51
|
Campinho P, Lamperti P, Boselli F, Vilfan A, Vermot J. Blood Flow Limits Endothelial Cell Extrusion in the Zebrafish Dorsal Aorta. Cell Rep 2021; 31:107505. [PMID: 32294443 DOI: 10.1016/j.celrep.2020.03.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/16/2019] [Accepted: 03/21/2020] [Indexed: 12/29/2022] Open
Abstract
Blood flow modulates endothelial cell (EC) response during angiogenesis. Shear stress is known to control gene expression related to the endothelial-mesenchymal transition and endothelial-hematopoietic transition. However, the impact of blood flow on the cellular processes associated with EC extrusion is less well understood. To address this question, we dynamically record EC movements and use 3D quantitative methods to segregate the contributions of various cellular processes to the cellular trajectories in the zebrafish dorsal aorta. We find that ECs spread toward the cell extrusion area following the tissue deformation direction dictated by flow-derived mechanical forces. Cell extrusion increases when blood flow is impaired. Similarly, the mechanosensor polycystic kidney disease 2 (pkd2) limits cell extrusion, suggesting that ECs actively sense mechanical forces in the process. These findings identify pkd2 and flow as critical regulators of EC extrusion and suggest that mechanical forces coordinate this process by maintaining ECs within the endothelium.
Collapse
Affiliation(s)
- Pedro Campinho
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Paola Lamperti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Francesco Boselli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Andrej Vilfan
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany; J. Stefan Institute, Ljubljana, Slovenia
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France; Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
52
|
Abstract
In this report, we describe how endothelial cells, the cells lining the interior of blood vessels, invade into tissues to form new vessels through sprouting angiogenesis. We found that endothelial cells use a specific lamellipodia-related membrane protrusion for invasion, which we termed dactylopodia. These protrusions have a special morphology, originate from filopodia, are linked to membrane-ruffling activity, and are specialized in invading into avascular extracellular matrix. Our work lays the foundations for drug discovery targeting sprouting angiogenesis. Sprouting angiogenesis is fundamental for development and contributes to cancer, diabetic retinopathy, and cardiovascular diseases. Sprouting angiogenesis depends on the invasive properties of endothelial tip cells. However, there is very limited knowledge on how tip cells invade into tissues. Here, we show that endothelial tip cells use dactylopodia as the main cellular protrusion for invasion into nonvascular extracellular matrix. We show that dactylopodia and filopodia protrusions are balanced by myosin IIA (NMIIA) and actin-related protein 2/3 (Arp2/3) activity. Endothelial cell-autonomous ablation of NMIIA promotes excessive dactylopodia formation in detriment of filopodia. Conversely, endothelial cell-autonomous ablation of Arp2/3 prevents dactylopodia development and leads to excessive filopodia formation. We further show that NMIIA inhibits Rac1-dependent activation of Arp2/3 by regulating the maturation state of focal adhesions. Our discoveries establish a comprehensive model of how endothelial tip cells regulate its protrusive activity and will pave the way toward strategies to block invasive tip cells during sprouting angiogenesis.
Collapse
|
53
|
Tisch N, Ruiz de Almodóvar C. Contribution of cell death signaling to blood vessel formation. Cell Mol Life Sci 2021; 78:3247-3264. [PMID: 33783563 PMCID: PMC8038986 DOI: 10.1007/s00018-020-03738-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
The formation of new blood vessels is driven by proliferation of endothelial cells (ECs), elongation of maturing vessel sprouts and ultimately vessel remodeling to create a hierarchically structured vascular system. Vessel regression is an essential process to remove redundant vessel branches in order to adapt the final vessel density to the demands of the surrounding tissue. How exactly vessel regression occurs and whether and to which extent cell death contributes to this process has been in the focus of several studies within the last decade. On top, recent findings challenge our simplistic view of the cell death signaling machinery as a sole executer of cellular demise, as emerging evidences suggest that some of the classic cell death regulators even promote blood vessel formation. This review summarizes our current knowledge on the role of the cell death signaling machinery with a focus on the apoptosis and necroptosis signaling pathways during blood vessel formation in development and pathology.
Collapse
Affiliation(s)
- Nathalie Tisch
- Department of Vascular Dysfunction, European Center for Angioscience (ECAS), Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carmen Ruiz de Almodóvar
- Department of Vascular Dysfunction, European Center for Angioscience (ECAS), Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
54
|
Hong JH, Noh MG, Akanda MR, Kim YJ, Kim SH, Jung TY, Jung S, Lee JH, Rhee JH, Kim KK, Kim SS, Lee KH, Moon KS. Solitary Fibrous Tumor/Hemangiopericytoma Metastasizes Extracranially, Associated with Altered Expression of WNT5A and MMP9. Cancers (Basel) 2021; 13:1142. [PMID: 33799999 PMCID: PMC7962064 DOI: 10.3390/cancers13051142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/05/2022] Open
Abstract
Solitary fibrous tumor/hemangiopericytoma (SFT/HPC) is a mesenchymal tumor originating from various soft tissues and meninges, which carries the NAB2-STAT6 fusion gene. Meningeal/intracranial SFT/HPCs (icSFT/HPC) have a poor clinical outcome with metastatic behavior compared to soft tissue/extracranial SFT/HPCs (exSFT/HPC), but the underlying genetic factors are unclear. Differentially expressed genes (DEGs) were analyzed by NanoString nCounter assay using RNA extracted from formalin-fixed paraffin-embedded (FFPE) tissue samples. Additionally, immunohistochemistry (IHC) was performed on 32 cases of exSFT/HPC, 18 cases of icSFT/HPC, and additional recurrent or metastatic cases to verify the findings. Pathway analysis revealed that the WNT signaling pathway was enriched in exSFT/HPC. Analysis of DEGs showed that expression of WNT5A was lower and that of MMP9 was higher in icSFT/HPC than in exSFT/HPC (p = 0.008 and p = 0.035, respectively). IHC showed that WNT5A and CD34 expression was high in exSFT/HPC (p < 0.001, both), while that of MMP9 was high in icSFT/HPC (p = 0.001). Expression of CLDN5 in tumoral vessels was locally decreased in icSFT/HPC (p < 0.001). The results suggested that decreased WNT5A expression, together with increased MMP9 expression, in icSFT/HPC, may affect vascular tightness and prompt tumor cells to metastasize extracranially.
Collapse
Affiliation(s)
- Jong-Hwan Hong
- Departments of Neurosurgery, Chonnam National University Research Institute of Medical Science, Chonnam National University Hwasun Hospital and Medical School, Hwasun 58128, Korea; (J.-H.H.); (Y.J.K.); (T.-Y.J.); (S.J.)
| | - Myung-Giun Noh
- Departments of Pathology, Chonnam National University Research Institute of Medical Science, Chonnam National University Hwasun Hospital and Medical School, Hwasun 58128, Korea; (M.-G.N.); (M.R.A.); (J.-H.L.); (S.S.K.)
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Md Rashedunnabi Akanda
- Departments of Pathology, Chonnam National University Research Institute of Medical Science, Chonnam National University Hwasun Hospital and Medical School, Hwasun 58128, Korea; (M.-G.N.); (M.R.A.); (J.-H.L.); (S.S.K.)
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Yeong Jin Kim
- Departments of Neurosurgery, Chonnam National University Research Institute of Medical Science, Chonnam National University Hwasun Hospital and Medical School, Hwasun 58128, Korea; (J.-H.H.); (Y.J.K.); (T.-Y.J.); (S.J.)
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Tae-Young Jung
- Departments of Neurosurgery, Chonnam National University Research Institute of Medical Science, Chonnam National University Hwasun Hospital and Medical School, Hwasun 58128, Korea; (J.-H.H.); (Y.J.K.); (T.-Y.J.); (S.J.)
| | - Shin Jung
- Departments of Neurosurgery, Chonnam National University Research Institute of Medical Science, Chonnam National University Hwasun Hospital and Medical School, Hwasun 58128, Korea; (J.-H.H.); (Y.J.K.); (T.-Y.J.); (S.J.)
| | - Jae-Hyuk Lee
- Departments of Pathology, Chonnam National University Research Institute of Medical Science, Chonnam National University Hwasun Hospital and Medical School, Hwasun 58128, Korea; (M.-G.N.); (M.R.A.); (J.-H.L.); (S.S.K.)
| | - Joon Haeng Rhee
- Medical Research Center (MRC) for Immunotherapy of Cancer, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Kyung-Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Sung Sun Kim
- Departments of Pathology, Chonnam National University Research Institute of Medical Science, Chonnam National University Hwasun Hospital and Medical School, Hwasun 58128, Korea; (M.-G.N.); (M.R.A.); (J.-H.L.); (S.S.K.)
| | - Kyung-Hwa Lee
- Departments of Pathology, Chonnam National University Research Institute of Medical Science, Chonnam National University Hwasun Hospital and Medical School, Hwasun 58128, Korea; (M.-G.N.); (M.R.A.); (J.-H.L.); (S.S.K.)
| | - Kyung-Sub Moon
- Departments of Neurosurgery, Chonnam National University Research Institute of Medical Science, Chonnam National University Hwasun Hospital and Medical School, Hwasun 58128, Korea; (J.-H.H.); (Y.J.K.); (T.-Y.J.); (S.J.)
| |
Collapse
|
55
|
Edgar LT, Franco CA, Gerhardt H, Bernabeu MO. On the preservation of vessel bifurcations during flow-mediated angiogenic remodelling. PLoS Comput Biol 2021; 17:e1007715. [PMID: 33539345 PMCID: PMC7909651 DOI: 10.1371/journal.pcbi.1007715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/26/2021] [Accepted: 11/26/2020] [Indexed: 11/18/2022] Open
Abstract
During developmental angiogenesis, endothelial cells respond to shear stress by migrating and remodelling the initially hyperbranched plexus, removing certain vessels whilst maintaining others. In this study, we argue that the key regulator of vessel preservation is cell decision behaviour at bifurcations. At flow-convergent bifurcations where migration paths diverge, cells must finely tune migration along both possible paths if the bifurcation is to persist. Experiments have demonstrated that disrupting the cells’ ability to sense shear or the junction forces transmitted between cells impacts the preservation of bifurcations during the remodelling process. However, how these migratory cues integrate during cell decision making remains poorly understood. Therefore, we present the first agent-based model of endothelial cell flow-mediated migration suitable for interrogating the mechanisms behind bifurcation stability. The model simulates flow in a bifurcated vessel network composed of agents representing endothelial cells arranged into a lumen which migrate against flow. Upon approaching a bifurcation where more than one migration path exists, agents refer to a stochastic bifurcation rule which models the decision cells make as a combination of flow-based and collective-based migratory cues. With this rule, cells favour branches with relatively larger shear stress or cell number. We found that cells must integrate both cues nearly equally to maximise bifurcation stability. In simulations with stable bifurcations, we found competitive oscillations between flow and collective cues, and simulations that lost the bifurcation were unable to maintain these oscillations. The competition between these two cues is haemodynamic in origin, and demonstrates that a natural defence against bifurcation loss during remodelling exists: as vessel lumens narrow due to cell efflux, resistance to flow and shear stress increases, attracting new cells to enter and rescue the vessel from regression. Our work provides theoretical insight into the role of junction force transmission has in stabilising vasculature during remodelling and as an emergent mechanism to avoid functional shunting. When new blood vessels are created, the endothelial cells that make up these vessels migrate and rearrange in response to blood flow to remodel and optimise the vessel network. An essential part of this process is maintaining the branched structure of the network; however, it is unclear what cues cells consider at regions where vessels branch (i.e., bifurcations). In this research, we present a computer model of cell migration to interrogate the process of preserving bifurcations during remodelling. In this model, cells at bifurcations are influenced by both flow and force transmitted from neighbouring cells. We found that both cues (flow-based and collective-based) must be considered equally in order to preserve branching in the vessel network. In simulations with stable bifurcations, we demonstrated that these cues oscillate: a strong signal in one was accompanied by a weak signal in the other. Furthermore, we found that these cues naturally compete with each other due to the coupling between blood flow and the size of the blood vessels, i.e. larger vessels with more cells produce less flow signals and vice versa. Our research provides insight into how forces transmitted between neighbouring cells stabilise and preserve branching during remodelling, as well as implicates the disruption of this force transmission as a potential mechanism when remodelling goes wrong as in the case of vascular malformation.
