51
|
Shafiei FS, Abroun S. Recent advancements in nanomedicine as a revolutionary approach to treating multiple myeloma. Life Sci 2024; 356:122989. [PMID: 39197575 DOI: 10.1016/j.lfs.2024.122989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Abstract
Multiple myeloma, the second most common hematological malignancy, remains incurable with a 5-year survival rate of approximately 50 % and recurrence rates near 100 %, despite significant attempts to develop effective medicines. Therefore, there is a pressing demand in the medical field for innovative and more efficient treatments for MM. Currently, the standard approach for treating MM involves administering high-dose chemotherapy, which frequently correlates with improved results; however, one major limiting factor is the significant side effects of these medications. Furthermore, the strategies used to deliver medications to tumors limit their efficacy, whether by rapid clearance from circulation or an insufficient concentration in cancer cells. Cancer treatment has shifted from cytotoxic, nonspecific chemotherapy regimens to molecularly targeted, rationally developed drugs with improved efficacy and fewer side effects. Nanomedicines may provide an effective alternative way to avoid these limits by delivering drugs into the complicated bone marrow microenvironment and efficiently reaching myeloma cells. Putting drugs into nanoparticles can make their pharmacokinetic and pharmacodynamic profiles much better. This can increase the drug's effectiveness in tumors, extend its time in circulation in the blood, and lower its off-target toxicity. In this review, we introduce several criteria for the rational design of nanomedicine to achieve the best anti-tumoral therapeutic results. Next, we discuss recent advances in nanomedicine for MM therapy.
Collapse
Affiliation(s)
- Fatemeh Sadat Shafiei
- Department Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
52
|
Al Refaai KA, AlSawaftah NA, Abuwatfa W, Husseini GA. Drug Release via Ultrasound-Activated Nanocarriers for Cancer Treatment: A Review. Pharmaceutics 2024; 16:1383. [PMID: 39598507 PMCID: PMC11597164 DOI: 10.3390/pharmaceutics16111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Conventional cancer chemotherapy often struggles with safely and effectively delivering anticancer therapeutics to target tissues, frequently leading to dose-limiting toxicity and suboptimal therapeutic outcomes. This has created a need for novel therapies that offer greater efficacy, enhanced safety, and improved toxicological profiles. Nanocarriers are nanosized particles specifically designed to enhance the selectivity and effectiveness of chemotherapy drugs while reducing their toxicity. A subset of drug delivery systems utilizes stimuli-responsive nanocarriers, which enable on-demand drug release, prevent premature release, and offer spatial and temporal control over drug delivery. These stimuli can be internal (such as pH and enzymes) or external (such as ultrasound, magnetic fields, and light). This review focuses on the mechanics of ultrasound-induced drug delivery and the various nanocarriers used in conjunction with ultrasound. It will also provide a comprehensive overview of key aspects related to ultrasound-induced drug delivery, including ultrasound parameters and the biological effects of ultrasound waves.
Collapse
Affiliation(s)
- Khaled Armouch Al Refaai
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - Nour A. AlSawaftah
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (N.A.A.); (W.A.)
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Biosciences and Bioengineering Ph.D. Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad Abuwatfa
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (N.A.A.); (W.A.)
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Biosciences and Bioengineering Ph.D. Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (N.A.A.); (W.A.)
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Biosciences and Bioengineering Ph.D. Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
53
|
Abbasi M, Boka DA, DeLoit H. Nanomaterial-Enhanced Microneedles: Emerging Therapies for Diabetes and Obesity. Pharmaceutics 2024; 16:1344. [PMID: 39458672 PMCID: PMC11510597 DOI: 10.3390/pharmaceutics16101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Drug delivery systems (DDS) have improved therapeutic agent administration by enhancing efficacy and patient compliance while minimizing side effects. They enable targeted delivery, controlled release, and improved bioavailability. Transdermal drug delivery systems (TDDS) offer non-invasive medication administration and have evolved to include methods such as chemical enhancers, iontophoresis, microneedles (MN), and nanocarriers. MN technology provides innovative solutions for chronic metabolic diseases like diabetes and obesity using various MN types. For diabetes management, MNs enable continuous glucose monitoring, diabetic wound healing, and painless insulin delivery. For obesity treatment, MNs provide sustained transdermal delivery of anti-obesity drugs or nanoparticles (NPs). Hybrid systems integrating wearable sensors and smart materials enhance treatment effectiveness and patient management. Nanotechnology has advanced drug delivery by integrating nano-scaled materials like liposomes and polymeric NPs with MNs. In diabetes management, glucose-responsive NPs facilitate smart insulin delivery. At the same time, lipid nanocarriers in dissolving MNs enable extended release for obesity treatment, enhancing drug stability and absorption for improved metabolic disorder therapies. DDS for obesity and diabetes are advancing toward personalized treatments using smart MN enhanced with nanomaterials. These innovative approaches can enhance patient outcomes through precise drug administration and real-time monitoring. However, widespread implementation faces challenges in ensuring biocompatibility, improving technologies, scaling production, and obtaining regulatory approval. This review will present recent advances in developing and applying nanomaterial-enhanced MNs for diabetes and obesity management while also discussing the challenges, limitations, and future perspectives of these innovative DDS.
Collapse
Affiliation(s)
- Mehrnaz Abbasi
- Department of Nutritional Sciences, College of Human Sciences, Auburn University, Auburn, AL 36849, USA
| | - Divine Afunu Boka
- Department of Nutritional Sciences, College of Human Sciences, Auburn University, Auburn, AL 36849, USA
| | - Hannah DeLoit
- Department of Pre-Health Professional Curricula, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
54
|
Ismail M, Wang Y, Li Y, Liu J, Zheng M, Zou Y. Stimuli-Responsive Polymeric Nanocarriers Accelerate On-Demand Drug Release to Combat Glioblastoma. Biomacromolecules 2024; 25:6250-6282. [PMID: 39259212 DOI: 10.1021/acs.biomac.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor with a poor prognosis and limited treatment options. Drug delivery by stimuli-responsive nanocarriers holds great promise for improving the treatment modalities of GBM. At the beginning of the review, we highlighted the stimuli-active polymeric nanocarriers carrying therapies that potentially boost anti-GBM responses by employing endogenous (pH, redox, hypoxia, enzyme) or exogenous stimuli (light, ultrasonic, magnetic, temperature, radiation) as triggers for controlled drug release mainly via hydrophobic/hydrophilic transition, degradability, ionizability, etc. Modifying these nanocarriers with target ligands further enhanced their capacity to traverse the blood-brain barrier (BBB) and preferentially accumulate in glioma cells. These unique features potentially lead to more effective brain cancer treatment with minimal adverse reactions and superior therapeutic outcomes. Finally, the review summarizes the existing difficulties and future prospects in stimuli-responsive nanocarriers for treating GBM. Overall, this review offers theoretical guidelines for developing intelligent and versatile stimuli-responsive nanocarriers to facilitate precise drug delivery and treatment of GBM in clinical settings.
Collapse
Affiliation(s)
- Muhammad Ismail
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yibin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yundong Li
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Meng Zheng
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yan Zou
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
55
|
Singh A, Dorogin J, Baker K, Que J, Schimmer P, Dowdall N, Delfino A, Hoare T. Corked Microcapsules Enabling Controlled Ultrasound-Mediated Protein Delivery. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39364661 DOI: 10.1021/acsami.4c14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
While ultrasound represents a facile, portable, and noninvasive trigger for drug delivery vehicles, most reported ultrasound-triggered drug delivery vehicles predominately present "burst" release profiles that are hard to control after the initial activation stimulus. Herein, we report a submerged electrospraying technique to fabricate protein-loaded microcapsules in which silica "corks" are embedded within the microcapsule shell. Upon the application of an ultrasound trigger, the corks can be perturbed within the shell, allowing for the release of the protein payload through a phantom tissue mimic to a degree proportional to the number/time of pulses applied. Specifically, multiple ultrasound pulses were shown to enable a 15- to 23-fold increase in the rate of release of the model bovine serum albumin protein payload relative to no ultrasound being applied, with release returning to a lower level when the ultrasound stimulus was removed. Coupled with the low cytotoxicity of the vehicle components, the corked microcapsules show promise for expanding the potential to use ultrasound to facilitate both on-demand and pulsatile release profiles.
Collapse
Affiliation(s)
- Andrew Singh
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L7, Canada
| | - Jonathan Dorogin
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L7, Canada
| | - Kayla Baker
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L7, Canada
| | - Jonathan Que
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L7, Canada
| | - Pamela Schimmer
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L7, Canada
| | - Nate Dowdall
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L7, Canada
| | - Anthony Delfino
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L7, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
56
|
Jiang Y, Wang C, Zu C, Rong X, Yu Q, Jiang J. Synergistic Potential of Nanomedicine in Prostate Cancer Immunotherapy: Breakthroughs and Prospects. Int J Nanomedicine 2024; 19:9459-9486. [PMID: 39371481 PMCID: PMC11456300 DOI: 10.2147/ijn.s466396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Given the global prevalence of prostate cancer in men, it is crucial to explore more effective treatment strategies. Recently, immunotherapy has emerged as a promising cancer treatment due to its unique mechanism of action and potential long-term effectiveness. However, its limited efficacy in prostate cancer has prompted renewed interest in developing strategies to improve immunotherapy outcomes. Nanomedicine offers a novel perspective on cancer treatment with its unique size effects and surface properties. By employing targeted delivery, controlled release, and enhanced immunogenicity, nanoparticles can be synergized with nanomedicine platforms to amplify the effectiveness of immunotherapy in treating prostate cancer. Simultaneously, nanotechnology can address the limitations of immunotherapy and the challenges of immune escape and tumor microenvironment regulation. Additionally, the synergistic effects of combining nanomedicine with other therapies offer promising clinical outcomes. Innovative applications of nanomedicine include smart nanocarriers, stimulus-responsive systems, and precision medicine approaches to overcome translational obstacles in prostate cancer immunotherapy. This review highlights the transformative potential of nanomedicine in enhancing prostate cancer immunotherapy and emphasizes the need for interdisciplinary collaboration to drive research and clinical applications forward.
Collapse
Affiliation(s)
- Yueyao Jiang
- Department of Pharmacy, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Chengran Wang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Chuancheng Zu
- China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Xin’ao Rong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Qian Yu
- Department of Pharmacy, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Jinlan Jiang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| |
Collapse
|
57
|
Khabbazian S, Mirhadi E, Gheybi F, Askarizadeh A, Jaafari MR, Alavizadeh SH. Liposomal delivery of organoselenium-cisplatin complex as a novel therapeutic approach for colon cancer therapy. Colloids Surf B Biointerfaces 2024; 242:114085. [PMID: 39018910 DOI: 10.1016/j.colsurfb.2024.114085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Cisplatin is a widely-used chemotherapeutic agent for the treatment of various solid neoplasms including colon cancer. Cisplatin-induced DNA damage is restricted due to dose-related adverse reactions as well as primary resistance mechanisms. Therefore, it is imperative to utilize novel therapeutic approaches to circumvent cisplatin limitations and attenuate its normal tissues toxicity. In this study, we exploited a novel PEGylated liposomes with greater efficiency to treat colon cancer. For this, an organoselenium compound (diselanediylbis decanoic acid (DDA)) was synthesized, and liposomes composed of Egg PC or HSPC, as well as DOPE, mPEG2000-DSPE, cholesterol and DDA at varying molar ratios were prepared by using thin-film method. Cisplatin loading was performed through incubation with liposomes. Characterization of nanoliposomes indicated a favarable size range of 91-122 nm and negative zeta potential of -9 to -22 mv. The organoselenium compound significantly improved cisplatin loading efficiency within the liposomes (83.4 %). Results also revealed an efficient bioactivity of cisplatin liposome on C26 cells compared to the normal cells. Further, DDA bearing liposomes significantly improved drug residence time in circulation, reduced toxicity associated with the normal tissues, and enhanced drug accumulation within the oxidative tumor microenvironment. Collectively, results indicated that cisplatin encasement within liposomes by using this method could significantly improve the therapeutic efficacy in vivo, and merits further investigations.
