51
|
Li Y, Liu F, Zhang J, Liu X, Xiao P, Bai H, Chen S, Wang D, Sung SHP, Kwok RTK, Shen J, Zhu K, Tang BZ. Efficient Killing of Multidrug-Resistant Internalized Bacteria by AIEgens In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001750. [PMID: 33977040 PMCID: PMC8097328 DOI: 10.1002/advs.202001750] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/18/2021] [Indexed: 05/04/2023]
Abstract
Bacteria infected cells acting as "Trojan horses" not only protect bacteria from antibiotic therapies and immune clearance, but also increase the dissemination of pathogens from the initial sites of infection. Antibiotics are hard and insufficient to treat such hidden internalized bacteria, especially multidrug-resistant (MDR) bacteria. Herein, aggregation-induced emission luminogens (AIEgens) such as N,N-diphenyl-4-(7-(pyridin-4-yl) benzo [c] [1,2,5] thiadiazol-4-yl) aniline functionalized with 1-bromoethane (TBP-1) and (3-bromopropyl) trimethylammonium bromide (TBP-2) (TBPs) show potent broad-spectrum bactericidal activity against both extracellular and internalized Gram-positive pathogens. TBPs trigger reactive oxygen species (ROS)-mediated membrane damage to kill bacteria, regardless of light irradiation. TBPs effectively kill bacteria without the development of resistance. Additionally, such AIEgens activate mitochondria dependent autophagy to eliminate internalized bacteria in host cells. Compared to the routinely used vancomycin in clinic, TBPs demonstrate comparable efficacy against methicillin-resistant Staphylococcus aureus (MRSA) in vivo. The studies suggest that AIEgens are promising new agents for the treatment of MDR bacteria associated infections.
Collapse
Affiliation(s)
- Ying Li
- Center for AIE ResearchCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518061China
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RdBeijing100193China
| | - Fei Liu
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RdBeijing100193China
| | - Jiangjiang Zhang
- Department of Biomedical EngineeringSouthern University of Science and TechnologyNo. 1088 Xueyuan Rd, Nanshan DistrictShenzhen518055China
| | - Xiaoye Liu
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RdBeijing100193China
| | - Peihong Xiao
- Center for AIE ResearchCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518061China
| | - Haotian Bai
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute for Advanced StudyDivision of Life ScienceThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
| | - Shang Chen
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RdBeijing100193China
| | - Dong Wang
- Center for AIE ResearchCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518061China
| | - Simon H. P. Sung
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute for Advanced StudyDivision of Life ScienceThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
| | - Ryan T. K. Kwok
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute for Advanced StudyDivision of Life ScienceThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
| | - Jianzhong Shen
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RdBeijing100193China
| | - Kui Zhu
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RdBeijing100193China
| | - Ben Zhong Tang
- Center for AIE ResearchCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518061China
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute for Advanced StudyDivision of Life ScienceThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
| |
Collapse
|
52
|
Ye X, Feng T, Li L, Wang T, Li P, Huang W. Theranostic platforms for specific discrimination and selective killing of bacteria. Acta Biomater 2021; 125:29-40. [PMID: 33582362 DOI: 10.1016/j.actbio.2021.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022]
Abstract
Bacterial infections are serious threats to public health due to lack of advanced techniques to rapidly and accurately diagnose these infections in clinics. Although bacterial infections can be treated with broad-spectrum antibiotics based on empirical judgment, the emergence of antimicrobial resistance has attracted global attention due to long-term misuse and abuse of antibiotics by humans in recent decades. Therefore, it is imperative to selectively discriminate and precisely eliminate pathogenic bacteria. Herein, in addition to the conventional methods for bacterial identification, we comprehensively reviewed the recently developed theranostic platforms for specific discrimination and selective killing of bacteria according to their different interactions with the target bacteria, such as electrostatic and hydrophobic interactions, molecular recognition, microenvironment response, metabolic labeling, bacteriophage targeting, and others. These theranostic agents not only benefit from improved therapeutic efficiency but also present limited susceptibility to induce bacterial resistance. The strategies summarized in this review will open up new avenues in developing effective antimicrobial materials to accurately diagnose and treat bacterial infections in the post-antibiotic era. STATEMENT OF SIGNIFICANCE: Bacterial infections are difficult to be rapidly and accurately diagnosed, and are generally treated with broad-spectrum antibiotics, which leads to the development of drug resistance. By integrating imaging modalities and therapeutic methods in a single treatment, various theranostic agents have been developed to address the abovementioned issues. Therefore, the emerging theranostic platforms for selective identification and elimination of bacteria based on the distinct interactions of the theranostic agents with the target bacteria are summarized in this review. We believe that the information provided in this review will guide researchers in designing advanced antibacterial theranostics for practical applications in the post-antibiotic era.
Collapse
Affiliation(s)
- Xiaoting Ye
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Tao Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Chongqing 401120, China.
| | - Lin Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China; Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
53
|
Liu S, Feng G, Tang BZ, Liu B. Recent advances of AIE light-up probes for photodynamic therapy. Chem Sci 2021; 12:6488-6506. [PMID: 34040725 PMCID: PMC8132949 DOI: 10.1039/d1sc00045d] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
As a new non-invasive treatment method, photodynamic therapy (PDT) has attracted great attention in biomedical applications. The advantages of possessing fluorescence for photosensitizers have made it possible to combine imaging and diagnosis together with PDT. The unique features of aggregation-induced emission (AIE) fluorogens provide new opportunities for facile design of light-up probes with high signal-to-noise ratios and improved theranostic accuracy and efficacy for image-guided PDT. In this review, we summarize the recent advances of AIE light-up probes for PDT. The strategies and principles to design AIE photosensitizers and light-up probes are firstly introduced. The application of AIE light-up probes in photodynamic antitumor and antibacterial applications is further elaborated in detail, from binding/targeting-mediated, reaction-mediated, and external stimuli-mediated light-up aspects. The challenges and future perspectives of AIE light-up probes in the PDT field are also presented with the hope to encourage more promising developments of AIE materials for phototheranostic applications and translational research.
Collapse
Affiliation(s)
- Shanshan Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, School of Materials Science and Engineering, South China University of Technology Guangzhou 510640 China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, School of Materials Science and Engineering, South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, School of Materials Science and Engineering, South China University of Technology Guangzhou 510640 China
- Department of Chemistry, The Hong Kong University of Science & Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
54
|
Imaging, Identification and Inhibition of Microorganisms Using AIEgens. Top Curr Chem (Cham) 2021; 379:21. [PMID: 33835299 DOI: 10.1007/s41061-021-00333-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022]
Abstract
Microorganisms, including bacteria, viruses and fungi, are ubiquitous in nature. Some are extremely beneficial to life on Earth, whereas some cause diseases and disrupt normal human physiology. Pathogenic microorganisms can also undergo mutations and develop resistance to antimicrobial agents, which complicates diagnostic and therapeutic regimens. This calls for continuing efforts to develop new strategies and tools that can provide fast, sensitive and accurate diagnosis, as well as effective treatment of ever-evolving infectious diseases. Aggregation-induced emission luminogens (AIEgens) have shown promise in imaging, identification and inhibition of various microbial species. Compared to conventional organic fluorophores, AIEgens can offer improved photostability, and have found utilities in imaging microorganisms. AIEgens have been shown to detect microbial viability and differentiate among different microbial strains. Theranostic AIEgens that integrate imaging and killing of microbes have also been developed. This review highlights examples in the literature where AIEgens have been employed as molecular probes in the imaging, discrimination and killing of bacteria, viruses and fungi.
