51
|
Zhang Y, Liu W, Yuan W, Cai Z, Ye G, Zheng G, Xu C, Wang X, Zeng C, Mi R, Feng P, Chen F, Wu Y, Shen H, Wang P. Impairment of APPL1/Myoferlin facilitates adipogenic differentiation of mesenchymal stem cells by blocking autophagy flux in osteoporosis. Cell Mol Life Sci 2022; 79:488. [PMID: 35984564 PMCID: PMC9391247 DOI: 10.1007/s00018-022-04511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
An imbalance of human mesenchymal stem cells (hMSCs) adipogenic and osteogenic differentiation is crucial in the pathogenesis of osteoporosis, and elucidation of the underlying mechanism is urgently needed. APPL1, an adaptor protein of the adiponectin receptor, was recently shown to be closely related to bone mass. However, the role of APPL1 in the imbalance of hMSC differentiation in osteoporosis is unclear. Therefore, we aimed to explore the mechanisms by which APPL1 alters hMSCs adipogenic differentiation in osteoporosis. Here, we found that APPL1 expression was downregulated in elderly patients with osteoporosis and in mouse osteoporosis model. APPL1 negatively regulated hMSC adipogenic differentiation in vivo and in vitro. Mechanistically, by enhancing ubiquitination-mediated Myoferlin degradation, downregulated APPL1 expression increased the risk of lysosome dysfunction during hMSCs adipogenic differentiation. Lysosomal dysfunction inhibited autophagy flux by suppressing autophagosome degradation and promoted hMSC differentiation towards the adipocyte lineage. Our findings suggest that APPL1/Myoferlin downregulation promoted hMSCs adipogenic differentiation by inhibiting autophagy flux, further impairing the balance of hMSCs adipogenic and osteogenic differentiation in osteoporosis; the APPL1/ Myoferlin axis may be a promising diagnostic and therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Yunhui Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518000, People's Republic of China
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518000, People's Republic of China
| | - Weiquan Yuan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518000, People's Republic of China
| | - Zhaopeng Cai
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518000, People's Republic of China
| | - Guiwen Ye
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518000, People's Republic of China
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518000, People's Republic of China
| | - Chenhao Xu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518000, People's Republic of China
| | - Xinglang Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518000, People's Republic of China
| | - Chenying Zeng
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518000, People's Republic of China
| | - Rujia Mi
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518000, People's Republic of China
| | - Pei Feng
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518000, People's Republic of China
| | - Fenglei Chen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518000, People's Republic of China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518000, People's Republic of China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518000, People's Republic of China.
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
52
|
He M, Lei H, He X, Liu Y, Wang A, Ren Z, Liu X, Yan G, Wang W, Wang Y, Li G, Wang T, Pu J, Shen Z, Wang Y, Xie J, Du W, Yuan Y, Yang L. METTL14 Regulates Osteogenesis of Bone Marrow Mesenchymal Stem Cells via Inducing Autophagy Through m6A/IGF2BPs/Beclin-1 Signal Axis. Stem Cells Transl Med 2022; 11:987-1001. [PMID: 35980318 PMCID: PMC9492283 DOI: 10.1093/stcltm/szac049] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/05/2022] [Indexed: 11/26/2022] Open
Abstract
The development of osteoporosis is often accompanied by autophagy disturbance, which also causes new osteoblast defects from bone marrow mesenchymal stem cells (BMSCs). However, the underlying molecular mechanisms are still not fully understood. Methyltransferase-like 14 (METTL14) is the main enzyme for N6-methyladenosine (m6A), the most prevalent internal modification in mammalian mRNAs, and it has been implicated in many bioprocesses. Herein, we demonstrate that METTL14 plays a critical role in autophagy induction and hinders osteoporosis process whose expression is decreased both in human osteoporosis bone tissue and ovariectomy (OVX) mice. In vivo, METTL14+/− knockdown mice exhibit elevated bone loss and impaired autophagy similar to the OVX mice, while overexpression of METTL14 significantly promotes bone formation and inhibits the progression of osteoporosis caused by OVX surgery. In vitro, METTL14 overexpression significantly enhances the osteogenic differentiation ability of BMSCs through regulating the expression of beclin-1 depending on m6A modification and inducing autophagy; the opposite is true with METTL14 silencing. Subsequently, m6A-binding proteins IGF2BP1/2/3 recognize m6A-methylated beclin-1 mRNA and promote its translation via mediating RNA stabilization. Furthermore, METTL14 negatively regulates osteoclast differentiation. Collectively, our study reveals the METTL14/IGF2BPs/beclin-1 signal axis in BMSCs osteogenic differentiation and highlights the critical roles of METTL14-mediated m6A modification in osteoporosis.
Collapse
Affiliation(s)
- Mingyu He
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Hong Lei
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Xiaoqi He
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Ying Liu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Ao Wang
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Zijing Ren
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Xiaoyan Liu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Gege Yan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Wenbo Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yang Wang
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Guanghui Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Tong Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Jiaying Pu
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Zhihua Shen
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Yanquan Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Jiajie Xie
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Weijie Du
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China.,Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, People's Republic of China
| | - Ye Yuan
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China.,Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, People's Republic of China
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.,Key Laboratory of Hepatosplenic Surgery of Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.,NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
53
|
Chen J, Yao Y, Wang X, Wang Y, Li T, Du J. Chloroquine regulates the proliferation and apoptosis of palate development on mice embryo by activating P53 through blocking autophagy in vitro. In Vitro Cell Dev Biol Anim 2022; 58:558-570. [PMID: 35947289 DOI: 10.1007/s11626-022-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/02/2022] [Indexed: 11/05/2022]
Abstract
Cleft lip and palate is one of the most frequent congenital developmental defects. Autophagy is a highly conserved process of cell self-degradation in eukaryotes, involving multiple biological processes in which chloroquine (CQ) is the most common inhibitor. However, whether CQ affects and how it affects palate development is unknown. Mouse embryonic palatal cells (MEPCs) were treated with CQ to observe cell viability, apoptosis, migration, osteogenic differentiation by cell proliferation assay, flow cytometric analysis, scratch assay, and alizarin red staining. PI staining was used to measure cell cycle distribution. Immunofluorescence (IF) assay and transmission electron microscopy were used to detect autophagosomes. The autophagy-related factors (LC3 and P62), apoptosis-related markers (P53, caspase-3 cleaved caspase-3, BAX, and BCL-2), and cell cycle-related proteins (P21, CDK2, CDK4, cyclin D1, and cyclin E) were all measured by western blot. CQ inhibited the proliferation of MEPCs by arresting the G0/G1 phase of the cell cycle in a concentration- and time-dependent manner with cell cycle-related proteins P21 upregulated and CDK2, CDK4, cyclin D1, and cyclin E downregulated. Then we detected CQ also induced cell apoptosis in a dose-dependent manner by decreasing the BCL-2/BAX ratio and increasing cleaved caspase-3. Next, it was investigated that migration and osteogenesis of MEPCs decreased with CQ treatment in a dose-dependent manner. Meanwhile, CQ blocked the autophagy pathway by upregulating LC3II and P62 expressions which activated the P53 pathway. CQ activates P53 which affects MEPC biological characteristics by changing the proliferation and apoptosis of MEPCs through inhibiting autophagy.
Collapse
Affiliation(s)
- Jing Chen
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Yaxia Yao
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Xiaotong Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Yijia Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Tianli Li
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Juan Du
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China.
| |
Collapse
|
54
|
Knewtson KE, Ohl NR, Robinson JL. Estrogen Signaling Dictates Musculoskeletal Stem Cell Behavior: Sex Differences in Tissue Repair. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:789-812. [PMID: 34409868 PMCID: PMC9419932 DOI: 10.1089/ten.teb.2021.0094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sexual dimorphisms in humans and other species exist in visually evident features such as body size and less apparent characteristics, including disease prevalence. Current research is adding to a growing understanding of sex differences in stem cell function and response to external stimuli, including sex hormones such as estrogens. These differences are proving significant and directly impact both the understanding of stem cell processes in tissue repair and the clinical implementation of stem cell therapies. Adult stem cells of the musculoskeletal system, including those used for development and repair of muscle, bone, cartilage, fibrocartilage, ligaments, and tendons, are no exception. Both in vitro and in vivo studies have found differences in stem cell number, proliferative and differentiation capabilities, and response to estrogen treatment between males and females of many species. Maintaining the stemness and reducing senescence of adult stem cells is an important topic with implications in regenerative therapy and aging. As such, this review discusses the effect of estrogens on musculoskeletal system stem cell response in multiple species and highlights the research gaps that still need to be addressed. The following evidence from investigations of sex-related phenotypes in adult progenitor and stem cells are pieces to the big puzzle of sex-related effects on aging and disease and critical information for both fundamental tissue repair and regeneration studies and safe and effective clinical use of stem cells. Impact Statement This review summarizes current knowledge of sex differences in and the effects of estrogen treatment on musculoskeletal stem cells in the context of tissue engineering. Specifically, it highlights the impact of sex on musculoskeletal stem cell function and ability to regenerate tissue. Furthermore, it discusses the varying effects of estrogen on stem cell properties, including proliferation and differentiation, important to tissue engineering. This review aims to highlight the potential impact of estrogens and the importance of performing sex comparative studies in the field of tissue engineering.
Collapse
Affiliation(s)
- Kelsey E. Knewtson
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Nathan R. Ohl
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Jennifer L. Robinson
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, USA
- Address correspondence to: Jennifer L. Robinson, PhD, Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 West 15th Street Room 4132, Lawrence, KS 66045, USA
| |
Collapse
|
55
|
Livshits G, Kalinkovich A. Targeting chronic inflammation as a potential adjuvant therapy for osteoporosis. Life Sci 2022; 306:120847. [PMID: 35908619 DOI: 10.1016/j.lfs.2022.120847] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Systemic, chronic, low-grade inflammation (SCLGI) underlies the pathogenesis of various widespread diseases. It is often associated with bone loss, thus connecting chronic inflammation to the pathogenesis of osteoporosis. In postmenopausal women, osteoporosis is accompanied by SCLGI development, likely owing to estrogen deficiency. We propose that SCGLI persistence in osteoporosis results from failed inflammation resolution, which is mainly mediated by specialized, pro-resolving mediators (SPMs). In corroboration, SPMs demonstrate encouraging therapeutic effects in various preclinical models of inflammatory disorders, including bone pathology. Since numerous data implicate gut dysbiosis in osteoporosis-associated chronic inflammation, restoring balanced microbiota by supplementing probiotics and prebiotics could contribute to the efficient resolution of SCGLI. In the present review, we provide evidence for this hypothesis and argue that efficient SCGLI resolution may serve as a novel approach for treating osteoporosis, complementary to traditional anti-osteoporotic medications.
Collapse
Affiliation(s)
- Gregory Livshits
- Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
56
|
Jiawei Yanghe Decoction Regulates Bone-Lipid Balance through the BMP-SMAD Signaling Pathway to Promote Osteogenic Differentiation of Bone Mesenchymal Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2885419. [PMID: 35769158 PMCID: PMC9236768 DOI: 10.1155/2022/2885419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
Abstract
Background The Jiawei Yanghe decoction (JWYHD) is a traditional Chinese medicine formula for the treatment of osteoporosis, but its therapeutic mechanism has not been fully elucidated, and the therapeutic target of the intervention disease needs to be further verified. The dysfunction of bone mesenchymal stem cells (BMSCs) is considered to be an important pathogenesis of postmenopausal osteoporosis (PMOP). The purpose of this study was to explore how JWYHD regulates BMSC differentiation through the BMP-SMAD signal pathway. Methods In the in vivo study, we used an ovariectomized PMOP rat (n = 36, 2-month-old, 200 ± 20 g) model and femur micro-CT analysis to study the effect of JWYHD on bone loss in rats. By immunofluorescence, the translocation expression of BMP2, a key protein in the pathway, was detected. Serum bone metabolism was detected by an enzyme-linked immunosorbent assay (ELISA). Alkaline phosphatase (ALP) activity was detected by alkaline phosphatase staining (ALPS), osteogenesis and matrix mineralization were detected by alizarin red staining (ARS), the adipogenic ability of BMSCs was detected by oil red staining (ORS), and CFU is used to detect the ability of cells to form colonies. The expression of related proteins was detected by western blotting. Results In vivo and in vitro, the OP phenotypes of SD rats induced by ovariectomy (OVX) included impaired bone mineral density and microstructure, abnormal bone metabolism, and impaired MSC differentiation potential. JWYHD treatment reversed this trend and restored the differentiation potential of MSCs. JWYHD medicated serum and direct intervention of drugs activated the BMP-SMAD signaling pathway, promoted the osteogenic differentiation of BMSCs, and inhibited their adipogenic differentiation. Conclusions Our data identified that JWYHD is an effective alternative drug for the treatment of PMOP that functions to stimulate the differentiation of BMSCs into osteoblasts in the BMP-SMAD signaling-dependent mechanism.
