epithelial cells), as well as TER measurements, suggested that the filter-grown Calu-3 cells, but not the A549 cells, were polarized when grown on collagen-coated membranes. Both the flat and the filter-grown cultures were infected with C. pneumoniae. Infection in the polarized Calu-3 cultures produced more C. pneumoniae genome equivalents than infection in the flat cultures. However, this progeny was not as infective as that in the flat cultures. The maximum amount of C. pneumoniae was detected at 6 days postinfection in the filter-grown A549 cells, indicating a slower developmental cycle than that observed in the flat A549 cultures. The effect of cycloheximide on the growth of C. pneumoniae in the polarized cells was negligible. Furthermore, the infection in the polarized Calu-3 cells was resistant to doxycycline, and several cytokines were released mainly on the apical side of the polarized cells in response to C. pneumoniae infection. These findings indicate that the growth of chlamydiae was altered in the filter-grown epithelial culture system. The diminished production of infective progeny of C. pneumoniae, together with the resistance to doxycycline and polarized secretion of cytokines from the infected Calu-3 cells, suggests that this model is useful for examining epithelial cell responses to C. pneumoniae infection, and it might better resemble in vivo infection in respiratory epithelial cells.
Collapse
|
52
|
Buss C, Opitz B, Hocke AC, Lippmann J, van Laak V, Hippenstiel S, Krüll M, Suttorp N, Eitel J. Essential role of mitochondrial antiviral signaling, IFN regulatory factor (IRF)3, and IRF7 in Chlamydophila pneumoniae-mediated IFN-beta response and control of bacterial replication in human endothelial cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:3072-8. [PMID: 20154210 DOI: 10.4049/jimmunol.0902947] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chlamydophila pneumoniae infection of the vascular wall as well as activation of the transcription factor IFN regulatory factor (IRF)3 have been linked to development of chronic vascular lesions and atherosclerosis. The innate immune system detects invading pathogens by use of pattern recognition receptors, some of which are able to stimulate IRF3/7 activation and subsequent type I IFN production (e. g., IFN-beta). In this study, we show that infection of human endothelial cells with C. pneumoniae-induced production of IFN-beta, a cytokine that so far has been mainly associated with antiviral immunity. Moreover, C. pneumoniae infection led to IRF3 and IRF7 nuclear translocation in HUVECs and RNA interference experiments showed that IRF3 and IRF7 as well as the mitochondrial antiviral signaling (MAVS) were essential for IFN-beta induction. Finally, C. pneumoniae replication was enhanced in endothelial cells in which IRF3, IRF7, or MAVS expression was inhibited by small interfering RNA and attenuated by IFN-beta treatment. In conclusion, C. pneumoniae infection of endothelial cells activates an MAVS-, IRF3-, and IRF7-dependent signaling, which controls bacterial growth and might modulate development of vascular lesions.
Collapse
Affiliation(s)
- Claudia Buss
- Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Chen L, Lei L, Chang X, Li Z, Lu C, Zhang X, Wu Y, Yeh IT, Zhong G. Mice deficient in MyD88 Develop a Th2-dominant response and severe pathology in the upper genital tract following Chlamydia muridarum infection. THE JOURNAL OF IMMUNOLOGY 2010; 184:2602-10. [PMID: 20124098 DOI: 10.4049/jimmunol.0901593] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MyD88, a key adaptor molecule required for many innate immunity receptor-activated signaling pathways, was evaluated in a Chlamydia muridarum urogenital tract infection model. Compared with wild-type mice, MyD88 knockout (KO) mice failed to produce significant levels of inflammatory cytokines in the genital tract during the first week of chlamydial infection. MyD88 KO mice developed a Th2-dominant whereas wild-type mice developed a Th1/Th17-dominant immune response after chlamydial infection. Despite the insufficient production of early inflammatory cytokines and lack of Th1/Th17-dominant adaptive immunity, MyD88 KO mice appeared to be as resistant to chlamydial intravaginal infection as wild-type mice based on the number of live organisms recovered from vaginal samples. However, significantly high numbers of chlamydial organisms were detected in the upper genital tract tissues of MyD88 KO mice. Consequently, MyD88 KO mice developed more severe pathology in the upper genital tract. These results together have demonstrated that MyD88-dependent signaling pathway is not only required for inflammatory cytokine production in the early phase of host response to chlamydial infection but also plays a critical role in the development of Th1/Th17 adaptive immunity, both of which may be essential for limiting ascending infection and reducing pathology of the upper genital tract by chlamydial organisms.
Collapse
Affiliation(s)
- Lili Chen
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Prantner D, Darville T, Nagarajan UM. Stimulator of IFN gene is critical for induction of IFN-beta during Chlamydia muridarum infection. THE JOURNAL OF IMMUNOLOGY 2010; 184:2551-60. [PMID: 20107183 DOI: 10.4049/jimmunol.0903704] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Type I IFN signaling has recently been shown to be detrimental to the host during infection with Chlamydia muridarum in both mouse lung and female genital tract. However, the pattern recognition receptor and the signaling pathways involved in chlamydial-induced IFN-beta are unclear. Previous studies have demonstrated no role for TLR4 and a partial role for MyD88 in chlamydial-induced IFN-beta. In this study, we demonstrate that mouse macrophages lacking TLR3, TRIF, TLR7, or TLR9 individually or both TLR4 and MyD88, still induce IFN-beta equivalent to wild type controls, leading to the hypothesis that TLR-independent cytosolic pathogen receptor pathways are crucial for this response. Silencing nucleotide-binding oligomerization domain 1 in HeLa cells partially decreased chlamydial-induced IFN-beta. Independently, small interfering RNA-mediated knockdown of the stimulator of IFN gene (STING) protein in HeLa cells and mouse oviduct epithelial cells significantly decreased IFN-beta mRNA expression, suggesting a critical role for STING in chlamydial-induced IFN-beta induction. Conversely, silencing of mitochondria-associated antiviral signaling proteins and the Rig-I-like receptors, RIG-I, and melanoma differentiation associated protein 5, had no effect. In addition, induction of IFN-beta depended on the downstream transcription IFN regulatory factor 3, and on activation of NF-kappaB and MAPK p38. Finally, STING, an endoplasmic reticulum-resident protein, was found to localize in close proximity to the chlamydial inclusion membrane during infection. These results indicate that C. muridarum induces IFN-beta via stimulation of nucleotide-binding oligomerization domain 1 pathway, and TLR- and Rig-I-like receptor-independent pathways that require STING, culminating in activation of IFN regulatory factor 3, NF-kappaB, and p38 MAPK.