Collapse
|
55
|
Gao P, Xiao Y, YuliangWang, Li L, Li W, Tao W. Biomedical applications of 2D monoelemental materials formed by group VA and VIA: a concise review. J Nanobiotechnology 2021; 19:96. [PMID: 33794908 PMCID: PMC8012749 DOI: 10.1186/s12951-021-00825-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/06/2021] [Indexed: 01/10/2023] Open
Abstract
The development of two-dimensional (2D) monoelemental nanomaterials (Xenes) for biomedical applications has generated intensive interest over these years. In this paper, the biomedical applications using Xene-based 2D nanomaterials formed by group VA (e.g., BP, As, Sb, Bi) and VIA (e.g., Se, Te) are elaborated. These 2D Xene-based theranostic nanoplatforms confer some advantages over conventional nanoparticle-based systems, including better photothermal conversion, excellent electrical conductivity, and large surface area. Their versatile and remarkable features allow their implementation for bioimaging and theranostic purposes. This concise review is focused on the current developments in 2D Xenes formed by Group VA and VIA, covering the synthetic methods and various biomedical applications. Lastly, the challenges and future perspectives of 2D Xenes are provided to help us better exploit their excellent performance and use them in practice.
Collapse
Affiliation(s)
- Ping Gao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Yufen Xiao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - YuliangWang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, 132013, China.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
56
|
Cai XM, Lin Y, Li Y, Chen X, Wang Z, Zhao X, Huang S, Zhao Z, Tang BZ. BioAIEgens derived from rosin: how does molecular motion affect their photophysical processes in solid state? Nat Commun 2021; 12:1773. [PMID: 33741995 PMCID: PMC7979920 DOI: 10.1038/s41467-021-22061-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/22/2021] [Indexed: 11/14/2022] Open
Abstract
The exploration of artificial luminogens with bright emission has been fully developed with the advancement of synthetic chemistry. However, many of them face problems like weakened emission in the aggregated state as well as poor renewability and sustainability. Therefore, the development of renewable and sustainable luminogens with anti-quenching function in the solid state, as well as to unveil the key factors that influence their luminescence behavior become highly significant. Herein, a new class of natural rosin-derived luminogens with aggregation-induced emission property (AIEgens) have been facilely obtained with good biocompatibility and targeted organelle imaging capability as well as photochromic behavior in the solid state. Mechanistic study indicates that the introduction of the alicyclic moiety helps suppress the excited-state molecular motion to enhance the solid-state emission. The current work fundamentally elucidates the role of alicyclic moiety in luminogen design and practically demonstrates a new source to large-scalely obtain biocompatible AIEgens.
Collapse
Affiliation(s)
- Xu-Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Rescources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuting Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Rescources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Ying Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xinfei Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Rescources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zaiyu Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xueqian Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Rescources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- School of Chemistry and Engineering, Southeast University, Nanjing, China.
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
57
|
Saraf M, Tavakkoli Yaraki M, Prateek, Tan YN, Gupta RK. Insights and Perspectives Regarding Nanostructured Fluorescent Materials toward Tackling COVID-19 and Future Pandemics. ACS APPLIED NANO MATERIALS 2021; 4:911-948. [PMID: 37556236 PMCID: PMC7885806 DOI: 10.1021/acsanm.0c02945] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/26/2021] [Indexed: 07/28/2023]
Abstract
The COVID-19 outbreak has exposed the world's preparation to fight against unknown/unexplored infectious and life-threatening pathogens. The unavailability of vaccines, slow or sometimes unreliable real-time virus/bacteria detection techniques, insufficient personal protective equipment (PPE), and a shortage of ventilators and many other transportation equipments have further raised serious concerns. Material research has been playing a pivotal role in developing antimicrobial agents for water treatment and photodynamic therapy, fast and ultrasensitive biosensors for virus/biomarkers detection, as well as for relevant biomedical and environmental applications. It has been noticed that these research efforts nowadays primarily focus on the nanomaterials-based platforms owing to their simplicity, reliability, and feasibility. In particular, nanostructured fluorescent materials have shown key potential due to their fascinating optical and unique properties at the nanoscale to combat against a COVID-19 kind of pandemic. Keeping these points in mind, this review attempts to give a perspective on the four key fluorescent materials of different families, including carbon dots, metal nanoclusters, aggregation-induced-emission luminogens, and MXenes, which possess great potential for the development of ultrasensitive biosensors and infective antimicrobial agents to fight against various infections/diseases. Particular emphasis has been given to the biomedical and environmental applications that are linked directly or indirectly to the efforts in combating COVID-19 pandemics. This review also aims to raise the awareness of researchers and scientists across the world to utilize such powerful materials in tackling similar pandemics in future.
Collapse
Affiliation(s)
- Mohit Saraf
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| | - Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular Engineering,
National University of Singapore, 4 Engineering Drive 4,
117585, Singapore
- Research and Development Department,
Nanofy Technologies Pte. Ltd., 048580,
Singapore
| | - Prateek
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| | - Yen Nee Tan
- Faculty of Science, Agriculture & Engineering,
Newcastle University, Newcastle upon Tyne NE1 7RU,
U.K.
- Newcastle Research & Innovation Institute,
Devan Nair Institute for Employment & Employability, 80
Jurong East Street 21, 609607, Singapore
| | - Raju Kumar Gupta
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
- Centre for Environmental Science and Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
- Department of Sustanable Energy Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| |
Collapse
|
58
|
Emerging trends in aggregation induced emissive luminogens as bacterial theranostics. J Drug Target 2021; 29:793-807. [PMID: 33583291 DOI: 10.1080/1061186x.2021.1888111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The emergence and spread of pathogenic bacteria, particularly antibiotic-resistant strains pose grave global concerns worldwide, which demand for the rapid development of highly selective and sensitive strategies for specific bacterial detection, identification, imaging and therapy. The fascinating feature of aggregation-induced emissive molecules (AIEgens) to display fluorescence in aggregate form can be suitably coupled with nanotechnology for developing theranostic AIE dots that can offer convenient and customised functions such as sensing, imaging, detection, discrimination and cell kill of different bacterial types. The initial section of the article reveals the necessity for incorporating diagnostic imaging with antibacterial therapy, while the latter part delivers mechanistic insights on the benefits of AIE fluorophores in theranostic applications. Further, the review illustrates the recent advancements of AIEgens as theranostic nanolights in bacterial detection, identification and eradication. The review is organised according to the different classes of AIE-active bacterial theranostics such as carrier-free nanoprodrugs, nanomachines for synergistic imaging-guided cancer treatment and bacterial kill, AIE polymers, bioconjugates and nanoparticle carriers. By elucidating their design principles and applications, as well as highlighting the recent trends and perspectives that can be further explored, we hope to instill more research interest in AIE bacterial theranostics for future translational research.HighlightsCombination of aggregation induced emissive fluorophores and nanotechnology for developing bacterial theranostics.AIE theranostics with customised functions for bacterial imaging, detection, discrimination and cell kill.