Collapse
|
57
|
Zhou J, Yang J, Dong Y, Shi Y, Zhu E, Yuan H, Li X, Wang B. Oncostatin M receptor regulates osteoblast differentiation via extracellular signal-regulated kinase/autophagy signaling. Stem Cell Res Ther 2022; 13:278. [PMID: 35765036 PMCID: PMC9241272 DOI: 10.1186/s13287-022-02958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Oncostatin M receptor (OSMR), as one of the receptors for oncostatin M (OSM), has previously been shown to mediate the stimulatory role of OSM in osteoclastogenesis and bone resorption. However, it remains to be clarified whether and how OSMR affects the differentiation of osteoblasts. Methods The expression level of OSMR during osteoblast and adipocyte differentiation was examined. The role of OSMR in the differentiation was investigated using in vitro gain-of-function and loss-of-function experiments. The mechanisms by which OSMR regulates bone cell differentiation were explored. Finally, in vivo function of OSMR in cell fate determination and bone homeostasis was studied after transplantation of OSMR-silenced bone marrow stromal cells (BMSCs) to the marrow of ovariectomized mice. Results OSMR was regulated during osteogenic and adipogenic differentiation of marrow stromal progenitor cells and increased in the metaphysis of ovariectomized mice. OSMR suppressed osteogenic differentiation and stimulated adipogenic differentiation of progenitor cells. Mechanistic investigations showed that OSMR inhibited extracellular signal-regulated kinase (ERK) and autophagy signaling. The downregulation of autophagy, which was mediated by ERK inhibition, suppressed osteogenic differentiation of progenitor cells. Additionally, inactivation of ERK/autophagy signaling attenuated the stimulation of osteogenic differentiation induced by Osmr siRNA. Furthermore, transplantation of BMSCs in which OSMR was silenced to the marrow of mice promoted osteoblast differentiation, attenuated fat accumulation and osteoclast differentiation, and thereby relieved the osteopenic phenotype in the ovariectomized mice. Conclusions Our study has for the first time established the direct role of OSMR in regulating osteogenic differentiation of marrow stromal progenitor cells through ERK-mediated autophagy signaling. OSMR thus contributes to bone homeostasis through dual regulation of osteoblasts and osteoclasts. It also suggests that OSMR may be a potential target for the treatment of metabolic disorders such as osteoporosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02958-1.
Collapse
Affiliation(s)
- Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Junying Yang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China.,College of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Yuan Dong
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China.,College of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Yaru Shi
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China.
| |
Collapse
|
58
|
Chen X, Xie W, Zhang M, Shi Y, Xu S, Cheng H, Wu L, Pathak JL, Zheng Z. The Emerging Role of Non-Coding RNAs in Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. Front Cell Dev Biol 2022; 10:903278. [PMID: 35652090 PMCID: PMC9150698 DOI: 10.3389/fcell.2022.903278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Autologous bone marrow-derived mesenchymal stem cells (BMSCs) are more easily available and frequently used for bone regeneration in clinics. Osteogenic differentiation of BMSCs involves complex regulatory networks affecting bone formation phenomena. Non-coding RNAs (ncRNAs) refer to RNAs that do not encode proteins, mainly including microRNAs, long non-coding RNAs, circular RNAs, piwi-interacting RNAs, transfer RNA-derived small RNAs, etc. Recent in vitro and in vivo studies had revealed the regulatory role of ncRNAs in osteogenic differentiation of BMSCs. NcRNAs had both stimulatory and inhibitory effects on osteogenic differentiation of BMSCs. During the physiological condition, osteo-stimulatory ncRNAs are upregulated and osteo-inhibitory ncRNAs are downregulated. The opposite effects might occur during bone degenerative disease conditions. Intracellular ncRNAs and ncRNAs from neighboring cells delivered via exosomes participate in the regulatory process of osteogenic differentiation of BMSCs. In this review, we summarize the recent advances in the regulatory role of ncRNAs on osteogenic differentiation of BMSCs during physiological and pathological conditions. We also discuss the prospects of the application of modulation of ncRNAs function in BMSCs to promote bone tissue regeneration in clinics.
Collapse
Affiliation(s)
- Xiaoying Chen
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Wei Xie
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Ming Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Yuhan Shi
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Shaofen Xu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Haoyu Cheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
59
|
Li Z, Zhao Y, Wang Z, Ren M, Wang X, Liu H, Lin Q, Wang J. Engineering Multifunctional Hydrogel-Integrated 3D Printed Bioactive Prosthetic Interfaces for Osteoporotic Osseointegration. Adv Healthc Mater 2022; 11:e2102535. [PMID: 35040266 DOI: 10.1002/adhm.202102535] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Indexed: 12/31/2022]
Abstract
3D printed porous titanium alloy implants is an advanced orthopedic material for joint replacement. However, the high risk of aseptic loosening and periprosthetic infection is difficult to avoid, and the declined autophagy of osteoporosis-derived bone marrow mesenchymal stem cells (OP-BMSCs) further severely impairs the osseointegration under the osteoporotic circumstance. It is thus becoming urgently significant to develop orthopedic materials with autophagy regulation and antibacterial bioactivity. In this regard, a novel class of multifunctional hydrogel-integrated 3D printed bioactive prosthetic interfaces is engineered for in situ osseointegration in osteoporosis. The hydrogel is fabricated from the dynamic crosslinking of synthetic polymers, natural polymers, and silver nanowires to deliver autophagy-regulated rapamycin. Therefore, the resultant soft material exhibits antibacterial ability, biocompatibility, degradability, conductive, self-healing, and stimuli-responsive abilities. In vitro experiments demonstrate that the hydrogel-integrated 3D printed bioactive prosthetic interfaces can restore the declined cellular activities of OP-BMSCs by upregulating the autophagy level and show excellent antibacterial activity against S. aureus and MRSA. More remarkably, the multifunctional 3D printed bioactive prosthetic interfaces significantly improve osseointegration and inhibit infection in osteoporotic environment in vivo. This study provides an efficient strategy to develop novel prosthetic interfaces to reduce complications after arthroplasty for patients with osteoporosis.
Collapse
Affiliation(s)
- Zuhao Li
- Orthopaedic Medical Center The Second Hospital of Jilin University No. 218 Ziqiang Street Changchun 130041 P. R. China
- Orthopaedic Research Institute of Jilin Province No. 218 Ziqiang Street Changchun 130041 P. R. China
| | - Yue Zhao
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Zhonghan Wang
- Orthopaedic Medical Center The Second Hospital of Jilin University No. 218 Ziqiang Street Changchun 130041 P. R. China
- Orthopaedic Research Institute of Jilin Province No. 218 Ziqiang Street Changchun 130041 P. R. China
| | - Ming Ren
- Orthopaedic Medical Center The Second Hospital of Jilin University No. 218 Ziqiang Street Changchun 130041 P. R. China
- Orthopaedic Research Institute of Jilin Province No. 218 Ziqiang Street Changchun 130041 P. R. China
| | - Xiangang Wang
- Orthopaedic Medical Center The Second Hospital of Jilin University No. 218 Ziqiang Street Changchun 130041 P. R. China
- Orthopaedic Research Institute of Jilin Province No. 218 Ziqiang Street Changchun 130041 P. R. China
| | - He Liu
- Orthopaedic Medical Center The Second Hospital of Jilin University No. 218 Ziqiang Street Changchun 130041 P. R. China
- Orthopaedic Research Institute of Jilin Province No. 218 Ziqiang Street Changchun 130041 P. R. China
| | - Quan Lin
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Jincheng Wang
- Orthopaedic Medical Center The Second Hospital of Jilin University No. 218 Ziqiang Street Changchun 130041 P. R. China
- Orthopaedic Research Institute of Jilin Province No. 218 Ziqiang Street Changchun 130041 P. R. China
| |
Collapse
|
60
|
Liu J, Tang M, Tan S, Zhang H. Effect of miR-34a on the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells (BMSCs) in Hyperlipidemia Rats. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study intends to explore miR-34a’s effect on BMSCs osteogenic differentiation of hyperlipidemia. 20 SD rats were equally assigned into control group (normal diet) and high-fat group (research diet). Cells were transfected with miR-34a mimic or negative control followed by
meausring miR-34a, Dvl2, PPAR-γ, ALP, Runx2, and sp7, and ALP activity. The number of mineralized nodules, adipocytes, miR-34a and PPAR-γ expression in high-fat group were significantly increased and Dvl2, ALP, Runx2, and sp7 mRNA showed opposite profiles. Meanwhile,
Runx2, ALP protein, cytoplasm and nuclear blue-black particles, Dvl2 protein and mRNA in miR-34a mimic group were significantly downregulated (P < 0.05). Additionally, the luciferase activity of wild-type plasmid+miR-34a mimic group was significantly lower than mutant group, indicating
that miR-34a targets Dvl2. In conclusion, miR-34a inhibits the osteogenic differentiation of hyperlipidemia BMSCs by inhibiting the expression of Dvl2, Runx2 and ALP activity, indicating that it might be target in the hyperlipidemia treatment.
Collapse
Affiliation(s)
- Jun Liu
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Meiling Tang
- Department of Pediatrics, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuai Tan
- Department of Oncology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Heng Zhang
- Department of Hematology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
61
|
Behera J, Ison J, Tyagi A, Mbalaviele G, Tyagi N. Mechanisms of autophagy and mitophagy in skeletal development, diseases and therapeutics. Life Sci 2022; 301:120595. [PMID: 35504330 DOI: 10.1016/j.lfs.2022.120595] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 01/12/2022] [Accepted: 04/26/2022] [Indexed: 12/20/2022]
Abstract
Autophagy is a highly evolutionarily conserved process in the eukaryotic cellular system by which dysfunctional organelles are selectively degraded through a series of processes of lysosomal activity and then returned to the cytoplasm for reuse. All cells require this process to maintain cellular homeostasis and promote cell survival during stress responses such as deprivation and hypoxia. Osteoblasts and osteoclasts are two cellular phenotypes in the bone that mediate bone homeostasis. However, an imbalance between osteoblastic bone formation and osteoclastic bone resorption contributes to the onset of bone diseases. Recent studies suggest that autophagy, mitophagy, and selective mitochondrial autophagy may play an essential role in regulating osteoblast differentiation and osteoclast maturation. Autophagic activity dysregulation alters the equilibrium between osteoblastic bone creation and osteoclastic bone resorption, allowing bone disorders like osteoporosis to develop more easily. The current review emphasizes the role of autophagy and mitophagy and their related molecular mechanisms in bone metabolic disorders. In the current review, we emphasize the role of autophagy and mitophagy as well as their related molecular mechanism in bone metabolic disorders. Furthermore, we will discuss autophagy as a target for the treatment of metabolic bone disease and future application in therapeutic translational research.
Collapse
Affiliation(s)
- Jyotirmaya Behera
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jessica Ison
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Ashish Tyagi
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
62
|
Ren C, Xu Y, Liu H, Wang Z, Ma T, Li Z, Sun L, Huang Q, Zhang K, Zhang C, Cui Y, Wang Q, Lu Y. Effects of runt-related transcription factor 2 ( RUNX2) on the autophagy of rapamycin-treated osteoblasts. Bioengineered 2022; 13:5262-5276. [PMID: 35170378 PMCID: PMC8973582 DOI: 10.1080/21655979.2022.2037881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 12/14/2022] Open
Abstract
Autophagy occurs throughout the development and maturation of bone tissues and various types of bone cells and plays a vital role in osteoporosis progression. This study aimed to explore the role of runt-related transcription factor 2 (RUNX2) in osteoblast autophagy and its related molecular mechanisms. MC3T3-E1 cells were treated with different concentrations of rapamycin, and their viability was determined using a cell counting Kit-8 (CCK-8). The cells were then transfected with si-RUNX2 and RUNX2 overexpression plasmids, and the viability of these rapamycin-treated cells was measured using CCK-8, while the expression of autophagy-related genes/proteins and osteoblast differentiation-related genes was determined using Western blotting and RT-qPCR. Finally, Alizarin red staining was used to observe osteoblast mineralization, and transmission electron microscopy was employed to detect autophagosomes in cells administered different treatments. Rapamycin significantly inhibited cell viability and promoted cell autophagy compared with the control (P < 0.05). Cells with RUNX2 knockdown and overexpression were successfully established. Further, RUNX2 overexpression was found to significantly enhance the viability and osteoblast mineralization of rapamycin-treated cells and suppress cell autophagy. RUNX2 overexpression also increased p-p38MAPK/p38MAPK levels and ALP, OCN, and OSX expression, and markedly downregulated Beclin-1, LC3-II/LC3-I, p62, ATG1, p-Beclin-1, and ATG5 levels (P < 0.05). However, the trends after RUNX2 knockdown opposed those observed after RUNX2 overexpression. RUNX2 may regulate osteoblast differentiation and autophagy by mediating autophagy-related and osteoblast differentiation-related genes/proteins, as well as the p38MAPK signaling pathway.