Collapse
Affiliation(s)
- Daniel Prantner
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
55
|
Host chemokine and cytokine response in the endocervix within the first developmental cycle of Chlamydia muridarum. Infect Immun 2009; 78:536-44. [PMID: 19841073 DOI: 10.1128/iai.00772-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The initial host response in a primary chlamydial infection is the onset of acute inflammation. However, we still know very little about the early temporal events in the induction of the acute inflammatory response and how these events relate to the initial chlamydial developmental cycle in an actual genital infection. Because it was critical to initiate a synchronous infection in the endocervix in the first 24 h to evaluate the sequential expression of the host response, we developed the surgical methodology of depositing Chlamydia muridarum directly on the endocervix. Cervical tissue was collected at 3, 12, and 24 h after inoculation and the expression array of chemokines, cytokines, and receptors was assessed to characterize the response during the initial developmental cycle. Polymorphonuclear leukocyte (PMN) infiltration was first observed at 12 h after inoculation, and a few PMNs could be seen in the epithelium at 24 h. Electron microscopic analysis at 24 h showed that virtually all inclusions were at the same stage of development, indicating a synchronous infection. Several chemokine and cytokine genes were expressed as early as 3 h after infection, but by 12 h, 41 genes were expressed. Thus, activation of the host response occurs both with the introduction of elementary bodies into the host and early replication of reticulate bodies. No significant response was observed when UV-inactivated organisms were inoculated into the cervix at any time interval. This model provides an ideal opportunity to investigate the mechanisms by which the early inflammatory response is induced in vivo.
Collapse
|
56
|
Critical role for interleukin-1beta (IL-1beta) during Chlamydia muridarum genital infection and bacterial replication-independent secretion of IL-1beta in mouse macrophages. Infect Immun 2009; 77:5334-46. [PMID: 19805535 DOI: 10.1128/iai.00883-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent findings have implicated interleukin-1beta (IL-1beta) as an important mediator of the inflammatory response in the female genital tract during chlamydial infection. But how IL-1beta is produced and its specific role in infection and pathology are unclear. Therefore, our goal was to determine the functional consequences and cellular sources of IL-1beta expression during a chlamydial genital infection. In the present study, IL-1beta(-/-) mice exhibited delayed chlamydial clearance and decreased frequency of hydrosalpinx compared to wild-type (WT) mice, implying an important role for IL-1beta both in the clearance of infection and in the mediation of oviduct pathology. At the peak of IL-1beta secretion in WT mice, the major producers of IL-1beta in vivo are F4/80(+) macrophages and GR-1(+) neutrophils, but not CD45(-) epithelial cells. Although elicited mouse macrophages infected with Chlamydia muridarum in vitro secrete minimal IL-1beta, in vitro prestimulation of macrophages by Toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS) purified from Escherichia coli or C. trachomatis L2 prior to infection greatly enhanced secretion of IL-1beta from these cells. By using LPS-primed macrophages as a model system, it was determined that IL-1beta secretion was dependent on caspase-1, potassium efflux, and the activity of serine proteases. Significantly, chlamydia-induced IL-1beta secretion in macrophages required bacterial viability but not growth. Our findings demonstrate that IL-1beta secreted by macrophages and neutrophils has important effects in vivo during chlamydial infection. Additionally, prestimulation of macrophages by chlamydial TLR ligands may account for the elevated levels of pro-IL-1beta mRNA observed in vivo in this cell type.
Collapse
|
57
|
Lee SH, Kim JS, Jun HK, Lee HR, Lee D, Choi BK. The major outer membrane protein of a periodontopathogen induces IFN-beta and IFN-stimulated genes in monocytes via lipid raft and TANK-binding kinase 1/IFN regulatory factor-3. THE JOURNAL OF IMMUNOLOGY 2009; 182:5823-35. [PMID: 19380831 DOI: 10.4049/jimmunol.0802765] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Surface molecules of pathogens play an important role in stimulating host immune responses. Elucidation of the signaling pathways activated by critical surface molecules in host cells provides insight into the molecular pathogenesis resulting from bacteria-host interactions. MspTL is the most abundant outer membrane protein of Treponema lecithinolyticum, which is associated with periodontitis, and induces expression of a variety of proinflammatory factors. Although bacteria and bacterial components like LPS and flagellin are known to induce IFN-beta, induction by bacterial surface proteins has not been reported. In the present study, we investigated MspTL-mediated activation of signaling pathways stimulating up-regulation of IFN-beta and IFN-stimulated genes in a human monocytic cell line, THP-1 cells, and primary cultured human gingival fibroblasts. MspTL treatment of the cells induced IFN-beta and the IFN-stimulated genes IFN-gamma-inducible protein-10 (IP-10) and RANTES. A neutralizing anti-IFN-beta Ab significantly reduced the expression of IP-10 and RANTES, as well as STAT-1 activation, which was also induced by MspTL. Experiments using specific small interfering RNA showed that MspTL activated TANK-binding kinase 1 (TBK1), but not inducible IkappaB kinase (IKKi). MspTL also induced dimerization of IFN regulatory factor-3 (IRF-3) and translocation into the nucleus. The lipid rapid-disrupting agents methyl-beta-cyclodextrin, nystatin, and filipin inhibited the MspTL internalization and cellular responses, demonstrating that lipid raft activation was a prerequisite for MspTL cellular signaling. Our results demonstrate that MspTL, the major outer protein of T. lecithinolyticum, induced IFN-beta expression and subsequent up-regulation of IP-10 and RANTES via TBK1/IRF-3/STAT-1 signaling secondary to lipid raft activation.