Collapse
|
59
|
Sayed SM, Xu KF, Jia HR, Yin FF, Ma L, Zhang X, Khan A, Ma Q, Wu FG, Lu X. Naphthalimide-based multifunctional AIEgens: Selective, fast, and wash-free fluorescence tracking and identification of Gram-positive bacteria. Anal Chim Acta 2021; 1146:41-52. [DOI: 10.1016/j.aca.2020.12.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
|
60
|
Shi L, Wu W, Duan Y, Xu L, Li S, Gao X, Liu B. Carrier-Free Hybrid DNA Nanoparticles for Light-Induced Self-Delivery of Functional Nucleic Acid Enzymes. ACS NANO 2021; 15:1841-1849. [PMID: 33449616 DOI: 10.1021/acsnano.0c10045] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, we developed hybrid DNAzyme nanoparticles (NPs) to achieve light-induced carrier-free self-delivery of DNAzymes with sufficient cofactor supply and lysosome escape capacity. In this system, aggregation-induced emission (AIE) photosensitizer (PS) (TBD-Br) was grafted onto a phosphorothiolated DNAzyme backbone, which automatically self-assembled to form NPs and the surface phosphorothioate group could easily coordinate with the cofactor Zn2+ in the buffer. When the yielded hybrid DNAzyme NPs were located inside tumor cell lysosomes, the 1O2 from TBD-Br under light illumination could destroy lysosome structure and promote the Zn2+ coordinated DNAzyme NPs escape. Both in vitro and in vivo results demonstrated that the hybrid DNAzyme NPs could downregulate the early growth response factor-1 protein (EGR-1) to inhibit tumor cell growth in addition to induce tumor cell apoptosis by AIE PS (TBD-Br) under light irradiation.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Li Xu
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600th Nanfeng Road, Shanghai 201499, China
| | - Sha Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Xihui Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
61
|
A Highly Efficient Aggregation-induced Emission Photosensitizer for Photodynamic Combat of Multidrug-resistant Bacteria. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0393-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
62
|
Prasad P, Gupta A, Sasmal PK. Aggregation-induced emission active metal complexes: a promising strategy to tackle bacterial infections. Chem Commun (Camb) 2021; 57:174-186. [DOI: 10.1039/d0cc06037b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This Feature Article discusses the recent development of metal-based aggregation-induced emission luminogens for detection, discrimination and decimation of bacterial pathogens to tackle antimicrobial resistance.
Collapse
Affiliation(s)
- Puja Prasad
- Department of Chemical Engineering
- Indian Institute of Technology Delhi
- India
| | - Ajay Gupta
- School of Physical Sciences
- Jawaharlal Nehru University
- India
| | | |
Collapse
|
63
|
Liu Y, Chen Q, Sun Y, Chen L, Yuan Y, Gu M. Aggregation-induced emission shining in the biomedical field: From bench to bedside. ENGINEERED REGENERATION 2021. [DOI: 10.1016/j.engreg.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
64
|
Lee U, Kim YH, Yoon KS, Kim Y. Selective Butyrate Esterase Probe for the Rapid Colorimetric and Fluorogenic Identification of Moraxella catarrhalis. Anal Chem 2020; 92:16051-16057. [PMID: 33211958 DOI: 10.1021/acs.analchem.0c03671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clinical identification of the pathogenic bacterium Moraxella catarrhalis in cultures relies on the detection of bacterial butyrate esterase (C4-esterase) using a coumarin-based fluorogenic substrate, 4-methylumbelliferyl butyrate. However, this classical probe may give false-positive responses because of its poor stability and lack of specificity. Here, we report a new colorimetric and fluorogenic probe design employing a meso-ester-substituted boron dipyrromethene (BODIPY) dye for the specific detection of C4-esterase activity expressed by M. catarrhalis. This new probe has resistance to nonspecific hydrolysis that is far superior to the classical probe and also selectively responds to esterase with rapid colorimetric and fluorescence signal changes and large "turn-on" ratios. The probe was successfully applied to the specific detection of M. catarrhalis with high sensitivity.
Collapse
Affiliation(s)
- Uisung Lee
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Yeon Ho Kim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Ki Sun Yoon
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
65
|
Zhang P, Kuang H, Xu Y, Shi L, Cao W, Zhu K, Xu L, Ma J. Rational Design of a High-Performance Quinoxalinone-Based AIE Photosensitizer for Image-Guided Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42551-42557. [PMID: 32862640 DOI: 10.1021/acsami.0c12670] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because light exhibits excellent spatiotemporal resolution, photodynamic therapy (PDT) is becoming a promising method for cancer treatment. However, in a single photosensitizer (PS), it remains a big challenge to achieve all key properties including effective singlet oxygen (1O2) production under long-wavelength laser and bright near-infrared (NIR) emission without toxicity in the dark. In addition, clinically used traditional PSs encounter quenched fluorescence and decreased 1O2 production because of molecular aggregation in aqueous solution. To solve the aforementioned issues, quinoxalinone CN (QCN) with effective 1O2 generation under long-wavelength (530 nm) laser irradiation and aggregation-induced NIR emission is rationally designed by precise optimization of the quinoxalinone scaffold. After being encapsulated by an amphiphilic polymer (DSPE-PEG), the yielded nanoparticles exhibit highly efficient 1O2 production and stable NIR fluorescence located at 800 nm without obvious toxicity under the dark. Both in vitro and in vivo evaluation identify that QCN would be a promising PS for image-guided PDT of tumors.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Haizhu Kuang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Yingying Xu
- Department of Pharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Leilei Shi
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Weiling Cao
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Kongkai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jing Ma
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518003, China
| |
Collapse
|
66
|
Rational collaborative ablation of bacterial biofilms ignited by physical cavitation and concurrent deep antibiotic release. Biomaterials 2020; 262:120341. [PMID: 32911255 DOI: 10.1016/j.biomaterials.2020.120341] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/10/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Abstract
Bacteria biofilm has extracellular polymeric substances to protect bacteria from external threats, which is a stubborn problem for human health. Herein, a kind of gasifiable nanodroplet is fabricated to ablate Staphylococcus aureus (S. aureus) biofilm. Upon NIR pulsed laser irradiation, the nanodroplets can gasify to generate destructive gas shockwave, which further potentiates initial acoustic cavitation effect, thus synergistically disrupting the protective biofilm and killing resident bacteria. More importantly, the gasification can further promote antibiotic release in deep biofilm for residual bacteria eradication. The nanodroplets not only exhibit deep biofilm penetration capacity and high potency to ablate biofilms, but also good biocompatibility without detectable side effects. In vivo mouse implant model indicates that the nanodroplets can accumulate at the S. aureus infected implant sites. Upon pulsed laser treatment, the nanodroplets efficiently eradicate bacteria biofilm in implanted catheter by synergistic contribution of gas shockwave-enhanced cavitation and deep antibiotic release. Current phase changeable nanodroplets with synergistic physical and chemical therapeutic modalities are promising to combat complex bacterial biofilms with drug resistance, which provides an alternative visual angle for biofilm inhibition in biomedicine.