Collapse
Affiliation(s)
- Cheng Ren
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Yibo Xu
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Hongliang Liu
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Zhimeng Wang
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Teng Ma
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Zhong Li
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Liang Sun
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Qiang Huang
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Kun Zhang
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Chengcheng Zhang
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Yu Cui
- Yan’ an University, Yan’ an, Shaanxi Province, China
| | - Qian Wang
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Yao Lu
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| |
Collapse
|
63
|
Xia K, Yu LY, Huang XQ, Zhao ZH, Liu J. Epigenetic regulation by long noncoding RNAs in osteo-/adipogenic differentiation of mesenchymal stromal cells and degenerative bone diseases. World J Stem Cells 2022; 14:92-103. [PMID: 35126830 PMCID: PMC8788182 DOI: 10.4252/wjsc.v14.i1.92] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/07/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Bone is a complex tissue that undergoes constant remodeling to maintain homeostasis, which requires coordinated multilineage differentiation and proper proliferation of mesenchymal stromal cells (MSCs). Mounting evidence indicates that a disturbance of bone homeostasis can trigger degenerative bone diseases, including osteoporosis and osteoarthritis. In addition to conventional genetic modifications, epigenetic modifications (i.e., DNA methylation, histone modifications, and the expression of noncoding RNAs) are considered to be contributing factors that affect bone homeostasis. Long noncoding RNAs (lncRNAs) were previously regarded as 'transcriptional noise' with no biological functions. However, substantial evidence suggests that lncRNAs have roles in the epigenetic regulation of biological processes in MSCs and related diseases. In this review, we summarized the interactions between lncRNAs and epigenetic modifiers associated with osteo-/adipogenic differentiation of MSCs and the pathogenesis of degenerative bone diseases and highlighted promising lncRNA-based diagnostic and therapeutic targets for bone diseases.
Collapse
Affiliation(s)
- Kai Xia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Yuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin-Qi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zhi-He Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
64
|
Zeng Z, Fei L, Yang J, Zuo J, Huang Z, Li H. MiR-27a-3p Targets GLP1R to Regulate Differentiation, Autophagy, and Release of Inflammatory Factors in Pre-Osteoblasts via the AMPK Signaling Pathway. Front Genet 2022; 12:783352. [PMID: 35069685 PMCID: PMC8766720 DOI: 10.3389/fgene.2021.783352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/30/2021] [Indexed: 01/20/2023] Open
Abstract
Objective: Osteoporosis is caused by the dysregulation of bone homeostasis which is synergistically mediated by osteoclasts and osteoblasts. MiR-27a-3p is a key inhibitor of bone formation. Hence, unearthing the downstream target gene of miR-27a-3p is of great significance to understand the molecular mechanism of osteoporosis. Methods: Bioinformatics analysis was utilized to find the downstream target gene of miR-27a-3p, and dual-luciferase reporter assay was conducted to validate the interplay of miR-27a-3p and GLP1R. Besides, qRT-PCR, Western blot, and enzyme-linked immunosorbent assay (ELISA) were employed to verify the impact of miR-27a-3p on GLP1R expression and the differentiation, autophagy, and inflammatory response of MC3T3-E1 pre-osteoblasts. Results: Dual-luciferase assay validated that miR-27a-3p directly targeted GLP1R. Additionally, posttreatment of MC3T3-E1 cells with miR-27a-3p mimics resulted in a remarkable decrease in expression levels of GLP1R, cell differentiation marker gene, autophagy marker gene, and AMPK. These results indicated that miR-27a-3p targeted GLP1R to inhibit AMPK signal activation and pre-osteoblast differentiation and autophagy, while promoting the release of inflammatory factors. Conclusion: The miR-27a-3p/GLP1R regulatory axis in pre-osteoblasts contributes to understanding the molecular mechanism of osteoporosis.
Collapse
Affiliation(s)
- Zhi Zeng
- Department of Joint Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liangyu Fei
- Department of Nephrology and Rheumatology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Juntao Yang
- Department of Hand and Foot Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun Zuo
- Department of Hand and Foot Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zelin Huang
- Department of Hand and Foot Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hao Li
- Department of Hand and Foot Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
65
|
Melatonin Improves the Resistance of Oxidative Stress-Induced Cellular Senescence in Osteoporotic Bone Marrow Mesenchymal Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7420726. [PMID: 35087617 PMCID: PMC8789417 DOI: 10.1155/2022/7420726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022]
Abstract
Accumulation of senescent bone marrow-derived mesenchymal stem cells (BMMSCs) has led to an age-related bone loss. However, the role of stem cell senescence in estrogen deficiency-induced osteoporosis remains elusive. Though melatonin plays a vital role in bone metabolism regulation, the underlying mechanisms of melatonin-mediated antiosteoporosis are partially elucidated. Therefore, this study purposed to explore (1) whether estrogen deficiency causes cellular senescence of BMMSCs, and if so, (2) the potential of melatonin in preventing bone loss via senescence signaling inhibition. BMMSCs derived from ovariectomized (OVX) rats (OVX BMMSCs) showed an impaired osteogenic capacity, albeit having comparable levels of senescence biomarkers than the sham cells. When exposed to low levels of hydrogen peroxide (H2O2), OVX BMMSCs rapidly exhibited senescence-associated phenotypes such as the increased activity of senescence-associated β-galactosidase (SA-β-gal) and upregulation of cell cycle inhibitors. Notably, the in vitro treatment with melatonin hindered H2O2-induced senescence in OVX BMMSCs and restored their osteogenic capacity. Treatment with either SIRT1 inhibitor (sirtinol) or melatonin receptor antagonists (luzindole and 4-P-PDOT) eliminated melatonin protective effects, thus indicating its potential in preventing stem cell senescence via SIRT1 activation through the melatonin membrane receptors. Following in vivo intravenous administration with melatonin, it successfully protected the bone microstructure and preserved the antisenescence property of BMMSCs in OVX rats. Collectively, our findings demonstrated that melatonin protected against estrogen deficiency-related bone loss by improving the resistance of BMMSCs to cellular senescence. Therefore, melatonin-mediated antisenescence effect on stem cells provides vital information to facilitate the development of a novel and effective strategy for treating postmenopausal OP.
Collapse
|
66
|
Zhu C, Shen S, Zhang S, Huang M, Zhang L, Chen X. Autophagy in Bone Remodeling: A Regulator of Oxidative Stress. Front Endocrinol (Lausanne) 2022; 13:898634. [PMID: 35846332 PMCID: PMC9279723 DOI: 10.3389/fendo.2022.898634] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022] Open
Abstract
Bone homeostasis involves bone formation and bone resorption, which are processes that maintain skeletal health. Oxidative stress is an independent risk factor, causing the dysfunction of bone homeostasis including osteoblast-induced osteogenesis and osteoclast-induced osteoclastogenesis, thereby leading to bone-related diseases, especially osteoporosis. Autophagy is the main cellular stress response system for the limination of damaged organelles and proteins, and it plays a critical role in the differentiation, apoptosis, and survival of bone cells, including bone marrow stem cells (BMSCs), osteoblasts, osteoclasts, and osteocytes. High evels of reactive oxygen species (ROS) induced by oxidative stress induce autophagy to protect against cell damage or even apoptosis. Additionally, pathways such as ROS/FOXO3, ROS/AMPK, ROS/Akt/mTOR, and ROS/JNK/c-Jun are involved in the regulation of oxidative stress-induced autophagy in bone cells, including osteoblasts, osteocytes and osteoclasts. This review discusses how autophagy regulates bone formation and bone resorption following oxidative stress and summarizes the potential protective mechanisms exerted by autophagy, thereby providing new insights regarding bone remodeling and potential therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Chenyu Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Shiwei Shen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shihua Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- College of Sports and Health, Shandong Sport University, Jinan, China
| | - Mei Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lan Zhang
- College of Sports and Health, Shandong Sport University, Jinan, China
- *Correspondence: Xi Chen, ; Lan Zhang,
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xi Chen, ; Lan Zhang,
| |
Collapse
|
67
|
Xia Y, Zhang H, Wang H, Wang Q, Zhu P, Gu Y, Yang H, Geng D. Identification and validation of ferroptosis key genes in bone mesenchymal stromal cells of primary osteoporosis based on bioinformatics analysis. Front Endocrinol (Lausanne) 2022; 13:980867. [PMID: 36093072 PMCID: PMC9452779 DOI: 10.3389/fendo.2022.980867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Primary osteoporosis has long been underdiagnosed and undertreated. Currently, ferroptosis may be a promising research direction in the prevention and treatment of primary osteoporosis. However, the specific mechanism of ferroptosis in primary osteoporosis remains a mystery. Differentially expressed genes (DEGs) were identified in bone mesenchymal stromal cells (BMSCs) of primary osteoporosis and heathy patients from the GEO databases with the help of bioinformatics analysis. Then, we intersected these DEGs with the ferroptosis dataset and obtained 80 Ferr-DEGs. Several bioinformatics algorithms (PCA, RLE, Limma, BC, MCC, etc.) were adopted to integrate the results. Additionally, we explored the potential functional roles of the Ferr-DEGs via GO and KEGG. Protein-protein interactions (PPI) were used to predict potential interactive networks. Finally, 80 Ferr-DEGs and 5 key Ferr-DEGs were calculated. The 5 key Ferr-DEGs were further verified in the OVX mouse model. In conclusion, through a variety of bioinformatics methods, our research successfully identified 5 key Ferr-DEGs associated with primary osteoporosis and ferroptosis, namely, sirtuin 1(SIRT1), heat shock protein family A (Hsp70) member 5 (HSPA5), mechanistic target of rapamycin kinase (MTOR), hypoxia inducible factor 1 subunit alpha (HIF1A) and beclin 1 (BECN1), which were verified in an animal model.
Collapse
Affiliation(s)
- Yu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifeng Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Heng Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiufei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Changshu, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ye Gu
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Changshu, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Huilin Yang, ; Dechun Geng,
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Huilin Yang, ; Dechun Geng,
| |
Collapse
|
68
|
Cao S, Li X, Feng T, Li Y, Ding H, Xie L, Yang Q. Hirudin promotes proliferation and osteogenic differentiation of HBMSCs via activation of cyclic guanosine monophosphate (cGMP)/protein kinase-G (PKG) signaling pathway. Bioengineered 2021; 13:6061-6069. [PMID: 34898364 PMCID: PMC8973852 DOI: 10.1080/21655979.2021.2008697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Osteoporosis is a public health problem resulting in higher susceptibility to bone fracture. Hirudin is known as a direct thrombin inhibitor, which is isolated from the salivary gland of the medicinal leech. This present study aimed to evaluate the effect of Hirudin on the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (HBMSCs). In our study, the effect of Hirudin on the proliferation of HBMSCs was evaluated with the CCK-8 and MTT assays. The capacity of osteogenic differentiation and mineralization of HBMSCs were evaluated with ALP and alizarin red staining, respectively. cGMP content was determined by ELISA. Western blotting and qRT-PCR were used to investigate the effect of Hirudin on the expression of osteoblast-specific markers, including Runx2, osterix (OSX), osteocalcin (OCN), collagen1 (Col1). In our study, Hirudin treatment promoted cell viability. Moreover, Hirudin treatment increased ALP activity of HBMSCs and red coloration of alizarin. Interestingly, cGMP inhibitor partly reversed the effect of Hirudin on the proliferation, differentiation and mineralization of HBMSCs. In conclusion, Hirudin promoted the proliferation, differentiation and mineralization of HBMSCs via activation of cGMP signaling pathway. Hence, Hirudin contributed to bone remodeling and might represent as an effective agent for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Shun Cao
- Department of Orthopaedics, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City (210017), Jiangsu Province, PR China
| | - Xianghui Li
- Department of Orthopaedics, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City (210017), Jiangsu Province, PR China
| | - Ting Feng
- Department of General Studies, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang City (712046), Shanxi Province, PR China
| | - Yaqing Li
- Academic Affairs Office, Jiangsu Health Vocational College, Nanjing City (211899), Jiangsu Province, PR China
| | - Hongwei Ding
- Department of Orthopaedics, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City (210017), Jiangsu Province, PR China
| | - Lin Xie
- Department of Orthopedics, Jiangsu province integrated traditional Chinese and Western medicine hospital, Nanjing city (210028), Jiangsu Province, PR China
| | - Quanhong Yang
- Department of Orthopaedics, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City (210017), Jiangsu Province, PR China
| |
Collapse
|
69
|
Li C, Ni YQ, Xu H, Xiang QY, Zhao Y, Zhan JK, He JY, Li S, Liu YS. Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther 2021; 6:383. [PMID: 34753929 PMCID: PMC8578673 DOI: 10.1038/s41392-021-00779-x] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes play a role as mediators of cell-to-cell communication, thus exhibiting pleiotropic activities to homeostasis regulation. Exosomal non-coding RNAs (ncRNAs), mainly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are closely related to a variety of biological and functional aspects of human health. When the exosomal ncRNAs undergo tissue-specific changes due to diverse internal or external disorders, they can cause tissue dysfunction, aging, and diseases. In this review, we comprehensively discuss the underlying regulatory mechanisms of exosomes in human diseases. In addition, we explore the current knowledge on the roles of exosomal miRNAs, lncRNAs, and circRNAs in human health and diseases, including cancers, metabolic diseases, neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, and infectious diseases, to determine their potential implication in biomarker identification and therapeutic exploration.