Collapse
Affiliation(s)
- Sung-Hoon Lee
- Department of Oral Microbiology and Immunology, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
58
|
Salazar JC, Duhnam-Ems S, La Vake C, Cruz AR, Moore MW, Caimano MJ, Velez-Climent L, Shupe J, Krueger W, Radolf JD. Activation of human monocytes by live Borrelia burgdorferi generates TLR2-dependent and -independent responses which include induction of IFN-beta. PLoS Pathog 2009; 5:e1000444. [PMID: 19461888 PMCID: PMC2679197 DOI: 10.1371/journal.ppat.1000444] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 04/24/2009] [Indexed: 11/19/2022] Open
Abstract
It is widely believed that innate immune responses to Borrelia burgdorferi (Bb) are primarily triggered by the spirochete's outer membrane lipoproteins signaling through cell surface TLR1/2. We recently challenged this notion by demonstrating that phagocytosis of live Bb by peripheral blood mononuclear cells (PBMCs) elicited greater production of proinflammatory cytokines than did equivalent bacterial lysates. Using whole genome microarrays, we show herein that, compared to lysates, live spirochetes elicited a more intense and much broader transcriptional response involving genes associated with diverse cellular processes; among these were IFN-β and a number of interferon-stimulated genes (ISGs), which are not known to result from TLR2 signaling. Using isolated monocytes, we demonstrated that cell activation signals elicited by live Bb result from cell surface interactions and uptake and degradation of organisms within phagosomes. As with PBCMs, live Bb induced markedly greater transcription and secretion of TNF-α, IL-6, IL-10 and IL-1β in monocytes than did lysates. Secreted IL-18, which, like IL-1β, also requires cleavage by activated caspase-1, was generated only in response to live Bb. Pro-inflammatory cytokine production by TLR2-deficient murine macrophages was only moderately diminished in response to live Bb but was drastically impaired against lysates; TLR2 deficiency had no significant effect on uptake and degradation of spirochetes. As with PBMCs, live Bb was a much more potent inducer of IFN-β and ISGs in isolated monocytes than were lysates or a synthetic TLR2 agonist. Collectively, our results indicate that the enhanced innate immune responses of monocytes following phagocytosis of live Bb have both TLR2-dependent and -independent components and that the latter induce transcription of type I IFNs and ISGs. Lyme disease is a tick-borne infectious disorder caused by the spirochetal pathogen Borrelia burgdorferi (Bb). Innate immune responses to Bb are thought to be triggered by the spirochete's outer membrane lipoproteins signaling through cell surface toll-like receptors (TLR1/2). Using a whole genome microarray technique, we showed that live spirochetes elicited a more intense and broader immune response in human peripheral blood mononuclear cells (PBMCs) than could be explained simply by TLR1/2 cell surface stimulation. Of particular interest, live Bb also uniquely induced transcription of type I interferons. In similarly stimulated isolated human monocytes, live Bb generated a greater production of pro- and anti-inflammatory cytokines (TNF-α, IL-6, IL-10 and IL-1β), as well as interferon-β (IFN-β). Secreted IL-18, which like IL-1β requires cytosolic cleavage of its inactive form by activated caspase-1, was generated only in response to live Bb. The cytosolic responses occurred despite evidence that phagocytosed spirochetes were rapidly degraded in phagosomal vacuoles, and unable to escape unscathed into the cell cytosol. We conclude that the innate immune signals generated in human monocytes by phagocytosed spirochetes allow the host to control the bacterium through a number of non-exclusive pathways, that are both TLR2-dependent and -independent, and include a type I interferon response.
Collapse
Affiliation(s)
- Juan C. Salazar
- Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, United States of America
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| | - Star Duhnam-Ems
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Carson La Vake
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Adriana R. Cruz
- Centro Internacional de Entrenamiento e Investigaciones Medicas, Cali, Colombia
| | - Meagan W. Moore
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Leonor Velez-Climent
- Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, United States of America
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Jonathan Shupe
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Winfried Krueger
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Justin D. Radolf
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| |
Collapse
|
59
|
Prantner D, Nagarajan UM. Role for the chlamydial type III secretion apparatus in host cytokine expression. Infect Immun 2009; 77:76-84. [PMID: 18852236 PMCID: PMC2612240 DOI: 10.1128/iai.00963-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 08/31/2008] [Accepted: 10/08/2008] [Indexed: 11/20/2022] Open
Abstract
In many important human pathogens, such as Shigella and Salmonella spp., the bacterial type III secretion (T3S) apparatus is required to initiate inflammation via activation of caspase-1- or NF-kappaB-dependent genes. Using an ex vivo infection model, the goal of the present study was to determine whether the chlamydial T3S apparatus also modulates the host inflammatory response. Infections of mouse peritoneal macrophages were performed with Chlamydia muridarum, and the expression of inflammatory cytokines was monitored by quantitative reverse transcription-PCR and enzyme-linked immunosorbent assay. Since there is no current genetic system for Chlamydia spp., blockade of T3S was accomplished pharmacologically using a T3S inhibitor called INP0007. It has been previously shown that INP0007 also blocks chlamydial growth in vitro and that the addition of exogenous iron completely reverses this deficit. The addition of iron to INP0007-treated C. muridarum-infected macrophages not only restored chlamydial growth deficit caused by INP0007 but also led to a multi-inclusion phenotype. Overall, T3S inhibition led to decreased interleukin-6 (IL-6), IL-1beta, and CXCL10, whereas the tumor necrosis factor alpha levels were unchanged. Rescue of chlamydial growth by addition of iron sulfate did not restore cytokine production, implying that the decreased expression of many cytokines during infection was dependent on T3S and not solely on growth. In addition, the observation that the greatest effects of INP0007 were seen at late time points during infection suggests that a temporally regulated T3S effector protein(s) may be triggering the host cytokine response.