Collapse
|
67
|
Shi L, Wu W, Duan Y, Xu L, Xu Y, Hou L, Meng X, Zhu X, Liu B. Light‐Induced Self‐Escape of Spherical Nucleic Acid from Endo/Lysosome for Efficient Non‐Cationic Gene Delivery. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Leilei Shi
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Li Xu
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yingying Xu
- Department of Pharmaceutics School of Pharmacy Fujian Medical University Fuzhou 350108 China
| | - Lidan Hou
- Department of Gastroenterology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 China
| | - Xiangjun Meng
- Department of Gastroenterology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| |
Collapse
|
68
|
Shi L, Wu W, Duan Y, Xu L, Xu Y, Hou L, Meng X, Zhu X, Liu B. Light-Induced Self-Escape of Spherical Nucleic Acid from Endo/Lysosome for Efficient Non-Cationic Gene Delivery. Angew Chem Int Ed Engl 2020; 59:19168-19174. [PMID: 32686235 DOI: 10.1002/anie.202006890] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 12/30/2022]
Abstract
Developing non-cationic gene carriers and achieving efficient endo/lysosome escape of functional nucleic acids in cytosol are two major challenges faced by the field of gene delivery. Herein, we demonstrate the concept of self-escape spherical nucleic acid (SNA) to achieve light controlled non-cationic gene delivery with sufficient endo/lysosome escape capacity. In this system, Bcl-2 antisense oligonucleotides (OSAs) were conjugated onto the surface of aggregation-induced emission (AIE) photosensitizer (PS) nanoparticles to form core-shell SNA. Once the SNAs were taken up by tumor cells, and upon light irradiation, the accumulative 1 O2 produced by the AIE PSs ruptured the lysosome structure to promote OSA escape. Prominent in vitro and in vivo results revealed that the AIE-based core-shell SNA could downregulate the anti-apoptosis protein (Bcl-2) and induce tumor cell apoptosis without any transfection reagent.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Li Xu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yingying Xu
- Department of Pharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China
| | - Lidan Hou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiangjun Meng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| |
Collapse
|
69
|
Tamil Selvan S, Padmanabhan P, Zoltán Gulyás B. Nanotechnology-Based Diagnostics and Therapy for Pathogen-Related Infections in the CNS. ACS Chem Neurosci 2020; 11:2371-2377. [PMID: 31726008 DOI: 10.1021/acschemneuro.9b00470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The central nervous system (CNS) encompasses the brain, spinal cord, and nerves, where both brain and spinal cord are safeguarded by the meninges. However, serious bacterial, viral, or fungal infection in the brain causes life-threatening diseases such as meningitis. Engineered nanostructures hold great promise for not only in the diagnosis but also for combating microbial drug resistance owing to their high surface area and innate antibacterial activity. We delineate several nanoparticle-based approaches to enhance the CNS delivery of drugs across the blood-brain barrier (BBB). While pathogens invade the CNS by phagocytosis or receptor (e.g., EphA2)-mediated transcytosis, most of the nanoparticles cross the BBB via receptor-mediated transcytosis (e.g., antibody, peptide, protein). We also provide our perspectives on the diagnostic pathways based on nanotechnology for the detection of pathogens in the brain, thereby opening up new therapeutic avenues.
Collapse
Affiliation(s)
- Subramanian Tamil Selvan
- Translational Neuroscience Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921
| | - Parasuraman Padmanabhan
- Translational Neuroscience Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921
| | - Balázs Zoltán Gulyás
- Translational Neuroscience Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921
| |
Collapse
|
70
|
Gupta A, Prasad P, Gupta S, Sasmal PK. Simultaneous Ultrasensitive Detection and Elimination of Drug-Resistant Bacteria by Cyclometalated Iridium(III) Complexes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35967-35976. [PMID: 32662979 DOI: 10.1021/acsami.0c11161] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antimicrobial resistance has become a major threat to public health due to the rampant and empirical use of antibiotics. Rapid diagnosis of bacteria with the desired sensitivity and selectivity still, however, remains an open challenge. We report a special class of water-soluble metal-based aggregation-induced emission luminogens (AIEgens), namely, cyclometalated iridium(III) polypyridine complexes of the type [Ir(PQ)2(N^N)]Cl (1-3), where PQ = 2-phenylquinoline and N^N = 2,2'-bipyridine derivatives, that demonstrate dual capability for detection and elimination of drug-resistant bacteria in aqueous solutions. These AIEgens exhibit selective and rapid sensing of endotoxins, such as lipopolysaccharides (LPS) and lipoteichoic acid (LTA) released by the bacteria, with a detection limit in the lower nanomolar range. Targeting these naturally amplified biomarkers (approximately 1 million copies per cell) by iridium(III) complexes induces strong AIE in the presence of different Gram-negative and Gram-positive bacteria including carbapenem-resistant A. baumannii (CRAB) and methicillin-resistant S. aureus (MRSA) at concentrations as low as 1.2 CFU/mL within 5 min in spiked water samples. Detection of bacteria by the complexes is also visible to the naked eye at higher (108 CFU/mL) cell concentrations. More notably, complexes 1 and 2 show potent antibacterial activity against drug-resistant bacteria with low minimum inhibitory concentrations (MICs) ≤ 5 μg/mL (1-4 μM) via ROS generation and cell membrane disintegrity. To the best of our knowledge, this work is the "first-in-class" example of a metal-based theranostic system that integrates selective, sensitive, rapid, naked-eye, wash-free, and real-time detection of bacteria using broad-spectrum antibiotics into a single platform. This dual capability of AIEgens makes them ideal scaffolds for monitoring bacterial contamination in aqueous samples and pharmaceutical applications.
Collapse
Affiliation(s)
- Ajay Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Puja Prasad
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shalini Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Pijus K Sasmal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
71
|
Dong Z, Wang Y, Wang C, Meng H, Li Y, Wang C. Cationic Peptidopolysaccharide with an Intrinsic AIE Effect for Combating Bacteria and Multicolor Imaging. Adv Healthc Mater 2020; 9:e2000419. [PMID: 32431089 DOI: 10.1002/adhm.202000419] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/24/2020] [Indexed: 12/21/2022]
Abstract
An antibacterial polymer peptidopolysaccharide (COS-AMP) that integrates antibacterial and detection functions is constructed with a simple synthetic method. The COS-AMP is constructed by simulating the structure of peptidoglycan of the bacterial cell wall with chitooligosaccharide with intrinsic aggregation-induced emission (AIE) effect as the main chain, as well as a peptide polymer grafted onto its amino group. Based on the AIE effect and excitation-dependent fluorescence of COS-AMP, it is tentatively applied to multicolor imaging and quantification of bacteria. This multicolor imaging helps to match different excitation sources of fluorescent instrument for straightforward imaging and detection. The structural similarity with the bacterial cell wall component facilitates the passage of COS-AMP across the cell wall and destroys the bacterial structure, thus it has a good broad-spectrum antibacterial activity. In addition, aromatic fluorophores are not needed, and excellent biocompatibility will make it have broad application prospects.
