51
|
Sanai FM, Abaalkhail F, Hasan F, Farooqi MH, Nahdi NA, Younossi ZM. Management of nonalcoholic fatty liver disease in the Middle East. World J Gastroenterol 2020; 26:3528-3541. [PMID: 32742124 PMCID: PMC7366060 DOI: 10.3748/wjg.v26.i25.3528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) in the Middle East is increasing in parallel to an increase in the prevalence of associated risk factors such as obesity, metabolic syndrome, and type 2 diabetes mellitus. About 20% to 30% of the patients progress to develop nonalcoholic steatohepatitis (NASH), a histological subtype of NAFLD, with features of hepatocyte injury such as hepatocyte ballooning. NASH can progress to fibrosis, cirrhosis, and even hepatocellular carcinoma. NAFLD thus causes a substantial burden on healthcare systems and it is imperative that appropriate strategies are discussed at a regional level to facilitate effective management tailored to the needs of the region. To fulfil this unmet need, expert gastroenterologists, hepatologists, and endocrinologists from the region came together in three advisory board meetings that were conducted in Saudi Arabia, United Arab Emirates, and Kuwait, to discuss current local challenges in NAFLD screening and diagnosis, and the different available management options. The experts discussed the disease burden of NAFLD/NASH in the Middle East; screening, diagnosis, and referral patterns in NAFLD; and available treatment options for NAFLD and NASH. This paper summarizes the discussions and opinion of the expert panel on the management of NAFLD/NASH and also presents an extensive literature review on the topic.
Collapse
Affiliation(s)
- Faisal M Sanai
- Gastroenterology Unit, Department of Medicine, King Abdulaziz Medical City, Jeddah 21423, Saudi Arabia
| | - Faisal Abaalkhail
- Department of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Liver Transplant, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Fuad Hasan
- Department of Internal Medicine, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | | | - Nawal Al Nahdi
- Department of Gastroenterology and Hepatology, Dubai Health Authority, Rashid hospital, Dubai 00000, United Arab Emirates
| | - Zobair M Younossi
- Department of Medicine, Inova Fairfax Medical Campus, Falls Church, VA 22042, United States
| |
Collapse
|
52
|
Venetsanaki V, Polyzos SA. Menopause and Non-Alcoholic Fatty Liver Disease: A Review Focusing on Therapeutic Perspectives. Curr Vasc Pharmacol 2020; 17:546-555. [PMID: 29992886 DOI: 10.2174/1570161116666180711121949] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
There is increasing evidence that menopause is associated with the progression and severity of non-alcoholic fatty liver disease (NAFLD). Estrogen deficiency worsens non-alcoholic steatohepatitis (NASH) in mice models with fatty liver. The prevalence of NAFLD seems to be higher in postmenopausal compared with premenopausal women. Although more data are needed, lower serum estradiol levels are associated with NASH in postmenopausal women. Apart from estrogen deficiency, relative androgen excess and decrease in sex hormone-binding protein are observed in postmenopausal women. These hormonal changes seem to interplay with an increase in abdominal adipose mass, also observed in postmenopausal women, and aging, which are both closely related to the severity and progressive forms of NAFLD. NAFLD adds extra morbidity to postmenopausal women, possibly increasing the risk of type 2 diabetes mellitus and cardiovascular disease. Improving parameters of the metabolic syndrome via modifications in diet and physical exercise may reduce the risk of NAFLD and its related morbidity. Limited studies have shown a beneficial effect of hormone replacement therapy (HRT) on NAFLD, although adverse hepatic effects have been attributed to progesterone in one study. Phytoestrogens may be alternatives to HRT, but their long-term efficacy and safety remain to be shown. The aim of this review was to summarize evidence linking menopause with NAFLD with a special focus on potential therapeutic perspectives.
Collapse
Affiliation(s)
- Vasiliki Venetsanaki
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynaecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios A Polyzos
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
53
|
Biondo LA, Teixeira AAS, de O. S. Ferreira KC, Neto JCR. Pharmacological Strategies for Insulin Sensitivity in Obesity and Cancer: Thiazolidinediones and Metformin. Curr Pharm Des 2020; 26:932-945. [PMID: 31969093 DOI: 10.2174/1381612826666200122124116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/21/2019] [Indexed: 12/19/2022]
Abstract
Background:
Chronic diseases, such as obesity and cancer, have high prevalence rates. Both diseases
have hyperinsulinemia, hyperglycemia, high levels of IGF-1 and inflammatory cytokines in common. Therefore,
these can be considered triggers for cancer development and growth. In addition, low-grade inflammation that
modulates the activation of immune cells, cellular metabolism, and production of cytokines and chemokines are
common in obesity, cancer, and insulin resistance. Pharmacological strategies are necessary when a change in
lifestyle does not improve glycemic homeostasis. In this regard, thiazolidinediones (TZD) possess multiple molecular
targets and regulate PPARγ in obesity and cancer related to insulin resistance, while metformin acts
through the AMPK pathway.
Objective:
The aim of this study was to review TZD and metformin as pharmacological treatments for insulin
resistance associated with obesity and cancer.
Conclusions:
Thiazolidinediones restored adiponectin secretion and leptin sensitivity, reduced lipid droplets in
hepatocytes and orexigen peptides in the hypothalamus. In cancer cells, TZD reduced proliferation, production of
reactive oxygen species, and inflammation by acting through the mTOR and NFκB pathways. Metformin has
similar effects, though these are AMPK-dependent. In addition, both drugs can be efficient against certain side
effects caused by chemotherapy.