Collapse
Affiliation(s)
- Samin Khabbazian
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anis Askarizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
58
|
Xiong R, Zhu X, Zhao J, Ling G, Zhang P. Nanozymes-Mediated Cascade Reaction System for Tumor-Specific Diagnosis and Targeted Therapy. SMALL METHODS 2024; 8:e2301676. [PMID: 38480992 DOI: 10.1002/smtd.202301676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Indexed: 10/18/2024]
Abstract
Cascade reactions are described as efficient and versatile tools, and organized catalytic cascades can significantly improve the efficiency of chemical interworking between nanozymes. They have attracted great interest in many fields such as chromogenic detection, biosensing, tumor diagnosis, and therapy. However, how to selectively kill tumor cells by enzymatic reactions without harming normal cells, as well as exploring two or more enzyme-engineered nanoreactors for cascading catalytic reactions, remain great challenges in the field of targeted and specific cancer diagnostics and therapy. The latest research advances in nanozyme-catalyzed cascade processes for cancer diagnosis and therapy are described in this article. Here, various sensing strategies are summarized, for tumor-specific diagnostics. Targeting mechanisms for tumor treatment using cascade nanozymes are classified and analyzed, "elements" and "dimensions" of cascade nanozymes, types, designs of structure, and assembly modes of highly active and specific cascade nanozymes, as well as a variety of new strategies of tumor targeting based on the cascade reaction of nanozymes. Finally, the integrated application of the cascade nanozymes systems in tumor-targeted and specific diagnostic therapy is summarized, which will lay the foundation for the design of more rational, efficient, and specific tumor diagnostic and therapeutic modalities in the future.
Collapse
Affiliation(s)
- Ruru Xiong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
59
|
Sai BM, Dinakar YH, Kumar H, Jain R, Kesharwani S, Kesharwani SS, Mudavath SL, Ramkishan A, Jain V. Therapeutic delivery of siRNA for the management of breast cancer and triple-negative breast cancer. Ther Deliv 2024; 15:871-891. [PMID: 39320858 PMCID: PMC11498026 DOI: 10.1080/20415990.2024.2400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths among women globally. The difficulties with anticancer medications, such as ineffective targeting, larger doses, toxicity to healthy cells and side effects, have prompted attention to alternate approaches to address these difficulties. RNA interference by small interfering RNA (siRNA) is one such tactic. When compared with chemotherapy, siRNA has several advantages, including the ability to quickly modify and suppress the expression of the target gene and display superior efficacy and safety. However, there are known challenges and hurdles that limits their clinical translation. Decomposition by endonucleases, renal clearance, hydrophilicity, negative surface charge, short half-life and off-target effects of naked siRNA are obstacles that hinder the desired biological activity of naked siRNA. Nanoparticulate systems such as polymeric, lipid, lipid-polymeric, metallic, mesoporous silica nanoparticles and several other nanocarriers were used for effective delivery of siRNA and to knock down genes involved in breast cancer and triple-negative breast cancer. The focus of this review is to provide a comprehensive picture of various strategies utilized for delivering siRNA, such as combinatorial delivery, development of modified nanoparticles, smart nanocarriers and nanocarriers that target angiogenesis, cancer stem cells and metastasis of breast cancer.
Collapse
Affiliation(s)
- Boya Manasa Sai
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Sharyu Kesharwani
- National Institute of Pharmaceutical Education & Research, Kolkata, West Bengal , 700054, India
| | | | - Shyam lal Mudavath
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Ajmeer Ramkishan
- Central Drugs Standard Control Organization, East Zone, Kolkata, 700020, West Bengal, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| |
Collapse
|
60
|
Kang X, Mita N, Zhou L, Wu S, Yue Z, Babu RJ, Chen P. Nanotechnology in Advancing Chimeric Antigen Receptor T Cell Therapy for Cancer Treatment. Pharmaceutics 2024; 16:1228. [PMID: 39339264 PMCID: PMC11435308 DOI: 10.3390/pharmaceutics16091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for hematological cancers, yet it faces significant hurdles, particularly regarding its efficacy in solid tumors and concerning associated adverse effects. This review provides a comprehensive analysis of the advancements and ongoing challenges in CAR-T therapy. We highlight the transformative potential of nanotechnology in enhancing CAR-T therapy by improving targeting precision, modulating the immune-suppressive tumor microenvironment, and overcoming physical barriers. Nanotechnology facilitates efficient CAR gene delivery into T cells, boosting transfection efficiency and potentially reducing therapy costs. Moreover, nanotechnology offers innovative solutions to mitigate cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Cutting-edge nanotechnology platforms for real-time monitoring of CAR-T cell activity and cytokine release are also discussed. By integrating these advancements, we aim to provide valuable insights and pave the way for the next generation of CAR-T cell therapies to overcome current limitations and enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Xuejia Kang
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - Nur Mita
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
- Faculty of Pharmacy, Mulawarman University, Samarinda 75119, Kalimantan Timur, Indonesia
| | - Lang Zhou
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| | - Siqi Wu
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| | - Zongliang Yue
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| |
Collapse
|
61
|
Khafaga DSR, El-Morsy MT, Faried H, Diab AH, Shehab S, Saleh AM, Ali GAM. Metal-organic frameworks in drug delivery: engineering versatile platforms for therapeutic applications. RSC Adv 2024; 14:30201-30229. [PMID: 39315019 PMCID: PMC11418013 DOI: 10.1039/d4ra04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, metal-organic frameworks (MOFs) have attracted much attention as versatile materials for drug delivery and personalized medicine. MOFs are porous structures made up of metal ions coupled with organic ligands. This review highlights the synthesis techniques used to design MOFs with specific features such as surface area and pore size, and the drug encapsulation within MOFs not only improves their stability and solubility but also allows for controlled release kinetics, which improves therapeutic efficacy and minimizes adverse effects. Furthermore, it discusses the challenges and potential advantages of MOF-based drug delivery, such as MOF stability, biocompatibility, and scale-up production. With further advancements in MOF synthesis, functionalization techniques, and understanding of their interactions using biological systems, MOFs can have significant promise for expanding the area of personalized medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University New Galala City 43511 Suez Egypt
| | - Manar T El-Morsy
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Habiba Faried
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ayah H Diab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Shaimaa Shehab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed M Saleh
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Gomaa A M Ali
- College of Marine Science and Aquatic Biology, University of Khorfakkan 18119 Sharjah United Arab Emirates
- Faculty of Science, Galala University 43511 Suez Egypt
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| |
Collapse
|
62
|
Ahmad W, Sajjad W, Zhou Q, Ge Z. Nanomedicine for combination of chemodynamic therapy and immunotherapy of cancers. Biomater Sci 2024; 12:4607-4629. [PMID: 39115141 DOI: 10.1039/d3bm02133e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Chemodynamic therapy (CDT), as a new type of therapy, has received more and more attention in the field of tumor therapy in recent years. By virtue of the characteristics of weak acidity and excess H2O2 in the tumor microenvironment, CDT uses the Fenton or Fenton-like reactions to catalyze the transformation of H2O2 into strongly oxidizing ˙OH, resulting in increased intracellular oxidative stress for lipid oxidation, protein inactivation, or DNA damage, and finally inducing apoptosis of cancer cells. In particular, CDT has the advantage of tumor specificity. However, the therapeutic efficacy of CDT frequently depends on the catalytic efficiency of the Fenton reaction, which needs the presence of sufficient H2O2 and catalytic metal ions. Relatively low concentrations of H2O2 and the lack of catalytic metal ions usually limit the final therapeutic effect. The combination of CDT with immunotherapy will be an effective means to improve the therapeutic effect. In this review paper, the recent progress related to nanomedicine for the combination of CDT and immunotherapy is summarized. Immunogenic death of tumor cells, immune checkpoint inhibitors, and stimulator of interferon gene (STING) activation as the main immunotherapy strategies to combine with CDT are discussed. Finally, the challenges and prospects for the clinical translation and future development direction are discussed.
Collapse
Affiliation(s)
- Waqas Ahmad
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Wasim Sajjad
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qinghao Zhou
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Zhishen Ge
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
63
|
You P, Lu F, Ouyang C, Yu J, González-García J, Song J, Ni W, Wang J, Yin C, Zhou CQ. Acidic Lysosome-Anchoring Croconium-Based Nanoplatform for Enhanced Triple-Mode Bioimaging and Fe 3+-Triggered Tumor Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46066-46078. [PMID: 39172044 DOI: 10.1021/acsami.4c09587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Metal-modulated croconium dyes with multimodal-imaging and synergistic therapy in the tumor microenvironment have exhibited great potential in tumor theranostics. However, their unideal structure optimization always weakened the efficacy of near-infrared fluorescence-photoacoustic (NIRF/PA) imaging and photothermal therapy (PTT). Here, we screened croconium dye containing two indole groups with better NIRF/PA imaging and PTT in their family, linked to two morpholine rings, and obtained CR-736, as a lysosome-targeting and Fe3+-modulated agent. The established CR-736-Fe3+ nanoplatform was accurately delivered to the breast tumor site, released CR-736 and Fe3+ in the lower acidic lysosome microenvironment, and activated pH-responsive NIRF/PA/magnetic resonance imaging and PTT. Furthermore, ferroptosis generated hydroxyl free radicals and lipid peroxide by consuming GSH and H2O2 by dint of the accumulation of Fe3+ in tumor cells, which resulted in the inhibition of the expression of heat shock proteins and the concomitant recovery of PTT. The synergistic therapy of PTT, ferroptosis, and chemodynamics was further optimized to the maximal extent in tumor lysosome acidic microenvironment and proved both in vitro and a mouse tumor model. This study opens a new avenue in designing excellent and unique croconium-based nanoplatforms, synergizing multiple tumor theranostic methods, and further optimizing the theranostic effects in tumor microenvironment.
Collapse
Affiliation(s)
- Peidan You
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fei Lu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chengren Ouyang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jielin Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jorge González-García
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, Paterna 46980, Spain
| | - Jinxin Song
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weitong Ni
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junping Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Chun-Qiong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
64
|
Wu F, Zhang Z, Ma S, He Y, He Y, Ma L, Lei N, Deng W, Wang F. Microenvironment-responsive nanosystems for ischemic stroke therapy. Theranostics 2024; 14:5571-5595. [PMID: 39310102 PMCID: PMC11413776 DOI: 10.7150/thno.99822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Ischemic stroke, a common neurological disorder caused by impaired blood supply to the brain, presents a therapeutic challenge. Conventional treatments like thrombolysis and neuroprotection drugs lack ideal drug delivery systems, limiting their effectiveness. Selectively delivering therapies to the ischemic cerebral tissue holds great potential for preventing and/or treating ischemia-related pathological symptoms. The unique pathological microenvironment of the brain after ischemic stroke, characterized by hypoxia, acidity, and inflammation, offers new possibilities for targeted drug delivery. Pathological microenvironment-responsive nanosystems, extensively investigated in tumors with hypoxia-responsive systems as an example, could also respond to the ischemic cerebral microenvironment and achieve brain-targeted drug delivery and release. These emerging nanosystems are gaining traction for ischemic stroke treatment. In this review, we expound on the cerebral pathological microenvironment and clinical treatment strategies of ischemic stroke, highlight various stimulus-responsive materials employed in constructing ischemic stroke microenvironment-responsive nano delivery systems, and discuss the application of these microenvironment-responsive nanosystems in microenvironment regulation for ischemic stroke treatment.