Collapse
Affiliation(s)
- Zhenzhen Dong
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Yandong Wang
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Chunlei Wang
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - He Meng
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Yan Li
- School of Materials Science and EngineeringBeijing Advanced Innovation Centre for Biomedical EngineeringBeihang University Beijing 100191 China
| | - Caiqi Wang
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
72
|
Huang X, Guo Q, Zhang R, Zhao Z, Leng Y, Lam JWY, Xiong Y, Tang BZ. AIEgens: An emerging fluorescent sensing tool to aid food safety and quality control. Compr Rev Food Sci Food Saf 2020; 19:2297-2329. [PMID: 33337082 DOI: 10.1111/1541-4337.12591] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022]
Abstract
As a global public health problem, food safety has attracted increasing concern. To minimize the risk exposure of food to harmful ingredients, food quality and safety inspection that covers the whole process of "from farm to fork" is much desired. Fluorescent sensing is a promising and powerful screening tool for sensing hazardous substances in food and thus plays a crucial role in promoting food safety assurance. However, traditional fluorphores generally suffer the problem of aggregation-caused quenching (ACQ) effect, which limit their application in food quality and safety inspection. In this regard, luminogens with aggregation-induced emission property (AIEgens) showed large potential in food analysis since AIEgens effectively surmount the ACQ effect with much better detection sensitivity, accuracy, and robustness. In this contribution, we review the latest developments of food safety monitoring by AIEgens, which will focus on the molecular design of AIEgens and their sensing principles. Several examples of AIE-based sensing applications for screening food contaminations are highlighted, and future perspectives and challenges in this emerging field are tentatively elaborated. We hope this review can motivate new research ideas and interest to aid food safety and quality control, and facilitate more collaborative endeavors to advance the state-of-the-art sensing developments and reduce actual translational gap between laboratory research and industrial production.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China.,Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, the Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.,School of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Qian Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China.,School of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Ruoyao Zhang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, the Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Zheng Zhao
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, the Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China.,School of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, the Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China.,School of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, the Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
73
|
Zhao Z, Zhang H, Lam JWY, Tang BZ. Aggregationsinduzierte Emission: Einblicke auf Aggregatebene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916729] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zheng Zhao
- Department of ChemistryDepartment of Chemical and Biological EngineeringInstitute for Advanced StudyHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Haoke Zhang
- Department of ChemistryDepartment of Chemical and Biological EngineeringInstitute for Advanced StudyHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Jacky W. Y. Lam
- Department of ChemistryDepartment of Chemical and Biological EngineeringInstitute for Advanced StudyHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Ben Zhong Tang
- Department of ChemistryDepartment of Chemical and Biological EngineeringInstitute for Advanced StudyHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Center for Aggregation-Induced EmissionState Key Laboratory of Luminescent Materials and DevicesSCUT-HKUST Joint Research InstituteSouth China University of Technology, Tianhe Qu Guangzhou 510640 China
| |
Collapse
|
74
|
Zhao Z, Zhang H, Lam JWY, Tang BZ. Aggregation-Induced Emission: New Vistas at the Aggregate Level. Angew Chem Int Ed Engl 2020; 59:9888-9907. [PMID: 32048428 DOI: 10.1002/anie.201916729] [Citation(s) in RCA: 590] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Indexed: 12/13/2022]
Abstract
Aggregation-induced emission (AIE) describes a photophysical phenomenon in which molecular aggregates exhibit stronger emission than the single molecules. Over the course of the last 20 years, AIE research has made great strides in material development, mechanistic study and high-tech applications. The achievements of AIE research demonstrate that molecular aggregates show many properties and functions that are absent in molecular species. In this review, we summarize the advances in the field of AIE and its related areas. We specifically focus on the new properties of materials attained by molecular aggregates beyond the microscopic molecular level. We hope this review will inspire more research into molecular ensembles at and beyond the meso level and lead to the significant progress in material and biological science.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Chemistry, Department of Chemical and Biological Engineering, Institute for Advanced Study, Hong Kong Branch of Chinese National Engineering Research Center, for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Haoke Zhang
- Department of Chemistry, Department of Chemical and Biological Engineering, Institute for Advanced Study, Hong Kong Branch of Chinese National Engineering Research Center, for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Jacky W Y Lam
- Department of Chemistry, Department of Chemical and Biological Engineering, Institute for Advanced Study, Hong Kong Branch of Chinese National Engineering Research Center, for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Department of Chemical and Biological Engineering, Institute for Advanced Study, Hong Kong Branch of Chinese National Engineering Research Center, for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China.,Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology, Tianhe Qu, Guangzhou, 510640, China
| |
Collapse
|
75
|
Guo X, Cao B, Wang C, Lu S, Hu X. In vivo photothermal inhibition of methicillin-resistant Staphylococcus aureus infection by in situ templated formulation of pathogen-targeting phototheranostics. NANOSCALE 2020; 12:7651-7659. [PMID: 32207761 DOI: 10.1039/d0nr00181c] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial infection has caused a serious threat to human public health. Methicillin-resistant Staphylococcus aureus (MRSA) is a representative drug-resistant bacterium, which is difficult to eradicate completely, resulting in high infection probability with severe mortality. Herein, pathogen-targeting phototheranostic nanoparticles, Van-OA@PPy, are developed for efficient elimination of MRSA infection. Van-OA@PPy nanoparticles are fabricated from the in situ templated formation of polypyrrole (PPy) in the presence of ferric ions (Fe3+) and a polymer template, hydrophilic poly(2-hydroxyethyl methacrylate-co-N,N-dimethyl acrylamide), P(HEMA-co-DMA). PPy nanoparticles are further coated with vancomycin conjugated oleic acid (Van-OA) to afford the resultant pathogen-targeting Van-OA@PPy. A high photothermal conversion efficiency of ∼49.4% is achieved. MRSA can be efficiently killed due to sufficient nanoparticle adhesion and fusion with MRSA, followed by photothermal therapy upon irradiation with an 808 nm laser. Remarkable membrane damage of MRSA is observed, which contributes greatly to the inhibition of MRSA infection. Furthermore, the nanoparticles have high stability and good biocompatibility without causing any detectable side effects. On the other hand, residual Fe3+ and PPy moieties in Van-OA@PPy endow the nanoparticles with magnetic resonance (MR) imaging and photoacoustic (PA) imaging potency, respectively. The current strategy has the potential to inspire further advances in precise diagnosis and efficient elimination of MRSA infection in biomedicine.
Collapse
Affiliation(s)
- Xujuan Guo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | | | | | | | | |
Collapse
|
76
|
Wang C, Chen P, Qiao Y, Kang Y, Yan C, Yu Z, Wang J, He X, Wu H. pH responsive superporogen combined with PDT based on poly Ce6 ionic liquid grafted on SiO 2 for combating MRSA biofilm infection. Theranostics 2020; 10:4795-4808. [PMID: 32308750 PMCID: PMC7163436 DOI: 10.7150/thno.42922] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Biofilm infection caused by multidrug-resistant bacteria is difficult to eradicate by conventional therapies. Photodynamic therapy (PDT) is an effective antibacterial method for fighting against biofilm infection. However, the blocked photosensitizers outside of biofilm greatly limit the efficacy of PDT. Methods: Herein, a novel acid-responsive superporogen and photosensitizer (SiO2-PCe6-IL) was developed. Because of the protonation of the photosensitizer and the high binding energy of the polyionic liquid, SiO2-PCe6-IL changed to positive SiO2-PIL+ in an acidic microenvironment of biofilm infection. SiO2-PIL+ could combine with negatively charged extracellular polymeric substances (EPS) and create holes to remove the biofilm barrier. To strengthen the interaction between SiO2-PIL+ and EPS, SiO2-PIL+ of high charge density was prepared by grafting the high-density initiation site of ATRP onto the surface of the SiO2 base. Results: Due to the rapid protonation rate of COO- and the strong binding energy of SiO2-PIL+ with EPS, SiO2-PCe6-IL could release 90% of Ce6 in 10 s. With the stronger electrostatic and hydrophobic interaction of SiO2-PIL+ with EPS, the surface potential, hydrophobicity, adhesion and mechanical strength of biofilm were changed, and holes in the biofilm were created in 10 min. Combining with the release of photosensitizers and the porous structure of the biofilm, Ce6 was efficiently concentrated in the biofilm. The in vitro and in vivo antibacterial experiments proved that SiO2-PCe6-IL dramatically improved the PDT efficacy against MRSA biofilm infection. Conclusion: These findings suggest that SiO2-PCe6-IL could rapidly increase the concentration of photosensitizer in biofilm and it is an effective therapy for combating biofilm infection.