Collapse
Affiliation(s)
- Lowell T. Edgar
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (LTE); (MOB)
| | - Claudio A. Franco
- Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Holger Gerhardt
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Miguel O. Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (LTE); (MOB)
| |
Collapse
|
56
|
Huang X, Shen W, Veizades S, Liang G, Sayed N, Nguyen PK. Single-Cell Transcriptional Profiling Reveals Sex and Age Diversity of Gene Expression in Mouse Endothelial Cells. Front Genet 2021; 12:590377. [PMID: 33679877 PMCID: PMC7929607 DOI: 10.3389/fgene.2021.590377] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/05/2021] [Indexed: 02/05/2023] Open
Abstract
Although it is well-known that sex and age are important factors regulating endothelial cell (EC) function, the impact of sex and age on the gene expression of ECs has not been systematically analyzed at the single cell level. In this study, we performed an integrated characterization of the EC transcriptome of five major organs (e.g., fat, heart-aorta, lung, limb muscle, and kidney) isolated from male and female C57BL/6 mice at 3 and 18 months of age. A total of 590 and 252 differentially expressed genes (DEGS) were identified between females and males in the 3- and 18-month subgroups, respectively. Within the younger and older group, there were 177 vs. 178 DEGS in fat, 305 vs. 469 DEGS in heart/aorta, 22 vs. 37 DEGS in kidney, 26 vs. 439 DEGS in limb muscle, and 880 vs. 274 DEGS in lung. Interestingly, LARS2, a mitochondrial leucyl tRNA synthase, involved in the translation of mitochondrially encoded genes was differentially expressed in all organs in males compared to females in the 3-month group while S100a8 and S100a9, which are calcium binding proteins that are increased in inflammatory and autoimmune states, were upregulated in all organs in males at 18 months. Importantly, findings from RNAseq were confirmed by qPCR and Western blot. Gene enrichment analysis found genes enriched in protein targeting, catabolism, mitochondrial electron transport, IL 1- and IL 2- signaling, and Wnt signaling in males vs. angiogenesis and chemotaxis in females at 3 months. In contrast, ECs from males and females at 18-months had up-regulation in similar pathways involved in inflammation and apoptosis. Taken together, our findings suggest that gene expression is largely similar between males and females in both age groups. Compared to younger mice, however, older mice have increased expression of genes involved in inflammation in endothelial cells, which may contribute to the development of chronic, non-communicable diseases like atherosclerosis, hypertension, and Alzheimer's disease with age.
Collapse
Affiliation(s)
- Xianxi Huang
- Department of Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Wenjun Shen
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
- Center for Biomedical Informatics Research, Stanford University, Stanford, CA, United States
| | - Stefan Veizades
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
- Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Grace Liang
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
- Cardiology Section, Department of Veteran Affairs, Palo Alto, CA, United States
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Patricia K. Nguyen
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
- Cardiology Section, Department of Veteran Affairs, Palo Alto, CA, United States
- *Correspondence: Patricia K. Nguyen
| |
Collapse
|
57
|
Notochordal-Cell-Derived Exosomes Induced by Compressive Load Inhibit Angiogenesis via the miR-140-5p/Wnt/β-Catenin Axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1092-1106. [PMID: 33294295 PMCID: PMC7691158 DOI: 10.1016/j.omtn.2020.10.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Angiogenesis is a pathological signature of intervertebral disc degeneration (IDD). Accumulating evidence has shown that notochordal cells (NCs) play an essential role in maintaining intervertebral disc development and homeostasis with inhibitive effect on blood vessel in-growth. However, the anti-angiogenesis mechanism of NCs is still unclear. In the current study, we, for the first time, isolated NC-derived exosomes (NC-exos) and showed their increased concentration following compressive load cultures. We further found that NC-exos from 0.5 MPa compressive load cultures (0.5 MPa/NC-exos) inhibit angiogenesis via transferring high expressed microRNA (miR)-140-5p to endothelial cells and regulating the downstream Wnt/β-catenin pathway. Clinical evidence showed that exosomal miR-140-5p expression of the nucleus pulposus is negatively correlated with angiogenesis in IDD. Finally, 0.5 MPa/NC-exos were demonstrated to have a therapeutical impact on the degenerated disc with an anti-angiogenesis effect in an IDD model. Consequently, our present findings provide insights into the anti-angiogenesis mechanism of NC-exos, indicating their therapeutic potential for IDD.
Collapse
|
58
|
Zhang Z, Ge L, Zhang S, Wang J, Jiang W, Xin Q, Luan Y. The protective effects of MSC-EXO against pulmonary hypertension through regulating Wnt5a/BMP signalling pathway. J Cell Mol Med 2020; 24:13938-13948. [PMID: 33090702 PMCID: PMC7754064 DOI: 10.1111/jcmm.16002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of the study was to explore the mechanism of mesenchymal stem cell‐derived exosomes (MSC‐EXO) to protect against experimentally induced pulmonary hypertension (PH). Monocrotaline (MCT)‐induced rat model of PH was successfully established by a single intraperitoneal injection of 50 mg/kg MCT, 3 weeks later the animals were treated with MSC‐EXO via tail vein injection. Post‐operation, our results showed that MSC‐EXO could significantly reduce right ventricular systolic pressure (RVSP) and the right ventricular hypertrophy index, attenuate pulmonary vascular remodelling and lung fibrosis in vivo. In vitro experiment, the hypoxia models of pulmonary artery endothelial cell (PAEC) and pulmonary vascular smooth muscle cell (PASMC) were used. We found that the expression levels of Wnt5a, Wnt11, BMPR2, BMP4 and BMP9 were increased, but β‐catenin, cyclin D1 and TGF‐β1 were decreased in MSC‐EXO group as compared with MCT or hypoxia group in vivo or vitro. However, these increased could be blocked when cells were transfected with Wnt5a siRNA in vitro. Taken together, these results suggested that the mechanism of MSC‐EXO to prevent PH vascular remodelling may be via regulation of Wnt5a/BMP signalling pathway.
Collapse
Affiliation(s)
- Zhaohua Zhang
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - LiLi Ge
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiac Ultrasound, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shanshan Zhang
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jue Wang
- Central Research Laboratory, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen Jiang
- Central Research Laboratory, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Xin
- Central Research Laboratory, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Luan
- Central Research Laboratory, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
59
|
Klems A, van Rijssel J, Ramms AS, Wild R, Hammer J, Merkel M, Derenbach L, Préau L, Hinkel R, Suarez-Martinez I, Schulte-Merker S, Vidal R, Sauer S, Kivelä R, Alitalo K, Kupatt C, van Buul JD, le Noble F. The GEF Trio controls endothelial cell size and arterial remodeling downstream of Vegf signaling in both zebrafish and cell models. Nat Commun 2020; 11:5319. [PMID: 33087700 PMCID: PMC7578835 DOI: 10.1038/s41467-020-19008-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Arterial networks enlarge in response to increase in tissue metabolism to facilitate flow and nutrient delivery. Typically, the transition of a growing artery with a small diameter into a large caliber artery with a sizeable diameter occurs upon the blood flow driven change in number and shape of endothelial cells lining the arterial lumen. Here, using zebrafish embryos and endothelial cell models, we describe an alternative, flow independent model, involving enlargement of arterial endothelial cells, which results in the formation of large diameter arteries. Endothelial enlargement requires the GEF1 domain of the guanine nucleotide exchange factor Trio and activation of Rho-GTPases Rac1 and RhoG in the cell periphery, inducing F-actin cytoskeleton remodeling, myosin based tension at junction regions and focal adhesions. Activation of Trio in developing arteries in vivo involves precise titration of the Vegf signaling strength in the arterial wall, which is controlled by the soluble Vegf receptor Flt1. Arterial flow regulates artery diameter but other mechanisms may also affect this. Here, the authors show that the guanine nucleotide exchange factor Trio and GTPases Rac1 and RhoG, triggers F-actin remodeling in arterial endothelial cells, independent of flow, to enhance lumen diameter in zebrafish and cell models.
Collapse
Affiliation(s)
- Alina Klems
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Jos van Rijssel
- Molecular Cell Biology lab, Department Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center at the University of Amsterdam, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands
| | - Anne S Ramms
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany.,Institute for Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021, Karlsruhe, Germany
| | - Raphael Wild
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Julia Hammer
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Melanie Merkel
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Laura Derenbach
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Laetitia Préau
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Rabea Hinkel
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany and DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Irina Suarez-Martinez
- Institute of Cardiovascular Organogenesis and Regeneration WWU Münster, Münster, Germany & Faculty of Medicine, WWU Münster, Münster, Germany & Cells in Motion Cluster of Excellence, Münster, Münster, Germany
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration WWU Münster, Münster, Germany & Faculty of Medicine, WWU Münster, Münster, Germany & Cells in Motion Cluster of Excellence, Münster, Münster, Germany
| | - Ramon Vidal
- Max Delbrück Center for Molecular Medicine (MDC), Berlin Institute of Medical Systems Biology & Berlin Institute of Health, Robert Rössle Strasse 10, 13092, Berlin, Germany
| | - Sascha Sauer
- Max Delbrück Center for Molecular Medicine (MDC), Berlin Institute of Medical Systems Biology & Berlin Institute of Health, Robert Rössle Strasse 10, 13092, Berlin, Germany
| | - Riikka Kivelä
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, and Wihuri Research Institute, Helsinki, Finland
| | - Kari Alitalo
- Translational Cancer Medicine Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, and Wihuri Research Institute, Helsinki, Finland
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, TUM Munich, Germany, and DZHK, (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Jaap D van Buul
- Molecular Cell Biology lab, Department Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center at the University of Amsterdam, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands.,Leeuwenhoek Centre for Advanced Microscopy, section Molecular Cytology at Swammerdam Institute for Life Sciences at University of Amsterdam, Amsterdam, The Netherlands
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany. .,Institute for Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021, Karlsruhe, Germany. .,Institute of Experimental Cardiology, University of Heidelberg, Heidelberg Germany and DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
60
|
Santamaría R, González-Álvarez M, Delgado R, Esteban S, Arroyo AG. Remodeling of the Microvasculature: May the Blood Flow Be With You. Front Physiol 2020; 11:586852. [PMID: 33178049 PMCID: PMC7593767 DOI: 10.3389/fphys.2020.586852] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
The vasculature ensures optimal delivery of nutrients and oxygen throughout the body, and to achieve this function it must continually adapt to varying tissue demands. Newly formed vascular plexuses during development are immature and require dynamic remodeling to generate well-patterned functional networks. This is achieved by remodeling of the capillaries preserving those which are functional and eliminating other ones. A balanced and dynamically regulated capillary remodeling will therefore ensure optimal distribution of blood and nutrients to the tissues. This is particularly important in pathological contexts in which deficient or excessive vascular remodeling may worsen tissue perfusion and hamper tissue repair. Blood flow is a major determinant of microvascular reshaping since capillaries are pruned when relatively less perfused and they split when exposed to high flow in order to shape the microvascular network for optimal tissue perfusion and oxygenation. The molecular machinery underlying blood flow sensing by endothelial cells is being deciphered, but much less is known about how this translates into endothelial cell responses as alignment, polarization and directed migration to drive capillary remodeling, particularly in vivo. Part of this knowledge is theoretical from computational models since blood flow hemodynamics are not easily recapitulated by in vitro or ex vivo approaches. Moreover, these events are difficult to visualize in vivo due to their infrequency and briefness. Studies had been limited to postnatal mouse retina and vascular beds in zebrafish but new tools as advanced microscopy and image analysis are strengthening our understanding of capillary remodeling. In this review we introduce the concept of remodeling of the microvasculature and its relevance in physiology and pathology. We summarize the current knowledge on the mechanisms contributing to capillary regression and to capillary splitting highlighting the key role of blood flow to orchestrate these processes. Finally, we comment the potential and possibilities that microfluidics offers to this field. Since capillary remodeling mechanisms are often reactivated in prevalent pathologies as cancer and cardiovascular disease, all this knowledge could be eventually used to improve the functionality of capillary networks in diseased tissues and promote their repair.