Collapse
Affiliation(s)
- Fang Wu
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhijian Zhang
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengnan Ma
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, 450052, Henan, China
| | - Yanyan He
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuxi He
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lixia Ma
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ningjing Lei
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Deng
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fazhan Wang
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
65
|
Jakhmola A, Hornsby TK, Kashkooli FM, Kolios MC, Rod K, Tavakkoli JJ. Green synthesis of anti-cancer drug-loaded gold nanoparticles for low-intensity pulsed ultrasound targeted drug release. Drug Deliv Transl Res 2024; 14:2417-2432. [PMID: 38240946 DOI: 10.1007/s13346-024-01516-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 11/01/2024]
Abstract
In the present work, we have designed a one-pot green protocol in which anti-cancer drugs (curcumin and doxorubicin) can be directly loaded on the surface of gold nanoparticles during their formation. We have further demonstrated that low-intensity pulsed ultrasound (LIPUS) can be used to effectively induce the release of anti-cancer drugs from the surface of gold nanoparticles in an ex vivo tissue model. With this protocol, gold nanoparticles can be easily loaded with different types of anticancer drugs, irrespective of their affinity towards water, and even hydrophobic molecules, like curcumin, can be attached onto the gold nanoparticles in an aqueous medium. The method is very simple and straightforward and does not require stirring or mechanical shaking. The drug molecules interact with the gold seeds formed during the reduction and growth process and modulate the final morphology into a spherical shape. A black-colored colloidal solution of gold nanowire networks is formed in the absence of these anti-cancer drug molecules in the reaction mixture. We used hyperspectral-enhanced dark field microscopy to examine the uptake of gold nanoparticles by breast cancer cells. Upon exposure to LIPUS, the release of the anti-cancer drug from the particle surface can be quantified by fluorescence measurements. This release of drug molecules along with trisodium citrate from the surface of gold nanoparticles by ultrasound resulted in their destabilization and subsequent aggregation, which could be visually observed through the change in the color of colloidal sol. Cancer cell viability was studied by MTT assay to examine the efficacy of this nanoparticle-based drug delivery system. Ultraviolet-visible spectroscopy, dynamic light scattering (DLS), and transmission electron microscope (TEM) analysis were used to characterize the nanoparticles and quantify anti-cancer drug release.
Collapse
Affiliation(s)
- Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | | | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- iBEST, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Kevin Rod
- Toronto Poly Clinic Inc., Toronto, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Canada.
- iBEST, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.
| |
Collapse
|
66
|
Mohanan S, Guan X, Liang M, Karakoti A, Vinu A. Stimuli-Responsive Silica Silanol Conjugates: Strategic Nanoarchitectonics in Targeted Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301113. [PMID: 36967548 DOI: 10.1002/smll.202301113] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The design of novel drug delivery systems is exceptionally critical in disease treatments. Among the existing drug delivery systems, mesoporous silica nanoparticles (MSNs) have shown profuse promise owing to their structural stability, tunable morphologies/sizes, and ability to load different payload chemistry. Significantly, the presence of surface silanol groups enables functionalization with relevant drugs, imaging, and targeting agents, promoting their utility and popularity among researchers. Stimuli-responsive silanol conjugates have been developed as a novel, more effective way to conjugate, deliver, and release therapeutic drugs on demand and precisely to the selected location. Therefore, it is urgent to summarize the current understanding and the surface silanols' role in making MSN a versatile drug delivery platform. This review provides an analytical understanding of the surface silanols, chemistry, identification methods, and their property-performance correlation. The chemistry involved in converting surface silanols to a stimuli-responsive silica delivery system by endogenous/exogenous stimuli, including pH, redox potential, temperature, and hypoxia, is discussed in depth. Different chemistries for converting surface silanols to stimuli-responsive bonds are discussed in the context of drug delivery. The critical discussion is culminated by outlining the challenges in identifying silanols' role and overcoming the limitations in synthesizing stimuli-responsive mesoporous silica-based drug delivery systems.
Collapse
Affiliation(s)
- Shan Mohanan
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
67
|
Zhang Y, Lei F, Qian W, Zhang C, Wang Q, Liu C, Ji H, Liu Z, Wang F. Designing intelligent bioorthogonal nanozymes: Recent advances of stimuli-responsive catalytic systems for biomedical applications. J Control Release 2024; 373:929-951. [PMID: 39097195 DOI: 10.1016/j.jconrel.2024.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Bioorthogonal nanozymes have emerged as a potent tool in biomedicine due to their unique ability to perform enzymatic reactions that do not interfere with native biochemical processes. The integration of stimuli-responsive mechanisms into these nanozymes has further expanded their potential, allowing for controlled activation and targeted delivery. As such, intelligent bioorthogonal nanozymes have received more and more attention in developing therapeutic approaches. This review provides a comprehensive overview of the recent advances in the development and application of stimuli-responsive bioorthogonal nanozymes. By summarizing the design outlines for anchoring bioorthogonal nanozymes with stimuli-responsive capability, this review seeks to offer valuable insights and guidance for the rational design of these remarkable materials. This review highlights the significant progress made in this exciting field with different types of stimuli and the various applications. Additionally, it also examines the current challenges and limitations in the design, synthesis, and application of these systems, and proposes potential solutions and research directions. This review aims to stimulate further research toward the development of more efficient and versatile stimuli-responsive bioorthogonal nanozymes for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Fang Lei
- School of Public Health, Nantong University, Nantong 226019, China
| | - Wanlong Qian
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Chengfeng Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Qi Wang
- School of Public Health, Nantong University, Nantong 226019, China
| | - Chaoqun Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haiwei Ji
- School of Public Health, Nantong University, Nantong 226019, China
| | - Zhengwei Liu
- Precision Immunology Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York 10029, USA.
| | - Faming Wang
- School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
68
|
Zhu S, Gao H, Li W, He X, Jiang P, Xu F, Jin G, Guo H. Stimuli-Responsive Aptamer-Drug Conjugates for Targeted Drug Delivery and Controlled Drug Release. Adv Healthc Mater 2024; 13:e2401020. [PMID: 38742703 DOI: 10.1002/adhm.202401020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/21/2024] [Indexed: 05/16/2024]
Abstract
Chemotherapy is widely used for cancer therapy but with unsatisfied efficacy, mainly due to the inefficient delivery of anticancer agents. Among the critical "five steps" drug delivery process, internalization into tumor cells and intracellular drug release are two important steps for the overall therapeutic efficiency. Strategy based on active targeting or TME-responsive is developed individually to improve therapeutic efficiency, but with limited improvement. However, the combination of these two strategies could potentially augment the drug delivery efficiency and therapeutic efficiency, consequently. Therefore, this work constructs a library of stimuli-responsive aptamer-drug conjugates (srApDCs), as "dual-targeted" strategy for cancer treatment that enables targeted drug delivery and controlled drug release. Specifically, this work uses different stimuli-responsive linkers to conjugate a tumor-targeting aptamer (i.e., AS1411) with drugs, forming the library of srApDCs for targeted cancer treatment. This design hypothesis is validated by the experimental data, which indicated that the aptamer could selectively enhance uptake of the srApDCs and the linkers could be cleaved by pathological cues in the TME to release the drug payload, leading to a significant enhancement of therapeutic efficacy. These results underscore the potential of the approach, providing a promising methodology for cancer therapy.
Collapse
Affiliation(s)
- Shanshan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Huan Gao
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenyuan Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaocong He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Panpan Jiang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Guo
- First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
69
|
Luobin L, Wanxin H, Yingxin G, Qinzhou Z, Zefeng L, Danyang W, Huaqin L. Nanomedicine-induced programmed cell death in cancer therapy: mechanisms and perspectives. Cell Death Discov 2024; 10:386. [PMID: 39209834 PMCID: PMC11362291 DOI: 10.1038/s41420-024-02121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The balance of programmed cell death (PCD) mechanisms, including apoptosis, autophagy, necroptosis and others, is pivotal in cancer progression and treatment. Dysregulation of these pathways results in uncontrolled cell growth and resistance to conventional therapies. Nanomedicine offers a promising solution in oncology through targeted drug delivery enabling precise targeting of cancer cells while preserving healthy tissues. This approach reduces the side effects of traditional chemotherapy and enhances treatment efficacy by engaging PCD pathways. We details each PCD pathway, their mechanisms, and innovative nanomedicine strategies to activate these pathways, thereby enhancing therapeutic specificity and minimizing harm to healthy tissues. The precision of nanotechnology in targeting PCD pathways promises significant improvements in cancer treatment outcomes. This synergy between nanotechnology and targeted PCD activation could lead to more effective and less toxic cancer therapies, heralding a new era in cancer treatment.
Collapse
Affiliation(s)
- Lin Luobin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - He Wanxin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Guo Yingxin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Zheng Qinzhou
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Liang Zefeng
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wu Danyang
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Li Huaqin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China.
| |
Collapse
|
70
|
Liu W, Cheng G, Cui H, Tian Z, Li B, Han Y, Wu JX, Sun J, Zhao Y, Chen T, Yu G. Theoretical basis, state and challenges of living cell-based drug delivery systems. Theranostics 2024; 14:5152-5183. [PMID: 39267776 PMCID: PMC11388066 DOI: 10.7150/thno.99257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
The therapeutic efficacy of drugs is determined, to a certain extent, by the efficiency of drug delivery. The low efficiency of drug delivery systems (DDSs) is frequently associated with serious toxic side effects and can even prove fatal in certain cases. With the rapid development of technology, drug delivery has evolved from using traditional frameworks to using nano DDSs (NDDSs), endogenous biomaterials DDSs (EBDDSs), and living cell DDSs (LCDDSs). LCDDSs are receiving widespread attention from researchers at present owing to the unique advantages of living cells in targeted drug delivery, including their excellent biocompatibility properties, low immunogenicity, unique biological properties and functions, and role in the treatment of diseases. However, the theoretical basis and techniques involved in the application of LCDDSs have not been extensively summarized to date. Therefore, this review comprehensively summarizes the properties and applications of living cells, elaborates the various drug loading approaches and controlled drug release, and discusses the results of clinical trials. The review also discusses the current shortcomings and prospects for the future development of LCDDSs, which will serve as highly valuable insights for the development and clinical transformation of LCDDSs in the future.
