51
|
Nguyen GTDT, Scaife MA, Helliwell KE, Smith AG. Role of riboswitches in gene regulation and their potential for algal biotechnology. JOURNAL OF PHYCOLOGY 2016; 52:320-328. [PMID: 27037670 DOI: 10.1111/jpy.12416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
Riboswitches are regulatory elements in messenger RNA to which specific ligands can bind directly in the absence of proteins. Ligand binding alters the mRNA secondary structure, thereby affecting expression of the encoded protein. Riboswitches are widespread in prokaryotes, with over 20 different effector ligands known, including amino acids, cofactors, and Mg(2+) ions, and gene expression is generally regulated by affecting translation or termination of transcription. In plants, fungi, and microalgae, riboswitches have been found, but only those that bind thiamine pyrophosphate. These eukaryotic riboswitches operate by causing alternative splicing of the transcript. Here, we review the current status of riboswitch research with specific emphasis on microalgae. We discuss new riboswitch discoveries and insights into the underlying mechanism of action, and how next generation sequencing technology provides the motivation and opportunity to improve our understanding of these rare but important regulatory elements. We also highlight the potential of microalgal riboswitches as a tool for synthetic biology and industrial biotechnology.
Collapse
Affiliation(s)
- Ginnie T D T Nguyen
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Mark A Scaife
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Katherine E Helliwell
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
52
|
Banerjee C, Singh PK, Shukla P. Microalgal bioengineering for sustainable energy development: Recent transgenesis and metabolic engineering strategies. Biotechnol J 2016; 11:303-14. [DOI: 10.1002/biot.201500284] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/15/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Chiranjib Banerjee
- Department of Environmental Science & Engineering; Indian School of Mines; Dhanbad Jharkhand India
| | - Puneet Kumar Singh
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology; Maharshi Dayanand University; Rohtak Haryana India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology; Maharshi Dayanand University; Rohtak Haryana India
| |
Collapse
|
53
|
Plants as Factories for Human Pharmaceuticals: Applications and Challenges. Int J Mol Sci 2015; 16:28549-65. [PMID: 26633378 PMCID: PMC4691069 DOI: 10.3390/ijms161226122] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023] Open
Abstract
Plant molecular farming (PMF), defined as the practice of using plants to produce human therapeutic proteins, has received worldwide interest. PMF has grown and advanced considerably over the past two decades. A number of therapeutic proteins have been produced in plants, some of which have been through pre-clinical or clinical trials and are close to commercialization. Plants have the potential to mass-produce pharmaceutical products with less cost than traditional methods. Tobacco-derived antibodies have been tested and used to combat the Ebola outbreak in Africa. Genetically engineered immunoadhesin (DPP4-Fc) produced in green plants has been shown to be able to bind to MERS-CoV (Middle East Respiratory Syndrome), preventing the virus from infecting lung cells. Biosafety concerns (such as pollen contamination and immunogenicity of plant-specific glycans) and costly downstream extraction and purification requirements, however, have hampered PMF production from moving from the laboratory to industrial application. In this review, the challenges and opportunities of PMF are discussed. Topics addressed include; transformation and expression systems, plant bioreactors, safety concerns, and various opportunities to produce topical applications and health supplements.
Collapse
|
54
|
Hlavova M, Turoczy Z, Bisova K. Improving microalgae for biotechnology — From genetics to synthetic biology. Biotechnol Adv 2015; 33:1194-203. [DOI: 10.1016/j.biotechadv.2015.01.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/11/2015] [Accepted: 01/17/2015] [Indexed: 01/01/2023]
|
55
|
Braun-Galleani S, Baganz F, Purton S. Improving recombinant protein production in the Chlamydomonas reinhardtii chloroplast using vivid Verde Fluorescent Protein as a reporter. Biotechnol J 2015; 10:1289-97. [PMID: 26098300 PMCID: PMC4985702 DOI: 10.1002/biot.201400566] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 05/15/2015] [Accepted: 06/18/2015] [Indexed: 11/10/2022]
Abstract
Microalgae have potential as platforms for the synthesis of high-value recombinant proteins due to their many beneficial attributes including ease of cultivation, lack of pathogenic agents, and low-cost downstream processing. However, current recombinant protein levels are low compared to other microbial platforms and stable insertion of transgenes is available in only a few microalgal species. We have explored different strategies aimed at increasing growth rate and recombinant protein production in the Chlamydomonas reinhardtii chloroplast. A novel fluorescent protein (vivid Verde Fluorescent Protein, VFP) was expressed under the control of the native atpA promoter/5'UTR element. VFP levels were detected by western blotting, with increased protein levels observed when co-expressed with a gene encoding the Escherichia coli Spy chaperone. We used these transformant lines to study the effect of temperature, light and media on recombinant protein production and cell growth. VFP levels and fluorescence, assessed by flow cytometry, allowed a determination of improved cultivation conditions as 30°C under mixotrophic mode. These conditions were tested for the accumulation of an antimicrobial endolysin (Cpl-1) of potential commercial interest, observing that the outcome obtained for VFP could not be easily replicated for Cpl-1. This study suggests that recombinant protein expression is product-specific and needs to be optimized individually.