Collapse
|
77
|
Xie L, Pang X, Yan X, Dai Q, Lin H, Ye J, Cheng Y, Zhao Q, Ma X, Zhang X, Liu G, Chen X. Photoacoustic Imaging-Trackable Magnetic Microswimmers for Pathogenic Bacterial Infection Treatment. ACS NANO 2020; 14:2880-2893. [PMID: 32125820 DOI: 10.1021/acsnano.9b06731] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Micro/nanorobots have been extensively explored as a tetherless small-scale robotic biodevice to perform minimally invasive interventions in hard-to-reach regions. Despite the emergence of versatile micro/nanorobots in recent years, matched in vivo development remains challenging, limited by unsatisfactory integration of core functions. Herein, we report a polydopamine (PDA)-coated magnetic microswimmer consisting of a magnetized Spirulina (MSP) matrix and PDA surface. Apart from the properties of the existing MSP (e.g., robust propulsion, natural fluorescence, tailored biodegradation, and selective cytotoxicity), the introduced PDA coating enhances the photoacoustic (PA) signal and photothermal effect of the MSP, thus making PA image tracking and photothermal therapy possible. Meanwhile, the PDA's innate fluorescence quenching and diverse surface reactivity allows an off-on fluorescence diagnosis with fluorescence probes (e.g., coumarin 7). As a proof of concept, real-time image tracking (by PA imaging) and desired theranostic capabilities of PDA-MSP microswimmer swarms are demonstrated for the treatment of pathogenic bacterial infection. Our study suggests a feasible antibacterial microrobot for in vivo development and a facile yet versatile functionalization strategy of micro/nanorobots.
Collapse
Affiliation(s)
- Lisi Xie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Xin Pang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaohui Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Qixuan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Huirong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Jing Ye
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Yi Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
78
|
Xiong LH, Huang S, Huang Y, Yin F, Yang F, Zhang Q, Cheng J, Zhang R, He X. Ultrasensitive Visualization of Virus via Explosive Catalysis of an Enzyme Muster Triggering Gold Nano-aggregate Disassembly. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12525-12532. [PMID: 32106677 DOI: 10.1021/acsami.9b23247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sensitive and accurate diagnosis of viral infection is important for human health and social safety. Herein, by means of explosive catalysis from an enzyme muster, a powerful naked-eye readout platform has been successfully constructed for ultrasensitive immunoassay of viral entities. Liposomes were used to encapsulate multiple enzymes into an active unit. In addition, its triggered rupture could boost the disassembly of gold nano-aggregates that were cross-linked by peptides with opposite charges. As a result, plasmonically colorimetric signals were rapidly generated for naked-eye observation. Further harnessing the immunocapture, enterovirus 71 (EV71), a class of highly infective virus, was sensitively assayed with a detection limit down to 16 copies/μL. It is superior to the single enzyme-anchored immunoassay system. Most importantly, the colorimetric assay was demonstrated with 100% clinical accuracy, displaying strong anti-interference capability. It is expectable that this sensitive, accurate, and convenient strategy could provide a prospective alternative for viral infection analysis, especially in resource-constrained settings.
Collapse
Affiliation(s)
- Ling-Hong Xiong
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Suibin Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yalan Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Qian Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Renli Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xuewen He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
79
|
Li J, Wang J, Li H, Song N, Wang D, Tang BZ. Supramolecular materials based on AIE luminogens (AIEgens): construction and applications. Chem Soc Rev 2020; 49:1144-1172. [PMID: 31971181 DOI: 10.1039/c9cs00495e] [Citation(s) in RCA: 369] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of aggregation-induced emission luminogens (AIEgens) has significantly stimulated the development of luminescent supramolecular materials because their strong emissions in the aggregated state have resolved the notorious obstacle of the aggregation-caused quenching (ACQ) effect, thereby enabling AIEgen-based supramolecular materials to have a promising prospect in the fields of luminescent materials, sensors, bioimaging, drug delivery, and theranostics. Moreover, in contrast to conventional fluorescent molecules, the configuration of AIEgens is highly twisted in space. Investigating AIEgens and the corresponding supramolecular materials provides fundamental insights into the self-assembly of nonplanar molecules, drastically expands the building blocks of supramolecular materials, and pushes forward the frontiers of supramolecular chemistry. In this review, we will summarize the basic concepts, seminal studies, recent trends, and perspectives in the construction and applications of AIEgen-based supramolecular materials with the hope to inspire more interest and additional ideas from researchers and further advance the development of supramolecular chemistry.
Collapse
Affiliation(s)
- Jie Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianxing Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haoxuan Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nan Song
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
80
|
Shi L, Hu F, Duan Y, Wu W, Dong J, Meng X, Zhu X, Liu B. Hybrid Nanospheres to Overcome Hypoxia and Intrinsic Oxidative Resistance for Enhanced Photodynamic Therapy. ACS NANO 2020; 14:2183-2190. [PMID: 32023035 DOI: 10.1021/acsnano.9b09032] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Photodynamic therapy (PDT) has been a well-accepted clinical treatment for malignant tumors owing to its noninvasiveness and high spatiotemporal selectivity. However, the efficiency of PDT is still severely hindered by an inherent aggregation-caused quenching (ACQ) effect of traditional photosensitizers (PSs), the presence of B-cell lymphoma 2 (Bcl-2), an antiapoptosis protein in cells, and hypoxia in the tumor microenvironment. To address these issues, hybrid nanospheres containing Fe3+, aggregation-induced emission (AIE) PS, and Bcl-2 inhibitor of sabutoclax were constructed via coordination-driven self-assembly in aqueous media. Once the hybrid nanospheres are taken up by tumor cells, intracellular O2 concentration is observed to increase via Fenton reaction driven by Fe3+, whereas intracellular PDT resistance of the AIE PS was mitigated by sabutoclax. The design of the multifunctional hybrid nanospheres demonstrates a prospective nanoplatform for image-guided enhanced PDT of tumors.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| | - Fang Hu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| | - Jinqiao Dong
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| | - Xiangjun Meng
- Department of Gastroenterology, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| |
Collapse
|
81
|
Dai J, Wu X, Ding S, Lou X, Xia F, Wang S, Hong Y. Aggregation-Induced Emission Photosensitizers: From Molecular Design to Photodynamic Therapy. J Med Chem 2020; 63:1996-2012. [PMID: 32039596 DOI: 10.1021/acs.jmedchem.9b02014] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy (PDT) has emerged as a promising noninvasive treatment option for cancers and other diseases. The key factor that determines the effectiveness of PDT is the photosensitizers (PSs). Upon light irradiation, the PSs would be activated, produce reactive oxygen species (ROS), and induce cell death. One of the challenges is that traditional PSs adopt a large flat disc-like structure, which tend to interact with the adjacent molecules through strong π-π stacking that reduces their ROS generation ability. Aggregation-induced emission (AIE) molecules with a twisted configuration to suppress strong intermolecular interactions represent a new class of PSs for image-guided PDT. In this Miniperspective, we summarize the recent progress on the design rationale of AIE-PSs and the strategies to achieve desirable theranostic applications in cancers. Subsequently, approaches of combining AIE-PS with other imaging and treatment modalities, challenges, and future directions are addressed.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xia Wu
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyang Ding
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
82
|
He X, Yang Y, Guo Y, Lu S, Du Y, Li JJ, Zhang X, Leung NLC, Zhao Z, Niu G, Yang S, Weng Z, Kwok RTK, Lam JWY, Xie G, Tang BZ. Phage-Guided Targeting, Discriminative Imaging, and Synergistic Killing of Bacteria by AIE Bioconjugates. J Am Chem Soc 2020; 142:3959-3969. [PMID: 31999445 DOI: 10.1021/jacs.9b12936] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New agents with particular specificity toward targeted bacteria and superefficacy in antibacterial activity are urgently needed in facing the crisis of worldwide antibiotic resistance. Herein, a novel strategy by equipping bacteriophage (PAP) with photodynamic inactivation (PDI)-active AIEgens (luminogens with aggregation-induced emission property) was presented to generate a type of AIE-PAP bioconjugate with superior capability for both targeted imaging and synergistic killing of certain species of bacteria. The targeting ability inherited from the bacteriophage enabled the bioconjugates to specifically recognize the host bacteria with preserved infection activity of phage itself. Meanwhile, the AIE characteristic empowered them a monitoring functionality, and the real-time tracking of their interactions with targets was therefore realized via convenient fluorescence imaging. More importantly, the PDI-active AIEgens could serve as powerful in situ photosensitizers producing high-efficiency reactive oxygen species (ROS) under white light irradiation. As a result, selective targeting and synergistic killing of both antibiotic-sensitive and multi-drug-resistant (MDR) bacteria were successfully achieved in in vitro and in vivo antibacterial tests with excellent biocompatibility. This novel AIE-phage integrated strategy would diversify the existing pool of antibacterial agents and inspire the development of promising drug candidates in the future.