Collapse
Affiliation(s)
- Wei Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Guowang Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hao Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Zhen Tian
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Bowen Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yanhua Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jia-Xin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jie Sun
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yuyue Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guangtao Yu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
71
|
Wei Y, Weng X, Wang Y, Yang W. Stimuli-Responsive Polymersomes: Reshaping the Immunosuppressive Tumor Microenvironment. Biomacromolecules 2024; 25:4663-4676. [PMID: 39054960 DOI: 10.1021/acs.biomac.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The progression of cancer involves mutations in normal cells, leading to uncontrolled division and tissue destruction, highlighting the complexity of tumor microenvironments (TMEs). Immunotherapy has emerged as a transformative approach, yet the balance between efficacy and safety remains a challenge. Nanoparticles such as polymersomes offer the possibility to precisely target tumors, deliver drugs in a controlled way, effectively modulate the antitumor immunity, and notably reduce side effects. Herein, stimuli-responsive polymersomes, with capabilities for carrying multiple therapeutics, are highlighted for their potential in enhancing antitumor immunity through mechanisms like inducing immunogenic cell death and activating STING (stimulator of interferon genes), etc. The recent progress of utilizing stimuli-responsive polymersomes to reshape the TME is reviewed here. The advantages and limitations to applied stimuli-responsive polymersomes are outlined. Additionally, challenges and future prospects in leveraging polymersomes for cancer therapy are discussed, emphasizing the need for future research and clinical translation.
Collapse
Affiliation(s)
- Yaohua Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiao Weng
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Yayun Wang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Weijing Yang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| |
Collapse
|
72
|
Wu S, Guo P, Zhou Q, Yang X, Dai J. M1 Macrophage-Targeted Curcumin Nanocrystals with l-Arginine-Modified for Acute Lung Injury by Inhalation. J Pharm Sci 2024; 113:2492-2505. [PMID: 38772450 DOI: 10.1016/j.xphs.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS) with clinical manifestations of respiratory distress and hypoxemia remains a significant cause of respiratory failure, boasting a persistently high incidence and mortality rate. Given the central role of M1 macrophages in the pathogenesis of acute lung injury (ALI), this study utilized the anti-inflammatory agent curcumin as a model drug. l-arginine (L-Arg) was employed as a targeting ligand, and chitosan was initially modified with l-arginine. Subsequently, it was utilized as a surface modifier to prepare inhalable nano-crystals loaded with curcumin (Arg-CS-Cur), aiming for specific targeting of pulmonary M1 macrophages. Compared with unmodified chitosan-curcumin nanocrystals (CS-Cur), Arg-CS-Cur exhibited higher uptake in vitro by M1 macrophages, as evidenced by flow cytometry showing the highest fluorescence intensity in the Arg-CS-Cur group (P < 0.01). In vivo accumulation was greater in inflamed lung tissues, as indicated by small animal imaging demonstrating higher lung fluorescence intensity in the DiR-Arg-CS-Cur group compared to the DiR-CS-Cur group in the rat ALI model (P < 0.05), peaking at 12 h. Moreover, Arg-CS-Cur demonstrated enhanced therapeutic effects in both LPS-induced RAW264.7 cells and ALI rat models. Specifically, treatment with Arg-CS-Cur significantly suppressed NO release and levels of TNF-α and IL-6 in RAW264.7 cells (p < 0.01), while in ALI rat models, expression levels of TNF-α and IL-6 in lung tissues were significantly lower than those in the model group (P < 0.01). Furthermore, lung tissue damage was significantly reduced, with histological scores significantly lower than those in the CS-Cur group (P < 0.01). In conclusion, these findings underscore the targeting potential of l-arginine-modified nanocrystals, which effectively enhance curcumin concentration in inflammatory environments by selectively targeting M1 macrophages. This study thus introduces novel perspectives and theoretical support for the development of targeted therapeutic interventions for acute inflammatory lung diseases, including ALI/ARDS.
Collapse
Affiliation(s)
- Shiyue Wu
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Pengchuan Guo
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Qiren Zhou
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Xiaowen Yang
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Jundong Dai
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China.
| |
Collapse
|
73
|
Song B, Wang X, Qin L, Hussain S, Liang W. Brain gliomas: Diagnostic and therapeutic issues and the prospects of drug-targeted nano-delivery technology. Pharmacol Res 2024; 206:107308. [PMID: 39019336 DOI: 10.1016/j.phrs.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Glioma is the most common intracranial malignant tumor, with severe difficulty in treatment and a low patient survival rate. Due to the heterogeneity and invasiveness of tumors, lack of personalized clinical treatment design, and physiological barriers, it is often difficult to accurately distinguish gliomas, which dramatically affects the subsequent diagnosis, imaging treatment, and prognosis. Fortunately, nano-delivery systems have demonstrated unprecedented capabilities in diagnosing and treating gliomas in recent years. They have been modified and surface modified to efficiently traverse BBB/BBTB, target lesion sites, and intelligently release therapeutic or contrast agents, thereby achieving precise imaging and treatment. In this review, we focus on nano-delivery systems. Firstly, we provide an overview of the standard and emerging diagnostic and treatment technologies for glioma in clinical practice. After induction and analysis, we focus on summarizing the delivery methods of drug delivery systems, the design of nanoparticles, and their new advances in glioma imaging and treatment in recent years. Finally, we discussed the prospects and potential challenges of drug-delivery systems in diagnosing and treating glioma.
Collapse
Affiliation(s)
- Baoqin Song
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Xiu Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| | - Lijing Qin
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Shehbaz Hussain
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Wanjun Liang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| |
Collapse
|
74
|
Zhang J, Zhou J, Tang L, Ma J, Wang Y, Yang H, Wang X, Fan W. Custom-Design of Multi-Stimuli-Responsive Degradable Silica Nanoparticles for Advanced Cancer-Specific Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400353. [PMID: 38651235 DOI: 10.1002/smll.202400353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Chemotherapy is crucial in oncology for combating malignant tumors but often encounters obatacles such as severe adverse effects, drug resistance, and biocompatibility issues. The advantages of degradable silica nanoparticles in tumor diagnosis and treatment lie in their ability to target drug delivery, minimizing toxicity to normal tissues while enhancing therapeutic efficacy. Moreover, their responsiveness to both endogenous and exogenous stimuli opens up new possibilities for integrating multiple treatment modalities. This review scrutinizes the burgeoning utility of degradable silica nanoparticles in combination with chemotherapy and other treatment modalities. Commencing the elucidation of degradable silica synthesis and degradation mechanisms, emphasis is placed on the responsiveness of these materials to endogenous (e.g., pH, redox reactions, hypoxia, and enzymes) and exogenous stimuli (e.g., light and high-intensity focused ultrasound). Moreover, this exploration delves into strategies harnessing degradable silica nanoparticles in chemotherapy alone, coupled with radiotherapy, photothermal therapy, photodynamic therapy, gas therapy, immunotherapy, starvation therapy, and chemodynamic therapy, elucidating multimodal synergies. Concluding with an assessment of advances, challenges, and constraints in oncology, despite hurdles, future investigations are anticipated to augment the role of degradable silica in cancer therapy. These insights can serve as a compass for devising more efficacious combined tumor treatment strategies.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jiani Zhou
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | | | - Jiayi Ma
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Ying Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Xiaoxiao Wang
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243032, P. R. China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
75
|
Karahmet Sher E, Alebić M, Marković Boras M, Boškailo E, Karahmet Farhat E, Karahmet A, Pavlović B, Sher F, Lekić L. Nanotechnology in medicine revolutionizing drug delivery for cancer and viral infection treatments. Int J Pharm 2024; 660:124345. [PMID: 38885775 DOI: 10.1016/j.ijpharm.2024.124345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Advancements in nanotechnology were vastly applied in medicine and pharmacy, especially in the field of nano-delivery systems. It took a long time for these systems to ensure precise delivery of very delicate molecules, such as RNA, to cells at concentrations that yield remarkable efficiency, with success rates reaching 95.0% and 94.5%. These days, there are several advantages of using nanotechnological solutions in the prevention and treatment of cancer and viral infections. Its interventions improve treatment outcomes both due to increased effectiveness of the drug at target location and by reducing adverse reactions, thereby increasing patient adherence to the therapy. Based on the current knowledge an updated review was made, and perspective, opportunities and challenges in nanomedicine were discussed. The methods employed include comprehensive examination of existing literature and studies on nanoparticles and nano-delivery systems including both in vitro tests performed on cell cultures and in vivo assessments carried out on appropriate animal models, with a specific emphasis on their applications in oncology and virology. This brings together various aspects including both structure and formation as well as its association with characteristic behaviour in organisms, providing a novel perspective. Furthermore, the practical application of these systems in medicine and pharmacy with a focus on viral diseases and malignancies was explored. This review can serve as a valuable guide for fellow researchers, helping them navigate the abundance of findings in this field. The results indicate that applications of nanotechnological solutions for the delivery of medicinal products improving therapeutic outcomes will continue to expand.
Collapse
Affiliation(s)
- Emina Karahmet Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Mirna Alebić
- Department of Pharmacy, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Marijana Marković Boras
- Department of Laboratory Diagnostic, University Clinical Hospital Mostar, Mostar 88000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina Boškailo
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Esma Karahmet Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Food and Nutrition, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Alma Karahmet
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Bojan Pavlović
- Faculty of Physical Education and Sports, University of East Sarajevo, Lukavica, Republika Srpska 75327, Bosnia and Herzegovina
| | - Farooq Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Lana Lekić
- Faculty of Health Studies, University of Sarajevo, Sarajevo 71000, Bosnia and Herzegovina
| |
Collapse
|
76
|
Dou Y, Zheng J, Kang J, Wang L, Huang D, Liu Y, He C, Lin C, Lu C, Wu D, Han R, Li L, Tang L, He Y. Mesoporous manganese nanocarrier target delivery metformin for the co-activation STING pathway to overcome immunotherapy resistance. iScience 2024; 27:110150. [PMID: 39040065 PMCID: PMC11261061 DOI: 10.1016/j.isci.2024.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024] Open
Abstract
Targeting the stimulator of interferon genes (STING) pathway is a promising strategy to overcome primary resistance to immune checkpoint inhibitors in non-small cell lung cancer with the STK11 mutation. We previously found metformin enhances the STING pathway and thus promotes immune response. However, its low concentration in tumors limits its clinical use. Here, we constructed high-mesoporous Mn-based nanocarrier loading metformin nanoparticles (Mn-MSN@Met-M NPs) that actively target tumors and respond to release higher concentration of Mn2+ ions and metformin. The NPs significantly enhanced the T cells to kill lung cancer cells with the STK11 mutant. The mechanism shows that enhanced STING pathway activation promotes STING, TBKI, and IRF3 phosphorylation through Mn2+ ions and metformin release from NPs, thus boosting type I interferon production. In vivo, NPs in combination with a PD-1 inhibitor effectively decreased tumor growth. Collectively, we developed a Mn-MSN@Met-M nanoactivator to intensify immune activation for potential cancer immunotherapy.
Collapse
Affiliation(s)
- Yuanyao Dou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Jun Kang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Liping Wang
- Department of pain treatment, the seventh people’s Hospital of Chongqing, Chongqing 401320, China
| | - Daijuan Huang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Yihui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Chao He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Di Wu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
- School of Medicine, Chongqing University, Chongqing 400044, China
| |
Collapse
|
77
|
Zhang J, Ali K, Wang J. Research Advances of Lipid Nanoparticles in the Treatment of Colorectal Cancer. Int J Nanomedicine 2024; 19:6693-6715. [PMID: 38979534 PMCID: PMC11229238 DOI: 10.2147/ijn.s466490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Colorectal cancer (CRC) is a common type of gastrointestinal tract (GIT) cancer and poses an enormous threat to human health. Current strategies for metastatic colorectal cancer (mCRC) therapy primarily focus on chemotherapy, targeted therapy, immunotherapy, and radiotherapy; however, their adverse reactions and drug resistance limit their clinical application. Advances in nanotechnology have rendered lipid nanoparticles (LNPs) a promising nanomaterial-based drug delivery system for CRC therapy. LNPs can adapt to the biological characteristics of CRC by modifying their formulation, enabling the selective delivery of drugs to cancer tissues. They overcome the limitations of traditional therapies, such as poor water solubility, nonspecific biodistribution, and limited bioavailability. Herein, we review the composition and targeting strategies of LNPs for CRC therapy. Subsequently, the applications of these nanoparticles in CRC treatment including drug delivery, thermal therapy, and nucleic acid-based gene therapy are summarized with examples provided. The last section provides a glimpse into the advantages, current limitations, and prospects of LNPs in the treatment of CRC.