Collapse
Affiliation(s)
| | - Frank Baganz
- Department of Biochemical Engineering, University College London, United Kingdom
| | - Saul Purton
- Institute of Structural and Molecular Biology, University College London, United Kingdom
| |
Collapse
|
56
|
Makhzoum A, Benyammi R, Moustafa K, Trémouillaux-Guiller J. Recent advances on host plants and expression cassettes' structure and function in plant molecular pharming. BioDrugs 2015; 28:145-59. [PMID: 23959796 PMCID: PMC7100180 DOI: 10.1007/s40259-013-0062-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant molecular pharming is a promising system to produce important recombinant proteins such as therapeutic antibodies, pharmaceuticals, enzymes, growth factors, and vaccines. The system provides an interesting alternative method to the direct extraction of proteins from inappropriate source material while offering the possibility to overcome problems related to product safety and source availability. Multiple factors including plant hosts, genes of interest, expression vector cassettes, and extraction and purification techniques play important roles in the plant molecular pharming. Plant species, as a biosynthesis platform, are a crucial factor in achieving high yields of recombinant protein in plant. The choice of recombinant gene and its expression strategy is also of great importance in ensuring a high amount of the recombinant proteins. Many studies have been conducted to improve expression, accumulation, and purification of the recombinant protein from molecular pharming systems. Re-engineered vectors and expression cassettes are also pivotal tools in enhancing gene expression at the transcription and translation level, and increasing protein accumulation, stability, retention and targeting of specific organelles. In this review, we report recent advances and strategies of plant molecular pharming while focusing on the choice of plant hosts and the role of some molecular pharming elements and approaches: promoters, codon optimization, signal sequences, and peptides used for upstream design, purification and downstream processing.
Collapse
Affiliation(s)
- Abdullah Makhzoum
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7 Canada
| | - Roukia Benyammi
- Laboratory of Genetic Resources and Biotechnology of the National Superior School of Agronomy, Algiers, Algeria
| | - Khaled Moustafa
- Institut Mondor de la Recherche Biomédicale, Hôpital Henri-Mondor, Créteil, France
| | | |
Collapse
|
57
|
Jinkerson RE, Jonikas MC. Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:393-412. [PMID: 25704665 DOI: 10.1111/tpj.12801] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 05/23/2023]
Abstract
The success of the green alga Chlamydomonas reinhardtii as a model organism is to a large extent due to the wide range of molecular techniques that are available for its characterization. Here, we review some of the techniques currently used to modify and interrogate the C. reinhardtii nuclear genome and explore several technologies under development. Nuclear mutants can be generated with ultraviolet (UV) light and chemical mutagens, or by insertional mutagenesis. Nuclear transformation methods include biolistic delivery, agitation with glass beads, and electroporation. Transforming DNA integrates into the genome at random sites, and multiple strategies exist for mapping insertion sites. A limited number of studies have demonstrated targeted modification of the nuclear genome by approaches such as zinc-finger nucleases and homologous recombination. RNA interference is widely used to knock down expression levels of nuclear genes. A wide assortment of transgenes has been successfully expressed in the Chlamydomonas nuclear genome, including transformation markers, fluorescent proteins, reporter genes, epitope tagged proteins, and even therapeutic proteins. Optimized expression constructs and strains help transgene expression. Emerging technologies such as the CRISPR/Cas9 system, high-throughput mutant identification, and a whole-genome knockout library are being developed for this organism. We discuss how these advances will propel future investigations.
Collapse
Affiliation(s)
- Robert E Jinkerson
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - Martin C Jonikas
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
58
|
Scranton MA, Ostrand JT, Fields FJ, Mayfield SP. Chlamydomonas as a model for biofuels and bio-products production. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:523-531. [PMID: 25641390 PMCID: PMC5531182 DOI: 10.1111/tpj.12780] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 05/18/2023]
Abstract
Developing renewable energy sources is critical to maintaining the economic growth of the planet while protecting the environment. First generation biofuels focused on food crops like corn and sugarcane for ethanol production, and soybean and palm for biodiesel production. Second generation biofuels based on cellulosic ethanol produced from terrestrial plants, has received extensive funding and recently pilot facilities have been commissioned, but to date output of fuels from these sources has fallen well short of what is needed. Recent research and pilot demonstrations have highlighted the potential of algae as one of the most promising sources of sustainable liquid transportation fuels. Algae have also been established as unique biofactories for industrial, therapeutic, and nutraceutical co-products. Chlamydomonas reinhardtii's long established role in the field of basic research in green algae has paved the way for understanding algal metabolism and developing genetic engineering protocols. These tools are now being utilized in C. reinhardtii and in other algal species for the development of strains to maximize biofuels and bio-products yields from the lab to the field.
Collapse
|
59
|
Rasala BA, Mayfield SP. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. PHOTOSYNTHESIS RESEARCH 2015; 123:227-39. [PMID: 24659086 DOI: 10.1007/s11120-014-9994-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/03/2014] [Indexed: 05/18/2023]
Abstract
Recombinant proteins are widely used for industrial, nutritional, and medical applications. Green microalgae have attracted considerable attention recently as a biomanufacturing platform for the production of recombinant proteins for a number of reasons. These photosynthetic eukaryotic microorganisms are safe, scalable, easy to genetically modify through transformation, mutagenesis, or breeding, and inexpensive to grow. Many microalgae species are genetically transformable, but the green alga Chlamydomonas reinhardtii is the most widely used host for recombinant protein expression. An extensive suite of molecular genetic tools has been developed for C. reinhardtii over the last 25 years, including a fully sequenced genome, well-established methods for transformation, mutagenesis and breeding, and transformation vectors for high levels of recombinant protein accumulation and secretion. Here, we review recent successes in the development of C. reinhardtii as a biomanufacturing host for recombinant proteins, including antibodies and immunotoxins, hormones, industrial enzymes, an orally-active colostral protein for gastrointestinal health, and subunit vaccines. In addition, we review the biomanufacturing potential of other green algae from the genera Dunaliella and Chlorella.