Collapse
Affiliation(s)
- Xuewen He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, Department of Chemical and Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon Hong Kong.,HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Yujun Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center , Chongqing Medical University , Chongqing 400016 , China
| | - Yongcan Guo
- Clinical Laboratory , Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University , Luzhou 646000 , China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Science , Army Medical University , Chongqing 400038 , China
| | - Yao Du
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center , Chongqing Medical University , Chongqing 400016 , China
| | - Jun-Jie Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center , Chongqing Medical University , Chongqing 400016 , China
| | - Xuepeng Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, Department of Chemical and Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon Hong Kong.,HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Nelson L C Leung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, Department of Chemical and Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon Hong Kong.,HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, Department of Chemical and Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon Hong Kong.,HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Guangle Niu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, Department of Chemical and Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon Hong Kong.,HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Shuangshuang Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center , Chongqing Medical University , Chongqing 400016 , China
| | - Zhi Weng
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center , Chongqing Medical University , Chongqing 400016 , China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, Department of Chemical and Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon Hong Kong.,HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, Department of Chemical and Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon Hong Kong.,HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center , Chongqing Medical University , Chongqing 400016 , China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, Department of Chemical and Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon Hong Kong.,HKUST-Shenzhen Research Institute , Shenzhen 518057 , China.,NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
83
|
Highly sensitive fluorescence-linked immunosorbent assay based on aggregation-induced emission luminogens incorporated nanobeads. Biosens Bioelectron 2020; 150:111912. [DOI: 10.1016/j.bios.2019.111912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022]
|
84
|
|
85
|
Dai J, Xu M, Wang Q, Yang J, Zhang J, Cui P, Wang W, Lou X, Xia F, Wang S. Cooperation therapy between anti-growth by photodynamic-AIEgens and anti-metastasis by small molecule inhibitors in ovarian cancer. Am J Cancer Res 2020; 10:2385-2398. [PMID: 32104509 PMCID: PMC7019153 DOI: 10.7150/thno.41708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022] Open
Abstract
Metastasis is one of the main causes of death and treatment failure in ovarian cancer. Some small molecule inhibitors can effectively inhibit the metastasis of primary tumors. However, they do not kill the primary tumor cells, which may lead to continuous proliferation. Herein, we have prepared a multifunctional nanoparticles named TPD@TB/KBU2046, which consisted of three functional moieties: (1) KBU2046 (small molecule inhibitor) that can inhibit the metastasis of the primary tumors, (2) TB (photodynamic-AIEgens) that may suppress the growth of the primary tumors, and (3) TPD, which contains TMTP1 (a targeting peptide, which specifically binds to highly metastatic tumor cells) that can enhance the TB/KBU2046 dosage in the tumor site. Methods: The TPD@TB/KBU2046 was prepared by nano-precipitation method. We linked the targeting peptide (TMTP1) to the nanoparticles via amidation reaction. TPD@TB/KBU2046 nanoparticles were characterized for encapsulation efficiency, particle size, absorption spectra, emission spectra and ROS production. The combinational efficacy in image-guided anti-metastasis and photodynamic therapy of TPD@TB/KBU2046 was explored both in vitro and in vivo. Results: The TPD@TB/KBU2046 showed an average hydrodynamic size of approximately 50 nm with good stability. In vitro, TPD@TB/KBU2046 not only inhibited the metastasis of the tumors, but also suppressed the growth of the tumors under AIEgens-mediated photodynamic therapy. In vivo, we confirmed that TPD@TB/KBU2046 has the therapeutic effects of anti-tumor growth and anti-metastasis through subcutaneous and orthotopic ovarian tumor models. Conclusion: Our findings provided an effective strategy to compensate for the congenital defects of some small molecule inhibitors and thus enhanced the therapeutic efficacy of ovarian cancer.
Collapse
|
86
|
|
87
|
Chen J, Shi X, Zhu Y, Chen Y, Gao M, Gao H, Liu L, Wang L, Mao C, Wang Y. On-demand storage and release of antimicrobial peptides using Pandora's box-like nanotubes gated with a bacterial infection-responsive polymer. Theranostics 2020; 10:109-122. [PMID: 31903109 PMCID: PMC6929614 DOI: 10.7150/thno.38388] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Localized delivery of antimicrobial agents such as antimicrobial peptides (AMPs) by a biomaterial should be on-demand. Namely, AMPs should be latent and biocompatible in the absence of bacterial infection, but released in an amount enough to kill bacteria immediately in response to bacterial infection. Methods: To achieve the unmet goal of such on-demand delivery, here we turned a titanium implant with titania nanotubes (Ti-NTs) into a Pandora's box. The box was loaded with AMPs (HHC36 peptides, with a sequence of KRWWKWWRR) inside the nanotubes and "closed" (surface-modified) with a pH-responsive molecular gate, poly(methacrylic acid) (PMAA), which swelled under normal physiological conditions (pH 7.4) but collapsed under bacterial infection (pH ≤ 6.0). Thus, the PMAA-gated Ti-NTs behaved just like a Pandora's box. The box retarded the burst release of AMPs under physiological conditions because the gate swelled to block the nanotubes opening. However, it was opened to release AMPs to kill bacteria immediately when bacterial infection occurred to lowering the pH (and thus made the gate collapse). Results: We demonstrated such smart excellent bactericidal activity against a panel of four clinically important bacteria, including Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus. In addition, this box was biocompatible and could promote the osteogenic differentiation of human mesenchymal stem cells. Both in vitro and in vivo studies confirmed the smart "on-demand" bactericidal activity of the Pandora's box. The molecularly gated Pandora's box design represents a new strategy in smart drug delivery.