Collapse
Affiliation(s)
- Daniel Prantner
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | |
Collapse
|
60
|
Chen S, Sorrentino R, Shimada K, Bulut Y, Doherty TM, Crother TR, Arditi M. Chlamydia pneumoniae-induced foam cell formation requires MyD88-dependent and -independent signaling and is reciprocally modulated by liver X receptor activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:7186-93. [PMID: 18981140 PMCID: PMC2662697 DOI: 10.4049/jimmunol.181.10.7186] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chlamydia pneumoniae is detected by macrophages and other APCs via TLRs and can exacerbate developing atherosclerotic lesions, but how that occurs is not known. Liver X receptors (LXRs) centrally control reverse cholesterol transport, but also negatively modulate TLR-mediated inflammatory pathways. We isolated peritoneal macrophages from wild-type, TLR2, TLR3, TLR4, TLR2/4, MyD88, TRIF, MyD88/TRIF, and IFN regulatory factor 3 (IRF3) KO mice, treated them with live or UV-killed C. pneumoniae in the presence or absence of oxidized LDL, then measured foam cell formation. In some experiments, the synthetic LXR agonist GW3965 was added to macrophages infected with C. pneumoniae in the presence of oxidized LDL. Both live and UV-killed C. pneumoniae induced IRF3 activation and promoted foam cell formation in wild-type macrophages, whereas the genetic absence of TLR2, TLR4, MyD88, TRIF, or IRF3, but not TLR3, significantly reduced foam cell formation. C. pneumoniae-induced foam cell formation was significantly reduced by the LXR agonist GW3965, which in turn inhibited C. pneumoniae-induced IRF3 activation, suggesting a bidirectional cross-talk. We conclude that C. pneumoniae facilitates foam cell formation via activation of both MyD88-dependent and MyD88-independent (i.e., TRIF-dependent and IRF3-dependent) pathways downstream of TLR2 and TLR4 signaling and that TLR3 is not involved in this process. This mechanism could at least partly explain why infection with C. pneumoniae accelerates the development of atherosclerotic plaque and lends support to the proposal that LXR agonists might prove clinically useful in suppressing atherogenesis.
Collapse
Affiliation(s)
- Shuang Chen
- Divisions of Pediatric Infectious Diseases and Immunology Cedars–Sinai Medical Center and David Geffen School of Medicine, University of California, Los Angeles, CA 90048
| | - Rosalinda Sorrentino
- Divisions of Pediatric Infectious Diseases and Immunology Cedars–Sinai Medical Center and David Geffen School of Medicine, University of California, Los Angeles, CA 90048
| | - Kenichi Shimada
- Divisions of Pediatric Infectious Diseases and Immunology Cedars–Sinai Medical Center and David Geffen School of Medicine, University of California, Los Angeles, CA 90048
| | - Yonca Bulut
- Divisions of Pediatric Infectious Diseases and Immunology Cedars–Sinai Medical Center and David Geffen School of Medicine, University of California, Los Angeles, CA 90048
| | - Terence M. Doherty
- Divisions of Pediatric Infectious Diseases and Immunology Cedars–Sinai Medical Center and David Geffen School of Medicine, University of California, Los Angeles, CA 90048
| | - Timothy R. Crother
- Divisions of Pediatric Infectious Diseases and Immunology Cedars–Sinai Medical Center and David Geffen School of Medicine, University of California, Los Angeles, CA 90048
| | - Moshe Arditi
- Divisions of Pediatric Infectious Diseases and Immunology Cedars–Sinai Medical Center and David Geffen School of Medicine, University of California, Los Angeles, CA 90048
| |
Collapse
|
61
|
Abstract
Dendritic cells (DCs) and macrophages are antigen-presenting cells (APCs) that are important in innate immune defense as well as in the generation and regulation of adaptive immunity against a wide array of pathogens. The genitourinary (GU) tract, which serves an important reproductive function, is constantly exposed to numerous agents of sexually transmitted infections (STIs). To combat these STIs, several subsets of DCs and macrophages are strategically localized within the GU tract. In the female genital mucosa, recruitment and function of these APCs are uniquely governed by sex hormones. This review summarizes the latest advances in our understanding of DCs and macrophages in the GU tract with respect to their subsets, lineage, and function. In addition, we discuss the divergent roles of these cells in immune defense against STIs as well as in maternal tolerance to the fetus.
Collapse
Affiliation(s)
- N Iijima
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - JM Thompson
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - A Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
62
|
Nagarajan UM, Prantner D, Sikes JD, Andrews CW, Goodwin AM, Nagarajan S, Darville T. Type I interferon signaling exacerbates Chlamydia muridarum genital infection in a murine model. Infect Immun 2008; 76:4642-8. [PMID: 18663004 PMCID: PMC2546839 DOI: 10.1128/iai.00629-08] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 06/26/2008] [Accepted: 07/18/2008] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFNs) induced during in vitro chlamydial infection exert bactericidal and immunomodulatory functions. To determine the precise role of type I IFNs during in vivo chlamydial genital infection, we examined the course and outcome of Chlamydia muridarum genital infection in mice genetically deficient in the receptor for type I IFNs (IFNAR(-/-) mice). A significant reduction in chlamydial shedding and duration of lower genital tract infection was observed in IFNAR(-/-) mice in comparison to the level of chlamydial shedding and duration of infection in wild-type (WT) mice. Furthermore, IFNAR(-/-) mice developed less chronic oviduct pathology in comparison to that in WT mice. Compared to the WT, IFNAR(-/-) mice had a greater number of chlamydial-specific T cells in their iliac lymph nodes 21 days postinfection. IFNAR(-/-) mice also exhibited earlier and enhanced CD4 T-cell recruitment to the cervical tissues, which was associated with increased expression of CXCL9 in the genital secretions of IFNAR(-/-) mice, but not with expression of CXCL10, which was reduced in the genital secretions of IFNAR(-/-) mice. These data suggest that type I IFNs exacerbate C. muridarum genital infection through an inhibition of the chlamydial-specific CD4 T-cell response.