Collapse
Affiliation(s)
- Beth A Rasala
- California Center for Algae Biotechnology and Division of Biological Sciences, University of California, 9500 Gilman Dr, La Jolla, San Diego, CA, 92093-0368, USA
| | | |
Collapse
|
60
|
Gangl D, Zedler JAZ, Włodarczyk A, Jensen PE, Purton S, Robinson C. Expression and membrane-targeting of an active plant cytochrome P450 in the chloroplast of the green alga Chlamydomonas reinhardtii. PHYTOCHEMISTRY 2015; 110:22-8. [PMID: 25556316 DOI: 10.1016/j.phytochem.2014.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/30/2014] [Accepted: 12/03/2014] [Indexed: 05/21/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has potential as a cell factory for the production of recombinant proteins and other compounds, but mainstream adoption has been hindered by a scarcity of genetic tools and a need to identify products that can be generated in a cost-effective manner. A promising strategy is to use algal chloroplasts as a site for synthesis of high value bioactive compounds such as diterpenoids since these are derived from metabolic building blocks that occur naturally within the organelle. However, synthesis of these complex plant metabolites requires the introduction of membrane-associated enzymes including cytochrome P450 enzymes (P450s). Here, we show that a gene (CYP79A1) encoding a model P450 can be introduced into the C. reinhardtii chloroplast genome using a simple transformation system. The gene is stably expressed and the P450 is efficiently targeted into chloroplast membranes by means of its endogenous N-terminal anchor domain, where it is active and accounts for 0.4% of total cell protein. These results provide proof of concept for the introduction of diterpenoid synthesis pathways into the chloroplast of C. reinhardtii.
Collapse
Affiliation(s)
- Doris Gangl
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Julie A Z Zedler
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Artur Włodarczyk
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Poul Erik Jensen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Saul Purton
- Institute of Structural & Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Colin Robinson
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom.
| |
Collapse
|
61
|
The potential of transgenic green microalgae; a robust photobioreactor to produce recombinant therapeutic proteins. World J Microbiol Biotechnol 2014; 30:2783-96. [PMID: 25115849 DOI: 10.1007/s11274-014-1714-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/30/2014] [Indexed: 02/01/2023]
Abstract
Microalgae have been used in food, cosmetic, and biofuel industries as a natural source of lipids, vitamins, pigments and antioxidants for a long time. Green microalgae, as potent photobioreactors, can be considered as an economical expression system to produce recombinant therapeutical proteins at large-scale due to low cost of production and scaling-up capitalization owning to the inexpensive medium requirement, fast growth rate, and the ease of manipulation. These microalgae possess all benefit eukaryotic expression systems including the ability of post-translational modifications required for proper folding and stability of active proteins. Among the many items regarded as recombinant protein production, this review compares the different expression systems with green microalgae like Dunaliella by viewing the nuclear/chloroplast transformation challenges/benefits, related selection markers/reporter genes, and crucial factors/strategies affecting the increase of foreign protein expression in microalgae transformants. Some important factors were discussed regarding the increase of protein yielding in microalgae transformants including: transformation-associated genotypic modifications, endogenous regulatory factors, promoters, codon optimization, enhancer elements, and milking of recombinant protein.
Collapse
|
62
|
Mathieu-Rivet E, Kiefer-Meyer MC, Vanier G, Ovide C, Burel C, Lerouge P, Bardor M. Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals. FRONTIERS IN PLANT SCIENCE 2014; 5:359. [PMID: 25183966 PMCID: PMC4135232 DOI: 10.3389/fpls.2014.00359] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/04/2014] [Indexed: 05/09/2023]
Abstract
Microalgae are currently used for the production of food compounds. Recently, few microalgae species have been investigated as potential biofactories for the production of biopharmaceuticals. Indeed in this context, microalgae are cheap, classified as Generally Recognized As Safe (GRAS) organisms and can be grown easily. However, problems remain to be solved before any industrial production of microalgae-made biopharmaceuticals. Among them, post-translational modifications of the proteins need to be considered. Especially, N-glycosylation acquired by the secreted recombinant proteins is of major concern since most of the biopharmaceuticals are N-glycosylated and it is well recognized that glycosylation represent one of their critical quality attribute. Therefore, the evaluation of microalgae as alternative cell factory for biopharmaceutical productions thus requires to investigate their N-glycosylation capability in order to determine to what extend it differs from their human counterpart and to determine appropriate strategies for remodeling the microalgae glycosylation into human-compatible oligosaccharides. Here, we review the secreted recombinant proteins which have been successfully produced in microalgae. We also report on recent bioinformatics and biochemical data concerning the structure of glycans N-linked to proteins from various microalgae phyla and comment the consequences on the glycan engineering strategies that may be necessary to render those microalgae-made biopharmaceuticals compatible with human therapy.