Collapse
Affiliation(s)
- Junyi Zhang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People’s Republic of China
| | - Kamran Ali
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People’s Republic of China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People’s Republic of China
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
78
|
Nag S, Mohanto S, Ahmed MG, Subramaniyan V. “Smart” stimuli-responsive biomaterials revolutionizing the theranostic landscape of inflammatory arthritis. MATERIALS TODAY CHEMISTRY 2024; 39:102178. [DOI: 10.1016/j.mtchem.2024.102178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
|
79
|
Guo H, Mi P. Polymer-drug and polymer-protein conjugated nanocarriers: Design, drug delivery, imaging, therapy, and clinical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1988. [PMID: 39109479 DOI: 10.1002/wnan.1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 01/06/2025]
Abstract
Polymer-drug conjugates and polymer-protein conjugates have been pivotal in the realm of drug delivery systems for over half a century. These polymeric drugs are characterized by the conjugation of therapeutic molecules or functional moieties to polymers, enabling a range of benefits including extended circulation times, targeted delivery, controlled release, and decreased immunogenicity. This review delves into recent advancements and challenges in the clinical translations and preclinical studies of polymer-drug conjugates and polymer-protein conjugates. The design principles and functionalization strategies crucial for the development of these polymeric drugs were explored followed by the review of structural properties and characteristics of various polymer carriers. This review also identifies significant obstacles in the clinical translation of polymer-drug conjugates and provides insights into the directions for their future development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Haochen Guo
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
80
|
Desai N, Rana D, Salave S, Benival D, Khunt D, Prajapati BG. Achieving Endo/Lysosomal Escape Using Smart Nanosystems for Efficient Cellular Delivery. Molecules 2024; 29:3131. [PMID: 38999083 PMCID: PMC11243486 DOI: 10.3390/molecules29133131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The delivery of therapeutic agents faces significant hurdles posed by the endo-lysosomal pathway, a bottleneck that hampers clinical effectiveness. This comprehensive review addresses the urgent need to enhance cellular delivery mechanisms to overcome these obstacles. It focuses on the potential of smart nanomaterials, delving into their unique characteristics and mechanisms in detail. Special attention is given to their ability to strategically evade endosomal entrapment, thereby enhancing therapeutic efficacy. The manuscript thoroughly examines assays crucial for understanding endosomal escape and cellular uptake dynamics. By analyzing various assessment methods, we offer nuanced insights into these investigative approaches' multifaceted aspects. We meticulously analyze the use of smart nanocarriers, exploring diverse mechanisms such as pore formation, proton sponge effects, membrane destabilization, photochemical disruption, and the strategic use of endosomal escape agents. Each mechanism's effectiveness and potential application in mitigating endosomal entrapment are scrutinized. This paper provides a critical overview of the current landscape, emphasizing the need for advanced delivery systems to navigate the complexities of cellular uptake. Importantly, it underscores the transformative role of smart nanomaterials in revolutionizing cellular delivery strategies, leading to a paradigm shift towards improved therapeutic outcomes.
Collapse
Affiliation(s)
- Nimeet Desai
- Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India;
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (D.B.)
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (D.B.)
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (D.B.)
| | - Dignesh Khunt
- School of Pharmacy, Gujarat Technological University, Gandhinagar 382027, Gujarat, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, Gujarat, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
81
|
Ai Y, Tian Y, Qiao J, Wang C, Li H. " Yin-Yang philosophy" for the design of anticancer drug delivery nanoparticles. BIOMATERIALS TRANSLATIONAL 2024; 5:144-156. [PMID: 39351167 PMCID: PMC11438609 DOI: 10.12336/biomatertransl.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 10/04/2024]
Abstract
Understanding the in vivo transport process provides guidelines for designing ideal nanoparticles (NPs) with higher efficacy and fewer off-target effects. Many factors, such as particle size, morphology, surface potential, structural stability, and etc., may influence the delivering process of NPs due to the existence of various physiological barriers within the body. Herein, we summarise the distinct influences of NP physicochemical properties on the four consecutive in vivo transport steps: (1) navigating with bloodstream within blood vessels, (2) transport across vasculature walls into tumour tissues, (3) intratumoural transport through the interstitial space, and (4) cellular uptake & intracellular delivery by cancerous cells. We found that the philosophy behind the current consensus for NP design has certain similarities to the "Yin-Yang" theory in traditional Chinese culture. Almost all physicochemical properties, regardless of big or small sizes, long or short length, positive or negative zeta potentials, are double-edged swords. The balance of potential benefits and side effects, drug selectivity and accessibility should be fully considered when optimising particle design, similar to the "Yin-Yang harmony". This paper presents a comprehensive review of the advancements in NPs research, focusing on their distinct features in tumour targeting, drug delivery, and cell uptake. Additionally, it deliberates on future developmental trends and potential obstacles, thereby aiming to uncover the ways these characteristics influence the NPs' biological activity and provide theoretical guidance for the targeted delivery of NPs.
Collapse
Affiliation(s)
- Yanwen Ai
- School of Lifesciences, Shanghai University, Shanghai, China
| | - Yuan Tian
- School of Lifesciences, Shanghai University, Shanghai, China
| | - Jiaming Qiao
- School of Lifesciences, Shanghai University, Shanghai, China
| | - Changnan Wang
- School of Lifesciences, Shanghai University, Shanghai, China
| | - Huafei Li
- School of Lifesciences, Shanghai University, Shanghai, China
| |
Collapse
|
82
|
Garg P, Pareek S, Kulkarni P, Salgia R, Singhal SS. Nanoengineering Solutions for Cancer Therapy: Bridging the Gap between Clinical Practice and Translational Research. J Clin Med 2024; 13:3466. [PMID: 38929995 PMCID: PMC11204592 DOI: 10.3390/jcm13123466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Nanoengineering has emerged as a progressive method in cancer treatment, offering precise and targeted delivery of therapeutic agents while concurrently reducing overall toxicity. This scholarly article delves into the innovative strategies and advancements in nanoengineering that bridge the gap between clinical practice and research in the field of cancer treatment. Various nanoengineered platforms such as nanoparticles, liposomes, and dendrimers are scrutinized for their capacity to encapsulate drugs, augment drug efficacy, and enhance pharmacokinetics. Moreover, the article investigates research breakthroughs that drive the progression and enhancement of nanoengineered remedies, encompassing the identification of biomarkers, establishment of preclinical models, and advancement of biomaterials, all of which are imperative for translating laboratory findings into practical medical interventions. Furthermore, the integration of nanotechnology with imaging modalities, which amplify cancer detection, treatment monitoring, and response assessment, is thoroughly examined. Finally, the obstacles and prospective directions in nanoengineering, including regulatory challenges and issues related to scalability, are examined. This underscores the significance of fostering collaboration among various entities in order to efficiently translate nanoengineered interventions into enhanced cancer therapies and patient management.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Siddhika Pareek
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
83
|
Yang D, Zhang L, Ni J, Ding Y, Razzaq A, Khan ZU, Iqbal H, Alanazi YF, Khan NU, Wang R. Stimuli-sensitive biomimetic nanoparticles for the inhibition of breast cancer recurrence and pulmonary metastasis. Int J Pharm X 2024; 7:100252. [PMID: 38766479 PMCID: PMC11101870 DOI: 10.1016/j.ijpx.2024.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
Biomimetic nanoparticles represent a promising avenue for mitigating rapid clearance by the reticuloendothelial system (RES); however, current challenges include insufficient tumour targeting, suboptimal adhesion, and inadequate localized drug release within tumour regions. These shortcomings contribute to persistent contests, such as recurrence and pulmonary metastasis, even with advanced breast cancer therapies. Stimuli-sensitive drug release can furbish the membrane coated nanoparticles for their efficiency against the stated problems. To enhance the efficacy of biomimetic nanoparticles in addressing these issues, we proposed a versatile, stimuli-responsive drug delivery system by encapsulating doxorubicin (Dox) and perfluorohexane (PFH) within poly (lactic-co-glycolic acid) (PLGA) nanoparticles, subsequently coated with macrophage-derived cell membranes. Within this framework, PFH serves as the mediator for ultrasonic (US)-irradiation-triggered drug release specifically within tumour microenvironment, while the macrophage-derived cell membrane coating enhances cell adhesion, enables immune evasion, and natural tumour-homing ability. The characterization assays and in vitro evaluations yielded encouraging results, indicating enhanced targeting and release efficiencies. In vivo studies demonstrated marked inhibitory effects on both breast cancer recurrence and pulmonary metastasis. The resulting data indicate that these engineered nanoparticles have notable potential for targeted delivery and controlled release upon US irradiation, thereby offering significant therapeutic efficacy against primary breast cancer, pulmonary metastasis, and recurrent malignancies. Our findings lay the groundwork for a novel clinical approach, representing an intriguing direction for ongoing investigation by oncologists.
Collapse
Affiliation(s)
- Dongjie Yang
- Pathology Department& Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, P.R. China
| | - Lan Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, P.R. China
| | - Jiang Ni
- Pathology Department& Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, P.R. China
| | - Yang Ding
- College of Pharmacy, Pharmaceutical Series, China Pharmaceutical University, Nanjing 210000, P.R. China
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou, P.R. China
| | - Zaheer Ullah Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Haroon Iqbal
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, P.R. China
| | - Yasmene Falah Alanazi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Naveed Ullah Khan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, P.R. China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, P.R. China
| |
Collapse
|
84
|
Naser IH, Zaid M, Ali E, Jabar HI, Mustafa AN, Alubiady MHS, Ramadan MF, Muzammil K, Khalaf RM, Jalal SS, Alawadi AH, Alsalamy A. Unveiling innovative therapeutic strategies and future trajectories on stimuli-responsive drug delivery systems for targeted treatment of breast carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3747-3770. [PMID: 38095649 DOI: 10.1007/s00210-023-02885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/02/2023] [Indexed: 05/23/2024]
Abstract
This comprehensive review delineates the latest advancements in stimuli-responsive drug delivery systems engineered for the targeted treatment of breast carcinoma. The manuscript commences by introducing mammary carcinoma and the current therapeutic methodologies, underscoring the urgency for innovative therapeutic strategies. Subsequently, it elucidates the logic behind the employment of stimuli-responsive drug delivery systems, which promise targeted drug administration and the minimization of adverse reactions. The review proffers an in-depth analysis of diverse types of stimuli-responsive systems, including thermoresponsive, pH-responsive, and enzyme-responsive nanocarriers. The paramount importance of material choice, biocompatibility, and drug loading strategies in the design of these systems is accentuated. The review explores characterization methodologies for stimuli-responsive nanocarriers and probes preclinical evaluations of their efficacy, toxicity, pharmacokinetics, and biodistribution in mammary carcinoma models. Clinical applications of stimuli-responsive systems, ongoing clinical trials, the potential of combination therapies, and the utility of multifunctional nanocarriers for the co-delivery of assorted drugs and therapies are also discussed. The manuscript addresses the persistent challenge of drug resistance in mammary carcinoma and the potential of stimuli-responsive systems in surmounting it. Regulatory and safety considerations, including FDA guidelines and biocompatibility assessments, are outlined. The review concludes by spotlighting future trajectories and emergent technologies in stimuli-responsive drug delivery, focusing on pioneering approaches, advancements in nanotechnology, and personalized medicine considerations. This review aims to serve as a valuable compendium for researchers and clinicians interested in the development of efficacious and safe stimuli-responsive drug delivery systems for the treatment of breast carcinoma.