Collapse
Affiliation(s)
- Chen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Yu-Qing Ni
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Qun-Yan Xiang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Yan Zhao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Jun-Kun Zhan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Jie-Yu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
70
|
Liu H, Cai A, Li Z, Ma H, Fan L, Ma J, Zhao D. MicroRNA-204 Attenuates Oxidative Damage in Cardiac Stem Cell Through Regulation of Bone Marrow Stromal Cell (BMSC) Adipogenic and Osteogenic Differentiation. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exosomes (exo) derived from bone marrow mesenchymal stem cells (BMSCs) are known to promote cell growth through delivering multiple kinds of bioactive molecule including microRNAs (miR-NAs). This study aimed to explore the mechanism underlying miR-204 secreted by exo interacting oxidative
damage of cardiac stem cell (CSCs). Exosomes were extracted from BMSCs (BMSC-exo) and characterized by immunofluorescence and electron microscope, while BMSC-exo were internalized by CSCs. ARS and ALP staining confirmed the mineralization of BMSCs and osteogenic and adipogenic differentiation
of BMSCs. Then BMSCs were cultured in ordinary culture medium (OM) and normal medium. RT-qPCR identified miR-204 level in BMSCs disposed by OM was about five times as that of controls. miR-204 was up-regulated in the osteogenic differentiation of CSCs. Functional experiment revealed up-regulation
of miR-204 inhibited the BMSC adipogenic differentiation with decreased ROS and MDA expression and elevated SOD level in the CSCs. Treatment with BMSC-exos or miR-204 up-regulation alleviated oxidative damage of CSCs. Collectively, miR-204 attenuates the oxidative damage of CSCs through regulating
BMSC adipogenic and osteogenic differentiation.
Collapse
Affiliation(s)
- Hong Liu
- Department of Cardiology, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056000, China
| | - Ansheng Cai
- Department of Cardiology, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056000, China
| | - Zhiying Li
- Department of Cardiology, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056000, China
| | - Haifang Ma
- Department of Cardiology, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056000, China
| | - Limiung Fan
- Department of Cardiology, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056000, China
| | - Jinghong Ma
- Department of Emergency, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056000, China
| | - Danhua Zhao
- Department of Cardiology, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056000, China
| |
Collapse
|
71
|
Extracellular IL-37 promotes osteogenic and odontogenic differentiation of human dental pulp stem cells via autophagy. Exp Cell Res 2021; 407:112780. [PMID: 34411610 DOI: 10.1016/j.yexcr.2021.112780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 01/08/2023]
Abstract
The osteogenic and odontogenic differentiation of dental pulp stem cells (DPSCs) contribute to restoration and regeneration of dental tissue. Previous study indicated that interleukin-37 (IL-37) was an anti-inflammatory factor that affected other pro-inflammatory signals. The aim of this study was to explore the effects of IL-37 on the differentiation of DPSCs. DPSCs were cultured in growth medium with different concentrations of IL-37. We selected the optimal concentration for the following experiments by alkaline phosphatase (ALP) activity analysis, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot. Cell counting kit assay (CCK-8) and 5-Ethynyl-2'-Deoxyuridine (EdU) assay were conducted to assess the effects of IL-37 on the proliferation of DPSCs. ALP activity assay and staining, alizarin red S (ARS) staining, qRT-PCR, Western blot as well as immunofluorescence staining were conducted to assess differentiation ability of DPSCs. Western blot, immunofluorescence staining and transmission electron microscopy (TEM) were utilized to examine cell autophagy. Results showed that IL-37 enhanced the osteogenic and odontogenic differentiation ability of DPSCs with no significant influence on the proliferation of DPSCs. Autophagy in DPSCs was activated by IL-37. Activation of autophagy enhanced osteogenesis and odontogenesis of DPSCs, whereas inhibition of autophagy suppressed DPSCs osteogenic and odontogenic differentiation. In conclusion, IL-37 increased osteogenic and odontogenic differentiation via autophagy.
Collapse
|
72
|
Hua R, Zou J, Ma Y, Wang X, Chen Y, Li Y, Du J. Psoralidin prevents caffeine-induced damage and abnormal differentiation of bone marrow mesenchymal stem cells via the classical estrogen receptor pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1245. [PMID: 34532382 PMCID: PMC8421924 DOI: 10.21037/atm-21-3153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
Background Caffeine is broadly present in tea, coffee, and cocoa, and is commonly consumed. The bone microenvironment might be damaged by excessive caffeine, which has been shown to exert negative effects on human health. In this study, we sought to determine whether excessive caffeine could damage the biological functions of bone marrow mesenchymal stem cells (BMSCs) and induce bone loss in mice, and further investigate effective therapeutic methods. Methods BMSCs were treated with different concentrations of caffeine (0.01, 0.05, 0.1, 0.5, and 1.0 mM) for 48 h. Cell counting kit-8 (CCK-8) assay, colony formation assay, wound healing assay, and quantitative real-time polymerase chain reaction (qRT-PCR) analysis were performed to detect the cell viability, proliferation, migration, and pluripotency of BMSCs, respectively. Alizarin red S (ARS) staining, alkaline phosphatase (ALP) staining, oil red O (ORO) staining, and qRT-PCR assay were applied to assess the osteogenic and adipogenic differentiation of BMSCs. BMSCs were treated with caffeine and further exposed to different concentrations of psoralidin (PL) (0.01, 0.1, 1, and 10 µM) for 48 h. Micro-computed tomography (µCT) scanning was used to evaluate the bone mass of mice. 7α-(7-((4,4,5,5,5-Pentafluoropentyl)-sulfiny)nonyl)estra-1,3,5(10)-triene-3,17β-diol (ICI 182,780, ICI) was applied to examine whether the classical estrogen receptor (ER) pathway was involved. Results The CCK-8 assay, colony formation assay, wound healing assay, and qRT-PCR analysis indicated that caffeine (0.01, 0.05, 0.1, 0.5, 1.0 mM) attenuated the cell viability, proliferation, migration and pluripotency of BMSCs, respectively, in a concentration-dependent manner. Caffeine treatment inhibited osteogenic differentiation but promoted adipogenic differentiation of BMSCs in a dose-dependent manner. Furthermore, ARS staining, ALP staining, ORO staining, and qRT-PCR assay showed that excessive caffeine induced bone loss and osteoporosis (OP) in mice by regulating the osteogenesis and adipogenesis of BMSCs. Also, PL treatment could reverse the caffeine-induced dysfunctions and aberrant differentiation of BMSCs via the ER pathway. Conclusions Our results revealed a novel molecular mechanism for the therapeutic effects of PL in treating excessive caffeine-induced OP, which might shed new light on the clinical application of PL for caffeine-related OP.
Collapse
Affiliation(s)
- Rong Hua
- Department of Clinical Pharmacy, Department of Pharmacy, Taizhou People's Hospital, the Hospital Affiliated 5 to Nantong University, Taizhou, China
| | - Jilong Zou
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Ma
- Department of Clinical Pharmacy, Department of Pharmacy, Taizhou People's Hospital, the Hospital Affiliated 5 to Nantong University, Taizhou, China
| | - Xiaomei Wang
- Department of Clinical Pharmacy, Department of Pharmacy, Taizhou People's Hospital, the Hospital Affiliated 5 to Nantong University, Taizhou, China
| | - Yao Chen
- Department of Clinical Pharmacy, Department of Pharmacy, Taizhou People's Hospital, the Hospital Affiliated 5 to Nantong University, Taizhou, China
| | - Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Suzhou Research Institute, Shandong University, Suzhou, China
| | - Jianyang Du
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
73
|
Xu S, Cao X, Yu Z, He W, Pang Y, Lin W, Chen Z, Guo W, Lu X, Lin C. Nicorandil Inhibits Osteoclast Formation Base on NF-κB and p-38 MAPK Signaling Pathways and Relieves Ovariectomy-Induced Bone Loss. Front Pharmacol 2021; 12:726361. [PMID: 34566650 PMCID: PMC8455841 DOI: 10.3389/fphar.2021.726361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 01/24/2023] Open
Abstract
Osteolytic bone disorders are characterized by an overall reduction in bone mineral density which enhances bone ductility and vulnerability to fractures. This disorder is primarily associated with superabundant osteoclast formation and bone resorption activity. Nicorandil (NIC) is a vasodilatory anti-anginal drug with ATP-dependent potassium (KATP) channel openings. However, NIC is adopted to manage adverse cardiovascular and coronary events. Recent research has demonstrated that NIC also possesses anti-inflammatory peculiarity through the regulation of p38 MAPK and NF-κB signaling pathways. Both MAPK and NF-κB signaling pathways play pivotal roles in RANKL-induced osteoclast formation and bone resorption function. Herein, we hypothesized that NIC may exert potential biological effects against osteoclasts, and revealed that NIC dose-dependently suppressed bone marrow macrophage (BMM) precursors to differentiate into TRAP + multinucleated osteoclasts in vitro. Furthermore, osteoclast resorption assays demonstrated anti-resorptive effects exhibited by NIC. NIC had no impact on osteoblast differentiation or mineralization function. Based on Biochemical analyses, NIC relieved RANKL-induced ERK, NF-κB and p38 MAPK signaling without noticeable effects on JNK MAPK activation. However, the attenuation of NF-κB and p38 MAPK activation was sufficient to hamper the downstream induction of c-Fos and NFATc1 expression. Meanwhile, NIC administration markedly protected mice from ovariectomy (OVX)-induced bone loss through in vivo inhibition of osteoclast formation and bone resorption activity. Collectively, this work demonstrated the potential of NIC in the management of osteolytic bone disorders mediated by osteoclasts.
Collapse
Affiliation(s)
- Shenggui Xu
- Department of Orthopaedics, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China
| | - Xiankun Cao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenxing Yu
- Department of Orthopaedics, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China
| | - Wenxin He
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yichuan Pang
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, National Clinical Research Center of Stomatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wang Lin
- Department of Orthopaedics, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China
| | - Zhiqian Chen
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weizhong Guo
- Department of Orthopaedics, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China
| | - Xiongwei Lu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chengshou Lin
- Department of Orthopaedics, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China
| |
Collapse
|
74
|
Rao P, Lou F, Luo D, Huang C, Huang K, Yao Z, Xiao J. Decreased autophagy impairs osteogenic differentiation of adipose-derived stem cells via Notch signaling in diabetic osteoporosis mice. Cell Signal 2021; 87:110138. [PMID: 34461277 DOI: 10.1016/j.cellsig.2021.110138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The osteogenic differentiation ability of adipose-derived stem cells (ASCs) is attenuated in type 2 diabetic osteoporosis (Dop) mice. Several studies suggest autophagy and Notch signaling pathway play vital roles in cell proliferation, differentiation, and osteogenesis. However, the mechanisms of autophagy and Notch signaling in the osteogenic differentiation of Dop ASCs were unclear. Thus, it is meaningful to reveal potential correlations between autophagy, Notch signaling, and osteogenesis, and explore involved molecular mechanisms in Dop ASCs. MATERIALS AND METHODS The diabetic osteoporosis C57BL/6 mouse model, which was confirmed by micro-CT and HE & Masson staining, was established through high-sugar and high-fat diet and streptozotocin injection. ASCs were obtained from the inguinal subcutaneous fat of Dop mice. The multi-differentiation potential of ASCs was evaluated by staining with Alizarin Red (osteogenesis), Oil Red O (adipogenesis), and Alcian blue (chondrogenesis). Cell viability was assessed by Cell Counting Kit-8 assay. Torin1, an inhibitor of mTOR, was used to stimulate the autophagy signaling pathway. DAPT, a γ-secretase inhibitor, was used to suppress Notch signaling pathway activity. Gene and protein expression of autophagy, Notch signaling pathway, and osteogenic factors were detected by real-time quantitative PCR, western blot, and immunofluorescence microscopy. RESULTS Our findings showed autophagy and osteogenic differentiation ability of Dop ASCs exhibited downward trends that were both rescued by Torin1. Notch signaling was suppressed in Dop ASCs, but upregulated when autophagy was activated. After activation of autophagy, DAPT treatment led to decreased Notch signaling pathway activation and attenuated osteogenic differentiation ability in Dop ASCs. CONCLUSIONS Downregulated autophagy suppressed Notch signaling, leading to a reduced osteogenic differentiation capacity of Dop ASCs, and Torin1 can rescue this process by activating autophagy. Our findings contribute to understanding the mechanism underlying impairment of the osteogenic differentiation ability of Dop ASCs.