Collapse
Affiliation(s)
- Elodie Mathieu-Rivet
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
| | - Marie-Christine Kiefer-Meyer
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
| | - Gaëtan Vanier
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
| | - Clément Ovide
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
| | - Carole Burel
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
| | - Patrice Lerouge
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
| | - Muriel Bardor
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
- Institut Universitaire de FranceParis, France
| |
Collapse
|
63
|
Rosales-Mendoza S. Future directions for the development of Chlamydomonas-based vaccines. Expert Rev Vaccines 2014; 12:1011-9. [PMID: 24053395 DOI: 10.1586/14760584.2013.825455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Besides serving as a valuable model in biological sciences, Chamydomonas reinhardtii has been used during the last decade in the biotechnology arena to establish models for the low cost production of vaccines. Antigens from various pathogens including Plasmodium falciparum, foot and mouth disease virus, Staphylococcus aureus, classical swine fever virus (CSFV) as well as some auto-antigens, have been produced in C. reinhardtii. Although some of them have been functionally characterized with promising results, this review identifies future directions for the advancement in the exploitation of this robust and safe vaccine production platform. The present analysis reflects that important immunological implications exist for this system and remain unexplored, including the possible adjuvant effects of algae biomolecules, the effect of bioencapsulation on immunogenicity and the possible development of whole-cell vaccines as an approach to trigger cytotoxic immune responses. Recently described molecular strategies that aim to optimize the expression of nuclear-encoded target antigens are also discussed.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México +52 444 826 2440 +52 444 826 2440
| |
Collapse
|
64
|
Barra L, Chandrasekaran R, Corato F, Brunet C. The challenge of ecophysiological biodiversity for biotechnological applications of marine microalgae. Mar Drugs 2014; 12:1641-75. [PMID: 24663117 PMCID: PMC3967230 DOI: 10.3390/md12031641] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/31/2014] [Accepted: 02/12/2014] [Indexed: 01/26/2023] Open
Abstract
In this review, we aim to explore the potential of microalgal biodiversity and ecology for biotechnological use. A deeper exploration of the biodiversity richness and ecophysiological properties of microalgae is crucial for enhancing their use for applicative purposes. After describing the actual biotechnological use of microalgae, we consider the multiple faces of taxonomical, morphological, functional and ecophysiological biodiversity of these organisms, and investigate how these properties could better serve the biotechnological field. Lastly, we propose new approaches to enhancing microalgal growth, photosynthesis, and synthesis of valuable products used in biotechnological fields, mainly focusing on culture conditions, especially light manipulations and genetic modifications.
Collapse
Affiliation(s)
- Lucia Barra
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy.
| | | | - Federico Corato
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy.
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy.
| |
Collapse
|
65
|
Dunaliella salina as a novel host for the production of recombinant proteins. Appl Microbiol Biotechnol 2014; 98:4293-300. [DOI: 10.1007/s00253-014-5636-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/20/2014] [Accepted: 02/23/2014] [Indexed: 11/26/2022]
|
66
|
Specht EA, Mayfield SP. Algae-based oral recombinant vaccines. Front Microbiol 2014; 5:60. [PMID: 24596570 PMCID: PMC3925837 DOI: 10.3389/fmicb.2014.00060] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/30/2014] [Indexed: 11/25/2022] Open
Abstract
Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity.
Collapse
Affiliation(s)
- Elizabeth A Specht
- California Center for Algae Biotechnology, University of California at San Diego La Jolla, CA, USA
| | - Stephen P Mayfield
- California Center for Algae Biotechnology, University of California at San Diego La Jolla, CA, USA
| |
Collapse
|
67
|
Genes involved in the endoplasmic reticulum N-glycosylation pathway of the red microalga Porphyridium sp.: a bioinformatic study. Int J Mol Sci 2014; 15:2305-26. [PMID: 24514561 PMCID: PMC3958852 DOI: 10.3390/ijms15022305] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/13/2014] [Accepted: 01/23/2014] [Indexed: 11/17/2022] Open
Abstract
N-glycosylation is one of the most important post-translational modifications that influence protein polymorphism, including protein structures and their functions. Although this important biological process has been extensively studied in mammals, only limited knowledge exists regarding glycosylation in algae. The current research is focused on the red microalga Porphyridium sp., which is a potentially valuable source for various applications, such as skin therapy, food, and pharmaceuticals. The enzymes involved in the biosynthesis and processing of N-glycans remain undefined in this species, and the mechanism(s) of their genetic regulation is completely unknown. In this study, we describe our pioneering attempt to understand the endoplasmic reticulum N-Glycosylation pathway in Porphyridium sp., using a bioinformatic approach. Homology searches, based on sequence similarities with genes encoding proteins involved in the ER N-glycosylation pathway (including their conserved parts) were conducted using the TBLASTN function on the algae DNA scaffold contigs database. This approach led to the identification of 24 encoded-genes implicated with the ER N-glycosylation pathway in Porphyridium sp. Homologs were found for almost all known N-glycosylation protein sequences in the ER pathway of Porphyridium sp.; thus, suggesting that the ER-pathway is conserved; as it is in other organisms (animals, plants, yeasts, etc.).