Collapse
Affiliation(s)
- Ricardo Santamaría
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María González-Álvarez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Raquel Delgado
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sergio Esteban
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alicia G. Arroyo
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
61
|
Kindberg A, Hu JK, Bush JO. Forced to communicate: Integration of mechanical and biochemical signaling in morphogenesis. Curr Opin Cell Biol 2020; 66:59-68. [PMID: 32569947 PMCID: PMC7577940 DOI: 10.1016/j.ceb.2020.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/06/2020] [Accepted: 05/05/2020] [Indexed: 01/05/2023]
Abstract
Morphogenesis is a physical process that requires the generation of mechanical forces to achieve dynamic changes in cell position, tissue shape, and size as well as biochemical signals to coordinate these events. Mechanical forces are also used by the embryo to transmit detailed information across space and detected by target cells, leading to downstream changes in cellular properties and behaviors. Indeed, forces provide signaling information of complementary quality that can both synergize and diversify the functional outputs of biochemical signaling. Here, we discuss recent findings that reveal how mechanical signaling and biochemical signaling are integrated during morphogenesis and the possible context-specific advantages conferred by the interactions between these signaling mechanisms.
Collapse
Affiliation(s)
- Abigail Kindberg
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Jimmy K Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Jeffrey O Bush
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
62
|
Limraksasin P, Kosaka Y, Zhang M, Horie N, Kondo T, Okawa H, Yamada M, Egusa H. Shaking culture enhances chondrogenic differentiation of mouse induced pluripotent stem cell constructs. Sci Rep 2020; 10:14996. [PMID: 32929163 PMCID: PMC7490351 DOI: 10.1038/s41598-020-72038-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022] Open
Abstract
Mechanical loading on articular cartilage induces various mechanical stresses and strains. In vitro hydrodynamic forces such as compression, shear and tension impact various cellular properties including chondrogenic differentiation, leading us to hypothesize that shaking culture might affect the chondrogenic induction of induced pluripotent stem cell (iPSC) constructs. Three-dimensional mouse iPSC constructs were fabricated in a day using U-bottom 96-well plates, and were subjected to preliminary chondrogenic induction for 3 days in static condition, followed by chondrogenic induction culture using a see-saw shaker for 17 days. After 21 days, chondrogenically induced iPSC (CI-iPSC) constructs contained chondrocyte-like cells with abundant ECM components. Shaking culture significantly promoted cell aggregation, and induced significantly higher expression of chondrogenic-related marker genes than static culture at day 21. Immunohistochemical analysis also revealed higher chondrogenic protein expression. Furthemore, in the shaking groups, CI-iPSCs showed upregulation of TGF-β and Wnt signaling-related genes, which are known to play an important role in regulating cartilage development. These results suggest that shaking culture activates TGF-β expression and Wnt signaling to promote chondrogenic differentiation in mouse iPSCs in vitro. Shaking culture, a simple and convenient approach, could provide a promising strategy for iPSC-based cartilage bioengineering for study of disease mechanisms and new therapies.
Collapse
Affiliation(s)
- Phoonsuk Limraksasin
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yukihiro Kosaka
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Maolin Zhang
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Naohiro Horie
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, 90095-1668, USA
| | - Hiroko Okawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan. .,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
63
|
Roux E, Bougaran P, Dufourcq P, Couffinhal T. Fluid Shear Stress Sensing by the Endothelial Layer. Front Physiol 2020; 11:861. [PMID: 32848833 PMCID: PMC7396610 DOI: 10.3389/fphys.2020.00861] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Blood flow produces mechanical frictional forces, parallel to the blood flow exerted on the endothelial wall of the vessel, the so-called wall shear stress (WSS). WSS sensing is associated with several vascular pathologies, but it is first a physiological phenomenon. Endothelial cell sensitivity to WSS is involved in several developmental and physiological vascular processes such as angiogenesis and vascular morphogenesis, vascular remodeling, and vascular tone. Local conditions of blood flow determine the characteristics of WSS, i.e., intensity, direction, pulsatility, sensed by the endothelial cells that, through their effect of the vascular network, impact WSS. All these processes generate a local-global retroactive loop that determines the ability of the vascular system to ensure the perfusion of the tissues. In order to account for the physiological role of WSS, the so-called shear stress set point theory has been proposed, according to which WSS sensing acts locally on vessel remodeling so that WSS is maintained close to a set point value, with local and distant effects of vascular blood flow. The aim of this article is (1) to review the existing literature on WSS sensing involvement on the behavior of endothelial cells and its short-term (vasoreactivity) and long-term (vascular morphogenesis and remodeling) effects on vascular functioning in physiological condition; (2) to present the various hypotheses about WSS sensors and analyze the conceptual background of these representations, in particular the concept of tensional prestress or biotensegrity; and (3) to analyze the relevance, explanatory value, and limitations of the WSS set point theory, that should be viewed as dynamical, and not algorithmic, processes, acting in a self-organized way. We conclude that this dynamic set point theory and the biotensegrity concept provide a relevant explanatory framework to analyze the physiological mechanisms of WSS sensing and their possible shift toward pathological situations.
Collapse
Affiliation(s)
- Etienne Roux
- Inserm, UMR 1034, Biology of Cardiovascular Diseases, University of Bordeaux, Bordeaux, France.,UMR 8560 IHPST - Institut d'Histoire et de Philosophie des Sciences et des Techniques, CNRS, Université Paris 1 Panthéon-Sorbonne, Paris, France
| | - Pauline Bougaran
- Inserm, UMR 1034, Biology of Cardiovascular Diseases, University of Bordeaux, Bordeaux, France
| | - Pascale Dufourcq
- Inserm, UMR 1034, Biology of Cardiovascular Diseases, University of Bordeaux, Bordeaux, France
| | - Thierry Couffinhal
- Inserm, UMR 1034, Biology of Cardiovascular Diseases, University of Bordeaux, Bordeaux, France
| |
Collapse
|
64
|
Fonseca CG, Barbacena P, Franco CA. Endothelial cells on the move: dynamics in vascular morphogenesis and disease. VASCULAR BIOLOGY 2020; 2:H29-H43. [PMID: 32935077 PMCID: PMC7487603 DOI: 10.1530/vb-20-0007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
The vascular system is a hierarchically organized network of blood vessels that play crucial roles in embryogenesis, homeostasis and disease. Blood vessels are built by endothelial cells – the cells lining the interior of blood vessels – through a process named vascular morphogenesis. Endothelial cells react to different biomechanical signals in their environment by adjusting their behavior to: (1) invade, proliferate and fuse to form new vessels (angiogenesis); (2) remodel, regress and establish a hierarchy in the network (patterning); and (3) maintain network stability (quiescence). Each step involves the coordination of endothelial cell differentiation, proliferation, polarity, migration, rearrangements and shape changes to ensure network integrity and an efficient barrier between blood and tissues. In this review, we highlighted the relevance and the mechanisms involving endothelial cell migration during different steps of vascular morphogenesis. We further present evidence on how impaired endothelial cell dynamics can contribute to pathology.
Collapse
Affiliation(s)
- Catarina G Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Barbacena
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Claudio A Franco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
65
|
Gordon E, Schimmel L, Frye M. The Importance of Mechanical Forces for in vitro Endothelial Cell Biology. Front Physiol 2020; 11:684. [PMID: 32625119 PMCID: PMC7314997 DOI: 10.3389/fphys.2020.00684] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Blood and lymphatic vessels are lined by endothelial cells which constantly interact with their luminal and abluminal extracellular environments. These interactions confer physical forces on the endothelium, such as shear stress, stretch and stiffness, to mediate biological responses. These physical forces are often altered during disease, driving abnormal endothelial cell behavior and pathology. Therefore, it is critical that we understand the mechanisms by which endothelial cells respond to physical forces. Traditionally, endothelial cells in culture are grown in the absence of flow on stiff substrates such as plastic or glass. These cells are not subjected to the physical forces that endothelial cells endure in vivo, thus the results of these experiments often do not mimic those observed in the body. The field of vascular biology now realize that an intricate analysis of endothelial signaling mechanisms requires complex in vitro systems to mimic in vivo conditions. Here, we will review what is known about the mechanical forces that guide endothelial cell behavior and then discuss the advancements in endothelial cell culture models designed to better mimic the in vivo vascular microenvironment. A wider application of these technologies will provide more biologically relevant information from cultured cells which will be reproducible to conditions found in the body.
Collapse
Affiliation(s)
- Emma Gordon
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lilian Schimmel
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
66
|
Campinho P, Vilfan A, Vermot J. Blood Flow Forces in Shaping the Vascular System: A Focus on Endothelial Cell Behavior. Front Physiol 2020; 11:552. [PMID: 32581842 PMCID: PMC7291788 DOI: 10.3389/fphys.2020.00552] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/30/2020] [Indexed: 01/16/2023] Open
Abstract
The endothelium is the cell monolayer that lines the interior of the blood vessels separating the vessel lumen where blood circulates, from the surrounding tissues. During embryonic development, endothelial cells (ECs) must ensure that a tight barrier function is maintained whilst dynamically adapting to the growing vascular tree that is being formed and remodeled. Blood circulation generates mechanical forces, such as shear stress and circumferential stretch that are directly acting on the endothelium. ECs actively respond to flow-derived mechanical cues by becoming polarized, migrating and changing neighbors, undergoing shape changes, proliferating or even leaving the tissue and changing identity. It is now accepted that coordinated changes at the single cell level drive fundamental processes governing vascular network morphogenesis such as angiogenic sprouting, network pruning, lumen formation, regulation of vessel caliber and stability or cell fate transitions. Here we summarize the cell biology and mechanics of ECs in response to flow-derived forces, discuss the latest advances made at the single cell level with particular emphasis on in vivo studies and highlight potential implications for vascular pathologies.
Collapse
Affiliation(s)
- Pedro Campinho
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Department of Development and Stem Cells, Université de Strasbourg, Illkirch, France
| | - Andrej Vilfan
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Department of Condensed Matter Physics, J. Stefan Institute, Ljubljana, Slovenia
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Department of Development and Stem Cells, Université de Strasbourg, Illkirch, France
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
67
|
Zhang S, Liu X, Ge LL, Li K, Sun Y, Wang F, Han Y, Sun C, Wang J, Jiang W, Xin Q, Xu C, Chen Y, Chen O, Zhang Z, Luan Y. Mesenchymal stromal cell-derived exosomes improve pulmonary hypertension through inhibition of pulmonary vascular remodeling. Respir Res 2020; 21:71. [PMID: 32192495 PMCID: PMC7082982 DOI: 10.1186/s12931-020-1331-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Background Pulmonary hypertension (PH) is a life-threatening disease characterized by pulmonary vascular remodeling, right ventricular hypertrophy and failure. So far no effective treatment exists for this disease; hence, novel approaches are urgently needed. The aim of the present research was to observe the treatment effect of mesenchymal stromal cell derived exosomes and reveal the mechanism. Methods Monocrotaline (MCT)-induced PH in rats and hypoxia-induced cell damage model were established, respectively. Exosomes derived from the supernatant of human umbilical cord mesenchymal stem cells (MSC-exo) were injected into MCT-PH model rat or added into the cells cultured medium. Immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot methods were used in vivo and vitro. Results The results showed that MSC-exo could significantly attenuate right ventricular (RV) hypertrophy and pulmonary vascular remodelling in MCT-PH rats. In the cell culture experiments, we found that MSC-exo could significantly inhibit hypoxia-induced pulmonary arterial endothelial cell (PAEC) apoptosis and pulmonary arterial smooth muscle cells (PASMC) proliferation. Furthermore, the pulmonary arterioles endothelial-to-mesenchymal transition (EndMT) was obviously suppressed. Moreover, the present study suggest that MSC-exo can significantly upregulate the expression of Wnt5a in MCT-PH rats and hypoxic pulmonary vascular cells. Furthermore, with Wnt5a gene silencing, the therapeutic effect of MSC-exo against hypoxia injury was restrained. Conclusions Synthetically, our data provide a strong evidence for the therapeutic of MSC-exo on PH, more importantly, we confirmed that the mechanism was associated with up-regulation of the expression of Wnt5a. These results offer a theoretical basis for clinical prevention and treatment of PH.