Collapse
Affiliation(s)
- Luana A. Biondo
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Alexandre A. S. Teixeira
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Karen C. de O. S. Ferreira
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose C. R. Neto
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
54
|
Fujimori N, Tanaka N, Kimura T, Sano K, Horiuchi A, Kato N, Takahashi Y, Kuribayashi N, Sugiura A, Yamazaki T, Joshita S, Umemura T, Matsumoto A, Tanaka E. Long-term luseogliflozin therapy improves histological activity of non-alcoholic steatohepatitis accompanied by type 2 diabetes mellitus. Clin J Gastroenterol 2020; 13:83-89. [PMID: 31292843 DOI: 10.1007/s12328-019-01018-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
A 60-year-old Japanese woman was referred to our hospital for further examination of persistent liver dysfunction. She had been suffering from type 2 diabetes mellitus since the age of 50 years. Her hemoglobin A1c (HbA1c) value was as high as 7.8% despite treatment with dipeptidyl peptidase-4 inhibitor, metformin, and sulfonylurea. After excluding viral hepatitis, alcohol or drug-induced liver injury, and autoimmune liver diseases, liver histology evidence of macrovesicular steatosis, hepatocyte ballooning, and pericellular fibrosis confirmed a diagnosis of non-alcoholic steatohepatitis (NASH). Luseogliflozin (2.5 mg/day), a sodium-glucose cotransporter 2 inhibitor (SGLT2I), was co-administered to strengthen glycemic control. Liver enzymes and HbA1c gradually improved without any adverse events. A second liver biopsy at 15 months after luseogliflozin commencement revealed improvements in steatosis, fibrosis, and overall histological activity score. This case demonstrates that long-term luseogliflozin may be a good therapeutic option for diabetic NAFLD/NASH patients. The merits of persistent SGLT2I administration for NAFLD/NASH patients warrant validation in future studies.
Collapse
Affiliation(s)
- Naoyuki Fujimori
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan.
- Research Center for Social Systems, Shinshu University, Matsumoto, Japan.
| | - Takefumi Kimura
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kenji Sano
- Department of Pathology, Iida Municipal Hospital, Iida, Japan
| | - Akira Horiuchi
- Digestive Disease Center, Showa Inan General Hospital, Komagane, Japan
| | | | - Yoshiyuki Takahashi
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoya Kuribayashi
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ayumi Sugiura
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomoo Yamazaki
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Satoru Joshita
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeji Umemura
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Akihiro Matsumoto
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Eiji Tanaka
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
55
|
Stahl EP, Dhindsa DS, Lee SK, Sandesara PB, Chalasani NP, Sperling LS. Nonalcoholic Fatty Liver Disease and the Heart: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 73:948-963. [PMID: 30819364 DOI: 10.1016/j.jacc.2018.11.050] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and cardiovascular disease (CVD) are both manifestations of end-organ damage of the metabolic syndrome. Through multiple pathophysiological mechanisms, CVD and NAFLD are associated with each other. Systemic inflammation, endothelial dysfunction, hepatic insulin resistance, oxidative stress, and altered lipid metabolism are some of the mechanisms by which NAFLD increases the risk of CVD. Patients with NAFLD develop increased atherosclerosis, cardiomyopathy, and arrhythmia, which clinically result in cardiovascular morbidity and mortality. Defining the mechanisms linking these 2 diseases offers the opportunity to further develop targeted therapies. The aim of this comprehensive review is to examine the association between CVD and NAFLD and discuss the overlapping management approaches.
Collapse
Affiliation(s)
- Eric P Stahl
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Devinder S Dhindsa
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Suegene K Lee
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Pratik B Sandesara
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Naga P Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Laurence S Sperling
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
56
|
Zhang S, Wong YT, Tang KY, Kwan HY, Su T. Chinese Medicinal Herbs Targeting the Gut-Liver Axis and Adipose Tissue-Liver Axis for Non-Alcoholic Fatty Liver Disease Treatments: The Ancient Wisdom and Modern Science. Front Endocrinol (Lausanne) 2020; 11:572729. [PMID: 33101207 PMCID: PMC7556113 DOI: 10.3389/fendo.2020.572729] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. The pathogenesis of NAFLD is complex. Frontline western medicines only ameliorate the symptoms of NAFLD. On the contrary, the uniqueness of Chinese medicine in its interpretation of NAFLD and the holistic therapeutic approach lead to a promising therapeutic efficacy. Recent studies reveal that the gut-liver axis and adipose tissue-liver axis play important roles in the development of NAFLD. Interestingly, with advanced technology, many herbal formulae are found to target the gut-liver axis and adipose tissue-liver axis and resolve the inflammation in NAFLD. This is the first review summarizes the current findings on the Chinese herbal formulae that target the two axes in NAFLD treatment. This review not only demonstrates how the ancient wisdom of Chinese medicine is being interpreted by modern pharmacological studies, but also provides valuable information for the further development of the herbal-based treatment for NAFLD.
Collapse
Affiliation(s)
- Shuwei Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yui-Tung Wong
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ka-Yu Tang
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hiu-Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- *Correspondence: Hiu-Yee Kwan, ; Tao Su,
| | - Tao Su
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Hiu-Yee Kwan, ; Tao Su,
| |
Collapse
|
57
|
Samji NS, Verma R, Keri KC, Singal AK, Ahmed A, Rinella M, Bernstein D, Abdelmalek MF, Satapathy SK. Liver Transplantation for Nonalcoholic Steatohepatitis: Pathophysiology of Recurrence and Clinical Challenges. Dig Dis Sci 2019; 64:3413-3430. [PMID: 31312990 DOI: 10.1007/s10620-019-05716-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023]
Abstract
Nonalcoholic steatohepatitis is the fastest-growing indication for the liver transplant and a leading cause of hepatocellular carcinoma among patients listed for liver transplantation in the USA. Post-transplant nonalcoholic hepatic steatosis and steatohepatitis are frequent complications of liver transplantation. Nonalcoholic steatohepatitis poses a significant challenge in both pre- and post-transplant period due to its association with metabolic syndrome, coronary artery disease, chronic kidney disease, and obstructive sleep apnea. While optimal therapy is not yet available in the post-liver transplant setting, lifestyle interventions continue to remain as the mainstay of therapy for post-transplant nonalcoholic steatohepatitis. Early recognition with protocol biopsies and noninvasive modalities, along with modification of known risk factors, are the most effective methods to curtail the progression of nonalcoholic steatohepatitis in the absence of FDA-approved pharmacologic therapy.