Collapse
|
68
|
Wilson ML, Okumoto S, Adam L, Peccoud J. Development of a domain-specific genetic language to design Chlamydomonas reinhardtii expression vectors. ACTA ACUST UNITED AC 2013; 30:251-7. [PMID: 24215020 DOI: 10.1093/bioinformatics/btt646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
MOTIVATION Expression vectors used in different biotechnology applications are designed with domain-specific rules. For instance, promoters, origins of replication or homologous recombination sites are host-specific. Similarly, chromosomal integration or viral delivery of an expression cassette imposes specific structural constraints. As de novo gene synthesis and synthetic biology methods permeate many biotechnology specialties, the design of application-specific expression vectors becomes the new norm. In this context, it is desirable to formalize vector design strategies applicable in different domains. RESULTS Using the design of constructs to express genes in the chloroplast of Chlamydomonas reinhardtii as an example, we show that a vector design strategy can be formalized as a domain-specific language. We have developed a graphical editor of context-free grammars usable by biologists without prior exposure to language theory. This environment makes it possible for biologists to iteratively improve their design strategies throughout the course of a project. It is also possible to ensure that vectors designed with early iterations of the language are consistent with the latest iteration of the language. AVAILABILITY AND IMPLEMENTATION The context-free grammar editor is part of the GenoCAD application. A public instance of GenoCAD is available at http://www.genocad.org. GenoCAD source code is available from SourceForge and licensed under the Apache v2.0 open source license.
Collapse
Affiliation(s)
- Mandy L Wilson
- Virginia Bioinformatics Institute, Department of Plant Pathology, Physiology, and Weed Science and ICTAS Center for Systems Biology of Engineered Tissues, MC 0193, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
69
|
Ice recrystallization inhibition mediated by a nuclear-expressed and -secreted recombinant ice-binding protein in the microalga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 2013; 97:9763-72. [PMID: 24037309 DOI: 10.1007/s00253-013-5226-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 01/08/2023]
Abstract
A Lolium perenne ice-binding protein (LpIBP) demonstrates superior ice recrystallization inhibition (IRI) activity and has proposed applications in cryopreservation, food texturing, as well as in being a "green" gas hydrate inhibitor. Recombinant production of LpIBP has been previously conducted in bacterial and yeast systems for studies of protein characterization, but large-scale applications have been hitherto limited due to high production costs. In this work, a codon-optimized LpIBP was recombinantly expressed and secreted in a novel one-step vector system from the nuclear genome of the green microalga Chlamydomonas reinhardtii. Both mixotrophic and photoautotrophic growth regimes supported LpIBP expression, indicating the feasibility of low-cost production using minimal medium, carbon dioxide, and light energy as input. In addition, multiple growth and bioproduct extraction cycles were performed by repetitive batch cultivation trials, demonstrating the potential for semi-continuous production and biomass harvesting. Concentrations of recombinant protein reached in this proof of concept approach were sufficient to demonstrate IRI activity in culture media without additional purification or concentration, with activity further verified by thermal hysteresis and morphology assays. The incorporation of the recombinant LpIBP into a model gas hydrate offers the promise that algal production may eventually find application as a "green" hydrate inhibitor.
Collapse
|
70
|
Koskimaki JE, Blazier AS, Clarens AF, Papin JA. Computational Models of Algae Metabolism for Industrial Applications. Ind Biotechnol (New Rochelle N Y) 2013. [DOI: 10.1089/ind.2013.0012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Jacob E. Koskimaki
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Anna S. Blazier
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Andres F. Clarens
- Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| |
Collapse
|
71
|
Nelson DR, Mengistu S, Ranum P, Celio G, Mashek M, Mashek D, Lefebvre PA. New lipid-producing, cold-tolerant yellow-green alga isolated from the Rocky Mountains of Colorado. Biotechnol Prog 2013; 29:853-61. [PMID: 23754623 DOI: 10.1002/btpr.1755] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 05/08/2013] [Indexed: 11/11/2022]
Abstract
A new strain of yellow-green algae (Xanthophyceae, Heterokonta), tentatively named Heterococcus sp. DN1 (UTEX accession number UTEX ZZ885), was discovered among snow fields in the Rocky Mountains. Axenic cultures of H. sp. DN1 were isolated and their cellular morphology, growth, and composition of lipids were characterized. H. sp. DN1 was found to grow at temperatures approaching freezing to accumulate large intracellular stores of lipids. H. sp. DN1 produces the highest quantity of lipids when grown undisturbed with high light in low temperatures. Of particular interest was the accumulation of eicosapentaenoic acid, known to be important for human nutrition, and palmitoleic acid, known to improve biodiesel feedstock properties.