Collapse
Affiliation(s)
- Shanshan Zhang
- The Second Hospital of Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, People's Republic of China
| | - Xiaoli Liu
- Department of Hematology, The Second Hospital of Shandong University, Jinan, People's Republic of China.,Institute of Biotherapy for Hematological Malignancies, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Li Li Ge
- Department of Special Inspection, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Kailin Li
- Institute of Medical Science, Central Research Laboratory, The Second Hospital of Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, People's Republic of China
| | - Yongchao Sun
- Department of Medicine, Jinan Vocational College of Nursing, Jinan, People's Republic of China
| | - Fang Wang
- Institute of Medical Science, Animal center, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Ying Han
- Institute of Medical Science, Animal center, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Chao Sun
- Institute of Medical Science, Central Research Laboratory, The Second Hospital of Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, People's Republic of China
| | - Jue Wang
- Institute of Medical Science, Central Research Laboratory, The Second Hospital of Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, People's Republic of China
| | - Wen Jiang
- Institute of Medical Science, Central Research Laboratory, The Second Hospital of Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, People's Republic of China
| | - Qian Xin
- Institute of Medical Science, Central Research Laboratory, The Second Hospital of Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, People's Republic of China
| | - Chaoyue Xu
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Yuan Chen
- Institute of Medical Science, Central Research Laboratory, The Second Hospital of Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, People's Republic of China
| | - Ou Chen
- School of nursing, Shandong University, Jinan, People's Republic of China
| | - Zhaohua Zhang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Yun Luan
- Institute of Medical Science, Central Research Laboratory, The Second Hospital of Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, People's Republic of China.
| |
Collapse
|
68
|
Prahst C, Ashrafzadeh P, Mead T, Figueiredo A, Chang K, Richardson D, Venkaraman L, Richards M, Russo AM, Harrington K, Ouarné M, Pena A, Chen DF, Claesson-Welsh L, Cho KS, Franco CA, Bentley K. Mouse retinal cell behaviour in space and time using light sheet fluorescence microscopy. eLife 2020; 9:49779. [PMID: 32073398 PMCID: PMC7162655 DOI: 10.7554/elife.49779] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 02/11/2020] [Indexed: 12/27/2022] Open
Abstract
As the general population ages, more people are affected by eye diseases, such as retinopathies. It is therefore critical to improve imaging of eye disease mouse models. Here, we demonstrate that 1) rapid, quantitative 3D and 4D (time lapse) imaging of cellular and subcellular processes in the mouse eye is feasible, with and without tissue clearing, using light-sheet fluorescent microscopy (LSFM); 2) flat-mounting retinas for confocal microscopy significantly distorts tissue morphology, confirmed by quantitative correlative LSFM-Confocal imaging of vessels; 3) LSFM readily reveals new features of even well-studied eye disease mouse models, such as the oxygen-induced retinopathy (OIR) model, including a previously unappreciated ‘knotted’ morphology to pathological vascular tufts, abnormal cell motility and altered filopodia dynamics when live-imaged. We conclude that quantitative 3D/4D LSFM imaging and analysis has the potential to advance our understanding of the eye, in particular pathological, neurovascular, degenerative processes. Eye diseases affect millions of people worldwide and can have devasting effects on people’s lives. To find new treatments, scientists need to understand more about how these diseases arise and how they progress. This is challenging and progress has been held back by limitations in current techniques for looking at the eye. Currently, the most commonly used method is called confocal imaging, which is slow and distorts the tissue. Distortion happens because confocal imaging requires that thin slices of eye tissue from mice used in experiments are flattened on slides; this makes it hard to accurately visualize three-dimensional structures in the eye. New methods are emerging that may help. One promising method is called light-sheet fluorescent microscopy (or LSFM for short). This method captures three-dimensional images of the blood vessels and cells in the eye. It is much faster than confocal imaging and allows scientists to image tissues without slicing or flattening them. This could lead to more accurate three-dimensional images of eye disease. Now, Prahst et al. show that LSFM can quickly produce highly detailed, three-dimensional images of mouse retinas, from the smallest parts of cells to the entire eye. The technique also identified new features in a well-studied model of retina damage caused by excessive oxygen exposure in young mice. Previous studies of this model suggested the disease caused blood vessels in the eye to balloon, hinting that drugs that shrink blood vessels would help. But using LSFM, Prahst et al. revealed that these blood vessels actually take on a twisted and knotted shape. This suggests that treatments that untangle the vessels rather than shrink them are needed. The experiments show that LSFM is a valuable tool for studying eye diseases, that may help scientists learn more about how these diseases arise and develop. These new insights may one day lead to better tests and treatments for eye diseases.
Collapse
Affiliation(s)
- Claudia Prahst
- Center for Vascular Biology Research and Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Parham Ashrafzadeh
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Thomas Mead
- The Francis Crick Institute, London, United Kingdom.,Department of Informatics, Faculty of Natural and Mathematical Sciences, Kings College London, London, United Kingdom
| | | | - Karen Chang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, United States
| | - Douglas Richardson
- Harvard Center for Biological Imaging, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Lakshmi Venkaraman
- Center for Vascular Biology Research and Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States.,The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mark Richards
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Kyle Harrington
- Center for Vascular Biology Research and Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Marie Ouarné
- Instituto de Medicina Molecular, Lisbon, Portugal
| | - Andreia Pena
- Instituto de Medicina Molecular, Lisbon, Portugal
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, United States
| | - Lena Claesson-Welsh
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, United States.,Geriatric Research Education and Clinical Center, Office of Research and Development, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, United States
| | | | - Katie Bentley
- Center for Vascular Biology Research and Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States.,The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,The Francis Crick Institute, London, United Kingdom.,Department of Informatics, Faculty of Natural and Mathematical Sciences, Kings College London, London, United Kingdom.,Biomedical Engineering Department, Boston University, Boston, United States
| |
Collapse
|
69
|
Souilhol C, Serbanovic-Canic J, Fragiadaki M, Chico TJ, Ridger V, Roddie H, Evans PC. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol 2020; 17:52-63. [PMID: 31366922 DOI: 10.1038/s41569-41019-40239-41565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 05/28/2023]
Abstract
Flowing blood generates a frictional force called shear stress that has major effects on vascular function. Branches and bends of arteries are exposed to complex blood flow patterns that exert low or low oscillatory shear stress, a mechanical environment that promotes vascular dysfunction and atherosclerosis. Conversely, physiologically high shear stress is protective. Endothelial cells are critical sensors of shear stress but the mechanisms by which they decode complex shear stress environments to regulate physiological and pathophysiological responses remain incompletely understood. Several laboratories have advanced this field by integrating specialized shear-stress models with systems biology approaches, including transcriptome, methylome and proteome profiling and functional screening platforms, for unbiased identification of novel mechanosensitive signalling pathways in arteries. In this Review, we describe these studies, which reveal that shear stress regulates diverse processes and demonstrate that multiple pathways classically known to be involved in embryonic development, such as BMP-TGFβ, WNT, Notch, HIF1α, TWIST1 and HOX family genes, are regulated by shear stress in arteries in adults. We propose that mechanical activation of these pathways evolved to orchestrate vascular development but also drives atherosclerosis in low shear stress regions of adult arteries.
Collapse
Affiliation(s)
- Celine Souilhol
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Timothy J Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre for Lifecourse Biology, University of Sheffield, Sheffield, UK
| | - Victoria Ridger
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Hannah Roddie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.
- Bateson Centre for Lifecourse Biology, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK.
| |
Collapse
|
70
|
Souilhol C, Serbanovic-Canic J, Fragiadaki M, Chico TJ, Ridger V, Roddie H, Evans PC. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol 2020; 17:52-63. [PMID: 31366922 DOI: 10.1038/s41569-019-0239-5] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 01/04/2023]
Abstract
Flowing blood generates a frictional force called shear stress that has major effects on vascular function. Branches and bends of arteries are exposed to complex blood flow patterns that exert low or low oscillatory shear stress, a mechanical environment that promotes vascular dysfunction and atherosclerosis. Conversely, physiologically high shear stress is protective. Endothelial cells are critical sensors of shear stress but the mechanisms by which they decode complex shear stress environments to regulate physiological and pathophysiological responses remain incompletely understood. Several laboratories have advanced this field by integrating specialized shear-stress models with systems biology approaches, including transcriptome, methylome and proteome profiling and functional screening platforms, for unbiased identification of novel mechanosensitive signalling pathways in arteries. In this Review, we describe these studies, which reveal that shear stress regulates diverse processes and demonstrate that multiple pathways classically known to be involved in embryonic development, such as BMP-TGFβ, WNT, Notch, HIF1α, TWIST1 and HOX family genes, are regulated by shear stress in arteries in adults. We propose that mechanical activation of these pathways evolved to orchestrate vascular development but also drives atherosclerosis in low shear stress regions of adult arteries.
Collapse
Affiliation(s)
- Celine Souilhol
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Timothy J Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre for Lifecourse Biology, University of Sheffield, Sheffield, UK
| | - Victoria Ridger
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Hannah Roddie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.
- Bateson Centre for Lifecourse Biology, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK.
| |
Collapse
|
71
|
Laksitorini MD, Yathindranath V, Xiong W, Hombach-Klonisch S, Miller DW. Modulation of Wnt/β-catenin signaling promotes blood-brain barrier phenotype in cultured brain endothelial cells. Sci Rep 2019; 9:19718. [PMID: 31873116 PMCID: PMC6928218 DOI: 10.1038/s41598-019-56075-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/24/2019] [Indexed: 12/16/2022] Open
Abstract
Wnt/β-catenin signaling is important for blood-brain barrier (BBB) development and is implicated in BBB breakdown under various pathophysiological conditions. In the present study, a comprehensive characterization of the relevant genes, transport and permeability processes influenced by both the autocrine and external activation of Wnt signaling in human brain endothelial cells was examined using hCMEC/D3 culture model. The hCMEC/D3 expressed a full complement of Wnt ligands and receptors. Preventing Wnt ligand release from hCMEC/D3 produced minimal changes in brain endothelial function, while inhibition of intrinsic/autocrine Wnt/β-catenin activity through blocking β-catenin binding to Wnt transcription factor caused more modest changes. In contrast, activation of Wnt signaling using exogenous Wnt ligand (Wnt3a) or LiCl (GSK3 inhibitor) improved the BBB phenotypes of the hCMEC/D3 culture model, resulting in reduced paracellular permeability, and increased P-glycoprotein (P-gp) and breast cancer resistance associated protein (BCRP) efflux transporter activity. Further, Wnt3a reduced plasmalemma vesicle associated protein (PLVAP) and vesicular transport activity in hCMEC/D3. Our data suggest that this in vitro model of the BBB has a more robust response to exogenous activation of Wnt/β-catenin signaling compared to autocrine activation, suggesting that BBB regulation may be more dependent on external activation of Wnt signaling within the brain microvasculature.
Collapse
Affiliation(s)
- Marlyn D Laksitorini
- Department of Pharmacology and Theurapetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, R3E 0T6, Canada
- Department of Pharmaceutics, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, 55281, Indonesia
| | - Vinith Yathindranath
- Department of Pharmacology and Theurapetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, R3E 0T6, Canada
| | - Wei Xiong
- Department of Pharmacology and Theurapetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, R3E 0T6, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, R3E 0J9, Canada
| | - Donald W Miller
- Department of Pharmacology and Theurapetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, R3E 0T6, Canada.