Collapse
Affiliation(s)
- Uma M Nagarajan
- Division of Pediatric Infectious Diseases, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas 72202, USA.
| | | | | | | | | | | | | |
Collapse
|
63
|
Villatoro-Hernandez J, Loera-Arias MJ, Gamez-Escobedo A, Franco-Molina M, Gomez-Gutierrez JG, Rodriguez-Rocha H, Gutierrez-Puente Y, Saucedo-Cardenas O, Valdes-Flores J, Montes-de-Oca-Luna R. Secretion of biologically active interferon-gamma inducible protein-10 (IP-10) by Lactococcus lactis. Microb Cell Fact 2008; 7:22. [PMID: 18662403 PMCID: PMC2503953 DOI: 10.1186/1475-2859-7-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 07/28/2008] [Indexed: 11/19/2022] Open
Abstract
Background Chemokines are a large group of chemotactic cytokines that regulate and direct migration of leukocytes, activate inflammatory responses, and are involved in many other functions including regulation of tumor development. Interferon-gamma inducible-protein-10 (IP-10) is a member of the C-X-C subfamily of the chemokine family of cytokines. IP-10 specifically chemoattracts activated T lymphocytes, monocytes, and NK cells. IP-10 has been described also as a modulator of other antitumor cytokines. These properties make IP-10 a novel therapeutic molecule for the treatment of chronic and infectious diseases. Currently there are no suitable live biological systems to produce and secrete IP-10. Lactococcus lactis has been well-characterized over the years as a safe microorganism to produce heterologous proteins and to be used as a safe, live vaccine to deliver antigens and cytokines of interest. Here we report a recombinant strain of L. lactis genetically modified to produce and secrete biologically active IP-10. Results The IP-10 coding region was isolated from human cDNA and cloned into an L. lactis expression plasmid under the regulation of the pNis promoter. By fusion to the usp45 secretion signal, IP-10 was addressed out of the cell. Western blot analysis demonstrated that recombinant strains of L. lactis secrete IP-10 into the culture medium. Neither degradation nor incomplete forms of IP-10 were detected in the cell or supernatant fractions of L. lactis. In addition, we demonstrated that the NICE (nisin-controlled gene expression) system was able to express IP-10 "de novo" even two hours after nisin removal. This human IP-10 protein secreted by L. lactis was biological active as demonstrated by Chemotaxis assay over human CD3+T lymphocytes. Conclusion Expression and secretion of mature IP-10 was efficiently achieved by L. lactis forming an effective system to produce IP-10. This recombinant IP-10 is biologically active as demonstrated by its ability to chemoattract human CD3+ T lymphocytes. This strain of recombinant L. lactis represents a potentially useful tool to be used as a live vaccine in vivo.
Collapse
Affiliation(s)
- Julio Villatoro-Hernandez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León (UANL), Monterrey, N,L,, México.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Yang T, Stark P, Janik K, Wigzell H, Rottenberg ME. SOCS-1 protects against Chlamydia pneumoniae-induced lethal inflammation but hampers effective bacterial clearance. THE JOURNAL OF IMMUNOLOGY 2008; 180:4040-9. [PMID: 18322213 DOI: 10.4049/jimmunol.180.6.4040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Suppressor of cytokine signaling 1 (SOCS1) plays a major role in the inhibition of STAT1-mediated responses. STAT1-dependent responses are critical for resistance against infection with Chlamydia pneumoniae. We studied the regulation of expression of SOCS1 and SOCS3, and the role of SOCS1 during infection with C. pneumoniae in mice. Bone marrow-derived macrophages (BMM) and dendritic cells in vitro or lungs in vivo all showed enhanced STAT1-dependent SOCS1 mRNA accumulation after infection with C. pneumoniae. Infection-increased SOCS1 mRNA levels were dependent on IFN-alphabeta but not on IFN-gamma. T or B cells were not required for SOCS1 mRNA accumulation in vivo. Infection-induced STAT1-phosphorylation occurred more rapidly in SOCS1(-/-) BMM. In agreement, expression of IFN-gamma responsive genes, but not IL-1beta, IL-6, or TNF-alpha were relatively increased in C. pneumoniae-infected SOCS1(-/-) BMM. Surprisingly, C. pneumoniae infection-induced IFN-alpha, IFN-beta, and IFN-gamma expression in BMM were attenuated by SOCS1. C. pneumoniae infection of RAG1(-/-)/SOCS1(-/-) mice induced a rapid lethal inflammation, accompanied by diminished pulmonary bacterial load and increased levels of iNOS and IDO but not IL-1beta, IL-6, or TNF-alpha mRNA. In summary, C. pneumoniae infection induces a STAT1, IFN-alphabeta-dependent and IFN-gamma independent SOCS1 mRNA accumulation. Presence of SOCS1 controls the infection-induced lethal inflammatory disease but impairs the bacterial control.