Collapse
Affiliation(s)
- Israa Habeeb Naser
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, Iraq
| | - Muhaned Zaid
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan, Amarah, Iraq
| | - Eyhab Ali
- Al-Zahraa University for Women, Karbala, Iraq
| | - Hayder Imad Jabar
- Department of Pharmaceutics, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | | | | | | | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | | | - Sarah Salah Jalal
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq
- College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq.
| |
Collapse
|
85
|
Kang M, Quintana J, Hu H, Teixeira VC, Olberg S, Banla LI, Rodriguez V, Hwang WL, Schuemann J, Parangi S, Weissleder R, Miller MA. Sustained and Localized Drug Depot Release Using Radiation-Activated Scintillating Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312326. [PMID: 38389502 PMCID: PMC11161319 DOI: 10.1002/adma.202312326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Indexed: 02/24/2024]
Abstract
Clinical treatment of cancer commonly incorporates X-ray radiation therapy (XRT), and developing spatially precise radiation-activatable drug delivery strategies may improve XRT efficacy while limiting off-target toxicities associated with systemically administered drugs. Nevertheless, achieving this has been challenging thus far because strategies typically rely on radical species with short lifespans, and the inherent nature of hypoxic and acidic tumor microenvironments may encourage spatially heterogeneous effects. It is hypothesized that the challenge could be bypassed by using scintillating nanoparticles that emit light upon X-ray absorption, locally forming therapeutic drug depots in tumor tissues. Thus a nanoparticle platform (Scintillating nanoparticle Drug Depot; SciDD) that enables the local release of cytotoxic payloads only after activation by XRT is developed, thereby limiting off-target toxicity. As a proof-of-principle, SciDD is used to deliver a microtubule-destabilizing payload MMAE (monomethyl auristatin E). With as little as a 2 Gy local irradiation to tumors, MMAE payloads are released effectively to kill tumor cells. XRT-mediated drug release is demonstrated in multiple mouse cancer models and showed efficacy over XRT alone (p < 0.0001). This work shows that SciDD can act as a local drug depot with spatiotemporally controlled release of cancer therapeutics.
Collapse
Affiliation(s)
- Mikyung Kang
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- School of Health and Environmental Science, College of Health Science, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Jeremy Quintana
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
| | - Huiyu Hu
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, White 506, Boston, MA, 02114, USA
| | - Verônica C Teixeira
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Sven Olberg
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Leou Ismael Banla
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Harvard Radiation Oncology Program, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Victoria Rodriguez
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
| | - William L Hwang
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, White 506, Boston, MA, 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
| |
Collapse
|
86
|
Yu Z, Wang C, Ye Y, Wang S, Jiang K. Therapeutic potentials of FexMoyS-PEG nanoparticles in colorectal cancer: a multimodal approach via ROS-ferroptosis-glycolysis regulation. J Nanobiotechnology 2024; 22:253. [PMID: 38755600 PMCID: PMC11097533 DOI: 10.1186/s12951-024-02515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Improving cancer therapy by targeting the adverse tumor microenvironment (TME) rather than the cancer cells presents a novel and potentially effective strategy. In this study, we introduced FexMoyS nanoparticles (NPs), which act as sequential bioreactors to manipulate the TME. FexMoyS NPs were synthesized using thermal decomposition and modified with polyethylene glycol (PEG). Their morphology, chemical composition, and photothermal properties were characterized. The capability to produce ROS and deplete GSH was evaluated. Effects on CRC cells, including cell viability, apoptosis, and glycolysis, were tested through various in vitro assays. In vivo efficacy was determined using CRC-bearing mouse models and patient-derived xenograft (PDX) models. The impact on the MAPK signaling pathway and tumor metabolism was also examined. The FexMoyS NPs showed efficient catalytic activity, leading to increased ROS production and GSH depletion, inducing ferroptosis, and suppressing glycolysis in CRC cells. In vivo, the NPs significantly inhibited tumor growth, particularly when combined with NIR light therapy, indicating a synergistic effect of photothermal therapy and chemodynamic therapy. Biosafety assessments revealed no significant toxicity in treated mice. RNA sequencing suggested that the NPs impact metabolism and potentially immune processes within CRC cells. FexMoyS NPs present a promising multifaceted approach for CRC treatment, effectively targeting tumor cells while maintaining biosafety. The nanoparticles exhibit potential for clinical translation, offering a new avenue for cancer therapy.
Collapse
Affiliation(s)
- Zhilong Yu
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China
- Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China
| | - Chenyi Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China
- Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China
- Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China
- Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China.
- Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China.
| |
Collapse
|
87
|
Kashani GK, Naghib SM, Soleymani S, Mozafari MR. A review of DNA nanoparticles-encapsulated drug/gene/protein for advanced controlled drug release: Current status and future perspective over emerging therapy approaches. Int J Biol Macromol 2024; 268:131694. [PMID: 38642693 DOI: 10.1016/j.ijbiomac.2024.131694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
In the last ten years, the field of nanomedicine has experienced significant progress in creating novel drug delivery systems (DDSs). An effective strategy involves employing DNA nanoparticles (NPs) as carriers to encapsulate drugs, genes, or proteins, facilitating regulated drug release. This abstract examines the utilization of DNA NPs and their potential applications in strategies for controlled drug release. Researchers have utilized the distinctive characteristics of DNA molecules, including their ability to self-assemble and their compatibility with living organisms, to create NPs specifically for the purpose of delivering drugs. The DNA NPs possess numerous benefits compared to conventional drug carriers, such as exceptional stability, adjustable dimensions and structure, and convenient customization. Researchers have successfully achieved a highly efficient encapsulation of different therapeutic agents by carefully designing their structure and composition. This advancement enables precise and targeted delivery of drugs. The incorporation of drugs, genes, or proteins into DNA NPs provides notable advantages in terms of augmenting therapeutic effectiveness while reducing adverse effects. DNA NPs serve as a protective barrier for the enclosed payloads, preventing their degradation and extending their duration in the body. The protective effect is especially vital for delicate biologics, such as proteins or gene-based therapies that could otherwise be vulnerable to enzymatic degradation or quick elimination. Moreover, the surface of DNA NPs can be altered to facilitate specific targeting towards particular tissues or cells, thereby augmenting the accuracy of delivery. A significant benefit of DNA NPs is their capacity to regulate the kinetics of drug release. Through the manipulation of the DNA NPs structure, scientists can regulate the rate at which the enclosed cargo is released, enabling a prolonged and regulated dispensation of medication. This control is crucial for medications with limited therapeutic ranges or those necessitating uninterrupted administration to attain optimal therapeutic results. In addition, DNA NPs have the ability to react to external factors, including alterations in temperature, pH, or light, which can initiate the release of the payload at precise locations or moments. This feature enhances the precision of drug release control. The potential uses of DNA NPs in the controlled release of medicines are extensive. The NPs have the ability to transport various therapeutic substances, for example, drugs, peptides, NAs (NAs), and proteins. They exhibit potential for the therapeutic management of diverse ailments, including cancer, genetic disorders, and infectious diseases. In addition, DNA NPs can be employed for targeted drug delivery, traversing biological barriers, and surpassing the constraints of conventional drug administration methods.
Collapse
Affiliation(s)
- Ghazal Kadkhodaie Kashani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Sina Soleymani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia; Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Iran University of Science and Technology (IUST), Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
88
|
Sun D, Sun X, Li D, Wang M, Song S, Liu C, Ma N, Yin X, Wang C. UCNPs-labeled electrospun scaffolds used to monitor in vivo degradation and bone tissue regeneration. Colloids Surf B Biointerfaces 2024; 237:113860. [PMID: 38520951 DOI: 10.1016/j.colsurfb.2024.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Biodegradable electrospun bone repair materials are effective means to treat bone defects. However, because the electrospun substrates are mostly organic polymer materials, there is a lack of real-time and intuitive monitoring methods for their degradation in vivo. Therefore, it is of great significance to develop in vivo traced electrospun bone repair materials for postoperative observation of their degradation. In this research, polycaprolactone/up-conversion nanoparticles/magnesium oxide (PCL/UCNPs/MgO) composite scaffolds were prepared by electrospun based on the luminescence characteristics of up-conversion nanoparticles (UCNPs) under near infrared excitation and the osteogenic ability of MgO. The in vivo and in vitro degradation results showed that with the increase of time, the electrospun scaffolds gradually degraded and its luminescence intensity decreased. The addition of UCNPs can effectively monitor the degradation of the scaffolds. In addition, the prepared electrospun scaffolds had great biocompatibility, among which PCL-1%UCNPs-1%MgO (P1U1M) electrospun scaffolds had obvious effect on promoting osteogenic differentiation of mouse embryonic osteoblasts cells (MC3T3-E1) in vitro. In conclusion, P1U1M electrospun scaffolds have the potential to induce bone regeneration at bone defect sites, and can monitor the degradation of electrospun scaffolds. It may be a potential candidate material for bone regeneration in defect area.
Collapse
Affiliation(s)
- Danfang Sun
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Xirao Sun
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Dan Li
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Meng Wang
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Siyu Song
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Chang Liu
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China; Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou 121000, China
| | - Nan Ma
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China; Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou 121000, China
| | - Xiumei Yin
- School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Chengyue Wang
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China; Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
89
|
Huang S, Shang M, Guo L, Sun X, Xiao S, Shi D, Meng D, Zhao Y, Wang X, Liu R, Li J. Hydralazine loaded nanodroplets combined with ultrasound-targeted microbubble destruction to induce pyroptosis for tumor treatment. J Nanobiotechnology 2024; 22:193. [PMID: 38643134 PMCID: PMC11031971 DOI: 10.1186/s12951-024-02453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 04/22/2024] Open
Abstract
Pyroptosis, a novel type of programmed cell death (PCD), which provides a feasible therapeutic option for the treatment of tumors. However, due to the hypermethylation of the promoter, the critical protein Gasdermin E (GSDME) is lacking in the majority of cancer cells, which cannot start the pyroptosis process and leads to dissatisfactory therapeutic effects. Additionally, the quick clearance, systemic side effects, and low concentration at the tumor site of conventional pyroptosis reagents restrict their use in clinical cancer therapy. Here, we described a combination therapy that induces tumor cell pyroptosis via the use of ultrasound-targeted microbubble destruction (UTMD) in combination with DNA demethylation. The combined application of UTMD and hydralazine-loaded nanodroplets (HYD-NDs) can lead to the rapid release of HYD (a demethylation drug), which can cause the up-regulation of GSDME expression, and produce reactive oxygen species (ROS) by UTMD to cleave up-regulated GSDME, thereby inducing pyroptosis. HYD-NDs combined with ultrasound (US) group had the strongest tumor inhibition effect, and the tumor inhibition rate was 87.15% (HYD-NDs group: 51.41 ± 3.61%, NDs + US group: 32.73%±7.72%), indicating that the strategy had a more significant synergistic anti-tumor effect. In addition, as a new drug delivery carrier, HYD-NDs have great biosafety, tumor targeting, and ultrasound imaging performance. According to the results, the combined therapy reasonably regulated the process of tumor cell pyroptosis, which offered a new strategy for optimizing the therapy of GSDME-silenced solid tumors.