Collapse
Affiliation(s)
- Pengcheng Rao
- Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Fangzhi Lou
- Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - Daowen Luo
- Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chenglong Huang
- Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - Kui Huang
- Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhihao Yao
- Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jingang Xiao
- Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
75
|
Zhang X, Cui J, Cheng L, Lin K. Enhancement of osteoporotic bone regeneration by strontium-substituted 45S5 bioglass via time-dependent modulation of autophagy and the Akt/mTOR signaling pathway. J Mater Chem B 2021; 9:3489-3501. [PMID: 33690737 DOI: 10.1039/d0tb02991b] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteoporosis (OP) is a major systemic bone disease leading to an imbalance in bone homeostasis which remains a challenge in the current treatment of bone defects. Our previous studies on strontium (Sr) doping apparently stimulated osteogenesis of bioceramics, which suggested a promising strategy for the treatment of bone defects. However, the potential effects and the underlying mechanisms of Sr-doping on osteoporotic bone defects still remain unclear. Autophagy is a conventional self-degradation process of cells involved in bone homeostasis and regeneration under physiological and pathological conditions. Therefore, it is essential to design appropriate biomaterials and investigate the associated osteogenic mechanisms via autophagy. Based on this hypothesis, Sr-doped 45S5 bioglass (Sr/45S5) was fabricated, and ovariectomy bone marrow-derived mesenchymal stem cells (OVX-BMSCs) were applied as the in vitro cell culture model. First, the optimal Sr-doping concentration of 10 mol% was screened by cell proliferation, ALP staining, alizarin red S staining and the real-time PCR assay. Then, the results of western blot (WB) analysis showed that Sr-induced osteogenic differentiation of OVX-BMSCs was associated with time-dependent modulation of autophagy and related to the AKT/mTOR signaling pathway. Meanwhile, the autophagy in Sr-induced osteogenic differentiation of OVX-BMSCs was detected by WB, immunofluorescence staining and transmission electron microscopy. Furthermore, the effect of osteogenic differentiation of OVX-BMSCs has been significantly inhibited by the administration of autophagy inhibitors and the AKT/mTOR pathway inhibitors, respectively, in the early and late periods of osteogenic differentiation. Finally, the results of the model of femoral condyle defects in OVX-rats indicated that Sr10/45S5 granules remarkably enhanced bone regeneration which provided the evidences in vivo. Our research indicates that Sr-doping provides a promising strategy to promote osteogenic differentiation of OVX-BMSCs and bone regeneration in osteoporotic bone defects via early improvement of autophagy and late activation of the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Oral and Cranio-Maxillofacial Science, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China. and School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Jinjie Cui
- Department of Oral and Cranio-Maxillofacial Science, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| | - Liming Cheng
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China. and Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Science, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| |
Collapse
|
76
|
Chen P, Hu B, Xie LQ, Jiang TJ, Xia ZY, Peng H. Scara3 regulates bone marrow mesenchymal stem cell fate switch between osteoblasts and adipocytes by promoting Foxo1. Cell Prolif 2021; 54:e13095. [PMID: 34254370 PMCID: PMC8349663 DOI: 10.1111/cpr.13095] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Objectives Scavenger receptor class A, member 3 (Scara3) was involved in adipogenesis. However, the effect of Scara3 on the switch between osteogenesis and adipogenesis of bone marrow mesenchymal stem cells (BMSCs) remains elusive. Materials and Methods The correlations between SCARA3 with the osteogenic‐related were analysed based on the GTEx database. The effects of Scara3 on osteogenic or adipogenic differentiation of BMSCs were evaluated by qPCR, Western blot (WB) and cell staining. The mechanisms of Scara3 regulating Foxo1 and autophagy were validated by co‐expression analysis, WB and immunofluorescence. In vivo, Scara3 adeno‐associated virus was injected into intra‐bone marrow of the aged mice and ovariectomized (OVX) mice whose phenotypes were confirmed by micro‐CT, calcein double labelling and immunochemistry (HE and OCN staining). Results SCARA3 was positively correlated with osteogenic‐related genes. Scara3 expression gradually decreased during adipogenesis but increased during osteogenesis. Moreover, the deletion of Scara3 favoured adipogenesis over osteogenesis, whereas overexpression of Scara3 significantly enhanced the osteogenesis at the expense of adipogenesis. Mechanistically, Scara3 controlled the cell fate by promoting Foxo1 expression and autophagy flux. In vivo, Scara3 promoted bone formation and reduced bone marrow fat accumulation in OVX mice. In the aged mice, Scara3 overexpression alleviated bone loss as well. Conclusions This study suggested that Scara3 regulated the switch between adipocyte and osteoblast differentiation, which represented a potential therapeutic target for bone loss and osteoporosis.
Collapse
Affiliation(s)
- Peng Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China.,Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| | - Biao Hu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Ling-Qi Xie
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Tie-Jian Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Zhu-Ying Xia
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
77
|
Qiu Y, Zhao Y, Long Z, Song A, Huang P, Wang K, Xu L, Molloy DP, He G. Liquiritigenin promotes osteogenic differentiation and prevents bone loss via inducing auto-lysosomal degradation and inhibiting apoptosis. Genes Dis 2021; 10:284-300. [PMID: 37013063 PMCID: PMC10066282 DOI: 10.1016/j.gendis.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023] Open
Abstract
Osteoporosis (OP) is a debilitating skeletal abnormality involving bone remodeling and bone cell homeostasis characterized by decreased bone strength and high fracture risk. A novel therapeutic intervention for OP by manipulating cellular autophagy-apoptosis processes to promote skeletal homeostasis is presented. Protective effects of the naturally occurring plant extract Liquiritigenin (LG) were demonstrated in an ovariectomy (OVX)-OP mouse model and preosteoblast MC3T3-E1 cells. Micro-CT and histological staining assessments of skeletal phenotype were applied alongside detection of autophagy activity in osteocytes and MC3T3-E1 cells by transmission electron microscopy (TEM). The effects of LG on chloroquine (CQ)- and the apoptosis-inducing TS-treated osteogenic differentiations and status of lysosomes within MC3T3-E1 cells were analyzed by Neutral red, Alizarin red S and alkaline phosphatase (ALP) staining and Western blot assays. Treatment with LG prevented bone loss, increased osteogenic differentiation in vivo and in vitro, and inhibited osteoclast formation to some extent. TEM analyses revealed that LG can improve auto-lysosomal degradation within osteocytes from OVX mice and MC3T3-E1 cells. The abnormal status of lysosomes associated with CQ and TS treatments was notably alleviated by LG which also reduced levels of apoptosis-induced inhibition of osteogenic differentiation and averted abnormal osteogenic differentiation as a consequence of a blockage in autolysosome degradation. Overall, LG stimulates bone growth in OVX mice through increased osteogenic differentiation and regulation of autophagy-apoptosis mechanisms, presenting an auspicious natural therapy for OP.
Collapse
|
78
|
Wang Y, Yang Q, Fu Z, Sun P, Zhang T, Wang K, Li X, Qian Y. Hinokitiol inhibits RANKL-induced osteoclastogenesis in vitro and prevents ovariectomy-induced bone loss in vivo. Int Immunopharmacol 2021; 96:107619. [PMID: 33831806 DOI: 10.1016/j.intimp.2021.107619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 01/11/2023]
Abstract
Osteoporosis is a metabolic bone-loss disease characterized by abnormally excessive osteoclast formation and bone resorption. Identification of natural medicines that can inhibit osteoclastogenesis, bone resorption, and receptor activator of nuclear factor-κB ligand (RANKL)-induced signaling is necessary for improved treatment of osteoporosis. In this study, hinokitiol, a tropolone-related compound extracted from the heart wood of several cupressaceous plants, was found to inhibit RANKL-induced osteoclast formation and bone resorption in vitro. Hinokitiol inhibited early activation of the ERK, p38, and JNK-MAPK pathways, thereby suppressing the activity and expression of downstream factors (c-Jun, c-Fos, and NFATC1). Consistent with the above in vitro findings, hinokitiol treatment protected against ovariectomy-induced bone loss in vivo. Collectively, our results imply that hinokitiol can potentially serve as an effective agent for treating osteoclast-induced osteoporosis.
Collapse
Affiliation(s)
- Yanben Wang
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China; Department of Orthopedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Qichang Yang
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ziyuan Fu
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China; Department of Orthopedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Peng Sun
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Tan Zhang
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China
| | - Kelei Wang
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China; Department of Orthopedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Xinyu Li
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China; Department of Orthopedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Yu Qian
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
79
|
Chen X, Chen L, Tan J, Zhang L, Xia J, Cheng B, Zhang W. Rspo1-LGR4 axis in BMSCs protects bone against radiation-induced injury through the mTOR-dependent autophagy pathway. J Cell Physiol 2021; 236:4273-4289. [PMID: 33452710 DOI: 10.1002/jcp.30051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 01/12/2023]
Abstract
While mesenchymal stem cells (MSCs) have been widely used to repair radiation-induced bone damage, the molecular mechanism underlying the effects of MSCs in the maintenance of bone homeostasis under radiation stress remains largely unknown. In this study, the role and mechanisms of R-spondin 1 (Rspo1)-leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4) axis on the initiation of self-defense of bone mesenchymal stem cells (BMSCs) and maintenance of bone homeostasis under radiation stress were investigated. Interestingly, radiation increased levels of Rspo1 and LGR4 in BMSCs. siRNA knockdown of Rspo1 or LGR4 aggravated radiation-induced impairment of self-renewal ability and osteogenic differentiation potential of BMSCs. However, exogenous Rspo1 significantly attenuated radiation-induced depletion of BMSCs, and promoted the lineage shift towards osteoblasts. This alteration was associated with the reversal of mammalian target of rapamycin (mTOR) activation and autophagy decrement. Pharmacological and genetic blockade of autophagy attenuated the radio-protective effects of Rspo1, rendering BMSCs more vulnerable to radiation-induced injury. Then bone radiation injury was induced in C57BL6J mice to further determine the radio-protective effects of Rspo1. In mice, administration of Rspo1 recombinant protein alleviated radiation-induced bone loss. Our results uncover that Rspo1-LGR4-mTOR-autophagy axis are key mechanisms by which BMSCs initiate self-defense against radiation and maintain bone homeostasis. Targeting Rspo1-LGR4 may provide a novel strategy for the intervention of radiation-induced bone damage.
Collapse
Affiliation(s)
- Xiaodan Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lingling Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiali Tan
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Liping Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weizhen Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Department of Physiology and Pathophysiology, School of Basic Science, Peking University Health Science Center, Beijing, China
| |
Collapse
|
80
|
Zhang Z, Deng M, Hao M, Tang J. Periodontal ligament stem cells in the periodontitis niche: inseparable interactions and mechanisms. J Leukoc Biol 2021; 110:565-576. [PMID: 34043832 DOI: 10.1002/jlb.4mr0421-750r] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/25/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is characterized by the periodontium's pathologic destruction due to the host's overwhelmed inflammation to the dental plaque. The bacterial infections and subsequent host immune responses have shaped a distinct microenvironment, which generally affects resident periodontal ligament stem cells (PDLSCs). Interestingly, recent studies have revealed that impaired PDLSCs may also contribute to the disturbance of periodontal homeostasis. The putative vicious circle underlying the interesting "positive feedback" of PDLSCs in the periodontitis niche remains a hot research topic, whereas the inseparable interactions between resident PDLSCs and the periodontitis niche are still not fully understood. This review provides a microscopic view on the periodontitis progression, especially the quick but delicate immune responses to oral dysbacterial infections. We also summarize the interesting crosstalk of the resident PDLSCs with their surrounding periodontitis niche and potential mechanisms. Particularly, the microenvironment reduces the osteogenic properties of resident PDLSCs, which are closely related to their reparative activity. Reciprocally, these impaired PDLSCs may disrupt the microenvironment by aggravating the host immune responses, promoting aberrant angiogenesis, and facilitating the osteoclastic activity. We further recommend that more in-depth studies are required to elucidate the interactions of PDLSCs with the periodontal microenvironment and provide novel interventions for periodontitis.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Mengting Deng
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Meng Hao
- Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Sun Yat-sen University, Guangzhou, China
| | - Jianxia Tang
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
81
|
Chu M, Sun Z, Fan Z, Yu D, Mao Y, Guo Y. Bi-directional regulation functions of lanthanum-substituted layered double hydroxide nanohybrid scaffolds via activating osteogenesis and inhibiting osteoclastogenesis for osteoporotic bone regeneration. Am J Cancer Res 2021; 11:6717-6734. [PMID: 34093849 PMCID: PMC8171081 DOI: 10.7150/thno.56607] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: Osteoporotic patients suffer symptoms of excessive osteoclastogenesis and impaired osteogenesis, resulting in a great challenge to treat osteoporosis-related bone defects. Based on the positive effect of rare earth elements on bone metabolism and bone regeneration, we try to prove the hypothesis that the La3+ dopants in lanthanum-substituted MgAl layered double hydroxide (La-LDH) nanohybrid scaffolds simultaneously activate osteogenesis and inhibit osteoclastogenesis. Methods: A freeze-drying technology was employed to construct La-LDH nanohybrid scaffolds. The in vitro osteogenic and anti-osteoclastogenic activities of La-LDH nanohybrid scaffolds were evaluated by using ovariectomized rat bone marrow stromal cells (rBMSCs-OVX) and bone marrow-derived macrophages (BMMs) as cell models. The in vivo bone regeneration ability of the scaffolds was investigated by using critical-size calvarial bone defect model of OVX rats. Results: La-LDH nanohybrid scaffolds exhibited three-dimensional macroporous structure, and La-LDH nanoplates arranged perpendicularly on chitosan organic matrix. The La3+ dopants in the scaffolds promote proliferation and osteogenic differentiation of rBMSCs-OVX by activating Wnt/β-catenin pathway, leading to high expression of ALP, Runx-2, COL-1 and OCN genes. Moreover, La-LDH scaffolds significantly suppressed RANKL-induced osteoclastogenesis by inhibiting NF-κB signaling pathway. As compared with the scaffolds without La3+ dopants, La-LDH scaffolds provided more favourable microenvironment to induce new bone in-growth along macroporous channels. Conclusion: La-LDH nanohybrid scaffolds possessed the bi-directional regulation functions on osteogenesis and osteoclastogenesis for osteoporotic bone regeneration. The modification of La3+ dopants in bone scaffolds provides a novel strategy for osteoporosis-related bone defect healing.