Collapse
Affiliation(s)
- David R Nelson
- Dept. of Plant Biology, University of Minnesota, St. Paul, MN, USA.
| | | | | | | | | | | | | |
Collapse
|
72
|
Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production. Mol Biol Rep 2013; 40:4421-8. [DOI: 10.1007/s11033-013-2532-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
|
73
|
Demurtas OC, Massa S, Ferrante P, Venuti A, Franconi R, Giuliano G. A Chlamydomonas-derived Human Papillomavirus 16 E7 vaccine induces specific tumor protection. PLoS One 2013; 8:e61473. [PMID: 23626690 PMCID: PMC3634004 DOI: 10.1371/journal.pone.0061473] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/11/2013] [Indexed: 11/29/2022] Open
Abstract
Background The E7 protein of the Human Papillomavirus (HPV) type 16, being involved in malignant cellular transformation, represents a key antigen for developing therapeutic vaccines against HPV-related lesions and cancers. Recombinant production of this vaccine antigen in an active form and in compliance with good manufacturing practices (GMP) plays a crucial role for developing effective vaccines. E7-based therapeutic vaccines produced in plants have been shown to be active in tumor regression and protection in pre-clinical models. However, some drawbacks of in whole-plant vaccine production encouraged us to explore the production of the E7-based therapeutic vaccine in Chlamydomonas reinhardtii, an organism easy to grow and transform and fully amenable to GMP guidelines. Methodology/Principal Findings An expression cassette encoding E7GGG, a mutated, attenuated form of the E7 oncoprotein, alone or as a fusion with affinity tags (His6 or FLAG), under the control of the C. reinhardtii chloroplast psbD 5′ UTR and the psbA 3′ UTR, was introduced into the C. reinhardtii chloroplast genome by homologous recombination. The protein was mostly soluble and reached 0.12% of total soluble proteins. Affinity purification was optimized and performed for both tagged forms. Induction of specific anti-E7 IgGs and E7-specific T-cell proliferation were detected in C57BL/6 mice vaccinated with total Chlamydomonas extract and with affinity-purified protein. High levels of tumor protection were achieved after challenge with a tumor cell line expressing the E7 protein. Conclusions The C. reinhardtii chloroplast is a suitable expression system for the production of the E7GGG protein, in a soluble, immunogenic form. The production in contained and sterile conditions highlights the potential of microalgae as alternative platforms for the production of vaccines for human uses.
Collapse
Affiliation(s)
- Olivia C. Demurtas
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome, Italy
- Ylichron S.r.l., ENEA Casaccia Research Center, Rome, Italy
| | - Silvia Massa
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome, Italy
| | - Paola Ferrante
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome, Italy
| | - Aldo Venuti
- Laboratory of Virology, Regina Elena National Cancer Institute, Rome, Italy
| | - Rosella Franconi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome, Italy
- * E-mail: (RF); (GG)
| | - Giovanni Giuliano
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome, Italy
- * E-mail: (RF); (GG)
| |
Collapse
|
74
|
Alga-produced cholera toxin-Pfs25 fusion proteins as oral vaccines. Appl Environ Microbiol 2013; 79:3917-25. [PMID: 23603678 DOI: 10.1128/aem.00714-13] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infectious diseases disproportionately affect indigent regions and are the greatest cause of childhood mortality in developing countries. Practical, low-cost vaccines for use in these countries are paramount to reducing disease burdens and concomitant poverty. Algae are a promising low-cost system for producing vaccines that can be orally delivered, thereby avoiding expensive purification and injectable delivery. We engineered the chloroplast of the eukaryotic alga Chlamydomonas reinhardtii to produce a chimeric protein consisting of the 25-kDa Plasmodium falciparum surface protein (Pfs25) fused to the β subunit of the cholera toxin (CtxB) to investigate an alga-based whole-cell oral vaccine. Pfs25 is a promising malaria transmission-blocking vaccine candidate that has been difficult to produce in traditional recombinant systems due to its structurally complex tandem repeats of epidermal growth factor-like domains. The noncatalytic CtxB domain of the cholera holotoxin assembles into a pentameric structure and acts as a mucosal adjuvant by binding GM1 ganglioside receptors on gut epithelial cells. We demonstrate that CtxB-Pfs25 accumulates as a soluble, properly folded and functional protein within algal chloroplasts, and it is stable in freeze-dried alga cells at ambient temperatures. In mice, oral vaccination using freeze-dried algae that produce CtxB-Pfs25 elicited CtxB-specific serum IgG antibodies and both CtxB- and Pfs25-specific secretory IgA antibodies. These data suggest that algae are a promising system for production and oral delivery of vaccine antigens, but as an orally delivered adjuvant, CtxB is best suited for eliciting secretory IgA antibodies for vaccine antigens against pathogens that invade mucosal surfaces using this strategy.
Collapse
|
75
|
Pourmir A, Noor-Mohammadi S, Johannes TW. Production of xylitol by recombinant microalgae. J Biotechnol 2013; 165:178-83. [PMID: 23597921 DOI: 10.1016/j.jbiotec.2013.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 11/16/2022]
Abstract
Microalgae have received significant attention recently as a potential low-cost host for the production of next-generation biofuels and natural products. Here we show that the chloroplast genome of the eukaryotic green microalga Chlamydomonas reinhardtii can be genetically engineered to produce xylitol through the introduction of a gene encoding a xylose reductase (XR) from the fungi Neurospora crassa. Increased levels of heterologous protein accumulation and xylitol production were achieved by synthesizing the XR gene in the chloroplast codon bias and by driving expression of the codon-optimized XR gene using a 16S/atpA promoter/5'-UTR fusion. These results demonstrate the feasibility of engineering microalgae to produce xylitol, and show the importance of codon optimizing the XR gene and using the 16S/atpA promoter/5'-UTR fusion to express XR in the chloroplast of C. reinhardtii.