Collapse
Affiliation(s)
- Naga Swetha Samji
- Tennova Cleveland Hospital, 2305 Chambliss Ave NW, Cleveland, TN, 37311, USA
| | - Rajanshu Verma
- Division of Transplant Surgery, Department of Surgery, Methodist University Hospital Transplant Institute, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | | | - Ashwani K Singal
- University of South Dakota Sanford School of Medicine, Avera Transplant Institute, S. Cliff Ave, Sioux Falls, SD, 57105, USA
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mary Rinella
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - David Bernstein
- Division of Hepatology and Sandra Atlas Bass Center for Liver Diseases, Northwell Health, Manhasset, NY, USA
| | - Manal F Abdelmalek
- Division of Gastroenterology/Hepatology, Duke University, 40 Duke Medicine Cir, Durham, NC, USA
| | - Sanjaya K Satapathy
- Division of Hepatology at Sandra Atlas Bass Center for Liver Diseases and Transplantation, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 400 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
58
|
Riazi K, Raman M, Taylor L, Swain MG, Shaheen AA. Dietary Patterns and Components in Nonalcoholic Fatty Liver Disease (NAFLD): What Key Messages Can Health Care Providers Offer? Nutrients 2019; 11:E2878. [PMID: 31779112 PMCID: PMC6950597 DOI: 10.3390/nu11122878] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a rising epidemic worldwide and will be the leading cause of cirrhosis, hepatocellular carcinoma, and liver transplant within the next decade. NAFLD is considered as the hepatic manifestation of metabolic syndrome. Behaviors, such as a sedentary lifestyle and consuming a Western diet, have led to substantial challenges in managing NAFLD patients. With no curative pharmaceutical therapies, lifestyle modifications, including dietary changes and exercise, that ultimately lead to weight loss remain the only effective therapy for NAFLD. Multiple diets, including low-carbohydrate, low-fat, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean (MD) diets, have been evaluated. NAFLD patients have shown better outcomes with a modified diet, such as the MD diet, where patients are encouraged to increase the consumption of fruits and vegetables, whole grains, and olive oil. It is increasingly clear that a personalized approach to managing NAFLD patients, based on their preferences and needs, should be implemented. In our review, we cover NAFLD management, with a specific focus on dietary patterns and their components. We emphasize the successful approaches highlighted in recent studies to provide recommendations that health care providers could apply in managing their NAFLD patients.
Collapse
Affiliation(s)
- Kiarash Riazi
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Calgary, Calgary, AB T2N 4Z6, Canada; (K.R.); (M.R.); (L.T.); (M.G.S.)
| | - Maitreyi Raman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Calgary, Calgary, AB T2N 4Z6, Canada; (K.R.); (M.R.); (L.T.); (M.G.S.)
| | - Lorian Taylor
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Calgary, Calgary, AB T2N 4Z6, Canada; (K.R.); (M.R.); (L.T.); (M.G.S.)
| | - Mark G. Swain
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Calgary, Calgary, AB T2N 4Z6, Canada; (K.R.); (M.R.); (L.T.); (M.G.S.)
| | - Abdel Aziz Shaheen
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Calgary, Calgary, AB T2N 4Z6, Canada; (K.R.); (M.R.); (L.T.); (M.G.S.)
- Community Health Sciences, O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
59
|
Salvatore T, Pafundi PC, Marfella R, Sardu C, Rinaldi L, Monaco L, Ricozzi C, Imbriani S, Nevola R, Adinolfi LE, Sasso FC. Metformin lactic acidosis: Should we still be afraid? Diabetes Res Clin Pract 2019; 157:107879. [PMID: 31618624 DOI: 10.1016/j.diabres.2019.107879] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
Metformin, the first choice drug for type 2 diabetes treatment in all stages of therapy, and one of the most widely prescribed anti-hyperglycemic agents worldwide, represents a rare example of an old drug which continues to display new beneficial effects in various fields. However, lactic acidosis (LA) persists as a serious adverse effect. LA incidence is low and is not necessarily determined by the administration of metformin. Unfortunately, the concern for this complication has negatively affected the drug use, particularly in chronic kidney disease, which may impair drug excretion, and in congestive heart failure and chronic liver disease, which may promote lactate accumulation. This review describes how not only these historical contraindications have been considerably scaled back, though rather a recent large body of evidence supports a protective effect of biguanide on kidney, heart and liver and, maybe, against lactic acidosis itself. It is worthy to slow down both contraindications and precautions to metformin use, not to deprive a significant number of diabetic patients, as those with kidney, heart and liver comorbidities, from its potential benefits, and not to hamper in the near future the putative advantages in a wide spectrum of conditions outside of diabetes.
Collapse
Affiliation(s)
- Teresa Salvatore
- Unit of Internal Medicine, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Lucio Monaco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Carmen Ricozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Riccardo Nevola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Luigi Elio Adinolfi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| |
Collapse
|
60
|
NAFLD and Extra-Hepatic Comorbidities: Current Evidence on a Multi-Organ Metabolic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183415. [PMID: 31540048 PMCID: PMC6765902 DOI: 10.3390/ijerph16183415] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide and its incidence is definitely increasing. NAFLD is a metabolic disease with extensive multi-organ involvement, whose extra-hepatic manifestations include type 2 diabetes mellitus, cardiovascular disease, obstructive sleep apnea, chronic kidney disease, osteoporosis, and polycystic ovarian syndrome. Recently, further evidence has given attention to pathological correlations not strictly related to metabolic disease, also incorporating in this broad spectrum of systemic involvement hypothyroidism, psoriasis, male sexual dysfunction, periodontitis, and urolithiasis. The most common cause of mortality in NAFLD is represented by cardiovascular disease, followed by liver-related complications. Therefore, clinicians should learn to screen and initiate treatment for these extra-hepatic manifestations, in order to provide appropriate multidisciplinary assessments and rigorous surveillance. This review evaluates the current evidence regarding extra-hepatic associations of NAFLD, focusing on the pathogenic hypothesis and the clinical implications.