Collapse
|
82
|
Liu F, Yuan Y, Bai L, Yuan L, Li L, Liu J, Chen Y, Lu Y, Cheng J, Zhang J. LRRc17 controls BMSC senescence via mitophagy and inhibits the therapeutic effect of BMSCs on ovariectomy-induced bone loss. Redox Biol 2021; 43:101963. [PMID: 33865167 PMCID: PMC8066428 DOI: 10.1016/j.redox.2021.101963] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/06/2021] [Accepted: 03/27/2021] [Indexed: 02/08/2023] Open
Abstract
Senescence of bone marrow-derived mesenchymal stem cells (BMSCs) has been widely reported to be closely correlated with aging-related diseases, including osteoporosis (OP). Moreover, the beneficial functions of BMSCs decline with age, limiting their therapeutic efficacy in OP. In the present study, using RNA sequencing (RNA-Seq), we found that leucine-rich repeat containing 17 (LRRc17) expression in BMSCs was highly positively correlated with age. Therefore, we investigated whether LRRc17 knockdown could rejuvenate aged MSCs and increase their therapeutic efficacy in OP. Consistent with the RNA-Seq results, the protein expression of LRRc17 in senescent BMSCs was significantly increased, whereas LRRc17 knockdown inhibited cell apoptosis and reduced the expression of age-related proteins and G2 and S phase quiescence. Furthermore, LRRc17 knockdown shifted BMSCs from adipogenic to osteogenic differentiation, indicating the critical role of LRRc17 in BMSC senescence and differentiation. Additionally, similar to rapamycin (RAPA) treatment, LRRc17 knockdown activated mitophagy via inhibition of the mTOR/PI3K pathway, which consequently reduced mitochondrial dysfunction and inhibited BMSC senescence. However, the effects of LRRc17 knockdown were significantly blocked by the autophagy inhibitor hydroxychloroquine (HCQ), demonstrating that LRRc17 knockdown prevented BMSC senescence by activating mitophagy. In vivo, compared with untransfected aged mouse-derived BMSCs (O-BMSCs), O-BMSCs transfected with sh-LRRc17 showed effective amelioration of ovariectomy (OVX)-induced bone loss. Collectively, these results indicated that LRRc17 knockdown rejuvenated senescent BMSCs and thus enhanced their therapeutic efficacy in OP by activating autophagy.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Lin Bai
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China; Core Facility of West China Hospital, Sichuan University, Chengdu, PR China
| | - Longhui Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
83
|
Yuan M, Zhao L, Li Y, Gao X, Zhang B, Zhang D, Li Y. Capsaicin on stem cell proliferation and fate determination - a novel perspective. Pharmacol Res 2021; 167:105566. [PMID: 33753245 DOI: 10.1016/j.phrs.2021.105566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Capsaicin (CAP), a member of the vanilloid family, is the main active component of chili peppers, which has been widely explored for its various pharmacological effects and influence on cell physiology, such as axonal growth and apoptosis of tumor cells. In particular, CAP plays a crucial role in determining the proliferation and fate specification of stem cells by modulating a variety of signaling pathways, such as PPARγ, C/EBPα and Notch signaling. Since CAP-mediated processes are complex and multifactorial, we hope to achieve a better understanding of these processes and their implications in clinical applications. This review aims to shed light on the influences and mechanisms of CAP on the actions of various stem cells in adults and discusses the role of CAP in the different process of stem cell behaviors, including proliferation and differentiation. Our purpose is to provide certain prospects for the application of CAP and stem cell therapy in treating diseases.
Collapse
Affiliation(s)
- Mengmeng Yuan
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 301617
| | - Lucy Zhao
- Institute for Pharmacy and Molecular Biotechnology, Functional Genomics, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Yuhong Li
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 301617
| | - Xiumei Gao
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 301617
| | - Boli Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 301617
| | - Deqin Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 301617.
| | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 301617.
| |
Collapse
|
84
|
Chen M, Han H, Zhou S, Wen Y, Chen L. Morusin induces osteogenic differentiation of bone marrow mesenchymal stem cells by canonical Wnt/β-catenin pathway and prevents bone loss in an ovariectomized rat model. Stem Cell Res Ther 2021; 12:173. [PMID: 33712069 PMCID: PMC7953707 DOI: 10.1186/s13287-021-02239-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Osteoporosis (OP) is a metabolic bone disease due to the imbalance of osteogenesis and bone resorption, in which, bone marrow mesenchymal stem cells (BMSCs) have a significant effect as the seed cells. Recent research has shown the function of Morusin on inhibiting osteoclast differentiation in vitro. However, whether Morusin can regulate the osteogenic differentiation in addition to the proliferation of BMSCs remains unclear. METHODS BMSCs were isolated from 4-week-old Wistar rats and then treated with different concentrations of Morusin for 3, 5, 7, and 14 days. The proliferation of BMSCs was detected by MTT assay. The effect of Morusin on osteogenic differentiation of BMSCs was detected by RT-qPCR, Western blotting, ALP, and Alizarin Red staining. The effect of Morusin on Wnt/β-catenin signaling pathway was analyzed by RT-qPCR, Western blotting, and immunofluorescence. Finally, in the ovariectomy-induced osteoporosis model, the anti-osteoporosis activity of Morusin was determined by micro-CT, HE, and immunohistochemistry. RESULTS The results showed the function of 2.5-10 μM Morusin in the promotion of the proliferation in addition to osteogenic differentiation of BMSCs. Moreover, it also has an impact in activating the Wnt/β-catenin signaling pathway via inhibition of β-catenin phosphorylation as well as promotion of its nuclear translocation. Upon Dickkopf-related protein-1 (DKK-1, an inhibitor of the Wnt/β-catenin signaling pathway) was added to the Morusin, Morusin had a decreased stimulatory osteogenic effect on BMSCs. Finally, in the rat OP model, we found that Morusin could also exert anti-osteoporosis activity in vivo. CONCLUSIONS This study indicates the ability of Morusin in the promotion of osteogenic differentiation of BMSCs via the activation of Wnt/β-catenin signaling pathway and also shows the potential of Morusin to be an agent for osteoporosis treatment.
Collapse
Affiliation(s)
- Ming Chen
- Department of Joint Surgery and Sports medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hui Han
- Department of Joint Surgery and Sports medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Siqi Zhou
- Department of Joint Surgery and Sports medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
- Department of Orthopedics Department, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yinxian Wen
- Department of Joint Surgery and Sports medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Liaobin Chen
- Department of Joint Surgery and Sports medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
85
|
Huang L, Yin X, Chen J, Liu R, Xiao X, Hu Z, He Y, Zou S. Lithium chloride promotes osteogenesis and suppresses apoptosis during orthodontic tooth movement in osteoporotic model via regulating autophagy. Bioact Mater 2021; 6:3074-3084. [PMID: 33778189 PMCID: PMC7960682 DOI: 10.1016/j.bioactmat.2021.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Osteoporosis is a widely distributed disease that may cause complications such as accelerated tooth movement, bone resorption, and tooth loss during orthodontic treatment. Promoting bone formation and reducing bone resorption are strategies for controlling these complications. For several decades, the autophagy inducer lithium chloride (LiCl) has been explored for bipolar . In this study, we investigated the autophagy-promoting effect of LiCl on bone remodeling under osteoporotic conditions during tooth movement. Ovariectomy was used to induce osteoporosis status in vivo. The results showed that LiCl rejuvenated autophagy, decreased apoptosis, and promoted bone formation, thus protecting tooth movement in osteoporotic mice. Furthermore, in vitro experiments showed that LiCl reversed the effects of ovariectomy on bone marrow-derived mesenchymal stem cells (BMSCs) extracted from ovariectomized mice, promoting osteogenesis and suppressing apoptosis by positively regulating autophagy. These findings suggest that LiCl can significantly decrease adverse effects of osteoporosis on bone remodeling, and that it has great potential significance in the field of bone formation during tooth movement in osteoporosis patients.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jun Chen
- The Medical & Nursing School, Chengdu University, Chengdu, 610106, China
| | - Ruojing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyue Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhiai Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan He
- Laboratory for Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, China.,Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA, 02114, USA
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
86
|
Chen J, Zheng CX, Jin Y, Hu CH. Mesenchymal stromal cell-mediated immune regulation: A promising remedy in the therapy of type 2 diabetes mellitus. STEM CELLS (DAYTON, OHIO) 2021; 39:838-852. [PMID: 33621403 DOI: 10.1002/stem.3357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/03/2021] [Indexed: 11/09/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a major threat to global public health, with increasing prevalence as well as high morbidity and mortality, to which immune dysfunction has been recognized as a crucial contributor. Mesenchymal stromal cells (MSCs), obtained from various sources and possessing potent immunomodulatory abilities, have displayed great therapeutic potential for T2DM. Interestingly, the immunomodulatory capabilities of MSCs are endowed and plastic. Among the multiple mechanisms involved in MSC-mediated immune regulation, the paracrine effects of MSCs have attracted much attention. Of note, extracellular vesicles (EVs), an important component of MSC secretome, have emerged as pivotal mediators of their immunoregulatory effects. Particularly, the necrobiology of MSCs, especially apoptosis, has recently been revealed to affect their immunomodulatory functions in vivo. In specific, a variety of preclinical studies have demonstrated the beneficial effects of MSCs on improving islet function and ameliorating insulin resistance. More importantly, clinical trials have further uncovered the therapeutic potential of MSCs for T2DM. In this review, we outline current knowledge regarding the plasticity and underlying mechanisms of MSC-mediated immune modulation, focusing on the paracrine effects. We also summarize the applications of MSC-based therapies for T2DM in both preclinical studies and clinical trials, with particular emphasis on the modulation of immune system.
Collapse
Affiliation(s)
- Ji Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.,Department of Oral Implantology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, People's Republic of China
| |
Collapse
|
87
|
TRIM21-regulated Annexin A2 plasma membrane trafficking facilitates osteosarcoma cell differentiation through the TFEB-mediated autophagy. Cell Death Dis 2021; 12:21. [PMID: 33414451 PMCID: PMC7790825 DOI: 10.1038/s41419-020-03364-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents, which is characterized by dysfunctional autophagy and poor differentiation. Our recent studies have suggested that the tripartite motif containing-21 (TRIM21) plays a crucial role in regulating OS cell senescence and proliferation via interactions with several proteins. Yet, its implication in autophagy and differentiation in OS is largely unknown. In the present study, we first showed that TRIM21 could promote OS cell autophagy, as determined by the accumulation of LC3-II, and the degradation of cargo receptor p62. Further, we were able to identify that Annexin A2 (ANXA2), as a novel interacting partner of TRIM21, was critical for TIRM21-induced OS cell autophagy. Although TRIM21 had a negligible effect on the mRNA and protein expressions of ANXA2, we did find that TRIM21 facilitated the translocation of ANXA2 toward plasma membrane (PM) in OS cells through a manner relying on TRIM21-mediated cell autophagy. This functional link has been confirmed by observing a nice co-expression of TRIM21 and ANXA2 (at the PM) in the OS tissues. Mechanistically, we demonstrated that TRIM21, via facilitating the ANXA2 trafficking at the PM, enabled to release the transcription factor EB (TFEB, a master regulator of autophagy) from the ANXA2-TFEB complex, which in turn entered into the nucleus for the regulation of OS cell autophagy. In accord with previous findings that autophagy plays a critical role in the control of differentiation, we also demonstrated that autophagy inhibited OS cell differentiation, and that the TRIM21/ANXA2/TFEB axis is implicated in OS cell differentiation through the coordination with autophagy. Taken together, our results suggest that the TRIM21/ANXA2/TFEB axis is involved in OS cell autophagy and subsequent differentiation, indicating that targeting this signaling axis might lead to a new clue for OS treatment.