- Kleysen Institute of Advanced Medicine, Health Sciences Center, Winnipeg, Manitoba, R3E 0T6, Canada.
| |
Collapse
|
72
|
Cha B, Geng X, Mahamud MR, Zhang JY, Chen L, Kim W, Jho EH, Kim Y, Choi D, Dixon JB, Chen H, Hong YK, Olson L, Kim TH, Merrill BJ, Davis MJ, Srinivasan RS. Complementary Wnt Sources Regulate Lymphatic Vascular Development via PROX1-Dependent Wnt/β-Catenin Signaling. Cell Rep 2019; 25:571-584.e5. [PMID: 30332639 PMCID: PMC6264919 DOI: 10.1016/j.celrep.2018.09.049] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/16/2018] [Accepted: 09/14/2018] [Indexed: 11/24/2022] Open
Abstract
Wnt/β-catenin signaling is necessary for lymphatic vascular development. Oscillatory shear stress (OSS) enhances Wnt/β-catenin signaling in cultured lymphatic endothelial cells (LECs) to induce expression of the lymphedema-associated transcription factors GATA2 and FOXC2. However, the mechanisms by which OSS regulates Wnt/β-catenin signaling and GATA2 and FOXC2 expression are unknown. We show that OSS activates autocrine Wnt/β-catenin signaling in LECs in vitro. Tissue-specific deletion of Wntless, which is required for the secretion of Wnt ligands, reveals that LECs and vascular smooth muscle cells are complementary sources of Wnt ligands that regulate lymphatic vascular development in vivo. Further, the LEC master transcription factor PROX1 forms a complex with β-catenin and the TCF/LEF transcription factor TCF7L1 to enhance Wnt/β-catenin signaling and promote FOXC2 and GATA2 expression in LECs. Thus, our work defines Wnt sources, reveals that PROX1 directs cell fate by acting as a Wnt signaling component, and dissects the mechanisms of PROX1 and Wnt synergy.
Collapse
Affiliation(s)
- Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jenny Y Zhang
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, USA
| | - Lijuan Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Wantae Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Deajeon, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Yeunhee Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, USA
| | - Dongwon Choi
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J Brandon Dixon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Young-Kwon Hong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lorin Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tae Hoon Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, USA
| | - Bradley J Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, USA
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
73
|
Bats ML, Bougaran P, Peghaire C, Gueniot F, Abelanet A, Chan H, Séguy C, Jeanningros S, Jaspard-Vinassa B, Couffinhal T, Duplàa C, Dufourcq P. Therapies targeting Frizzled-7/β-catenin pathway prevent the development of pathological angiogenesis in an ischemic retinopathy model. FASEB J 2019; 34:1288-1303. [PMID: 31914666 DOI: 10.1096/fj.201901886r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/28/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022]
Abstract
Retinopathies remain major causes of visual impairment in diabetic patients and premature infants. Introduction of anti-angiogenic drugs targeting vascular endothelial growth factor (VEGF) has transformed therapy for these proliferative retinopathies. However, limitations associated with anti-VEGF medications require to unravel new pathways of vessel growth to identify potential drug targets. Here, we investigated the role of Wnt/Frizzled-7 (Fzd7) pathway in a mouse model of oxygen-induced retinopathy (OIR). Using transgenic mice, which enabled endothelium-specific and time-specific Fzd7 deletion, we demonstrated that Fzd7 controls both vaso-obliteration and neovascular phases (NV). Deletion of Fzd7 at P12, after the ischemic phase of OIR, prevented formation of aberrant neovessels into the vitreous by suppressing proliferation of endothelial cells (EC) in tufts. Next we validated in vitro two Frd7 blocking strategies: a monoclonal antibody (mAbFzd7) against Fzd7 and a soluble Fzd7 receptor (CRD). In vivo a single intravitreal microinjection of mAbFzd7 or CRD significantly attenuated retinal neovascularization (NV) in mice with OIR. Molecular analysis revealed that Fzd7 may act through the activation of Wnt/β-catenin and Jagged1 expression to control EC proliferation in extra-retinal neovessels. We identified Fzd7/β-catenin signaling as new regulator of pathological retinal NV. Fzd7 appears to be a potent pharmacological target to prevent or treat aberrant angiogenesis of ischemic retinopathies.
Collapse
Affiliation(s)
- Marie-Lise Bats
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France.,Service de Biochimie clinique, CHU de Bordeaux, Bordeaux, France
| | - Pauline Bougaran
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Claire Peghaire
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,NHLI-Vascular Science, Imperial College London, London, UK
| | - Florian Gueniot
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Alice Abelanet
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Hélène Chan
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France
| | - Camille Séguy
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France
| | | | - Béatrice Jaspard-Vinassa
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Thierry Couffinhal
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France.,Service des Maladies cardiaques et vasculaires, CHU de Bordeaux, Bordeaux, France
| | - Cécile Duplàa
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Pascale Dufourcq
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| |
Collapse
|
74
|
Duchemin AL, Vignes H, Vermot J, Chow R. Mechanotransduction in cardiovascular morphogenesis and tissue engineering. Curr Opin Genet Dev 2019; 57:106-116. [PMID: 31586750 DOI: 10.1016/j.gde.2019.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022]
Abstract
Cardiovascular morphogenesis involves cell behavior and cell identity changes that are activated by mechanical forces associated with heart function. Recently, advances in in vivo imaging, methods to alter blood flow, and computational modelling have greatly advanced our understanding of how forces produced by heart contraction and blood flow impact different morphogenetic processes. Meanwhile, traditional genetic approaches have helped to elucidate how endothelial cells respond to forces at the cellular and molecular level. Here we discuss the principles of endothelial mechanosensitity and their interplay with cellular processes during cardiovascular morphogenesis. We then discuss their implications in the field of cardiovascular tissue engineering.
Collapse
Affiliation(s)
- Anne-Laure Duchemin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Helene Vignes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| | - Renee Chow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
75
|
Ola R, Künzel SH, Zhang F, Genet G, Chakraborty R, Pibouin-Fragner L, Martin K, Sessa W, Dubrac A, Eichmann A. SMAD4 Prevents Flow Induced Arteriovenous Malformations by Inhibiting Casein Kinase 2. Circulation 2019; 138:2379-2394. [PMID: 29976569 DOI: 10.1161/circulationaha.118.033842] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hereditary hemorrhagic telangiectasia (HHT) is an inherited vascular disorder that causes arteriovenous malformations (AVMs). Mutations in the genes encoding Endoglin ( ENG) and activin-receptor-like kinase 1 ( AVCRL1 encoding ALK1) cause HHT type 1 and 2, respectively. Mutations in the SMAD4 gene are present in families with juvenile polyposis-HHT syndrome that involves AVMs. SMAD4 is a downstream effector of transforming growth factor-β (TGFβ)/bone morphogenetic protein (BMP) family ligands that signal via activin-like kinase receptors (ALKs). Ligand-neutralizing antibodies or inducible, endothelial-specific Alk1 deletion induce AVMs in mouse models as a result of increased PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B) signaling. Here we addressed if SMAD4 was required for BMP9-ALK1 effects on PI3K/AKT pathway activation. METHODS The authors generated tamoxifen-inducible, postnatal, endothelial-specific Smad4 mutant mice ( Smad4iΔEC). RESULTS We found that loss of endothelial Smad4 resulted in AVM formation and lethality. AVMs formed in regions with high blood flow in developing retinas and other tissues. Mechanistically, BMP9 signaling antagonized flow-induced AKT activation in an ALK1- and SMAD4-dependent manner. Smad4iΔEC endothelial cells in AVMs displayed increased PI3K/AKT signaling, and pharmacological PI3K inhibitors or endothelial Akt1 deletion both rescued AVM formation in Smad4iΔEC mice. BMP9-induced SMAD4 inhibited casein kinase 2 ( CK2) transcription, in turn limiting PTEN phosphorylation and AKT activation. Consequently, CK2 inhibition prevented AVM formation in Smad4iΔEC mice. CONCLUSIONS Our study reveals SMAD4 as an essential effector of BMP9-10/ALK1 signaling that affects AVM pathogenesis via regulation of CK2 expression and PI3K/AKT1 activation.
Collapse
Affiliation(s)
- Roxana Ola
- Cardiovascular Research Center, Department of Internal Medicine (R.O., S.H.K., F.Z., G.G., R.C., K.M., A.D., A.E.), Yale University School of Medicine, New Haven, Connecticut.,Functional Genomics, Proteomics and Experimental Pathology Department, Prof. Dr. I. Chiricuta Oncology Institute, Cluj-Napoca, Romania (R.O.).,Research Center for Functional Genomics, Biomedicine and Translational Medicine, I. Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania (R.O.).,Department of Basic, Preventive and Clinical Science, University of Transylvania, Brasov, Romania (R.O.)
| | - Sandrine H Künzel
- Cardiovascular Research Center, Department of Internal Medicine (R.O., S.H.K., F.Z., G.G., R.C., K.M., A.D., A.E.), Yale University School of Medicine, New Haven, Connecticut
| | - Feng Zhang
- Cardiovascular Research Center, Department of Internal Medicine (R.O., S.H.K., F.Z., G.G., R.C., K.M., A.D., A.E.), Yale University School of Medicine, New Haven, Connecticut
| | - Gael Genet
- Cardiovascular Research Center, Department of Internal Medicine (R.O., S.H.K., F.Z., G.G., R.C., K.M., A.D., A.E.), Yale University School of Medicine, New Haven, Connecticut
| | - Raja Chakraborty
- Cardiovascular Research Center, Department of Internal Medicine (R.O., S.H.K., F.Z., G.G., R.C., K.M., A.D., A.E.), Yale University School of Medicine, New Haven, Connecticut
| | | | - Kathleen Martin
- Cardiovascular Research Center, Department of Internal Medicine (R.O., S.H.K., F.Z., G.G., R.C., K.M., A.D., A.E.), Yale University School of Medicine, New Haven, Connecticut
| | - William Sessa
- Vascular Biology and Therapeutics Program, Department of Pharmacology (W.S.), Yale University School of Medicine, New Haven, Connecticut
| | - Alexandre Dubrac
- Cardiovascular Research Center, Department of Internal Medicine (R.O., S.H.K., F.Z., G.G., R.C., K.M., A.D., A.E.), Yale University School of Medicine, New Haven, Connecticut
| | - Anne Eichmann
- Cardiovascular Research Center, Department of Internal Medicine (R.O., S.H.K., F.Z., G.G., R.C., K.M., A.D., A.E.), Yale University School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology (A.E.), Yale University School of Medicine, New Haven, Connecticut.,Inserm U970, Paris Cardiovascular Research Center, Paris, France (L.P-F., A.E.)
| |
Collapse
|
76
|
Barriga EH, Mayor R. Adjustable viscoelasticity allows for efficient collective cell migration. Semin Cell Dev Biol 2019; 93:55-68. [PMID: 29859995 PMCID: PMC6854469 DOI: 10.1016/j.semcdb.2018.05.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022]
Abstract
Cell migration is essential for a wide range of biological processes such as embryo morphogenesis, wound healing, regeneration, and also in pathological conditions, such as cancer. In such contexts, cells are required to migrate as individual entities or as highly coordinated collectives, both of which requiring cells to respond to molecular and mechanical cues from their environment. However, whilst the function of chemical cues in cell migration is comparatively well understood, the role of tissue mechanics on cell migration is just starting to be studied. Recent studies suggest that the dynamic tuning of the viscoelasticity within a migratory cluster of cells, and the adequate elastic properties of its surrounding tissues, are essential to allow efficient collective cell migration in vivo. In this review we focus on the role of viscoelasticity in the control of collective cell migration in various cellular systems, mentioning briefly some aspects of single cell migration. We aim to provide details on how viscoelasticity of collectively migrating groups of cells and their surroundings is adjusted to ensure correct morphogenesis, wound healing, and metastasis. Finally, we attempt to show that environmental viscoelasticity triggers molecular changes within migrating clusters and that these new molecular setups modify clusters' viscoelasticity, ultimately allowing them to migrate across the challenging geometries of their microenvironment.