Collapse
|
61
|
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease (NAFLD), the most prevalent cause of chronic liver disease worldwide, is strongly associated with obesity and insulin resistance. RECENT FINDINGS Significant weight loss can improve NAFLD and nonalcoholic steatohepatitis (NASH). Diet and exercise that result in a sustained body weight reduction of 7-10% can improve liver fat content, NASH, and fibrosis. Vitamin E can be considered in patients with biopsy-proven NASH without diabetes, though caution must be used in those with prostate cancer. Pioglitazone improves liver histology, including fibrosis, and can be considered in patients with or without diabetes. Glucagon-like peptide-1 (GLP-1) antagonists may be beneficial in NASH, but more studies are needed before they can be recommended. Bariatric surgery, with resultant weight loss, can result in improvement in liver fat and inflammation. NAFLD treatment includes diet and exercise with a target 7-10% weight reduction. Treatment goals include improvements in liver fat content, liver inflammation, and fibrosis.
Collapse
Affiliation(s)
- Katherine T Brunner
- Section of Gastroenterology, Boston Medical Center, Boston University School of Medicine, 85 East Concord Street 7th Floor, Boston, MA, 02118, USA
| | | | - Robert M Wilechansky
- Evans Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Michelle T Long
- Section of Gastroenterology, Boston Medical Center, Boston University School of Medicine, 85 East Concord Street 7th Floor, Boston, MA, 02118, USA.
| |
Collapse
|
62
|
Xia MF, Bian H, Gao X. NAFLD and Diabetes: Two Sides of the Same Coin? Rationale for Gene-Based Personalized NAFLD Treatment. Front Pharmacol 2019; 10:877. [PMID: 31447675 PMCID: PMC6691129 DOI: 10.3389/fphar.2019.00877] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) has been increasing rapidly and at the forefront of worldwide concern. Characterized by excessive fat accumulation in the liver, NAFLD regularly coexists with metabolic disorders, including type 2 diabetes, obesity, and cardiovascular disease. It has been well established that the presence of NAFLD increases the incidence of type 2 diabetes, while diabetes aggravates NAFLD to more severe forms of steatohepatitis, cirrhosis, and hepatocellular carcinoma. However, recent progress on the genotype/phenotype relationships in NAFLD patients indicates the development of NAFLD with a relative conservation of glucose metabolism in individuals with specific gene variants, such as the patatin-like phospholipase domain-containing 3 (PNPLA3) and transmembrane 6 superfamily member 2 protein (TM6SF2) variants. This review will focus on the clinical and pathophysiological connections between NAFLD and type 2 diabetes and will also discuss a disproportionate progression of NAFLD and diabetes, and the different responses to lifestyle and drug intervention in NAFLD patients with specific gene variants that may give insight into personalized treatment for NAFLD.
Collapse
Affiliation(s)
- Ming-Feng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| |
Collapse
|
63
|
de Mendonça M, Dos Santos BDAC, de Sousa É, Rodrigues AC. Adiponectin is required for pioglitazone-induced improvements in hepatic steatosis in mice fed a high-fat diet. Mol Cell Endocrinol 2019; 493:110480. [PMID: 31176759 DOI: 10.1016/j.mce.2019.110480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/23/2019] [Accepted: 06/05/2019] [Indexed: 12/25/2022]
Abstract
Pioglitazone has been used for the treatment of nonalcoholic fatty liver disease (NAFLD) related to diabetes. The role of adiponectin in pioglitazone-induced improvements in NAFLD was studied by using wild-type (adipoWT) and adiponectin knockout (adipoKO) mice. High-fat diet fed mice were insulin resistant, glucose intolerant and had increased hepatic lipid accumulation as evidenced by increased NAFLD activity score. Despite pioglitazone has improved insulin resistance in both genotypes, hepatic steatosis was only improved in adipoWT obese mice. Amelioration of NAFLD in adipoWT mice promoted by pioglitazone was associated with up-regulation of Pparg, Fgf21 and down-regulation of Pepck liver expression. On the other hand, resistance to pioglitazone treatment in adipoKO mice was associated with increased expression of miR-192 and Hsl, which was not followed by increased fatty acid oxidation. In conclusion, our data provides evidence that increased adiponectin production by pioglitazone is necessary for its beneficial action on NAFLD.
Collapse
Affiliation(s)
- Mariana de Mendonça
- Institute of Biomedical Sciences, Department of Pharmacology, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Érica de Sousa
- Institute of Biomedical Sciences, Department of Pharmacology, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Alice Cristina Rodrigues
- Institute of Biomedical Sciences, Department of Pharmacology, University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
64
|
Jayakumar S, Loomba R. Review article: emerging role of the gut microbiome in the progression of nonalcoholic fatty liver disease and potential therapeutic implications. Aliment Pharmacol Ther 2019; 50:144-158. [PMID: 31149745 PMCID: PMC6771496 DOI: 10.1111/apt.15314] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/24/2018] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a prevalent disorder associated with obesity and diabetes. Few treatment options are effective for patients with NAFLD, but connections between the gut microbiome and NAFLD and NAFLD-associated conditions suggest that modulation of the gut microbiota could be a novel therapeutic option. AIM To examine the effect of the gut microbiota on pathophysiologic causes of NAFLD and assess the potential of microbiota-targeting therapies for NAFLD. METHODS A PubMed search of the literature was performed; relevant articles were included. RESULTS The composition of bacteria in the gastrointestinal tract can enhance fat deposition, modulate energy metabolism and alter inflammatory processes. Emerging evidence suggests a role for the gut microbiome in obesity and metabolic syndrome. NAFLD is often considered the hepatic manifestation of metabolic syndrome, and there has been tremendous progress in understanding the association of gut microbiome composition with NAFLD disease severity. We discuss the role of the gut microbiome in NAFLD pathophysiology and whether the microbiome composition can differentiate the two categories of NAFLD: nonalcoholic fatty liver (NAFL, the non-progressive form) vs nonalcoholic steatohepatitis (NASH, the progressive form). The association between gut microbiome and fibrosis progression in NAFLD is also discussed. Finally, we review whether modulation of the gut microbiome plays a role in improving treatment outcomes for patients with NAFLD. CONCLUSIONS Multiple pathophysiologic pathways connect the gut microbiome with the pathophysiology of NAFLD. Therefore, therapeutics that effectively target the gut microbiome may be beneficial for the treatment of patients with NAFLD.