Collapse
Affiliation(s)
- Junjian Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xuetao Shi
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510641, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Ye Zhu
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center Norman, OK, 73019, USA
| | - Yunhua Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510006, China
| | - Huichang Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lei Liu
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510641, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510006, China
| | - Lin Wang
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510641, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510006, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center Norman, OK, 73019, USA
| | - Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510006, China
| |
Collapse
|
88
|
Mei L, Zhu S, Yin W, Chen C, Nie G, Gu Z, Zhao Y. Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics 2020; 10:757-781. [PMID: 31903149 PMCID: PMC6929992 DOI: 10.7150/thno.39701] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022] Open
Abstract
The marked augment of drug-resistance to traditional antibiotics underlines the crying need for novel replaceable antibacterials. Research advances have revealed the considerable sterilization potential of two-dimension graphene-based nanomaterials. Subsequently, two-dimensional nanomaterials beyond graphene (2D NBG) as novel antibacterials have also demonstrated their power for disinfection due to their unique physicochemical properties and good biocompatibility. Therefore, the exploration of antibacterial mechanisms of 2D NBG is vital to manipulate antibacterials for future applications. Herein, we summarize the recent research progress of 2D NBG-based antibacterial agents, starting with a detailed introduction of the relevant antibacterial mechanisms, including direct contact destruction, oxidative stress, photo-induced antibacterial, control drug/metallic ions releasing, and the multi-mode synergistic antibacterial. Then, the effect of the physicochemical properties of 2D NBG on their antibacterial activities is also discussed. Additionally, a summary of the different kinds of 2D NBG is given, such as transition-metal dichalcogenides/oxides, metal-based compounds, nitride-based nanomaterials, black phosphorus, transition metal carbides, and nitrides. Finally, we rationally analyze the current challenges and new perspectives for future study of more effective antibacterial agents. This review not only can help researchers grasp the current status of 2D NBG antibacterials, but also may catalyze breakthroughs in this fast-growing field.
Collapse
Affiliation(s)
- Linqiang Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Guangjun Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
89
|
Li Q, Li Y, Min T, Gong J, Du L, Phillips DL, Liu J, Lam JWY, Sung HHY, Williams ID, Kwok RTK, Ho CL, Li K, Wang J, Tang BZ. Time‐Dependent Photodynamic Therapy for Multiple Targets: A Highly Efficient AIE‐Active Photosensitizer for Selective Bacterial Elimination and Cancer Cell Ablation. Angew Chem Int Ed Engl 2019; 59:9470-9477. [DOI: 10.1002/anie.201909706] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Qiyao Li
- Department of ChemistryHong Kong Branch of Chinese National Engineering.Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of Molecular NanoscienceDivision of Life Science and Department of Chemical and Biomedical EngineeringThe Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Ying Li
- Center for AIE ResearchCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 China
| | - Tianliang Min
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Junyi Gong
- Department of ChemistryHong Kong Branch of Chinese National Engineering.Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of Molecular NanoscienceDivision of Life Science and Department of Chemical and Biomedical EngineeringThe Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Lili Du
- Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - David Lee Phillips
- Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Junkai Liu
- Department of ChemistryHong Kong Branch of Chinese National Engineering.Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of Molecular NanoscienceDivision of Life Science and Department of Chemical and Biomedical EngineeringThe Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Jacky W. Y. Lam
- Department of ChemistryHong Kong Branch of Chinese National Engineering.Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of Molecular NanoscienceDivision of Life Science and Department of Chemical and Biomedical EngineeringThe Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Herman H. Y. Sung
- Department of ChemistryHong Kong Branch of Chinese National Engineering.Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of Molecular NanoscienceDivision of Life Science and Department of Chemical and Biomedical EngineeringThe Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Ian D. Williams
- Department of ChemistryHong Kong Branch of Chinese National Engineering.Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of Molecular NanoscienceDivision of Life Science and Department of Chemical and Biomedical EngineeringThe Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Ryan T. K. Kwok
- Department of ChemistryHong Kong Branch of Chinese National Engineering.Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of Molecular NanoscienceDivision of Life Science and Department of Chemical and Biomedical EngineeringThe Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Chun Loong Ho
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Kai Li
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jianguo Wang
- College of Chemistry and Chemical EngineeringInner Mongolia University Hohhot 010021 China
| | - Ben Zhong Tang
- Department of ChemistryHong Kong Branch of Chinese National Engineering.Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of Molecular NanoscienceDivision of Life Science and Department of Chemical and Biomedical EngineeringThe Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- Center for AIE ResearchCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 China
| |
Collapse
|
90
|
Li Q, Li Y, Min T, Gong J, Du L, Phillips DL, Liu J, Lam JWY, Sung HHY, Williams ID, Kwok RTK, Ho CL, Li K, Wang J, Tang BZ. Time‐Dependent Photodynamic Therapy for Multiple Targets: A Highly Efficient AIE‐Active Photosensitizer for Selective Bacterial Elimination and Cancer Cell Ablation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qiyao Li
- Department of ChemistryHong Kong Branch of Chinese National Engineering.Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of Molecular NanoscienceDivision of Life Science and Department of Chemical and Biomedical EngineeringThe Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Ying Li
- Center for AIE ResearchCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 China
| | - Tianliang Min
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Junyi Gong
- Department of ChemistryHong Kong Branch of Chinese National Engineering.Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of Molecular NanoscienceDivision of Life Science and Department of Chemical and Biomedical EngineeringThe Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Lili Du
- Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - David Lee Phillips
- Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Junkai Liu
- Department of ChemistryHong Kong Branch of Chinese National Engineering.Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of Molecular NanoscienceDivision of Life Science and Department of Chemical and Biomedical EngineeringThe Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Jacky W. Y. Lam
- Department of ChemistryHong Kong Branch of Chinese National Engineering.Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of Molecular NanoscienceDivision of Life Science and Department of Chemical and Biomedical EngineeringThe Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Herman H. Y. Sung
- Department of ChemistryHong Kong Branch of Chinese National Engineering.Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of Molecular NanoscienceDivision of Life Science and Department of Chemical and Biomedical EngineeringThe Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Ian D. Williams
- Department of ChemistryHong Kong Branch of Chinese National Engineering.Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of Molecular NanoscienceDivision of Life Science and Department of Chemical and Biomedical EngineeringThe Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Ryan T. K. Kwok
- Department of ChemistryHong Kong Branch of Chinese National Engineering.Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of Molecular NanoscienceDivision of Life Science and Department of Chemical and Biomedical EngineeringThe Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Chun Loong Ho
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Kai Li
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jianguo Wang
- College of Chemistry and Chemical EngineeringInner Mongolia University Hohhot 010021 China
| | - Ben Zhong Tang
- Department of ChemistryHong Kong Branch of Chinese National Engineering.Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of Molecular NanoscienceDivision of Life Science and Department of Chemical and Biomedical EngineeringThe Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- Center for AIE ResearchCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 China
| |
Collapse
|
91
|
Chen W, Zhang C, Han X, Liu SH, Tan Y, Yin J. Fluorophore-Labeling Tetraphenylethene Dyes Ranging from Visible to Near-Infrared Region: AIE Behavior, Performance in Solid State, and Bioimaging in Living Cells. J Org Chem 2019; 84:14498-14507. [DOI: 10.1021/acs.joc.9b01976] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chen Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Xie Han
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| |
Collapse
|
92
|
Chen X, Zheng G, Cheng J, Yang YY. Supramolecular Nanotheranostics. Am J Cancer Res 2019; 9:3014-3016. [PMID: 31244939 PMCID: PMC6567977 DOI: 10.7150/thno.36788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023] Open
Abstract
This supramolecular nanotheranostics special issue collected a total of 17 review articles and 3 research articles broadly covering the current and emerging supramolecular nanotheranostics.
Collapse
|