Collapse
Affiliation(s)
- Tangbin Yang
- Department of Microbiology, Tumorbiology and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
65
|
Abstract
Chlamydia trachomatis causes genital tract infections that affect men, women, and children on a global scale. This review focuses on innate and adaptive immune responses in the female reproductive tract (FRT) to genital tract infections with C. trachomatis. It covers C. trachomatis infections and highlights our current knowledge of genital tract infections, serovar distribution, infectious load, and clinical manifestations of these infections in women. The unique features of the immune system of the FRT will be discussed and will include a review of our current knowledge of innate and adaptive immunity to chlamydial infections at this mucosal site. The use of animal models to study the pathogenesis of, and immunity to, Chlamydia infection of the female genital tract will also be discussed and a review of recent immunization and challenge experiments in the murine model of chlamydial FRT infection will be presented.
Collapse
|
66
|
Intracellular interleukin-1alpha mediates interleukin-8 production induced by Chlamydia trachomatis infection via a mechanism independent of type I interleukin-1 receptor. Infect Immun 2007; 76:942-51. [PMID: 18086816 DOI: 10.1128/iai.01313-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chlamydia trachomatis infection induces a wide array of inflammatory cytokines and chemokines, which may contribute to chlamydia-induced pathologies. However, the precise mechanisms by which Chlamydia induces cytokines remain unclear. Here we demonstrate that the proinflammatory cytokine interleukin-1alpha (IL-1alpha) plays an essential role in chlamydial induction of the chemokine IL-8. Cells deficient in IL-1alpha expression or IL-1alpha-competent cells treated with IL-1alpha-specific small interfering RNA failed to produce IL-8 in response to chlamydial infection. However, neutralization of extracellular IL-1alpha or blockade of or deficiency in type I IL-1 receptor (IL-1RI) signaling did not affect chlamydial induction of IL-8 in cells capable of producing IL-1alpha. These results suggest that IL-1alpha can mediate the chlamydial induction of IL-8 via an intracellular mechanism independent of IL-1RI, especially during the early stage of the infection cycle. This conclusion is further supported by the observations that expression of a transgene-encoded full-length IL-1alpha fusion protein in the nuclei enhanced IL-8 production and that nuclear localization of chlamydia-induced precursor IL-1alpha correlated with chlamydial induction of IL-8. Thus, we have identified a novel mechanism for chlamydial induction of the chemokine IL-8.
Collapse
|
67
|
Trumstedt C, Eriksson E, Lundberg AM, Yang TB, Yan ZQ, Wigzell H, Rottenberg ME. Role of IRAK4 and IRF3 in the control of intracellular infection withChlamydia pneumoniae. J Leukoc Biol 2007; 81:1591-8. [PMID: 17360955 DOI: 10.1189/jlb.0706456] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
TLR signal transduction involves a MyD88-mediated pathway, which leads to recruitment of the IL-1 receptor (IL-1R)-associated kinase 4 (IRAK4) and Toll/IL-1R translation initiation region domain-containing adaptor-inducing IFN-beta-mediated pathway, resulting in the activation of IFN regulatory factor (IRF)3. Both pathways can lead to expression of IFN-beta. TLR-dependent and -independent signals converge in the TNF receptor-associated factor 6 (TRAF6) adaptor, which mediates the activation of NF-kappaBeta. Infection of murine bone marrow-derived macrophages (BMM) with Chlamydia pneumoniae induces IFN-alpha/beta- and NF-kappaBeta-dependent expression of IFN-gamma, which in turn, will control bacterial growth. The role of IRAK4 and IRF3 in the regulation of IFN-alpha/beta expression and NF-kappaBeta activation was studied in C. pneumoniae-infected BMM. We found that levels of IFN-alpha, IFN-beta, and IFN-gamma mRNA were reduced in infected IRAK4(-/-) BMM compared with wild-type (WT) controls. BMM also showed an IRAK4-dependent growth control of C. pneumoniae. No increased IRF3 activation was detected in C. pneumoniae-infected BMM. Similar numbers of intracellular bacteria, IFN-alpha, and IFN-gamma mRNA titers were observed in C. pneumoniae-infected IRF3(-/-) BMM. On the contrary, IFN-beta(-/-) BMM showed lower IFN-alpha and IFN-gamma mRNA levels and higher bacterial titers compared with WT controls. C. pneumoniae infection-induced activation of NF-kappaBeta and expression of proinflammatory cytokines were shown to be TRAF6-dependent but did not require IRAK4 or IRF3. Thus, our data indicate that IRAK4, but not IRF3, controls C. pneumoniae-induced IFN-alpha and IFN-gamma secretion and bacterial growth. IRAK4 and IRF3 are redundant for infection-induced NF-kappaB activation, which is regulated by TRAF6.