Collapse
Affiliation(s)
- Elias H Barriga
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, London, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, London, UK.
| |
Collapse
|
77
|
Geudens I, Coxam B, Alt S, Gebala V, Vion AC, Meier K, Rosa A, Gerhardt H. Artery-vein specification in the zebrafish trunk is pre-patterned by heterogeneous Notch activity and balanced by flow-mediated fine-tuning. Development 2019; 146:dev.181024. [PMID: 31375478 PMCID: PMC6737902 DOI: 10.1242/dev.181024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/17/2019] [Indexed: 01/04/2023]
Abstract
How developing vascular networks acquire the right balance of arteries, veins and lymphatic vessels to efficiently supply and drain tissues is poorly understood. In zebrafish embryos, the robust and regular 50:50 global balance of intersegmental veins and arteries that form along the trunk prompts the intriguing question of how does the organism keep ‘count’? Previous studies have suggested that the ultimate fate of an intersegmental vessel (ISV) is determined by the identity of the approaching secondary sprout emerging from the posterior cardinal vein. Here, we show that the formation of a balanced trunk vasculature involves an early heterogeneity in endothelial cell behaviour and Notch signalling activity in the seemingly identical primary ISVs that is independent of secondary sprouting and flow. We show that Notch signalling mediates the local patterning of ISVs, and an adaptive flow-mediated mechanism subsequently fine-tunes the global balance of arteries and veins along the trunk. We propose that this dual mechanism provides the adaptability required to establish a balanced network of arteries, veins and lymphatic vessels. Highlighted Article: A stepwise dual mechanism involving Notch signalling and flow provides the adaptability required to establish a balanced network of arteries and veins in the zebrafish trunk.
Collapse
Affiliation(s)
- Ilse Geudens
- Vascular Patterning Laboratory, Center for Cancer Biology, VIB, Leuven B-3000, Belgium.,Vascular Patterning Laboratory, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B-3000, Belgium
| | - Baptiste Coxam
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin
| | - Silvanus Alt
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin
| | - Véronique Gebala
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin
| | - Anne-Clémence Vion
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin
| | - Katja Meier
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin
| | - Andre Rosa
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin
| | - Holger Gerhardt
- Vascular Patterning Laboratory, Center for Cancer Biology, VIB, Leuven B-3000, Belgium .,Vascular Patterning Laboratory, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B-3000, Belgium.,Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
78
|
Mohammed M, Thurgood P, Gilliam C, Nguyen N, Pirogova E, Peter K, Khoshmanesh K, Baratchi S. Studying the Response of Aortic Endothelial Cells under Pulsatile Flow Using a Compact Microfluidic System. Anal Chem 2019; 91:12077-12084. [DOI: 10.1021/acs.analchem.9b03247] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mokhaled Mohammed
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | | | - Ngan Nguyen
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | | | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
79
|
Affiliation(s)
- Petya B Georgieva
- From the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (P.B.G., H.G.)
| | | | - Holger Gerhardt
- From the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (P.B.G., H.G.).,Vascular Patterning Laboratory, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Belgium (H.G.).,DZHK (German Center for Cardiovascular Research), Germany (H.G.).,Berlin Institute of Health, Germany (H.G.)
| | | |
Collapse
|
80
|
Carvalho JR, Fortunato IC, Fonseca CG, Pezzarossa A, Barbacena P, Dominguez-Cejudo MA, Vasconcelos FF, Santos NC, Carvalho FA, Franco CA. Non-canonical Wnt signaling regulates junctional mechanocoupling during angiogenic collective cell migration. eLife 2019; 8:e45853. [PMID: 31246175 PMCID: PMC6684320 DOI: 10.7554/elife.45853] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022] Open
Abstract
Morphogenesis of hierarchical vascular networks depends on the integration of multiple biomechanical signals by endothelial cells, the cells lining the interior of blood vessels. Expansion of vascular networks arises through sprouting angiogenesis, a process involving extensive cell rearrangements and collective cell migration. Yet, the mechanisms controlling angiogenic collective behavior remain poorly understood. Here, we show this collective cell behavior is regulated by non-canonical Wnt signaling. We identify that Wnt5a specifically activates Cdc42 at cell junctions downstream of ROR2 to reinforce coupling between adherens junctions and the actin cytoskeleton. We show that Wnt5a signaling stabilizes vinculin binding to alpha-catenin, and abrogation of vinculin in vivo and in vitro leads to uncoordinated polarity and deficient sprouting angiogenesis in Mus musculus. Our findings highlight how non-canonical Wnt signaling coordinates collective cell behavior during vascular morphogenesis by fine-tuning junctional mechanocoupling between endothelial cells.
Collapse
Affiliation(s)
- Joana R Carvalho
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Isabela C Fortunato
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Catarina G Fonseca
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Anna Pezzarossa
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Pedro Barbacena
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | | | | | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Claudio A Franco
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| |
Collapse
|
81
|
PolNet: A Tool to Quantify Network-Level Cell Polarity and Blood Flow in Vascular Remodeling. Biophys J 2019; 114:2052-2058. [PMID: 29742399 PMCID: PMC5961748 DOI: 10.1016/j.bpj.2018.03.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/28/2018] [Accepted: 03/14/2018] [Indexed: 11/21/2022] Open
Abstract
In this article, we present PolNet, an open-source software tool for the study of blood flow and cell-level biological activity during vessel morphogenesis. We provide an image acquisition, segmentation, and analysis protocol to quantify endothelial cell polarity in entire in vivo vascular networks. In combination, we use computational fluid dynamics to characterize the hemodynamics of the vascular networks under study. The tool enables, to our knowledge for the first time, a network-level analysis of polarity and flow for individual endothelial cells. To date, PolNet has proven invaluable for the study of endothelial cell polarization and migration during vascular patterning, as demonstrated by two recent publications. Additionally, the tool can be easily extended to correlate blood flow with other experimental observations at the cellular/molecular level. We release the source code of our tool under the Lesser General Public License.
Collapse
|
82
|
Boriushkin E, Fancher IS, Levitan I. Shear-Stress Sensitive Inwardly-Rectifying K + Channels Regulate Developmental Retinal Angiogenesis by Vessel Regression. Cell Physiol Biochem 2019; 52:1569-1583. [PMID: 31145841 PMCID: PMC7063968 DOI: 10.33594/000000109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Shear stress plays major roles in developmental angiogenesis, particularly in blood vessel remodeling and maturation but little is known about the shear stress sensors involved in this process. Our recent study identified endothelial Kir2.1 channels as major contributors to flow-induced vasodilation, a hallmark of the endothelial flow response. The goal of this study is to establish the role of Kir2.1 in the regulation of retinal angiogenesis. METHODS The retina of newly born Kir2.1+/- mice were used to investigate the sprouting angiogenesis and remodeling of newly formed branched vessels. The structure, blood density and mural cell coverage have been evaluated by immunohistochemistry of the whole-mount retina. Endothelial cell alignment was assessed using CD31 staining. The experiments with flow-induced vasodilation were used to study the cerebrovascular response to flow. RESULTS Using Kir2.1-deficient mice, we show that the retinas of Kir2.1+/- mice have higher vessel density, increased lengths and increased number of the branching points, as compared to WT littermates. In contrast, the coverage by αSMA is decreased in Kir2.1+/- mice while pericyte coverage does not change. Furthermore, to determine whether deficiency of Kir2.1 affects vessel pruning, we discriminated between intact and degraded vessels or "empty matrix sleeves" and found a significant reduction in the number of empty sleeves on the peripheral part of the retina or "angiogenic front" in Kir2.1+/- mice. We also show that Kir2.1 deficiency results in decreased endothelial alignment in retinal endothelium and impaired flow-induced vasodilation of cerebral arteries, verifying the involvement of Kir2.1 in shear-stress sensing in retina and cerebral circulation. CONCLUSION This study shows that shear-stress sensitive Kir2.1 channels play an important role in pruning of excess vessels and vascular remodeling during retinal angiogenesis. We propose that Kir2.1 mediates the effect of shear stress on vessel maturation.
Collapse
Affiliation(s)
| | - Ibra S Fancher
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
83
|
Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:064602. [PMID: 30947151 DOI: 10.1088/1361-6633/ab1628] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The minimal structural unit of a solid tumor is a single cell or a cellular compartment such as the nucleus. A closer look inside the cells reveals that there are functional compartments or even structural domains determining the overall properties of a cell such as the mechanical phenotype. The mechanical interaction of these living cells leads to the complex organization such as compartments, tissues and organs of organisms including mammals. In contrast to passive non-living materials, living cells actively respond to the mechanical perturbations occurring in their microenvironment during diseases such as fibrosis and cancer. The transformation of single cancer cells in highly aggressive and hence malignant cancer cells during malignant cancer progression encompasses the basement membrane crossing, the invasion of connective tissue, the stroma microenvironments and transbarrier migration, which all require the immediate interaction of the aggressive and invasive cancer cells with the surrounding extracellular matrix environment including normal embedded neighboring cells. All these steps of the metastatic pathway seem to involve mechanical interactions between cancer cells and their microenvironment. The pathology of cancer due to a broad heterogeneity of cancer types is still not fully understood. Hence it is necessary to reveal the signaling pathways such as mechanotransduction pathways that seem to be commonly involved in the development and establishment of the metastatic and mechanical phenotype in several carcinoma cells. We still do not know whether there exist distinct metastatic genes regulating the progression of tumors. These metastatic genes may then be activated either during the progression of cancer by themselves on their migration path or in earlier stages of oncogenesis through activated oncogenes or inactivated tumor suppressor genes, both of which promote the metastatic phenotype. In more detail, the adhesion of cancer cells to their surrounding stroma induces the generation of intracellular contraction forces that deform their microenvironments by alignment of fibers. The amplitude of these forces can adapt to the mechanical properties of the microenvironment. Moreover, the adhesion strength of cancer cells seems to determine whether a cancer cell is able to migrate through connective tissue or across barriers such as the basement membrane or endothelial cell linings of blood or lymph vessels in order to metastasize. In turn, exposure of adherent cancer cells to physical forces, such as shear flow in vessels or compression forces around tumors, reinforces cell adhesion, regulates cell contractility and restructures the ordering of the local stroma matrix that leads subsequently to secretion of crosslinking proteins or matrix degrading enzymes. Hence invasive cancer cells alter the mechanical properties of their microenvironment. From a mechanobiological point-of-view, the recognized physical signals are transduced into biochemical signaling events that guide cellular responses such as cancer progression after the malignant transition of cancer cells from an epithelial and non-motile phenotype to a mesenchymal and motile (invasive) phenotype providing cellular motility. This transition can also be described as the physical attempt to relate this cancer cell transitional behavior to a T1 phase transition such as the jamming to unjamming transition. During the invasion of cancer cells, cell adaptation occurs to mechanical alterations of the local stroma, such as enhanced stroma upon fibrosis, and therefore we need to uncover underlying mechano-coupling and mechano-regulating functional processes that reinforce the invasion of cancer cells. Moreover, these mechanisms may also be responsible for the awakening of dormant residual cancer cells within the microenvironment. Physicists were initially tempted to consider the steps of the cancer metastasis cascade as single events caused by a single mechanical alteration of the overall properties of the cancer cell. However, this general and simple view has been challenged by the finding that several mechanical properties of cancer cells and their microenvironment influence each other and continuously contribute to tumor growth and cancer progression. In addition, basement membrane crossing, cell invasion and transbarrier migration during cancer progression is explained in physical terms by applying physical principles on living cells regardless of their complexity and individual differences of cancer types. As a novel approach, the impact of the individual microenvironment surrounding cancer cells is also included. Moreover, new theories and models are still needed to understand why certain cancers are malignant and aggressive, while others stay still benign. However, due to the broad variety of cancer types, there may be various pathways solely suitable for specific cancer types and distinct steps in the process of cancer progression. In this review, physical concepts and hypotheses of cancer initiation and progression including cancer cell basement membrane crossing, invasion and transbarrier migration are presented and discussed from a biophysical point-of-view. In addition, the crosstalk between cancer cells and a chronically altered microenvironment, such as fibrosis, is discussed including the basic physical concepts of fibrosis and the cellular responses to mechanical stress caused by the mechanically altered microenvironment. Here, is highlighted how biophysical approaches, both experimentally and theoretically, have an impact on classical hallmarks of cancer and fibrosis and how they contribute to the understanding of the regulation of cancer and its progression by sensing and responding to the physical environmental properties through mechanotransduction processes. Finally, this review discusses various physical models of cell migration such as blebbing, nuclear piston, protrusive force and unjamming transition migration modes and how they contribute to cancer progression. Moreover, these cellular migration modes are influenced by microenvironmental perturbances such as fibrosis that can induce mechanical alterations in cancer cells, which in turn may impact the environment. Hence, the classical hallmarks of cancer need to be refined by including biomechanical properties of cells, cell clusters and tissues and their microenvironment to understand mechano-regulatory processes within cancer cells and the entire organism.