Collapse
Affiliation(s)
- Shuting Huang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Shan Xiao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yading Zhao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoxuan Wang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Rui Liu
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Department of Ultrasound, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, 266035, China.
| |
Collapse
|
90
|
Icriverzi M, Florian PE, Bonciu A, Dumitrescu LN, Moldovan A, Pelinescu D, Ionescu R, Avram I, Munteanu CVA, Sima LE, Dinca V, Rusen L, Roseanu A. Hybrid bio-nanoporous peptide loaded-polymer platforms with anticancer and antibacterial activities. NANOSCALE ADVANCES 2024; 6:2038-2058. [PMID: 38633049 PMCID: PMC11019497 DOI: 10.1039/d3na00947e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/26/2024] [Indexed: 04/19/2024]
Abstract
In this study, hybrid bio-nanoporous peptides loaded onto poly(N-isopropylacrylamide-co-butylacrylate) (pNIPAM-co-BA) coatings were designed and obtained via matrix-assisted pulsed laser evaporation (MAPLE) technique. The incorporation of cationic peptides magainin (MG) and melittin (Mel) and their combination was tailored to target synergistic anticancer and antibacterial activities with low toxicity on normal mammalian cells. Atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy as well as contact angle and surface energy measurements revealed the successful and functional incorporation of both the peptides within porous polymeric nanolayers as well as surface modifications (i.e. variation in the pore size diameter, surface roughness, and wettability) after Mel, MG or Mel-MG incorporation compared to pNIPAM-co-BA. In vitro testing revealed the impairment of biofilm formation on all the hybrid coatings while testing with S. aureus, E. coli and P. aeruginosa. Moreover, MG was shown to modulate the effect of Mel in the combined Mel-MG extract formulation released via pNIPAM-platforms, thus significantly reducing cancer cell proliferation through apoptosis/necrosis as revealed by flow cytometry analysis performed in vitro on HEK293T, A375, B16F1 and B16F10 cells. To the best of our knowledge, Mel-MG combination entrapped in the pNIPAM-co-BA copolymer has not yet been reported as a new promising candidate with anticancer and antibacterial properties for improved utility in the biomedical field. Mel-MG incorporation compared to pNIPAM-co-BA in in vitro testing revealed the impairment of biofilm formation in all the hybrid formulations.
Collapse
Affiliation(s)
- Madalina Icriverzi
- Institute of Biochemistry of the Romanian Academy 060031 Bucharest Romania
| | | | - Anca Bonciu
- National Institute for Lasers, Plasma, and Radiation Physics 409 Atomistilor Street 077125 Magurele Romania
| | | | - Antoniu Moldovan
- National Institute for Lasers, Plasma, and Radiation Physics 409 Atomistilor Street 077125 Magurele Romania
| | - Diana Pelinescu
- Faculty of Biology, University of Bucharest, Department of Genetics Intrarea Portocalelor no. 1-3, Sector 6 Bucharest Romania
| | - Robertina Ionescu
- Faculty of Biology, University of Bucharest, Department of Genetics Intrarea Portocalelor no. 1-3, Sector 6 Bucharest Romania
| | - Ionela Avram
- Faculty of Biology, University of Bucharest, Department of Genetics Intrarea Portocalelor no. 1-3, Sector 6 Bucharest Romania
| | | | - Livia Elena Sima
- Institute of Biochemistry of the Romanian Academy 060031 Bucharest Romania
| | - Valentina Dinca
- National Institute for Lasers, Plasma, and Radiation Physics 409 Atomistilor Street 077125 Magurele Romania
| | - Laurentiu Rusen
- National Institute for Lasers, Plasma, and Radiation Physics 409 Atomistilor Street 077125 Magurele Romania
| | - Anca Roseanu
- Institute of Biochemistry of the Romanian Academy 060031 Bucharest Romania
| |
Collapse
|
91
|
Liu J, Cabral H, Mi P. Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release. Adv Drug Deliv Rev 2024; 207:115239. [PMID: 38437916 DOI: 10.1016/j.addr.2024.115239] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The cellular barriers are major bottlenecks for bioactive compounds entering into cells to accomplish their biological functions, which limits their biomedical applications. Nanocarriers have demonstrated high potential and benefits for encapsulating bioactive compounds and efficiently delivering them into target cells by overcoming a cascade of intracellular barriers to achieve desirable therapeutic and diagnostic effects. In this review, we introduce the cellular barriers ahead of drug delivery and nanocarriers, as well as summarize recent advances and strategies of nanocarriers for increasing internalization with cells, promoting intracellular trafficking, overcoming drug resistance, targeting subcellular locations and controlled drug release. Lastly, the future perspectives of nanocarriers for intracellular drug delivery are discussed, which mainly focus on potential challenges and future directions. Our review presents an overview of intracellular drug delivery by nanocarriers, which may encourage the future development of nanocarriers for efficient and precision drug delivery into a wide range of cells and subcellular targets.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
92
|
Chen MM, Tang X, Li JJ, Chen FY, Jiang ZT, Fu R, Li HB, Hu XY, Geng WC, Guo DS. Active targeting tumor therapy using host-guest drug delivery system based on biotin functionalized azocalix[4]arene. J Control Release 2024; 368:691-702. [PMID: 38492860 DOI: 10.1016/j.jconrel.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Host-guest drug delivery systems (HGDDSs) provided a facile method for incorporating biomedical functions, including efficient drug-loading, passive targeting, and controlled drug release. However, developing HGDDSs with active targeting is hindered by the difficult functionalization of popular macrocycles. Herein, we report an active targeting HGDDS based on biotin-modified sulfonated azocalix[4]arene (Biotin-SAC4A) to efficiently deliver drug into cancer cells for improving anti-tumor effect. Biotin-SAC4A was synthesized by amide condensation and azo coupling. Biotin-SAC4A demonstrated hypoxia responsive targeting and active targeting through azo and biotin groups, respectively. DOX@Biotin-SAC4A, which was prepared by loading doxorubicin (DOX) in Biotin-SAC4A, was evaluated for tumor targeting and therapy in vitro and in vivo. DOX@Biotin-SAC4A formulation effectively killed cancer cells in vitro and more efficiently delivered DOX to the lesion than the similar formulation without active targeting. Therefore, DOX@Biotin-SAC4A significantly improved the in vivo anti-tumor effect of free DOX. The facilely prepared Biotin-SAC4A offers strong DOX complexation, active targeting, and hypoxia-triggered release, providing a favorable host for effective breast cancer chemotherapy in HGDDSs. Moreover, Biotin-SAC4A also has potential to deliver agents for other therapeutic modalities and diseases.
Collapse
Affiliation(s)
- Meng-Meng Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Xingchen Tang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Juan-Juan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Ze-Tao Jiang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Rong Fu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Hua-Bin Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Xin-Yue Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Wen-Chao Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China.
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
93
|
Appiah E, Nakamura H, Assumang A, Etrych T, Haratake M. Chemical modification of bradykinin-polymer conjugates for optimum delivery of nanomedicines to tumors. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 57:102744. [PMID: 38460653 DOI: 10.1016/j.nano.2024.102744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
We recently prepared pH-responsive HPMA copolymer conjugates of bradykinin (P-BK), which release BK in response to the acidic tumor microenvironment, and found that administration of P-BK increased the tumor accumulation and therapeutic efficacy of nanomedicine. Because the release of BK from P-BK determines its onset of action, P-BKs with different release rates were prepared, and their properties were evaluated. The release kinetics were significantly altered by substitution proximal to hydrazone bond, release constant of methyl-substituted P-BK (P-MeBK) was approximately 4- and 80-fold higher than that of cyclopropyl-substituted P-BK (P-CPBK) and phenyl-substituted P-BK (P-PhBK). None of the P-BKs were active, but the release of BK restored their BK-like activity. Pre-administration of the P-BKs increased the tumor accumulation of nanomedicine in C26 tumor-bearing mice by 2- and 1.4-fold for P-MeBK and P-PhBK at 3 and 6 h. Altogether, this study provides insights into the design of pH-responsive nanodrugs with the desired release properties to target acidic lesions such as cancer and inflammation.
Collapse
Affiliation(s)
- Enoch Appiah
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| | - Hideaki Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Anthony Assumang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Mamoru Haratake
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
94
|
Li H, Zhang T, Liao Y, Liu C, He Y, Wang Y, Li C, Jiang C, Li C, Luo G, Xiang Z, Duo Y. Recent advances of aggregation‐induced emission in body surface organs. AGGREGATE 2024; 5. [DOI: 10.1002/agt2.470] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
AbstractThe surface organs mainly comprise the superficial layers of various parts of the mammalian body, including the skin, eyes, and ears, which provide solid protection against various threats to the entire body. Damage to surface organs could lead to many serious diseases or even death. Currently, despite significant advancements in this field, there remain numerous enigmas that necessitate expeditious resolution, particularly pertaining to diagnostic and therapeutic objectives. The advancements in nanomedicine have provided a significant impetus for the development of novel approaches in the diagnosis, bioimaging, and therapy of superficial organs. The aggregation‐induced emission (AIE) phenomenon, initially observed by Prof. Ben Zhong Tang, stands out due to its contrasting behavior to the aggregation‐caused quenching effect. This discovery has significantly revolutionized the field of nanomedicine for surface organs owing to its remarkable advantages. In this review of literature, we aim to provide a comprehensive summary of recent advances of AIE lumenogen (AIEgen)‐based nanoplatforms in the fields of detection, diagnosis, imaging, and therapeutics of surface organ‐related diseases and discuss their prospects in the domain. It is hoped that this review will help attract researchers’ attention toward the utilization of this field for the exploration of a wider range of biomedical and clinical applications.