Collapse
Affiliation(s)
- Christian Trumstedt
- Microbiology and Tumor Biology Center, Karolinska Institute, Nobels väg 16, 171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
68
|
Mancuso G, Midiri A, Biondo C, Beninati C, Zummo S, Galbo R, Tomasello F, Gambuzza M, Macrì G, Ruggeri A, Leanderson T, Teti G. Type I IFN signaling is crucial for host resistance against different species of pathogenic bacteria. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:3126-33. [PMID: 17312160 DOI: 10.4049/jimmunol.178.5.3126] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is known that host cells can produce type I IFNs (IFN-alphabeta) after exposure to conserved bacterial products, but the functional consequences of such responses on the outcome of bacterial infections are incompletely understood. We show in this study that IFN-alphabeta signaling is crucial for host defenses against different bacteria, including group B streptococci (GBS), pneumococci, and Escherichia coli. In response to GBS challenge, most mice lacking either the IFN-alphabetaR or IFN-beta died from unrestrained bacteremia, whereas all wild-type controls survived. The effect of IFN-alphabetaR deficiency was marked, with mortality surpassing that seen in IFN-gammaR-deficient mice. Animals lacking both IFN-alphabetaR and IFN-gammaR displayed additive lethality, suggesting that the two IFN types have complementary and nonredundant roles in host defenses. Increased production of IFN-alphabeta was detected in macrophages after exposure to GBS. Moreover, in the absence of IFN-alphabeta signaling, a marked reduction in macrophage production of IFN-gamma, NO, and TNF-alpha was observed after stimulation with live bacteria or with purified LPS. Collectively, our data document a novel, fundamental function of IFN-alphabeta in boosting macrophage responses and host resistance against bacterial pathogens. These data may be useful to devise alternative strategies to treat bacterial infections.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Dipartimento di Patologia e Microbiologia Sperimentale, Università degli Studi di Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Derbigny WA, Hong SC, Kerr MS, Temkit M, Johnson RM. Chlamydia muridarum infection elicits a beta interferon response in murine oviduct epithelial cells dependent on interferon regulatory factor 3 and TRIF. Infect Immun 2006; 75:1280-90. [PMID: 17178782 PMCID: PMC1828549 DOI: 10.1128/iai.01525-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chlamydia trachomatis is the most common sexually transmitted bacterial infection in the United States. Utilizing cloned murine oviduct epithelial cell lines, we previously identified Toll-like receptor 2 (TLR2) as the principal epithelial pattern recognition receptor (PRR) for infection-triggered release of the acute inflammatory cytokines interleukin-6 and granulocyte-macrophage colony-stimulating factor. The infected oviduct epithelial cell lines also secreted the immunomodulatory cytokine beta interferon (IFN-beta) in a largely MyD88-independent manner. Although TLR3 was the only IFN-beta production-capable TLR expressed by the oviduct cell lines, we were not able to determine whether TLR3 was responsible for IFN-beta production because the epithelial cells were unresponsive to the TLR3 ligand poly(I-C), and small interfering RNA (siRNA) techniques were ineffective at knocking down TLR3 expression. To further investigate the potential role of TLR3 in the infected epithelial cell secretion of IFN-beta, we examined the roles of its downstream signaling molecules TRIF and IFN regulatory factor 3 (IRF-3) using a dominant-negative TRIF molecule and siRNA specific for TRIF and IRF-3. Antagonism of either IRF-3 or TRIF signaling significantly decreased IFN-beta production. These data implicate TLR3, or an unknown PRR utilizing TRIF, as the source of IFN-beta production by Chlamydia-infected oviduct epithelial cells.
Collapse
Affiliation(s)
- Wilbert A Derbigny
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
70
|
Raghuraman G, Geng Y, Wang CR. IFN-beta-mediated up-regulation of CD1d in bacteria-infected APCs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:7841-8. [PMID: 17114455 DOI: 10.4049/jimmunol.177.11.7841] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expression of CD1d molecules is essential for the selection and activation of a unique subset of T cells, invariant NKT cells, which express limited TCR diversity and have been demonstrated to function in both regulatory and antimicrobial immune responses. Although it has been reported that the levels of CD1d expression can be modulated during infection, the mechanisms that mediate this effect are poorly defined. In this study, we show that infection of dendritic cells and macrophages both in vitro and in vivo with the intracellular pathogen Listeria monocytogenes leads to up-regulation of CD1d. IFN-beta is required to mediate this up-regulation in L. monocytogenes infection, as well as being sufficient to up-regulate CD1d expression in vitro. Unlike MHC class I molecules, the increased surface expression of CD1d by IFN-beta is not regulated at the transcriptional level. Confocal microscopy and metabolic labeling experiments show that the total pool of CD1d protein is increased in IFN-beta-treated cells and that increased surface expression of CD1d is not due to the redistribution of the intracellular pool of CD1d. IFN-beta treatment increases the de novo synthesis of CD1d. This change in surface CD1d expression was functionally relevant, as IFN-beta-treated dendritic cells are more efficient in stimulating invariant NKT cells than untreated controls. Taken together, these data support a role for early IFN-beta-mediated up-regulation of CD1d in NKT cell activation during infection.
Collapse
Affiliation(s)
- Gayatri Raghuraman
- Department of Pathology, University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
71
|
Welter-Stahl L, Ojcius DM, Viala J, Girardin S, Liu W, Delarbre C, Philpott D, Kelly KA, Darville T. Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum. Cell Microbiol 2006; 8:1047-57. [PMID: 16681844 DOI: 10.1111/j.1462-5822.2006.00686.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Infection of epithelial cells by the intracellular pathogen, Chlamydia trachomatis, leads to activation of NF-kappaB and secretion of pro-inflammatory cytokines. We find that overexpression of a dominant-negative Nod1 or depletion of Nod1 by RNA interference inhibits partially the activation of NF-kappaB during chlamydial infection in vitro, suggesting that Nod1 can detect the presence of Chlamydia. In parallel, there is a larger increase in the expression of pro-inflammatory genes following Chlamydia infection when primary fibroblasts are isolated from wild-type mice than from Nod1-deficient mice. The Chlamydia genome encodes all the putative enzymes required for proteoglycan synthesis, but proteoglycan from Chlamydia has never been detected biochemically. Since Nod1 is a ubiquitous cytosolic receptor for peptidoglycan from Gram-negative bacteria, our results suggest that C. trachomatis and C. muridarum do in fact produce at least the rudimentary proteoglycan motif recognized by Nod1. Nonetheless, Nod1 deficiency has no effect on the efficiency of infection, the intensity of cytokine secretion, or pathology in vaginally infected mice, compared with wild-type controls. Similarly, Rip2, a downstream mediator of Nod1, Toll-like receptor (TLR)-2, and TLR4, increases only slightly the intensity of chlamydial infection in vivo and has a very mild effect on the immune response and pathology. Thus, Chlamydia may not produce sufficient peptidoglycan to stimulate Nod1-dependent pathways efficiently in infected animals, or other receptors of the innate immune system may compensate for the absence of Nod1 during Chlamydia infection in vivo.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Chlamydia Infections/pathology