Collapse
Affiliation(s)
- Saumya Jayakumar
- Division of Gastroenterology and Hepatology, Department of MedicineNAFLD Research Center, University of California at San DiegoLa JollaCalifornia
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of MedicineNAFLD Research Center, University of California at San DiegoLa JollaCalifornia,Division of Epidemiology, Department of Family Medicine and Public HealthUniversity of California at San DiegoLa JollaCalifornia
| |
Collapse
|
65
|
Alswat KA, Fallatah HI, Al-Judaibi B, Elsiesy HA, Al-Hamoudi WK, Qutub AN, Alturaify N, Al-Osaimi A. Position statement on the diagnosis and management of non-alcoholic fatty liver disease. Saudi Med J 2019; 40:531-540. [PMID: 31219486 PMCID: PMC6778754 DOI: 10.15537/smj.2019.6.23980] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major national and international health burden. It is one of the most common liver diseases worldwide and the most common cause of abnormal liver enzymes in many developed countries. Non-alcoholic fatty liver disease is also known as an important cause of cryptogenic cirrhosis and second leading cause for liver transplantation. It is commonly associated with metabolic syndrome. Non-alcoholic steatohepatitis (NASH) is the progressive phenotype of NAFLD. In spite of promising performance of non-invasive tools, liver biopsy remains the gold standard test for NASH diagnosis. Over decades, many drugs have been investigated in phase 2 and 3; however, no approved therapy to date. Despite the alarming global rates of NAFLD, there are no local community-based studies on the prevalence of NAFLD or local practice guidelines on its management; this expert review aims to fill this gap.
Collapse
Affiliation(s)
- Khalid A Alswat
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia. E-mail.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Metformin attenuates the onset of non-alcoholic fatty liver disease and affects intestinal microbiota and barrier in small intestine. Sci Rep 2019; 9:6668. [PMID: 31040374 PMCID: PMC6491483 DOI: 10.1038/s41598-019-43228-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
The antidiabetic drug metformin has been proposed to affect non-alcoholic fatty liver disease (NAFLD) through its effects on intestinal microbiota and barrier function. However, so far most studies focused on long-term effects and more progressed disease stages. The aim of this study was to assess in two experimental settings, if the onset of NAFLD is associated with changes of intestinal microbiota and barrier function and to determine effects of metformin herein. C57Bl/6J mice were fed a liquid control diet (C) or fat-, fructose- and cholesterol-rich diet (FFC) for four days or six weeks ±300 mg/kg BW/day metformin (Met). Markers of liver health, intestinal barrier function and microbiota composition were assessed. Metformin treatment markedly attenuated FFC-induced NAFLD in both experiments with markers of inflammation and lipidperoxidation in livers of FFC + Met-fed mice being almost at the level of controls. Metformin treatment attenuated the loss of tight junction proteins in small intestine and the increase of bacterial endotoxin levels in portal plasma. Changes of intestinal microbiota found in FFC-fed mice were also significantly blunted in FFC + Met-fed mice. Taken together, protective effects of metformin on the onset of NAFLD are associated with changes of intestinal microbiota composition and lower translocation of bacterial endotoxins.
Collapse
|
67
|
Green CJ, Marjot T, Tomlinson JW, Hodson L. Of mice and men: Is there a future for metformin in the treatment of hepatic steatosis? Diabetes Obes Metab 2019; 21:749-760. [PMID: 30456918 DOI: 10.1111/dom.13592] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver diseases, of which the first stage is steatosis. It is one of the most common liver diseases in developed countries and there is a clear association between type 2 diabetes (T2DM) and NAFLD. It is estimated that 70% of people with T2DM have NAFLD and yet there is currently no licensed pharmacological agent to treat it. Whilst lifestyle modification may ameliorate liver fat, it is often difficult to achieve or sustain; thus, there is great interest in pharmacological treatments for NAFLD. Metformin is the first-line medication in the management of T2DM and evidence from animal and human studies has suggested that it may be useful in reducing liver fat via inhibition of lipogenesis and increased fatty acid oxidation. Findings from the majority of studies undertaken in rodent models clearly suggest that metformin may be a powerful therapeutic agent specifically to reduce liver fat accumulation; data from human studies are less convincing. In the present review we discuss the evidence for the specific effects of metformin treatment on liver fat accumulation in animal and human studies, as well as the underlying proposed mechanisms, to try and understand and reconcile the difference in findings between rodent and human work in this area.
Collapse
Affiliation(s)
- Charlotte J Green
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Thomas Marjot
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| |
Collapse
|
68
|
Pappachan JM, Fernandez CJ, Chacko EC. Diabesity and antidiabetic drugs. Mol Aspects Med 2019; 66:3-12. [PMID: 30391234 DOI: 10.1016/j.mam.2018.10.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
The prevalence of "diabesity" - diabetes related to obesity - has increased tremendously over the past few decades because of the global obesity epidemic. Although bariatric surgery is the best treatment option for patients with diabesity, a majority of patients are managed only with antidiabetic drugs for various reasons. Diabetes control with antidiabetic agents may affect diabesity outcomes positively or negatively because of their effects on body weight and other metabolic parameters. For this reason, rational use of anti-diabetic medications is imperative to optimise long-term management of diabesity. Understanding the molecular mechanisms of antidiabetic drugs and/or drug combinations on diabesity outcomes are therefore important not only for the basic scientists but also for clinicians. This review explores the molecular signalling cascades of antidiabetic medications in the management of diabesity.