Collapse
Affiliation(s)
- Azadeh Pourmir
- Department of Chemical Engineering, The University of Tulsa, 800 S. Tucker Drive, Tulsa, OK 74104, USA
| | | | | |
Collapse
|
76
|
Díaz-Santos E, de la Vega M, Vila M, Vigara J, León R. Efficiency of different heterologous promoters in the unicellular microalgaChlamydomonas reinhardtii. Biotechnol Prog 2013; 29:319-28. [DOI: 10.1002/btpr.1690] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/27/2012] [Indexed: 01/27/2023]
Affiliation(s)
- Encarnación Díaz-Santos
- Lab Bioquímica y Biología Molecular. Departamento de Química y Ciencia de Materiales, Facultad de Ciencias Experimentales; Universidad de Huelva; Avda. Fuerzas Armadas s/n 21007 Huelva Spain
| | - Marta de la Vega
- Lab Bioquímica y Biología Molecular. Departamento de Química y Ciencia de Materiales, Facultad de Ciencias Experimentales; Universidad de Huelva; Avda. Fuerzas Armadas s/n 21007 Huelva Spain
| | - Marta Vila
- Lab Bioquímica y Biología Molecular. Departamento de Química y Ciencia de Materiales, Facultad de Ciencias Experimentales; Universidad de Huelva; Avda. Fuerzas Armadas s/n 21007 Huelva Spain
| | - Javier Vigara
- Lab Bioquímica y Biología Molecular. Departamento de Química y Ciencia de Materiales, Facultad de Ciencias Experimentales; Universidad de Huelva; Avda. Fuerzas Armadas s/n 21007 Huelva Spain
| | - Rosa León
- Lab Bioquímica y Biología Molecular. Departamento de Química y Ciencia de Materiales, Facultad de Ciencias Experimentales; Universidad de Huelva; Avda. Fuerzas Armadas s/n 21007 Huelva Spain
| |
Collapse
|
77
|
Tucker SC, Honn KV. Emerging targets in lipid-based therapy. Biochem Pharmacol 2013; 85:673-688. [PMID: 23261527 PMCID: PMC4106802 DOI: 10.1016/j.bcp.2012.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023]
Abstract
The use of prostaglandins and NSAIDS in the clinic has proven that lipid mediators and their associated pathways make attractive therapeutic targets. When contemplating therapies involving lipid pathways, several basic agents come to mind. There are the enzymes and accessory proteins that lead to the metabolism of lipid substrates, provided through diet or through actions of lipases, the subsequent lipid products, and finally the lipid sensors or receptors. There is abundant evidence that molecules along this lipid continuum can serve as prognostic and diagnostic indicators and are in fact viable therapeutic targets. Furthermore, lipids themselves can be used as therapeutics. Despite this, the vernacular dialog pertaining to "biomarkers" does not routinely include mention of lipids, though this is rapidly changing. Collectively these agents are becoming more appreciated for their respective roles in diverse disease processes from cancer to preterm labor and are receiving their due appreciation after decades of ground work in the lipid field. By relating examples of disease processes that result from dysfunction along the lipid continuum, as well as examples of lipid therapies and emerging technologies, this review is meant to inspire further reading and discovery.
Collapse
Affiliation(s)
- Stephanie C Tucker
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| | - Kenneth V Honn
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA; Department of Chemistry, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| |
Collapse
|
78
|
Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci U S A 2012; 110:E15-22. [PMID: 23236148 DOI: 10.1073/pnas.1214638110] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The idea of targeted therapy, whereby drug or protein molecules are delivered to specific cells, is a compelling approach to treating disease. Immunotoxins are one such targeted therapeutic, consisting of an antibody domain for binding target cells and molecules of a toxin that inhibits the proliferation of the targeted cell. One major hurdle preventing these therapies from reaching the market has been the lack of a suitable production platform that allows the cost-effective production of these highly complex molecules. The chloroplast of the green alga Chlamydomonas reinhardtii has been shown to contain the machinery necessary to fold and assemble complex eukaryotic proteins. However, the translational apparatus of chloroplasts resembles that of a prokaryote, allowing them to accumulate eukaryotic toxins that otherwise would kill a eukaryotic host. Here we show expression and accumulation of monomeric and dimeric immunotoxin proteins in algal chloroplasts. These fusion proteins contain an antibody domain targeting CD22, a B-cell surface epitope, and the enzymatic domain of exotoxin A from Pseudomonas aeruginosa. We demonstrated that algal-produced immunotoxins accumulate as soluble and enzymatically active proteins that bind target B cells and efficiently kill them in vitro. We also show that treatment with either the mono- or dimeric immunotoxins significantly prolongs the survival of mice with implanted human B-cell tumors.
Collapse
|
79
|
Hempel F, Maier UG. An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency. Microb Cell Fact 2012; 11:126. [PMID: 22970838 PMCID: PMC3503769 DOI: 10.1186/1475-2859-11-126] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/05/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although there are many different expression systems for recombinant production of pharmaceutical proteins, many of these suffer from drawbacks such as yield, cost, complexity of purification, and possible contamination with human pathogens. Microalgae have enormous potential for diverse biotechnological applications and currently attract much attention in the biofuel sector. Still underestimated, though, is the idea of using microalgae as solar-fueled expression system for the production of recombinant proteins. RESULTS In this study, we show for the first time that completely assembled and functional human IgG antibodies can not only be expressed to high levels in algal systems, but also secreted very efficiently into the culture medium. We engineered the diatom Phaeodactylum tricornutum to synthesize and secrete a human IgG antibody against the Hepatitis B Virus surface protein. As the diatom P. tricornutum is not known to naturally secrete many endogenous proteins, the secreted antibodies are already very pure making extensive purification steps redundant and production extremely cost efficient. CONCLUSIONS Microalgae combine rapid growth rates with all the advantages of eukaryotic expression systems, and offer great potential for solar-powered, low cost production of pharmaceutical proteins.