Collapse
Affiliation(s)
- Hang Li
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China
- Department of Pharmacy The Second Xiangya Hospital Central South University Changsha China
| | - Tingting Zhang
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China
- Department of Pharmacy The Second Xiangya Hospital Central South University Changsha China
| | - Yingying Liao
- The Eighth Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Chutong Liu
- The Eighth Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Yisheng He
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Yongfei Wang
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Conglei Li
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Cheng Jiang
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Chenzhong Li
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Guanghong Luo
- Department of Radiation Oncology Shenzhen People's Hospital (The Second Clinical Medical College The First Affiliated Hospital Jinan University Southern University of Science and Technology) Shenzhen China
| | - Zhongyuan Xiang
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China
- Department of Pharmacy The Second Xiangya Hospital Central South University Changsha China
| | - Yanhong Duo
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Science Harvard University Boston Massachusetts USA
| |
Collapse
|
95
|
Anitha K, Chenchula S, Surendran V, Shvetank B, Ravula P, Milan R, Chikatipalli R, R P. Advancing cancer theranostics through biomimetics: A comprehensive review. Heliyon 2024; 10:e27692. [PMID: 38496894 PMCID: PMC10944277 DOI: 10.1016/j.heliyon.2024.e27692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Nanotheranostics, especially those employing biomimetic approaches, are of substantial interest for molecular imaging and cancer therapy. The incorporation of diagnostics and therapeutics, known as cancer theranostics, represents a promising strategy in modern oncology. Biomimetics, inspired by nature, offers a multidisciplinary avenue with potential in advancing cancer theranostics. This review comprehensively analyses recent progress in biomimetics-based cancer theranostics, emphasizing its role in overcoming current treatment challenges, with a focus on breast, prostate, and skin cancers. Biomimetic approaches have been explored to address multidrug resistance (MDR), emphasizing their role in immunotherapy and photothermal therapy. The specific areas covered include biomimetic drug delivery systems bypassing MDR mechanisms, biomimetic platforms for immune checkpoint blockade, immune cell modulation, and photothermal tumor ablation. Pretargeting techniques enhancing radiotherapeutic agent uptake are discussed, along with a comprehensive review of clinical trials of global nanotheranostics. This review delves into biomimetic materials, nanotechnology, and bioinspired strategies for cancer imaging, diagnosis, and targeted drug delivery. These include imaging probes, contrast agents, and biosensors for enhanced specificity and sensitivity. Biomimetic strategies for targeted drug delivery involve the design of nanoparticles, liposomes, and hydrogels for site-specific delivery and improved therapeutic efficacy. Overall, this current review provides valuable information for investigators, clinicians, and biomedical engineers, offering insights into the latest biomimetics applications in cancer theranostics. Leveraging biomimetics aims to revolutionize cancer diagnosis, treatment, and patient outcomes.
Collapse
Affiliation(s)
- Kuttiappan Anitha
- Department of Pharmacology, School of Pharmacy and Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur, 425405, India
| | - Santenna Chenchula
- Department of Clinical Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhopal, 462020, Madhya Pradesh, India
| | - Vijayaraj Surendran
- Dr Kalam College of Pharmacy, Thanjavur District, Tamil Nadu, 614 623, India
| | - Bhatt Shvetank
- School of Health Sciences and Technology, Dr Vishwanath Karad MIT World Peace University, Pune, 411038, Maharashtra, India
| | - Parameswar Ravula
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Rhythm Milan
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Radhika Chikatipalli
- Sri Venkateshwara College of Pharmacy, Chittoor District, Andhra Pradesh, 517520, India
| | - Padmavathi R
- SVS Medical College, Mahbubnagar, Telangana, India
| |
Collapse
|
96
|
Yin W, Ma H, Qu Y, Wang S, Zhao R, Yang Y, Guo ZN. Targeted exosome-based nanoplatform for new-generation therapeutic strategies. Biomed Mater 2024; 19:032002. [PMID: 38471163 DOI: 10.1088/1748-605x/ad3310] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Exosomes, typically 30-150 nm in size, are lipid-bilayered small-membrane vesicles originating in endosomes. Exosome biogenesis is regulated by the coordination of various mechanisms whereby different cargoes (e.g. proteins, nucleic acids, and lipids) are sorted into exosomes. These components endow exosomes with bioregulatory functions related to signal transmission and intercellular communication. Exosomes exhibit substantial potential as drug-delivery nanoplatforms owing to their excellent biocompatibility and low immunogenicity. Proteins, miRNA, siRNA, mRNA, and drugs have been successfully loaded into exosomes, and these exosome-based delivery systems show satisfactory therapeutic effects in different disease models. To enable targeted drug delivery, genetic engineering and chemical modification of the lipid bilayer of exosomes are performed. Stimuli-responsive delivery nanoplatforms designed with appropriate modifications based on various stimuli allow precise control of on-demand drug delivery and can be utilized in clinical treatment. In this review, we summarize the general properties, isolation methods, characterization, biological functions, and the potential role of exosomes in therapeutic delivery systems. Moreover, the effective combination of the intrinsic advantages of exosomes and advanced bioengineering, materials science, and clinical translational technologies are required to accelerate the development of exosome-based delivery nanoplatforms.
Collapse
Affiliation(s)
- Wenjing Yin
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Hongyin Ma
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Siji Wang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| |
Collapse
|
97
|
Zhou X, Wang Q, Lei Z, Zhang K, Zhen S, Yao H, Zu Y. Calcium Carbonate-Based Nanoplatforms for Cancer Therapeutics: Current State of Art and Future Breakthroughs. ACS OMEGA 2024; 9:12539-12552. [PMID: 38524488 PMCID: PMC10955594 DOI: 10.1021/acsomega.3c09987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
With the rapid development of nanotechnology, nanomaterials have shown immense potential for antitumor applications. Nanosized calcium carbonate (CaCO3) materials exhibit excellent biocompatibility and degradability, and have been utilized to develop platform technologies for cancer therapy. These materials can be engineered to carry anticancer drugs and functional groups that specifically target cancer cells and tissues, thereby enhancing therapeutic efficacy. Additionally, their physicochemical properties can be tailored to enable stimuli-responsive therapy and precision drug delivery. This Review consolidates recent literatures focusing on the synthesis, physicochemical properties, and multimodal antitumor therapies of CaCO3-based nanoplatforms (CBN). We also explore the current challenges and potential breakthroughs in the development of CBN for antitumor applications, providing a valuable reference for researchers in the field.
Collapse
Affiliation(s)
- Xiaoting Zhou
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Qihui Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Zipeng Lei
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
- Clinical
College of the Third Medical Center of Chinese PLA General Hospital, The Fifth Clinical Medical College of Anhui Medical
University, Hefei 230032, Anhui China
| | - Ke Zhang
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Shuxue Zhen
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Huiqin Yao
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yan Zu
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
| |
Collapse
|
98
|
Caselli L, Nylander T, Malmsten M. Neutron reflectometry as a powerful tool to elucidate membrane interactions of drug delivery systems. Adv Colloid Interface Sci 2024; 325:103120. [PMID: 38428362 DOI: 10.1016/j.cis.2024.103120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
The last couple of decades have seen an explosion of novel colloidal drug delivery systems, which have been demonstrated to increase drug efficacy, reduce side-effects, and provide various other advantages for both small-molecule and biomacromolecular drugs. The interactions of delivery systems with biomembranes are increasingly recognized to play a key role for efficient eradication of pathogens and cancer cells, as well as for intracellular delivery of protein and nucleic acid drugs. In parallel, there has been a broadening of methodologies for investigating such systems. For example, advanced microscopy, mass-spectroscopic "omic"-techniques, as well as small-angle X-ray and neutron scattering techniques, which only a few years ago were largely restricted to rather specialized areas within basic research, are currently seeing increased interest from researchers within wide application fields. In the present discussion, focus is placed on the use of neutron reflectometry to investigate membrane interactions of colloidal drug delivery systems. Although the technique is still less extensively employed for investigations of drug delivery systems than, e.g., X-ray scattering, such studies may provide key mechanistic information regarding membrane binding, re-modelling, translocation, and permeation, of key importance for efficacy and toxicity of antimicrobial, cancer, and other therapeutics. In the following, examples of this are discussed and gaps/opportunities in the research field identified.
Collapse
Affiliation(s)
| | - Tommy Nylander
- Physical Chemistry 1, Lund University, S-221 00 Lund, Sweden
| | - Martin Malmsten
- Physical Chemistry 1, Lund University, S-221 00 Lund, Sweden; Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
99
|
Eftekhari K, Parakhonskiy BV, Grigoriev D, Skirtach AG. Advances in Nanoarchitectonics: A Review of "Static" and "Dynamic" Particle Assembly Methods. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1051. [PMID: 38473523 PMCID: PMC10935451 DOI: 10.3390/ma17051051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Particle assembly is a promising technique to create functional materials and devices from nanoscale building blocks. However, the control of particle arrangement and orientation is challenging and requires careful design of the assembly methods and conditions. In this study, the static and dynamic methods of particle assembly are reviewed, focusing on their applications in biomaterial sciences. Static methods rely on the equilibrium interactions between particles and substrates, such as electrostatic, magnetic, or capillary forces. Dynamic methods can be associated with the application of external stimuli, such as electric fields, magnetic fields, light, or sound, to manipulate the particles in a non-equilibrium state. This study discusses the advantages and limitations of such methods as well as nanoarchitectonic principles that guide the formation of desired structures and functions. It also highlights some examples of biomaterials and devices that have been fabricated by particle assembly, such as biosensors, drug delivery systems, tissue engineering scaffolds, and artificial organs. It concludes by outlining the future challenges and opportunities of particle assembly for biomaterial sciences. This review stands as a crucial guide for scholars and professionals in the field, fostering further investigation and innovation. It also highlights the necessity for continuous research to refine these methodologies and devise more efficient techniques for nanomaterial synthesis. The potential ramifications on healthcare and technology are substantial, with implications for drug delivery systems, diagnostic tools, disease treatments, energy storage, environmental science, and electronics.
Collapse
Affiliation(s)
- Karaneh Eftekhari
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Bogdan V. Parakhonskiy
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Dmitry Grigoriev
- Multifunctional Colloids and Coatings, Division Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam-Golm, Germany;
| | - Andre G. Skirtach
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
100
|
Antoniraj MG, Dhayanandamoorthy Y, Ponnuchamy K, Kandasamy R, Pandima Devi K. Study the anticancer efficacy of doxorubicin-loaded redox-responsive chitosan-derived nanoparticles in the MDA-MB-231 cell line. Carbohydr Res 2024; 536:109049. [PMID: 38346357 DOI: 10.1016/j.carres.2024.109049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
This study focuses on the design and evaluation of redox-responsive nanoparticles (NPs) by synthesizing disulfide-containing N-phthaloyl chitosan-SS-methoxy poly(ethylene glycol) (NPC-SS-mPEG) and incorporating the anti-cancer drug doxorubicin into the NPs. The structural features of NPC-SS-mPEG were investigated using FTIR, NMR, XRD, and TGA/DTA analysis. DLS and TEM analysis confirmed the particle size and morphology of the NPs. The stability of the NPs was measured with the presence and absence of glutathione (GSH) in buffers pH 5 and 7.4. Furthermore, the release of DOX from the NPs was studied in GSH (10 mM) containing/absent medium at pH 5 and pH 7.4 which mimics the intracellular environment with redox potential. The results indicated a significantly increased release of DOX in the GSH containing medium pH 5 (82.9 ± 2.1 %) and pH 7.4 (67.37 ± 0.88 %) compared to the GSH free pH 7.4 (29.99 ± 1.01 %) and pH 5 medium (56.56 ± 1.7 %) at 60 h. The cytotoxicity study in the MDA-MB-231 breast cancer cell line by MTT assay indicated higher toxicity of redox-responsive NPs to cancer cells than free DOX. In concurrence with the cytotoxicity assay, in-vitro fluorescence staining assays (AO/EB, Hoechst, ROS generation) also confirmed that NPs loaded with DOX induce higher toxicity to cancer cells than free DOX. Taken together, the overall results confirmed the superiority of the redox response-mediated release of DOX in effectively controlling cancer progression.
Collapse
Affiliation(s)
- Mariya Gover Antoniraj
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, 630003, Tamil Nadu, India.
| | - Yamini Dhayanandamoorthy
- Laboratory of Pulmonary Research, Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research (CENTRE), University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Kumar Ponnuchamy
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Laboratory of Pulmonary Research, Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research (CENTRE), University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, 630003, Tamil Nadu, India.
| |
Collapse
|