Collapse
Affiliation(s)
- Joseph M Pappachan
- Department of Endocrinology, Diabetes& Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, LE21 9QS, United Kingdom.
| | - Cornelius J Fernandez
- Department of Endocrinology, Diabetes& Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, LE21 9QS, United Kingdom
| | - Elias C Chacko
- Department of Endocrinology & Diabetes, Jersey Hospital, Jersey, JE1 4SE, United Kingdom
| |
Collapse
|
69
|
From sugar to liver fat and public health: systems biology driven studies in understanding non-alcoholic fatty liver disease pathogenesis. Proc Nutr Soc 2019; 78:290-304. [PMID: 30924429 DOI: 10.1017/s0029665119000570] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now a major public health concern with an estimated prevalence of 25-30% of adults in many countries. Strongly associated with obesity and the metabolic syndrome, the pathogenesis of NAFLD is dependent on complex interactions between genetic and environmental factors that are not completely understood. Weight loss through diet and lifestyle modification underpins clinical management; however, the roles of individual dietary nutrients (e.g. saturated and n-3 fatty acids; fructose, vitamin D, vitamin E) in the pathogenesis or treatment of NAFLD are only partially understood. Systems biology offers valuable interdisciplinary methods that are arguably ideal for application to the studying of chronic diseases such as NAFLD, and the roles of nutrition and diet in their molecular pathogenesis. Although present in silico models are incomplete, computational tools are rapidly evolving and human metabolism can now be simulated at the genome scale. This paper will review NAFLD and its pathogenesis, including the roles of genetics and nutrition in the development and progression of disease. In addition, the paper introduces the concept of systems biology and reviews recent work utilising genome-scale metabolic networks and developing multi-scale models of liver metabolism relevant to NAFLD. A future is envisioned where individual genetic, proteomic and metabolomic information can be integrated computationally with clinical data, yielding mechanistic insight into the pathogenesis of chronic diseases such as NAFLD, and informing personalised nutrition and stratified medicine approaches for improving prognosis.
Collapse
|
70
|
Javed Z, Papageorgiou M, Deshmukh H, Kilpatrick ES, Mann V, Corless L, Abouda G, Rigby AS, Atkin SL, Sathyapalan T. A Randomized, Controlled Trial of Vitamin D Supplementation on Cardiovascular Risk Factors, Hormones, and Liver Markers in Women with Polycystic Ovary Syndrome. Nutrients 2019; 11:nu11010188. [PMID: 30658483 PMCID: PMC6356309 DOI: 10.3390/nu11010188] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 01/10/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) increases the risk of metabolic syndrome and non-alcoholic-fatty-liver disease (NAFLD). Vitamin D supplementation may exert positive effects on liver biochemistry in patients with NAFLD; however, its effects on PCOS are unknown. This randomized, double-blind, placebo-controlled study explored the effect of vitamin D supplementation on cardiovascular risk factors (high-sensitivity C-reactive protein (hs-CRP), weight, body mass index (BMI), lipid profile, glucose levels, insulin levels, the homeostatic model assessment-insulin resistance (HOMA-IR), hormones (free androgen index (FAI), testosterone, sex hormone binding globulin (SHBG), and liver markers (alanine aminotransferase (ALT), hyaluronic acid (HA), N-terminal pro-peptide of type III procollagen (PIIINP), tissue inhibitor of metallo-proteinases-1 (TIMP-1), and the enhanced liver fibrosis (ELF) score). Forty women with PCOS were recruited and randomized to vitamin D (3200 IU) or placebo daily for 3 months. All outcomes were measured at baseline and 3 months follow-up (FU). Greater increases in vitamin D levels were shown in the supplementation group (vitamin D, baseline: 25.6 ± 11.4 nmol/L, FU: 90.4 ± 19.5 nmol/L vs. placebo, baseline: 30.9 ± 11.1 nmol/L, FU: 47.6 ± 20.5 nmol/L, p < 0.001). Between groups comparisons (% baseline change) revealed significant differences in ALT (p = 0.042) and a weak effect indicating a greater reduction in the HOMA-IR in the vitamin D group (p = 0.051). No further between group differences were seen in other cardiovascular risk factor, liver markers, or hormones. This study supports beneficial effects of vitamin D supplementation on liver markers and modest improvements in insulin sensitivity in vitamin D deficient women with PCOS.
Collapse
Affiliation(s)
- Zeeshan Javed
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK.
| | - Maria Papageorgiou
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK.
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna 1090, Austria.
| | - Harshal Deshmukh
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK.
| | - Eric S Kilpatrick
- Department of Pathology, Sidra Medical and Research Centre, Doha PO Box 26999, Qatar.
| | - Vincent Mann
- Gastroenterology Research Department, Hull Royal Infirmary, Hull HU3 2JZ, UK.
| | - Lynsey Corless
- Gastroenterology Research Department, Hull Royal Infirmary, Hull HU3 2JZ, UK.
| | - George Abouda
- Gastroenterology Research Department, Hull Royal Infirmary, Hull HU3 2JZ, UK.
| | - Alan S Rigby
- Hull York Medical School, University of Hull, Hull HU3 2JZ, UK.
| | - Stephen L Atkin
- Weill Cornell Medical College Qatar, Education City, Doha PO Box 24144, Qatar.
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK.
| |
Collapse
|
71
|
Antidiabetic Drugs in NAFLD: The Accomplishment of Two Goals at Once? Pharmaceuticals (Basel) 2018; 11:ph11040121. [PMID: 30413050 PMCID: PMC6316860 DOI: 10.3390/ph11040121] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 02/06/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is the most common cause of chronic liver disease in Western countries, accounting for 20–30% of general population and reaching a prevalence of 55% in patients with type 2 diabetes mellitus (T2DM). Insulin resistance plays a key role in pathogenic mechanisms of NAFLD. Many drugs have been tested but no medications have yet been approved. Antidiabetic drugs could have a role in the progression reduction of the disease. The aim of this review is to summarize evidence on efficacy and safety of antidiabetic drugs in patients with NAFLD. Metformin, a biguanide, is the most frequently used drug in the treatment of T2DM. To date 15 randomized controlled trials (RCTs) and four meta-analysis on the use of metformin in NAFLD are available. No significant improvement in histological liver fibrosis was shown, but it can be useful in the treatment of co-factors of NAFLD, like body weight, transaminase or cholesterol levels, and HbA1c levels. A possible protective role in various types of cancer has been reported for Metformin. Thiazolidinediones modulate insulin sensitivity by the activation of PPAR-γ. The RCTs and the meta-analysis available about the role of these drugs in NAFLD show an improvement in ballooning, lobular inflammation, and perhaps fibrosis, but some side effects, in particular cardiovascular, were showed. GLP-1 analogues stimulate insulin secretion by pancreatic beta cell and inhibit glucagon release; Liraglutide is the most used drug in this class and significantly improves steatosis, hepatocyte ballooning and transaminase levels. Scanty data about the role of DPP-4 and SGLT inhibitors were published. No data about insulin effects on NAFLD are available but it was showed a possible association between insulin use and the development of solid neoplasms, in particular HCC. In conclusion, antidiabetic drugs seem to be promising drugs, because they are able to treat both NAFLD manifestations and diabetes, preventing worsening of hepatic damage, but data are still conflicting. All antidiabetic drugs can be safely used in patients with compensated cirrhosis, while insulin is the preferred drug in decompensated Child C cirrhosis.