Collapse
|
84
|
Girardet L, Augière C, Asselin MP, Belleannée C. Primary cilia: biosensors of the male reproductive tract. Andrology 2019; 7:588-602. [PMID: 31131532 DOI: 10.1111/andr.12650] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The primary cilium is a microtubule-based organelle that extends transiently from the apical cell surface to act as a sensory antenna. Initially viewed as a cellular appendage of obscure significance, the primary cilium is now acknowledged as a key coordinator of signaling pathways during development and in tissue homeostasis. OBJECTIVES The aim of this review was to present the structure and function of this overlooked organelle,with an emphasis on its epididymal context and contribution to male infertility issues. MATERIALS AND METHODS A systematic review has been performed in order to include main references relevant to the aforementioned topic. RESULTS Increasing evidence demonstrates that primary cilia dysfunctions are associated with impaired male reproductive system development and male infertility issues. DISCUSSION While a large amount of data exists regarding the role of primary cilia in most organs and tissues, few studies investigated the contribution of these organelles to male reproductive tract development and homeostasis. CONCLUSION Functional studies of primary cilia constitute an emergent and exciting new area in reproductive biology research.
Collapse
Affiliation(s)
- Laura Girardet
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| | - Céline Augière
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| | - Marie-Pier Asselin
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| | - Clémence Belleannée
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| |
Collapse
|
85
|
Barbacena P, Ouarné M, Haigh JJ, Vasconcelos FF, Pezzarossa A, Franco CA. GNrep mouse: A reporter mouse for front-rear cell polarity. Genesis 2019; 57:e23299. [PMID: 30990965 PMCID: PMC6618267 DOI: 10.1002/dvg.23299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
Cell migration is essential during development, regeneration, homeostasis, and disease. Depending on the microenvironment, cells use different mechanisms to migrate. Yet, all modes of migration require the establishment of an intracellular front-rear polarity axis for directional movement. Although front-rear polarity can be easily identified in in vitro conditions, its assessment in vivo by live-imaging is challenging due to tissue complexity and lack of reliable markers. Here, we describe a novel and unique double fluorescent reporter mouse line to study front-rear cell polarity in living tissues, called GNrep. This mouse line simultaneously labels Golgi complexes and nuclei allowing the assignment of a nucleus-to-Golgi axis to each cell, which functions as a readout for cell front-rear polarity. As a proof-of-principle, we validated the efficiency of the GNrep line using an endothelial-specific Cre mouse line. We show that the GNrep labels the nucleus and the Golgi apparatus of endothelial cells with very high efficiency and high specificity. Importantly, the features of fluorescent intensity and localization for both mCherry and eGFP fluorescent intensity and localization allow automated segmentation and assignment of polarity vectors in complex tissues, making GNrep a great tool to study cell behavior in large-scale automated analyses. Altogether, the GNrep mouse line, in combination with different Cre recombinase lines, is a novel and unique tool to study of front-rear polarity in mice, both in fixed tissues or in intravital live imaging. This new line will be instrumental to understand cell migration and polarity in development, homeostasis, and disease.
Collapse
Affiliation(s)
- Pedro Barbacena
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marie Ouarné
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Jody J Haigh
- Department of Pharmacology and Therapeutics, Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada.,VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| | - Francisca F Vasconcelos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Anna Pezzarossa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Claudio A Franco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
86
|
Daetwyler S, Günther U, Modes CD, Harrington K, Huisken J. Multi-sample SPIM image acquisition, processing and analysis of vascular growth in zebrafish. Development 2019; 146:dev173757. [PMID: 30824551 PMCID: PMC6451323 DOI: 10.1242/dev.173757] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/18/2019] [Indexed: 01/14/2023]
Abstract
To quantitatively understand biological processes that occur over many hours or days, it is desirable to image multiple samples simultaneously, and automatically process and analyse the resulting datasets. Here, we present a complete multi-sample preparation, imaging, processing and analysis workflow to determine the development of the vascular volume in zebrafish. Up to five live embryos were mounted and imaged simultaneously over several days using selective plane illumination microscopy (SPIM). The resulting large imagery dataset of several terabytes was processed in an automated manner on a high-performance computer cluster and segmented using a novel segmentation approach that uses images of red blood cells as training data. This analysis yielded a precise quantification of growth characteristics of the whole vascular network, head vasculature and tail vasculature over development. Our multi-sample platform demonstrates effective upgrades to conventional single-sample imaging platforms and paves the way for diverse quantitative long-term imaging studies.
Collapse
Affiliation(s)
- Stephan Daetwyler
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Ulrik Günther
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Chair of Scientific Computing for Systems Biology, Faculty of Computer Science, TU Dresden, 01069 Dresden, Germany
| | - Carl D Modes
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Kyle Harrington
- Virtual Technology and Design, University of Idaho, Moscow, ID 83844, USA
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
87
|
Micro-RNA-Regulated Proangiogenic Signaling in Arteriovenous Loops in Patients with Combined Vascular and Soft-Tissue Reconstructions: Revisiting the Nutrient Flap Concept. Plast Reconstr Surg 2019; 142:489e-502e. [PMID: 29979372 DOI: 10.1097/prs.0000000000004750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The placement of arteriovenous loops can enable microvascular anastomoses of free flaps when recipient vessels are scarce. In animal models, elevated fluid shear stress in arteriovenous loops promotes neoangiogenesis. Anecdotal reports in patients indicate that vein grafts used in free flap reconstructions of ischemic lower extremities are able to induce capillary formation. However, flow-stimulated angiogenesis has never been systematically investigated in humans, and it is unclear whether shear stress alters proangiogenic signaling pathways within the vascular wall of human arteriovenous loops. METHODS Eight patients with lower extremity soft-tissue defects underwent two-stage reconstruction with arteriovenous loop placement, and free flap anastomoses to the loops 10 to 14 days later. Micro-RNA (miRNA) and gene expression profiles were determined in tissue samples harvested from vein grafts of arteriovenous loops by microarray analysis and quantitative real-time polymerase chain reaction. Samples from untreated veins served as controls. RESULTS A strong deregulation of miRNA and gene expression was detected in arteriovenous loops, showing an overexpression of angiopoietic cytokines, oxygenation-associated genes, vascular growth factors, and connexin-43. The authors discovered inverse correlations along with validated and bioinformatically predicted interactions between angiogenesis-regulating genes and miRNAs in arteriovenous loops. CONCLUSIONS The authors' findings demonstrate that elevated shear stress triggers proangiogenic signaling pathways in human venous tissue, indicating that arteriovenous loops may have the ability to induce neoangiogenesis in humans. The authors' data corroborate the nutrient flap hypothesis and provide a molecular background for arteriovenous loop-based tissue engineering with potential clinical applications for soft-tissue defect reconstruction.
Collapse
|
88
|
Hendrikx S, Coso S, Prat-Luri B, Wetterwald L, Sabine A, Franco CA, Nassiri S, Zangger N, Gerhardt H, Delorenzi M, Petrova TV. Endothelial Calcineurin Signaling Restrains Metastatic Outgrowth by Regulating Bmp2. Cell Rep 2019; 26:1227-1241.e6. [DOI: 10.1016/j.celrep.2019.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 11/22/2018] [Accepted: 01/04/2019] [Indexed: 01/02/2023] Open
|
89
|
Alteration of mesenchymal stem cells polarity by laminar shear stimulation promoting β-catenin nuclear localization. Biomaterials 2019; 190-191:1-10. [DOI: 10.1016/j.biomaterials.2018.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 10/19/2018] [Indexed: 12/28/2022]
|
90
|
Wang Z, Liu CH, Huang S, Chen J. Wnt Signaling in vascular eye diseases. Prog Retin Eye Res 2018; 70:110-133. [PMID: 30513356 DOI: 10.1016/j.preteyeres.2018.11.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
The Wnt signaling pathway plays a pivotal role in vascular morphogenesis in various organs including the eye. Wnt ligands and receptors are key regulators of ocular angiogenesis both during the eye development and in vascular eye diseases. Wnt signaling participates in regulating multiple vascular beds in the eye including regression of the hyaloid vessels, and development of structured layers of vasculature in the retina. Loss-of-function mutations in Wnt signaling components cause rare genetic eye diseases in humans such as Norrie disease, and familial exudative vitreoretinopathy (FEVR) with defective ocular vasculature. On the other hand, experimental studies in more prevalent vascular eye diseases, such as wet age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), and corneal neovascularization, suggest that aberrantly increased Wnt signaling is one of the causations for pathological ocular neovascularization, indicating the potential of modulating Wnt signaling to ameliorate pathological angiogenesis in eye diseases. This review recapitulates the key roles of the Wnt signaling pathway during ocular vascular development and in vascular eye diseases, and pharmaceutical approaches targeting the Wnt signaling as potential treatment options.
Collapse
Affiliation(s)
- Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Shuo Huang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States.
| |
Collapse
|
91
|
Mechanoactivation of Wnt/β-catenin pathways in health and disease. Emerg Top Life Sci 2018; 2:701-712. [DOI: 10.1042/etls20180042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 11/17/2022]
Abstract
Mechanical forces play an important role in regulating tissue development and homeostasis in multiple cell types including bone, joint, epithelial and vascular cells, and are also implicated in the development of diseases, e.g. osteoporosis, cardiovascular disease and osteoarthritis. Defining the mechanisms by which cells sense and respond to mechanical forces therefore has important implications for our understanding of tissue function in health and disease and may lead to the identification of targets for therapeutic intervention. Mechanoactivation of the Wnt signalling pathway was first identified in osteoblasts with a key role for β-catenin demonstrated in loading-induced osteogenesis. Since then, mechanoregulation of the Wnt pathway has also been observed in stem cells, epithelium, chondrocytes and vascular and lymphatic endothelium. Wnt can signal through both canonical and non-canonical pathways, and evidence suggests that both can mediate responses to mechanical strain, stretch and shear stress. This review will discuss our current understanding of the activation of the Wnt pathway in response to mechanical forces.
Collapse
|
92
|
Saw TB, Xi W, Ladoux B, Lim CT. Biological Tissues as Active Nematic Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802579. [PMID: 30156334 DOI: 10.1002/adma.201802579] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/11/2018] [Indexed: 05/27/2023]
Abstract
Live tissues can self-organize and be described as active materials composed of cells that generate active stresses through continuous injection of energy. In vitro reconstituted molecular networks, as well as single-cell cytoskeletons show that their filamentous structures can portray nematic liquid crystalline properties and can promote nonequilibrium processes induced by active processes at the microscale. The appearance of collective patterns, the formation of topological singularities, and spontaneous phase transition within the cell cytoskeleton are emergent properties that drive cellular functions. More integrated systems such as tissues have cells that can be seen as coarse-grained active nematic particles and their interaction can dictate many important tissue processes such as epithelial cell extrusion and migration as observed in vitro and in vivo. Here, a brief introduction to the concept of active nematics is provided, and the main focus is on the use of this framework in the systematic study of predominantly 2D tissue architectures and dynamics in vitro. In addition how the nematic state is important in tissue behavior, such as epithelial expansion, tissue homeostasis, and the atherosclerosis disease state, is discussed. Finally, how the nematic organization of cells can be controlled in vitro for tissue engineering purposes is briefly discussed.