Collapse
Affiliation(s)
- Franziska Hempel
- LOEWE Center for Synthetic Microbiology-SYNMIKRO, Hans-Meerwein-Strasse, Marburg D-35032, Germany.
| | | |
Collapse
|
80
|
Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One 2012; 7:e43349. [PMID: 22937037 PMCID: PMC3427385 DOI: 10.1371/journal.pone.0043349] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/19/2012] [Indexed: 02/06/2023] Open
Abstract
Microalgae have recently received attention as a potential low-cost host for the production of recombinant proteins and novel metabolites. However, a major obstacle to the development of algae as an industrial platform has been the poor expression of heterologous genes from the nuclear genome. Here we describe a nuclear expression strategy using the foot-and-mouth-disease-virus 2A self-cleavage peptide to transcriptionally fuse heterologous gene expression to antibiotic resistance in Chlamydomonas reinhardtii. We demonstrate that strains transformed with ble-2A-GFP are zeocin-resistant and accumulate high levels of GFP that is properly ‘cleaved’ at the FMDV 2A peptide resulting in monomeric, cytosolic GFP that is easily detectable by in-gel fluorescence analysis or fluorescent microscopy. Furthermore, we used our ble2A nuclear expression vector to engineer the heterologous expression of the industrial enzyme, xylanase. We demonstrate that linking xyn1 expression to ble2A expression on the same open reading frame led to a dramatic (∼100-fold) increase in xylanase activity in cells lysates compared to the unlinked construct. Finally, by inserting an endogenous secretion signal between the ble2A and xyn1 coding regions, we were able to target monomeric xylanase for secretion. The novel microalgae nuclear expression strategy described here enables the selection of transgenic lines that are efficiently expressing the heterologous gene-of-interest and should prove valuable for basic research as well as algal biotechnology.
Collapse
|
81
|
Gregory JA, Li F, Tomosada LM, Cox CJ, Topol AB, Vinetz JM, Mayfield S. Algae-produced Pfs25 elicits antibodies that inhibit malaria transmission. PLoS One 2012; 7:e37179. [PMID: 22615931 PMCID: PMC3353897 DOI: 10.1371/journal.pone.0037179] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/17/2012] [Indexed: 12/21/2022] Open
Abstract
Subunit vaccines are significantly more expensive to produce than traditional vaccines because they are based primarily on recombinant proteins that must be purified from the expression system. Despite the increased cost, subunit vaccines are being developed because they are safe, effective, and can elicit antibodies that confer protection against diseases that are not currently vaccine-preventable. Algae are an attractive platform for producing subunit vaccines because they are relatively inexpensive to grow, genetically tractable, easily scaled to large volumes, have a short generation time, and are devoid of inflammatory, viral, or prion contaminants often present in other systems. We tested whether algal chloroplasts can produce malaria transmission blocking vaccine candidates, Plasmodium falciparum surface protein 25 (Pfs25) and 28 (Pfs28). Antibodies that recognize Pfs25 and Pfs28 disrupt the sexual development of parasites within the mosquito midgut, thus preventing transmission of malaria from one human host to the next. These proteins have been difficult to produce in traditional recombinant systems because they contain tandem repeats of structurally complex epidermal growth factor-like domains, which cannot be produced in bacterial systems, and because they are not glycosylated, so they must be modified for production in eukaryotic systems. Production in algal chloroplasts avoids these issues because chloroplasts can fold complex eukaryotic proteins and do not glycosylate proteins. Here we demonstrate that algae are the first recombinant system to successfully produce an unmodified and aglycosylated version of Pfs25 or Pfs28. These antigens are structurally similar to the native proteins and antibodies raised to these recombinant proteins recognize Pfs25 and Pfs28 from P. falciparum. Furthermore, antibodies to algae-produced Pfs25 bind the surface of in-vitro cultured P. falciparum sexual stage parasites and exhibit transmission blocking activity. Thus, algae are promising organisms for producing cysteine-disulfide-containing malaria transmission blocking vaccine candidate proteins.
Collapse
Affiliation(s)
- James A. Gregory
- Division of Biological Sciences, and the San Diego Center for Algae Biotechnology, University of California San Diego, California, United States of America
| | - Fengwu Li
- Division of Infectious Disease, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Lauren M. Tomosada
- Division of Biological Sciences, and the San Diego Center for Algae Biotechnology, University of California San Diego, California, United States of America
| | - Chesa J. Cox
- Division of Biological Sciences, and the San Diego Center for Algae Biotechnology, University of California San Diego, California, United States of America
| | - Aaron B. Topol
- Division of Biological Sciences, and the San Diego Center for Algae Biotechnology, University of California San Diego, California, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Disease, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Stephen Mayfield
- Division of Biological Sciences, and the San Diego Center for Algae Biotechnology, University of California San Diego, California, United States of America
- * E-mail:
| |
Collapse
|