Collapse
|
72
|
Connolly JJ, Ooka K, Lim JK. Future Pharmacotherapy for Non-alcoholic Steatohepatitis (NASH): Review of Phase 2 and 3 Trials. J Clin Transl Hepatol 2018; 6:264-275. [PMID: 30271738 PMCID: PMC6160309 DOI: 10.14218/jcth.2017.00056] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/16/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) results from inflammation and hepatocyte injury in the setting of hepatic steatosis. Non-alcoholic steatohepatitis increases the risk of progression to liver fibrosis and cirrhosis, and is the most rapidly growing etiology for liver failure and indication for liver transplantation in the USA. Weight loss and lifestyle modification remain the standard first-line treatment, as no USA Food and Drug Administration-approved pharmacotherapy currently exists. The past decade has seen an explosion of interest in drug development targeting pathologic pathways in non-alcoholic steatohepatitis, with numerous phase 2 and 3 trials currently in progress. Here, we concisely review the major targets and mechanisms of action by class, summarize results from completed pivotal phase 2 studies, and provide a detailed outline of key active studies with trial data for drugs in development, including obeticholic acid, elafibranor, cenicriviroc and selonsertib.
Collapse
Affiliation(s)
- James J. Connolly
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kohtaro Ooka
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Joseph K. Lim
- Yale Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
73
|
Metformin: An Old Drug with New Applications. Int J Mol Sci 2018; 19:ijms19102863. [PMID: 30241400 PMCID: PMC6213209 DOI: 10.3390/ijms19102863] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022] Open
Abstract
Metformin is a biguanide drug that has been used to treat type 2 diabetes mellitus for more than 60 years. The United Kingdom Prospective Diabetic Study (UKPDS) has shown metformin to improve mortality rates in diabetes patients, and recent studies suggest metformin has additional effects in treating cancer, obesity, nonalcoholic fatty liver disease (NAFLD), polycystic ovary syndrome (PCOS), and metabolic syndrome. Metformin has also been shown to alleviate weight gain associated with antipsychotic medication. Metformin has recently been extensively studied and emerging evidence suggests metformin decreases hepatocyte triglyceride accumulation in NAFLD and prevents liver tumorigenesis. Interestingly, studies have also shown metformin reduces visceral fat, suppresses white-adipose-tissue (WAT) extracellular matrix remodeling, and inhibits obesity-induced inflammation. However, clinical evidence for using metformin to treat NAFLD, cancer, metabolic syndrome, or to prevent hepatocellular carcinoma in NAFLD patients is lacking. This review therefore addresses the potential beneficial effects of metformin on NAFLD, its role in protecting against cardiac ischemia–reperfusion (I/R) injury, atherosclerosis, glucotoxicity, and lipotoxicity induced oxidative and ER stress in pancreatic β-cell dysfunction, as well as its underlying molecular mechanisms of action.
Collapse
|
74
|
Madiraju AK, Qiu Y, Perry RJ, Rahimi Y, Zhang XM, Zhang D, Camporez JPG, Cline GW, Butrico GM, Kemp BE, Casals G, Steinberg GR, Vatner DF, Petersen KF, Shulman GI. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med 2018; 24:1384-1394. [PMID: 30038219 PMCID: PMC6129196 DOI: 10.1038/s41591-018-0125-4] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
Abstract
Metformin, the universal first-line treatment for type 2 diabetes, exerts its therapeutic glucose-lowering effects by inhibiting hepatic gluconeogenesis. However, the primary molecular mechanism of this biguanide remains unclear, though it has been suggested to act, at least partially, by mitochondrial complex I inhibition. Here we show that clinically relevant concentrations of plasma metformin achieved by acute intravenous, acute intraportal or chronic oral administration in awake normal and diabetic rats inhibit gluconeogenesis from lactate and glycerol but not from pyruvate and alanine, implicating an increased cytosolic redox state in mediating metformin's antihyperglycemic effect. All of these effects occurred independently of complex I inhibition, evidenced by unaltered hepatic energy charge and citrate synthase flux. Normalizing the cytosolic redox state by infusion of methylene blue or substrates that contribute to gluconeogenesis independently of the cytosolic redox state abrogated metformin-mediated inhibition of gluconeogenesis in vivo. Additionally, in mice expressing constitutively active acetyl-CoA carboxylase, metformin acutely decreased hepatic glucose production and increased the hepatic cytosolic redox state without altering hepatic triglyceride content or gluconeogenic enzyme expression. These studies demonstrate that metformin, at clinically relevant plasma concentrations, inhibits hepatic gluconeogenesis in a redox-dependent manner independently of reductions in citrate synthase flux, hepatic nucleotide concentrations, acetyl-CoA carboxylase activity, or gluconeogenic enzyme protein expression.