Collapse
|
88
|
Chen M, Tao B, Hu Y, Li M, Chen M, Tan L, Luo Z, Cai K. Enhanced biocompatibility and osteogenic differentiation of mesenchymal stem cells of titanium by Sr-Ga clavate double hydroxides. J Mater Chem B 2021; 9:6029-6036. [PMID: 34259279 DOI: 10.1039/d1tb00805f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To improve in vivo osseointegration of pure titanium implant, Sr-Ga clavate double hydroxide (CDH) coating was grown in situ on a titanium (Ti) substrate with simple hydrothermal and calcination treatments at 500 °C. The obtained coating on the Ti substrate (Ti-CDH and Ti-CDH500) was researched by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). Ti-CDH exhibited a sustained release profile of metal ions and maintained a slightly alkaline environment. The CDH coating was beneficial for osteogenic differentiation of mesenchymal stem cells (MSCs), which were reflected by the results of cellular assays, including alkaline phosphatase activity (ALP), cell mineralization capability (ARS), and osteogenesis-related gene expression. Besides, Ti-CDH could effectively improve the autophagic levels in MSCs, which further promoted osteogenic differentiation of MSCs. Hence, the Ti surface with Sr-Ga CDH modification supplied a simple and effective strategy to design biomaterials for bone generation.
Collapse
Affiliation(s)
- Maowen Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Maohua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Lu Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
89
|
Zhang L, Xie H, Li S. LncRNA LOXL1-AS1 controls osteogenic and adipocytic differentiation of bone marrow mesenchymal stem cells in postmenopausal osteoporosis through regulating the miR-196a-5p/Hmga2 axis. J Bone Miner Metab 2020; 38:794-805. [PMID: 32651705 DOI: 10.1007/s00774-020-01123-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Exploring molecular mechanisms of human bone marrow mesenchymal stem cells (hBMMSCs) differentiation, a crucial step for bone formation, is a new direction for treating postmenopausal osteoporosis. LncRNAs are involved in lots of biological processes including hBMMSCs differentiation. The present study aimed to explore the effect of LOXL1-AS1 on hBMMSCs differentiation. MATERIALS AND METHODS We examined the expression levels of LOXL1-AS1, miR-196a-5p and Hmga2 in peripheral blood from postmenopausal osteoporosis patients by RT-qPCR, and detected their changes during the osteogenic differentiation of hBMMSCs by RT-qPCR. RT-qPCR and western blot measured the level of biomarkers of bone formation and osteogenic differentiation (osteopontin, OPN; Alkaline phosphatase, ALP; Runt-related transcription factor-2, Runx-2). The effects of LOXL1-AS1 on the osteogenic and adipocytic differentiation of hBMMSCs were, respectively, determined by ALP, ARS staining assays and oil red O staining assay. RESULTS The abnormal high expression of LOXL1-AS1 was found in patients. LOXL1-AS1 expression showed a gradual decrease during the osteogenic differentiation of hBMMSCs. However, LOXL1-AS1 overexpression inhibited the hBMMSCs osteogenic differentiation but promoted adipocytic differentiation. Furthermore, LOXL1-AS1 was identified to be a sponge of miR-196a-5p and Hmga2 as a target gene of miR-196a-5p. Besides, LOXL1-AS1 sponged miR-196a-5p to mediate Hmga2 expression, which played contrary effects on regulating osteogenic and adipocytic differentiation of hBMMSCs. Moreover, LOXL1-AS1/miR-196a-5p/Hmga2 axis regulated hBMMSCs differentiation through controlling C/EBPβ-mediated PPARγ expression. CONCLUSION These findings facilitate understanding the molecular mechanism of hBMMSCs differentiation and bring up a novel sight for postmenopausal osteoporosis therapy.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Geriatrics, the First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou City, 510080, Guangdong Province, China.
| | - Haiqin Xie
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen City, 518036, Guangdong Province, China
| | - Shiliang Li
- Healthcare Office, the First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou City, 510080, Guangdong Province, China
| |
Collapse
|
90
|
Sun P, Yang Q, Wang Y, Peng J, Zhao K, Jia Y, Zhang T, Lu X, Han W, Qian Y. Pristimerin Inhibits Osteoclast Differentiation and Bone Resorption in vitro and Prevents Ovariectomy-Induced Bone Loss in vivo. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4189-4203. [PMID: 33116407 PMCID: PMC7553770 DOI: 10.2147/dddt.s275128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022]
Abstract
Introduction Osteoporosis is a metabolic bone disease characterized by reduced bone quantity and microstructure, typically owing to increased osteoclastogenesis and/or enhanced osteoclastic bone resorption, resulting in uncontrolled bone loss, which primarily affects postmenopausal women. In consideration of the severe side effects of current drugs for osteoporosis, new safe and effective medications are necessary. Pristimerin (Pri), a quinone methide triterpene extracted from Celastraceae and Hippocrateaceae members, exhibits potent antineoplastic and anti-inflammatory effects. However, its effect on osteoclasts remains unknown. Materials and Methods We evaluated the anti-osteoclastogenic and anti-resorptive effect of Pri on bone marrow-derived osteoclasts and its underlying mechanism in vitro. In addition, the protective effect of Pri on ovariectomy model was also explored in vivo. Results In vitro, Pri inhibited osteoclast differentiation and mature osteoclastic bone resorption in a time- and dose-dependent manner. Further, Pri suppressed the expression of osteoclast-related genes and the activation of key proteins. Pri also inhibited the early activation of ERK, JNK MAPK, and AKT signaling pathways in bone marrow-derived macrophages (BMMs), ultimately inhibiting the induction and activation of the crucial osteoclast transcriptional factor nuclear factor of activated T‐cell cytoplasmic 1 (NFATc1). In vivo, consistent with our in vitro data, Pri clearly prevented ovariectomy-induced bone loss. Conclusion Our data showed that Pri inhibits the differentiation and activation of osteoclasts in vitro and in vivo, and could be a promising candidate for treating osteoporosis.
Collapse
Affiliation(s)
- Peng Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China.,Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, People's Republic of China
| | - Qichang Yang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Yanben Wang
- Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, People's Republic of China
| | - Jiaxuan Peng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Kangxian Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Yewei Jia
- Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, People's Republic of China
| | - Tan Zhang
- Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, People's Republic of China
| | - Xuanyuan Lu
- Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, People's Republic of China
| | - Weiqi Han
- Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, People's Republic of China
| | - Yu Qian
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China.,Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, People's Republic of China
| |
Collapse
|
91
|
Ren L, Chen X, Chen X, Li J, Cheng B, Xia J. Mitochondrial Dynamics: Fission and Fusion in Fate Determination of Mesenchymal Stem Cells. Front Cell Dev Biol 2020; 8:580070. [PMID: 33178694 PMCID: PMC7593605 DOI: 10.3389/fcell.2020.580070] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are pivotal to tissue homeostasis, repair, and regeneration due to their potential for self-renewal, multilineage differentiation, and immune modulation. Mitochondria are highly dynamic organelles that maintain their morphology via continuous fission and fusion, also known as mitochondrial dynamics. MSCs undergo specific mitochondrial dynamics during proliferation, migration, differentiation, apoptosis, or aging. Emerging evidence suggests that mitochondrial dynamics are key contributors to stem cell fate determination. The coordination of mitochondrial fission and fusion is crucial for cellular function and stress responses, while abnormal fission and/or fusion causes MSC dysfunction. This review focuses on the role of mitochondrial dynamics in MSC commitment under physiological and stress conditions. We highlight mechanistic insights into modulating mitochondrial dynamics and mitochondrial strategies for stem cell-based regenerative medicine. These findings shed light on the contribution of mitochondrial dynamics to MSC fate and MSC-based tissue repair.
Collapse
Affiliation(s)
- Lin Ren
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaodan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaobing Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jiayan Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
92
|
Osteocyte apoptosis: the roles and key molecular mechanisms in resorption-related bone diseases. Cell Death Dis 2020; 11:846. [PMID: 33046704 PMCID: PMC7552426 DOI: 10.1038/s41419-020-03059-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/18/2023]
Abstract
Vital osteocytes have been well known to function as an important orchestrator in the preservation of robustness and fidelity of the bone remodeling process. Nevertheless, some key pathological factors, such as sex steroid deficiency and excess glucocorticoids, and so on, are implicated in inducing a bulk of apoptotic osteocytes, subsequently resulting in resorption-related bone loss. As much, osteocyte apoptosis, under homeostatic conditions, is in an optimal state of balance tightly controlled by pro- and anti-apoptotic mechanism pathways. Importantly, there exist many essential signaling proteins in the process of osteocyte apoptosis, which has a crucial role in maintaining a homeostatic environment. While increasing in vitro and in vivo studies have established, in part, key signaling pathways and cross-talk mechanism on osteocyte apoptosis, intrinsic and complex mechanism underlying osteocyte apoptosis occurs in various states of pathologies remains ill-defined. In this review, we discuss not only essential pro- and anti-apoptotic signaling pathways and key biomarkers involved in these key mechanisms under different pathological agents, but also the pivotal role of apoptotic osteocytes in osteoclastogenesis-triggered bone loss, hopefully shedding new light on the attractive and proper actions of pharmacotherapeutics of targeting apoptosis and ensuing resorption-related bone diseases such as osteoporosis and fragility fractures.
Collapse
|
93
|
Cao Q, Liu L, Hu Y, Jiang N, Wang Y, Chen J, Zhou Q, Guo R. Irradiation of carotid baroreceptor with low-intensity pulsed ultrasound exerts different metabolic protection in perirenal, epididymal white adipose tissue and interscapular brown adipose tissue of obese rats. FASEB J 2020; 34:15431-15447. [PMID: 32954572 DOI: 10.1096/fj.202001550r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/30/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
This study was designed to clarify whether the irradiation of carotid baroreceptor (CB) with low-intensity pulsed ultrasound (LIPUS) protects against obesity by rebalancing the autonomic nervous system (ANS). Obesity was induced using a high-fat diet (HFD) for 8 weeks in Sprague-Dawley rats. Irradiation with LIPUS was daily (20 minutes a day) applied to the right CB. In our study, LIPUS significantly ameliorated metabolic disorders in obese rats. LIPUS partly restored norepinephrine (NE) and acetylcholine (ACH) levels in the perirenal white adipose tissue (PWAT), epididymal white adipose tissue (EWAT), interscapular brown adipose tissue (IBAT), and plasma of obese rats. LIPUS partially rectified the dysregulated AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor (PPAR) α/ɣ pathway in the PWAT, EWAT, and IBAT of obese rats. PPARγ and PPARγ target genes respond more sensitively to HFD and LIPUS in PWAT and EWAT than in IBAT. NE, ACH, uncoupling protein-1, phosphorylated AMPK, PPARα, and PPARα target genes respond more sensitively to HFD and LIPUS in IBAT than in PWAT and EWAT. Conclusion: LIPUS irradiation of CB exerts different metabolic protection in PWAT, EWAT, and IBAT by rebalancing the ANS and rectifying the AMPK/PPARα/ɣ pathway in obese rats.
Collapse
Affiliation(s)
- Quan Cao
- Echo lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China.,3D-Printing & AI Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yugang Hu
- Echo lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China.,3D-Printing & AI Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nan Jiang
- Echo lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China.,3D-Printing & AI Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yijia Wang
- Echo lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China.,3D-Printing & AI Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinling Chen
- Echo lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China.,3D-Printing & AI Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Zhou
- Echo lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China.,3D-Printing & AI Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruiqiang Guo
- Echo lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China.,3D-Printing & AI Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
94
|
Li X, Xu J, Dai B, Wang X, Guo Q, Qin L. Targeting autophagy in osteoporosis: From pathophysiology to potential therapy. Ageing Res Rev 2020; 62:101098. [PMID: 32535273 DOI: 10.1016/j.arr.2020.101098] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Osteoporosis is a highly prevalent disorder characterized by the loss of bone mass and microarchitecture deterioration of bone tissue, attributed to various factors, including menopause (primary), aging (primary) and adverse effects of relevant medications (secondary). In recent decades, knowledge regarding the etiological mechanisms underpinning osteoporosis emphasizes that bone cellular homeostasis, including the maintenance of cell functions, differentiation, and the response to stress, is tightly regulated by autophagy, which is a cell survival mechanism for eliminating and recycling damaged proteins and organelles. With the important roles in the maintenance of cellular homeostasis and organ function, autophagy has emerged as a potential target for the prevention and treatment of osteoporosis. In this review, we update and discuss the pathophysiology of autophagy in normal bone cell life cycle and metabolism. Then, the alternations of autophagy in primary and secondary osteoporosis, and the accompanied pathological process are discussed. Finally, we discuss current strategies, limitations, and challenges involved in targeting relevant pathways and propose strategies by which such hurdles may be circumvented in the future for their translation into clinical validations and applications for the prevention and treatment of osteoporosis.