- Chlamydia Infections/physiopathology
- Chlamydia muridarum/chemistry
- Chlamydia muridarum/pathogenicity
- Chlamydia muridarum/physiology
- Chlamydia trachomatis/chemistry
- Chlamydia trachomatis/pathogenicity
- Chlamydia trachomatis/physiology
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- Epithelium/chemistry
- Epithelium/microbiology
- Epithelium/pathology
- Epithelium/physiology
- Female
- Fibroblasts/microbiology
- Fibroblasts/physiology
- Gene Expression Regulation, Bacterial/physiology
- HeLa Cells
- Humans
- Male
- Mice
- Mice, Inbred NOD
- NF-kappa B/analysis
- NF-kappa B/physiology
- Nod1 Signaling Adaptor Protein
- Protein Serine-Threonine Kinases/physiology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Receptor-Interacting Protein Serine-Threonine Kinase 2
- Receptor-Interacting Protein Serine-Threonine Kinases
- Receptors, Cell Surface/analysis
- Receptors, Cell Surface/physiology
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 2/physiology
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/physiology
- Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/physiology
- Vagina/microbiology
Collapse
Affiliation(s)
- Lynn Welter-Stahl
- Université Paris - Denis Diderot, Institut Jacques Monod, 75251 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Plant L, Wan H, Jonsson AB. MyD88-dependent signaling affects the development of meningococcal sepsis by nonlipooligosaccharide ligands. Infect Immun 2006; 74:3538-46. [PMID: 16714586 PMCID: PMC1479290 DOI: 10.1128/iai.00128-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Toll-like receptors (TLRs) and the adaptor myeloid differentiation factor 88 (MyD88) are important in the innate immune defenses of the host to microbial infections. Meningococcal ligands signaling via TLRs control inflammatory responses, and stimulation can result in fulminant meningococcal sepsis. In this study, we show that the responses to nonlipooligosaccharide (non-LOS) ligands of meningococci are MyD88 dependent. An isogenic LOS-deficient mutant of the serogroup C meningococcal strain FAM20 caused fatal disease in wild type C57BL/6 mice that was not observed in MyD88-/- mice. Fatality correlated with high proinflammatory cytokine and C5a levels in serum, high neutrophil numbers in blood, and increased bacteremia at 24 h postinfection in the wild-type mice. Infection with the parent strain FAM20 resulted in fatality in 100% of the wild-type mice and 50% of the MyD88-/- mice. We conclude that both LOS and another neisserial ligand cause meningococcal sepsis in an in vivo mouse model and confirm that meningococcal LOS can act via both the MyD88- dependent and -independent pathways, while the non-LOS meningococcal ligand(s) acts only via the MyD88-dependent pathway.
Collapse
Affiliation(s)
- Laura Plant
- Department of Medical Biochemistry and Microbiology, Biomedical Centrum, Uppsala University, 751 23 Uppsala, Sweden.
| | | | | |
Collapse
|
73
|
McCoy AJ, Maurelli AT. Building the invisible wall: updating the chlamydial peptidoglycan anomaly. Trends Microbiol 2006; 14:70-7. [PMID: 16413190 DOI: 10.1016/j.tim.2005.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 11/25/2005] [Accepted: 12/20/2005] [Indexed: 11/22/2022]
Abstract
The existence of peptidoglycan (PG) in chlamydiae has long been debated. Genome sequencing of members of the Chlamydiaceae family and Protochlamydia amoebophila has uncovered a nearly complete pathway for PG synthesis in these organisms. The recent use of microarray and proteomic analysis methods has revealed that PG synthesis genes are expressed primarily during reticulate body development and division. Furthermore, key genes in the chlamydial PG synthesis pathway encode functional PG synthesis enzymes, some of which provide the basis for the susceptibility of chlamydiae to PG inhibitors. Recent studies shed light on how the construction of a cell wall in chlamydiae is taking shape and why the wall is being built.
Collapse
Affiliation(s)
- Andrea J McCoy
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA
| | | |
Collapse
|
74
|
O'Connell CM, Ionova IA, Quayle AJ, Visintin A, Ingalls RR. Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions. Evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen. J Biol Chem 2005; 281:1652-9. [PMID: 16293622 DOI: 10.1074/jbc.m510182200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular gram-negative pathogen and the etiologic agent of significant ocular and genital tract diseases. Chlamydiae primarily infect epithelial cells, and the inflammatory response of these cells to the infection directs both the innate and adaptive immune response. This study focused on determining the cellular immune receptors involved in the early events following infection with the L2 serovar of C. trachomatis. We found that dominant negative MyD88 inhibited interleukin-8 (IL-8) secretion during a productive infection with chlamydia. Furthermore, expression of Toll-like receptor (TLR)-2 was required for IL-8 secretion from infected cells, whereas the effect of TLR4/MD-2 expression was minimal. Cell activation was dependent on infection with live, replicating bacteria, because infection with UV-irradiated bacteria and treatment of infected cells with chloramphenicol, but not ampicillin, abrogated the induction of IL-8 secretion. Finally, we show that both TLR2 and MyD88 co-localize with the intracellular chlamydial inclusion, suggesting that TLR2 is actively engaged in signaling from this intracellular location. These data support the role of TLR2 in the host response to infection with C. trachomatis. Our data further demonstrate that TLR2 and the adaptor MyD88 are specifically recruited to the bacterial or inclusion membrane during a productive infection with chlamydia and provide the first evidence that intracellular TLR2 is responsible for signal transduction during infection with an intracellular bacterium.
Collapse
Affiliation(s)
- Catherine M O'Connell
- Department of Microbiology/Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|