Collapse
Affiliation(s)
- Anila K Madiraju
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Yang Qiu
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rachel J Perry
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yasmeen Rahimi
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xian-Man Zhang
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Gary W Cline
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gina M Butrico
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Bruce E Kemp
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne & Mary MacKillop Institute for Health Research, Australian Catholic University Fitzroy, Fitzroy, Victoria, Australia
| | - Gregori Casals
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gregory R Steinberg
- Departments of Medicine and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Daniel F Vatner
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kitt F Petersen
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
75
|
Uchida D, Takaki A, Adachi T, Okada H. Beneficial and Paradoxical Roles of Anti-Oxidative Nutritional Support for Non-Alcoholic Fatty Liver Disease. Nutrients 2018; 10:E977. [PMID: 30060482 PMCID: PMC6116036 DOI: 10.3390/nu10080977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is being recognized as a key factor in the progression of chronic liver disease (CLD), especially non-alcoholic fatty liver disease (NAFLD). Many NAFLD treatment guidelines recommend the use of antioxidants, especially vitamin E. Many prospective studies have described the beneficial effects of such agents for the clinical course of NAFLD. However, as these studies are usually short-term evaluations, lasting only a few years, whether or not antioxidants continue to exert favorable long-term effects, including in cases of concomitant hepatocellular carcinoma, remains unclear. Antioxidants are generally believed to be beneficial for human health and are often commercially available as health-food products. Patients with lifestyle-related diseases often use such products to try to be healthier without practicing lifestyle intervention. However, under some experimental NAFLD conditions, antioxidants have been shown to encourage the progression of hepatocellular carcinoma, as oxidative stress is toxic for cancer cells, just as for normal cells. In this review, we will highlight the paradoxical effects of antioxidants against NAFLD and related hepatocellular carcinoma.
Collapse
Affiliation(s)
- Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Takuya Adachi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
76
|
Wang T, Yang W, Karakas S, Sarkar S. NASH in Nondiabetic Endocrine Disorders. Metab Syndr Relat Disord 2018; 16:315-320. [PMID: 29873585 DOI: 10.1089/met.2018.0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of disease, including hepatic steatosis, inflammation, and fibrosis. NAFLD carries the risk of progression to cirrhosis with its associated complications and hepatocellular carcinoma. It is now the most common liver disease in the Western world and its prevalence is increasing. While the association between NAFLD and type 2 diabetes has been well documented, there is significantly less understanding of the pathophysiology and progression of NAFLD in patients with other endocrine disorders affecting metabolism in various ways. Some of the more common endocrine disorders such as polycystic ovarian syndrome, growth hormone deficiency, hypothyroidism, and hypogonadism are known in clinical practice to be associated with NAFLD. Medications that alter the endocrine system such as tamoxifen and adrenal steroids have also been attributed to significant NAFLD. The key to management of NAFLD at this time are dietary changes and exercise to achieve weight loss. Unfortunately, a large proportion of the patients with these endocrine disorders are unable to achieve either. This review aims to examine and summarize the current published literature that have evaluated the association between NAFLD and the above endocrine disorders and potential therapeutic interventions in each case.
Collapse
Affiliation(s)
- Timothy Wang
- 1 Department of Internal Medicine, University of California , Davis, Sacramento, California
| | - Wei Yang
- 1 Department of Internal Medicine, University of California , Davis, Sacramento, California.,2 Division of Endocrinology, University of California , Davis, Sacramento, California
| | - Sidika Karakas
- 1 Department of Internal Medicine, University of California , Davis, Sacramento, California.,2 Division of Endocrinology, University of California , Davis, Sacramento, California
| | - Souvik Sarkar
- 1 Department of Internal Medicine, University of California , Davis, Sacramento, California.,3 Division of Gastroenterology and Hepatology, University of California , Davis, Sacramento, California
| |
Collapse
|
77
|
Short-term treatment with metformin reduces hepatic lipid accumulation but induces liver inflammation in obese mice. Inflammopharmacology 2018; 26:1103-1115. [PMID: 29450671 DOI: 10.1007/s10787-018-0443-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/12/2018] [Indexed: 12/11/2022]
Abstract
The study aimed to evaluate the metabolic and inflammatory effects of short-term treatments (10 days) with metformin (MET) on the NAFLD caused by a high-fat diet (HFD) in C57BL/6 mice. After the treatment, histological liver slices were obtained, hepatocytes and macrophages were extracted and cultured with phosphate buffered saline, LPS (2.5 µg/mL) and MET (1 µM) for 24 h. Cytokine levels were determined by ELISA. NAFLD caused by the HFD was partially reduced by MET. The lipid accumulation induced by the HFD was not associated with liver inflammation; however, MET seemed to promote pro-inflammatory effects in liver, since it increased hepatic concentration of IL-1β, TNF-α, IL-6, MCP-1 and IFN-γ. Similarly, MET increased the concentration of IL-1β, IL-6 in hepatocyte cultures. However, in macrophages culture, MET lowered levels of IL-1β, IL-6 and TNF-α stimulated by LPS. Overall, MET reduced liver NAFLD but promoted hepatocyte increase in pro-inflammatory cytokines, thus, leading to liver inflammation.
Collapse
|
78
|
Yang JW, Kim HS, Choi YW, Kim YM, Kang KW. Therapeutic application of GPR119 ligands in metabolic disorders. Diabetes Obes Metab 2018; 20:257-269. [PMID: 28722242 DOI: 10.1111/dom.13062] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 02/06/2023]
Abstract
GPR119 belongs to the G protein-coupled receptor family and exhibits dual modes of action upon ligand-dependent activation: pancreatic secretion of insulin in a glucose-dependent manner and intestinal secretion of incretins. Hence, GPR119 has emerged as a promising target for treating type 2 diabetes mellitus without causing hypoglycaemia. However, despite continuous efforts by many major pharmaceutical companies, no synthetic GPR119 ligand has been approved as a new class of anti-diabetic agents thus far, nor has any passed beyond phase II clinical studies. Herein, we summarize recent advances in research concerning the physiological/pharmacological effects of GPR119 and its synthetic ligands on the regulation of energy metabolism, and we speculate on future applications of GPR119 ligands for the treatment of metabolic diseases, focusing on non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Jin Won Yang
- Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyo Seon Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yong-Won Choi
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Young-Mi Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Keon Wook Kang
- Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|