Collapse
|
95
|
Ruolan W, Liangjiao C, Longquan S. The mTOR/ULK1 signaling pathway mediates the autophagy-promoting and osteogenic effects of dicalcium silicate nanoparticles. J Nanobiotechnology 2020; 18:119. [PMID: 32867795 PMCID: PMC7457372 DOI: 10.1186/s12951-020-00663-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
A novel bioactive inorganic material containing silicon, calcium and oxygen, calcium silicate (Ca2SiO4, C2S) with a CaO-SiO2 ingredient, has been identified as a potential candidate for artificial bone. Autophagy has an essential function in adult tissue homoeostasis and tumorigenesis. However, little is known about whether silicate nanoparticles (C2S NPs) promote osteoblastic differentiation by inducing autophagy. Here we investigated the effects of C2S NPs on bone marrow mesenchymal stem cell differentiation (BMSCs) in osteoblasts. Furthermore, we identified the osteogenic gene and protein expression in BMSCs treated with C2S NPs. We found that autophagy is important for the ability of C2S NPs to induce osteoblastic differentiation of BMSCs. Our results showed that treatment with C2S NPs upregulated the expression of BMP2, UNX2, and OSX in BMSCs, and significantly promoted the expression of LC3 and Beclin, while P62 (an autophagy substrate) was downregulated. C2S NP treatment could also enhance Alizarin red S dye (ARS), although alkaline phosphatase (ALP) activity was not significantly changed. However, all these effects could be partially reversed by 3-MA. We then detected potential signaling pathways involved in this biological effect and found that C2S NPs could activate autophagy by suppressing mTOR and facilitating ULK1 expression. Autophagy further activated β-catenin expression and promoted osteogenic differentiation. In conclusion, C2S NPs promote bone formation and osteogenic differentiation in BMSCs by activating autophagy. They achieve this effect by activating mTOR/ULK1, inducing autophagy, and subsequently triggering the WNT/β-catenin pathway to boost the differentiation and biomineralization of osteoblasts.
Collapse
Affiliation(s)
- Wang Ruolan
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Chen Liangjiao
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Shao Longquan
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.
| |
Collapse
|
96
|
Tan Q, Wu JY, Liu YX, Liu K, Tang J, Ye WH, Zhu GH, Mei HB, Yang G. The neurofibromatosis type I gene promotes autophagy via mTORC1 signalling pathway to enhance new bone formation after fracture. J Cell Mol Med 2020; 24:11524-11534. [PMID: 32862562 PMCID: PMC7576311 DOI: 10.1111/jcmm.15767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
Bone fracture is one of the most common injuries. Despite the high regenerative capacity of bones, failure of healing still occurs to near 10% of the patients. Herein, we aim to investigate the modulatory role of neurofibromatosis type I gene (NF1) to osteogenic differentiation of bone marrow–derived mesenchymal stem cells (BMSCs) and new bone formation after fracture in a rat model. We studied the NF1 gene expression in normal and non‐union bone fracture models. Then, we evaluated how NF1 overexpression modulated osteogenic differentiation of BMSCs, autophagy activity, mTORC1 signalling and osteoclastic bone resorption by qRT‐PCR, Western blot and immunostaining assays. Finally, we injected lentivirus‐NF1 (Lv‐NF1) to rat non‐union bone fracture model and analysed the bone formation process. The NF1 gene expression was significantly down‐regulated in non‐union bone fracture group, indicating NF1 is critical in bone healing process. In the NF1 overexpressing BMSCs, autophagy activity and osteogenic differentiation were significantly enhanced. Meanwhile, the NF1 overexpression inhibited mTORC1 signalling and osteoclastic bone resorption. In rat non‐union bone fracture model, the NF1 overexpression significantly promoted bone formation during fracture healing. In summary, we proved the NF1 gene is critical in non‐union bone healing, and NF1 overexpression promoted new bone formation after fracture by enhancing autophagy and inhibiting mTORC1 signalling. Our results may provide a novel therapeutic clue of promoting bone fracture healing.
Collapse
Affiliation(s)
- Qian Tan
- Department of Orthopedic Surgery, The Hunan Children's Hospital, Changsha, China
| | - Jiang-Yan Wu
- Department of Orthopedic Surgery, The Hunan Children's Hospital, Changsha, China
| | - Yao-Xi Liu
- Department of Orthopedic Surgery, The Hunan Children's Hospital, Changsha, China
| | - Kun Liu
- Department of Orthopedic Surgery, The Hunan Children's Hospital, Changsha, China
| | - Jin Tang
- Department of Orthopedic Surgery, The Hunan Children's Hospital, Changsha, China
| | - Wei-Hua Ye
- Department of Orthopedic Surgery, The Hunan Children's Hospital, Changsha, China
| | - Guang-Hui Zhu
- Department of Orthopedic Surgery, The Hunan Children's Hospital, Changsha, China
| | - Hai-Bo Mei
- Department of Orthopedic Surgery, The Hunan Children's Hospital, Changsha, China
| | - Ge Yang
- Department of Orthopedic Surgery, The Hunan Children's Hospital, Changsha, China
| |
Collapse
|
97
|
Wang S, Deng Z, Ma Y, Jin J, Qi F, Li S, Liu C, Lyu FJ, Zheng Q. The Role of Autophagy and Mitophagy in Bone Metabolic Disorders. Int J Biol Sci 2020; 16:2675-2691. [PMID: 32792864 PMCID: PMC7415419 DOI: 10.7150/ijbs.46627] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022] Open
Abstract
Bone metabolic disorders include osteolysis, osteoporosis, osteoarthritis and rheumatoid arthritis. Osteoblasts and osteoclasts are two major types of cells in bone constituting homeostasis. The imbalance between bone formation by osteoblasts and bone resorption by osteoclasts has been shown to have a direct contribution to the onset of these diseases. Recent evidence indicates that autophagy and mitophagy, the selective autophagy of mitochondria, may play a vital role in regulating the proliferation, differentiation and function of osteoblasts and osteoclasts. Several signaling pathways, including PINK1/Parkin, SIRT1, MAPK8/FOXO3, Beclin-1/BECN1, p62/SQSTM1, and mTOR pathways, have been implied in the regulation of autophagy and mitophagy in these cells. Here we review the current progress about the regulation of autophagy and mitophagy in osteoblasts and osteoclasts in these bone metabolic disorders, as well as the molecular signaling activated or deactivated during this process. Together, we hope to draw attention to the role of autophagy and mitophagy in bone metabolic disorders, and their potential as a new target for the treatment of bone metabolic diseases and the requirements of further mechanism studies.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China.,South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
| | - Jiewen Jin
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University
| | - Fangjie Qi
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China.,South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Shuxian Li
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China.,South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Chang Liu
- South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Feng-Juan Lyu
- South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
| |
Collapse
|
98
|
Wei X, Ma W, Gu H, Liu D, Luo W, Bai Y, Wang W, Lui VCH, Yang P, Yuan Z. Transamniotic mesenchymal stem cell therapy for neural tube defects preserves neural function through lesion-specific engraftment and regeneration. Cell Death Dis 2020; 11:523. [PMID: 32655141 PMCID: PMC7354991 DOI: 10.1038/s41419-020-2734-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
Abstract
Neural tube defects (NTDs) lead to prenatal mortality and lifelong morbidity. Currently, surgical closure of NTD lesions results in limited functional recovery. We previously suggested that nerve regeneration was critical for NTD therapy. Here, we report that transamniotic bone marrow-derived mesenchymal stem cell (BMSC) therapy for NTDs during early development may achieve beneficial functional recovery. In our ex vivo rat embryonic NTD model, BMSCs injected into the amniotic cavity spontaneously migrated into the defective neural tissue. Hepatocyte growth factor and its receptor c-MET were found to play critical roles in this NTD lesion-specific migration. Using the in vivo rat fetal NTD model, we further discovered that the engrafted BMSCs specifically differentiated into the cell types of the defective tissue, including skin and different types of neurons in situ. BMSC treatment triggered skin repair in fetuses, leading to a 29.9 ± 5.6% reduction in the skin lesion area. The electrophysiological functional recovery assay revealed a decreased latency and increased motor-evoked potential amplitude in the BMSC-treated fetuses. Based on these positive outcomes, ease of operation, and reduced trauma to the mother and fetus, we propose that transamniotic BMSC administration could be a new effective therapy for NTDs.
Collapse
Affiliation(s)
- Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Vincent Chi Hang Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Peixin Yang
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
99
|
Zhang L, Qi M, Chen J, Zhao J, Li L, Hu J, Jin Y, Liu W. Impaired autophagy triggered by HDAC9 in mesenchymal stem cells accelerates bone mass loss. Stem Cell Res Ther 2020; 11:269. [PMID: 32620134 PMCID: PMC7333327 DOI: 10.1186/s13287-020-01785-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background Bone mass loss in aging is linked with imbalanced lineage differentiation of bone marrow mesenchymal stem cells (BMMSCs). Recent studies have proved that histone deacetylases (HDACs) are regarded as key regulators of bone remodeling. However, HDACs involve in regulating BMMSC bio-behaviors remain elusive. Here, we investigated the ability of HDAC9 on modulation of autophagy and its significance in lineage differentiation of BMMSCs. Methods The effects of HDAC9 on lineage differentiation of BMMSCs and autophagic signaling were assessed by various biochemical (western blot and ChIP assay), morphological (TEM and confocal microscopy), and micro-CT assays. Results Sixteen-month mice manifested obvious bone mass loss and marrow fat increase, accompanied with decreased osteogenic differentiation and increased adipogenic differentiation of BMMSCs. Further, the expression of HDAC9 elevated in bone and BMMSCs. Importantly, HDAC9 inhibitors recovered the lineage differentiation abnormality of 16-month BMMSCs and reduced p53 expression. Mechanistically, we revealed that HDAC9 regulated the autophagy of BMMSCs by controlling H3K9 acetylation in the promoters of the autophagic genes, ATG7, BECN1, and LC3a/b, which subsequently affected their lineage differentiation. Finally, HDAC9 inhibition improved endogenous BMMSC properties and promoted the bone mass recovery of 16-month mice. Conclusions Our data demonstrate that HDAC9 is a key regulator in a variety of bone mass by regulating autophagic activity in BMMSCs and thus a potential target of age-related bone loss treatment.
Collapse
Affiliation(s)
- Liqiang Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, 710032, Shaanxi, China
| | - Meng Qi
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jiangdong Zhao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Liya Li
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, 710032, Shaanxi, China
| | - Jiachen Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, Shaanxi, China. .,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, 710032, Shaanxi, China.
| | - Wenjia Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China. .,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, Shaanxi, China. .,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
100
|
Arjmand B, Sarvari M, Alavi-Moghadam S, Payab M, Goodarzi P, Gilany K, Mehrdad N, Larijani B. Prospect of Stem Cell Therapy and Regenerative Medicine in Osteoporosis. Front Endocrinol (Lausanne) 2020; 11:430. [PMID: 32719657 PMCID: PMC7347755 DOI: 10.3389/fendo.2020.00430] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The field of cell therapy and regenerative medicine can hold the promise of restoring normal tissues structure and function. Additionally, the main targets of stem cell-based therapies are chronic diseases and lifelong disabilities without definite cures such as osteoporosis. Osteoporosis as one of the important causes of morbidity in older men and post-menopausal women is characterized by reduced bone quantity or skeletal tissue atrophy that leads to an increased risk of osteoporotic fractures. The common therapeutic methods for osteoporosis only can prevent the loss of bone mass and recover the bone partially. Nevertheless, stem cell-based therapy is considered as a new approach to regenerate the bone tissue. Herein, mesenchymal stem cells as pivotal candidates for regenerative medicine purposes especially bone regeneration are the most common type of cells with anti-inflammatory, immune-privileged potential, and less ethical concerns than other types of stem cells which are investigated in osteoporosis. Based on several findings, the mesenchymal stem cells effectiveness near to a great extent depends on their secretory function. Indeed, they can be involved in the establishment of normal bone remodeling via initiation of specific molecular signaling pathways. Accordingly, the aim herein was to review the effects of stem cell-based therapies in osteoporosis.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sarvari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACER), Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACER), Tehran, Iran
| | - Neda Mehrdad
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|