Collapse
Affiliation(s)
- Thuan Beng Saw
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore, 117583, Singapore
| | - Wang Xi
- Institut Jacques Monod (IJM), CNRS UMR 7592 and Université Paris Diderot, Paris, France
| | - Benoit Ladoux
- Institut Jacques Monod (IJM), CNRS UMR 7592 and Université Paris Diderot, Paris, France
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, 117411, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore, 117583, Singapore
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, 117411, Singapore
- Biomedical Institute for Global Health, Research and Technology (BIGHEART), National University of Singapore, MD6, 14 Medical Drive, #14-01, Singapore, 117599, Singapore
| |
Collapse
|
93
|
Baeyens N. Fluid shear stress sensing in vascular homeostasis and remodeling: Towards the development of innovative pharmacological approaches to treat vascular dysfunction. Biochem Pharmacol 2018; 158:185-191. [PMID: 30365948 DOI: 10.1016/j.bcp.2018.10.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
Blood circulation, facilitating gas exchange and nutrient transportation, is a quintessential feature of life in vertebrates. Any disruption to blood flow, may it be by blockade or traumatic rupture, irrevocably leads to tissue infarction or death. Therefore, it is not surprising that hemostasis and vascular adaptation measures have been evolutionarily selected to mitigate the adverse consequences of altered circulation. Blood vessels can be broadly categorized as arteries, veins, or capillaries, based on their structure, hemodynamics, and gas exchange. However, all of them share one property: they are lined with an epithelial sheet called the endothelium, which typically lies on a basement membrane. This endothelium is the primary interface between the flowing blood and the rest of the body, and it has highly specialized molecular mechanisms to detect and respond to changes in blood perfusion. The purpose of this commentary will be to highlight some of the recent developments in the research on blood flow sensing, vascular remodeling, and homeostasis and to discuss the development of innovative pharmaceutical approaches targeting mechanosensing mechanisms to prolong patient survival and improve quality of life.
Collapse
Affiliation(s)
- Nicolas Baeyens
- Laboratoire de physiologie et pharmacologie, Faculté de Médecine, Université libre de Bruxelles, ULB, Belgium.
| |
Collapse
|
94
|
Hikita T, Mirzapourshafiyi F, Barbacena P, Riddell M, Pasha A, Li M, Kawamura T, Brandes RP, Hirose T, Ohno S, Gerhardt H, Matsuda M, Franco CA, Nakayama M. PAR-3 controls endothelial planar polarity and vascular inflammation under laminar flow. EMBO Rep 2018; 19:e45253. [PMID: 30018153 DOI: 10.15252/embr.201745253] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022] Open
Abstract
Impaired cell polarity is a hallmark of diseased tissue. In the cardiovascular system, laminar blood flow induces endothelial planar cell polarity, represented by elongated cell shape and asymmetric distribution of intracellular organelles along the axis of blood flow. Disrupted endothelial planar polarity is considered to be pro-inflammatory, suggesting that the establishment of endothelial polarity elicits an anti-inflammatory response. However, a causative relationship between polarity and inflammatory responses has not been firmly established. Here, we find that a cell polarity protein, PAR-3, is an essential gatekeeper of GSK3β activity in response to laminar blood flow. We show that flow-induced spatial distribution of PAR-3/aPKCλ and aPKCλ/GSK3β complexes controls local GSK3β activity and thereby regulates endothelial planar polarity. The spatial information for GSK3β activation is essential for flow-dependent polarity to the flow axis, but is not necessary for flow-induced anti-inflammatory response. Our results shed light on a novel relationship between endothelial polarity and vascular homeostasis highlighting avenues for novel therapeutic strategies.
Collapse
Affiliation(s)
- Takao Hikita
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Fatemeh Mirzapourshafiyi
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Pedro Barbacena
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Meghan Riddell
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ayesha Pasha
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mengnan Li
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Takuji Kawamura
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Tomonori Hirose
- Department of Molecular Biology, Graduate School of Medical Science Yokohama City University, Yokohama, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Graduate School of Medical Science Yokohama City University, Yokohama, Japan
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Claudio A Franco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Masanori Nakayama
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
95
|
Characterization of multi-cellular dynamics of angiogenesis and vascular remodelling by intravital imaging of the wounded mouse cornea. Sci Rep 2018; 8:10672. [PMID: 30006556 PMCID: PMC6045577 DOI: 10.1038/s41598-018-28770-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 06/29/2018] [Indexed: 01/12/2023] Open
Abstract
Establishment of the functional blood vasculature involves extensive cellular rearrangement controlled by growth factors, chemokines and flow-mediated shear forces. To record these highly dynamic processes in mammalians has been technically demanding. Here we apply confocal and wide field time-lapse in vivo microscopy to characterize the remodelling vasculature of the wounded mouse cornea. Using mouse lines with constitutive or inducible endogenous fluorescent reporters, in combination with tracer injections and mosaic genetic recombination, we follow processes of sprouting angiogenesis, sprout fusion, vessel expansion and pruning in vivo, at subcellular resolution. We describe the migratory behaviour of endothelial cells of perfused vessels, in relation to blood flow directionality and vessel identity. Live-imaging following intravascular injection of fluorescent tracers, allowed for recording of VEGFA-induced permeability. Altogether, live-imaging of the remodelling vasculature of inflamed corneas of mice carrying endogenous fluorescent reporters and conditional alleles, constitutes a powerful platform for investigation of cellular behaviour and vessel function.
Collapse
|
96
|
Sheng X, Sheng Y, Liu Y, Li X, Shu B, Li D. Effects of FSS on the expression and localization of the core proteins in two Wnt signaling pathways, and their association with ciliogenesis. Int J Mol Med 2018; 42:1809-1818. [PMID: 30015823 PMCID: PMC6108851 DOI: 10.3892/ijmm.2018.3758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/08/2018] [Indexed: 12/31/2022] Open
Abstract
Fluid shear stress (FSS) may alter ciliary structures and ciliogenesis, and it has been reported that the Wnt signaling pathway may regulate cilia assembly and disas-sembly. The present study aimed to investigate the effects of FSS on primary cilia, the Wnt/β-catenin and Wnt/PCP signaling pathways, and the association among them. In the present study, human umbilical vein endothelial cells were subjected to FSS of differing velocities for various periods of time using a shear stress device. Subsequently, immunofluorescence and quantitative polymerase chain reaction were used to detect the expression and localization of the following core proteins: β-catenin in the Wnt/β-catenin signaling pathway; and dishevelled segment polarity protein 2 (Dvl2), fuzzy planar cell polarity protein (Fuz) and VANGL planar cell polarity protein 2 (Vangl2) in the Wnt/planar cell polarity (PCP) signaling pathway. Furthermore, the colocalization of Dvl2 with the basal body was analyzed under low FSS and laminar FSS. The results demonstrated that low FSS promoted the expression of Dvl2 and its colocalization with the basal body. Although Fuz expression was decreased with increasing duration of FSS, no visible alterations were detected in its localization, it was ubiquitously localized in the ciliated region. Conversely, the expression of Vangl2 was increased by laminar FSS, and β-catenin was translocated into the nucleus at the early stage of low FSS. These findings suggested that Dvl2 may participate in low FSS-induced ciliogenesis and β-catenin may participate at the early stage, whereas Vangl2 may be associated with laminar FSS-induced cilia disassembly.
Collapse
Affiliation(s)
- Xin Sheng
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yan Sheng
- Laboratory of Basic Medical Morphology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yuehua Liu
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaoqiong Li
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Bo Shu
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Dayu Li
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
97
|
Watson EC, Adams RH. Biology of Bone: The Vasculature of the Skeletal System. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031559. [PMID: 28893838 DOI: 10.1101/cshperspect.a031559] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blood vessels are essential for the distribution of oxygen, nutrients, and immune cells, as well as the removal of waste products. In addition to this conventional role as a versatile conduit system, the endothelial cells forming the innermost layer of the vessel wall also possess important signaling capabilities and can control growth, patterning, homeostasis, and regeneration of the surrounding organ. In the skeletal system, blood vessels regulate developmental and regenerative bone formation as well as hematopoiesis by providing vascular niches for hematopoietic stem cells. Here we provide an overview of blood vessel architecture, growth and properties in the healthy, aging, and diseased skeletal system.
Collapse
Affiliation(s)
- Emma C Watson
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| |
Collapse
|
98
|
Nayak G, Odaka Y, Prasad V, Solano AF, Yeo EJ, Vemaraju S, Molkentin JD, Trumpp A, Williams B, Rao S, Lang RA. Developmental vascular regression is regulated by a Wnt/β-catenin, MYC and CDKN1A pathway that controls cell proliferation and cell death. Development 2018; 145:dev154898. [PMID: 29777010 PMCID: PMC6031408 DOI: 10.1242/dev.154898] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Abstract
Normal development requires tight regulation of cell proliferation and cell death. Here, we have investigated these control mechanisms in the hyaloid vessels, a temporary vascular network in the mammalian eye that requires a Wnt/β-catenin response for scheduled regression. We investigated whether the hyaloid Wnt response was linked to the oncogene Myc, and the cyclin-dependent kinase inhibitor CDKN1A (P21), both established regulators of cell cycle progression and cell death. Our analysis showed that the Wnt pathway co-receptors LRP5 and LRP6 have overlapping activities that mediate the Wnt/β-catenin signaling in hyaloid vascular endothelial cells (VECs). We also showed that both Myc and Cdkn1a are downstream of the Wnt response and are required for hyaloid regression but for different reasons. Conditional deletion of Myc in VECs suppressed both proliferation and cell death. By contrast, conditional deletion of Cdkn1a resulted in VEC overproliferation that countered the effects of cell death on regression. When combined with analysis of MYC and CDKN1A protein levels, this analysis suggests that a Wnt/β-catenin and MYC-CDKN1A pathway regulates scheduled hyaloid vessel regression.
Collapse
Affiliation(s)
- Gowri Nayak
- The Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Divisions of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yoshinobu Odaka
- The Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Divisions of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Vikram Prasad
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alyssa F Solano
- The Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Divisions of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Eun-Jin Yeo
- The Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Divisions of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Shruti Vemaraju
- The Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Divisions of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Bart Williams
- Center for Skeletal Disease Research and Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Sujata Rao
- Divisions of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- The Cleveland Clinic, Ophthalmic Research, 9500 Euclid Avenue, OH 44195, USA
| | - Richard A Lang
- The Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Divisions of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
99
|
Martin M, Veloso A, Wu J, Katrukha EA, Akhmanova A. Control of endothelial cell polarity and sprouting angiogenesis by non-centrosomal microtubules. eLife 2018; 7:33864. [PMID: 29547120 PMCID: PMC5898915 DOI: 10.7554/elife.33864] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/13/2018] [Indexed: 12/11/2022] Open
Abstract
Microtubules control different aspects of cell polarization. In cells with a radial microtubule system, a pivotal role in setting up asymmetry is attributed to the relative positioning of the centrosome and the nucleus. Here, we show that centrosome loss had no effect on the ability of endothelial cells to polarize and move in 2D and 3D environments. In contrast, non-centrosomal microtubules stabilized by the microtubule minus-end-binding protein CAMSAP2 were required for directional migration on 2D substrates and for the establishment of polarized cell morphology in soft 3D matrices. CAMSAP2 was also important for persistent endothelial cell sprouting during in vivo zebrafish vessel development. In the absence of CAMSAP2, cell polarization in 3D could be partly rescued by centrosome depletion, indicating that in these conditions the centrosome inhibited cell polarity. We propose that CAMSAP2-protected non-centrosomal microtubules are needed for establishing cell asymmetry by enabling microtubule enrichment in a single-cell protrusion. Networks of blood vessels grow like trees. Sprouts appear on existing vessels, stretching out to form new branches in a process called angiogenesis. The cells responsible are the same cells that line the finished vessels. These “endothelial cells” start the process by reorganizing themselves to face the direction of the new sprout, changing shape to become asymmetrical, and then they begin to migrate. Beneath the surface, a network of protein scaffolding supports each migrating cell. The scaffolding includes tube-like fibers called microtubules that extend towards the cell membrane and organize the inside of the cell. Destroying microtubules damages blood vessel formation, but their exact role remains unclear. A structure called the centrosome can organize microtubules within cells. The centrosome was generally believed to act like a compass, pointing in the direction that the cell will move. Microtubules can anchor to the centrosome, and this structure is thought to play an important role in cell migration. Yet, many microtubules organize without it; these microtubules instead are organized by a compartment of the cell called the Golgi apparatus and are stabilized by a protein named CAMSAP2. Martin et al. now report that removing the cells’ centrosomes did not affect cell migration, but getting rid of CAMSAP2 did. Analysis of cell shape and movement in cells grown in the laboratory and in living animals revealed that cells cannot become asymmetrical, or “polarize”, and migrate without CAMSAP2. In a two-dimensional wound-healing assay, a sheet of cells originally grown from the vessels of a human umbilical cord was scratched, and a microscope was then used to record the cell’s movement as they repaired the injury. Normally, the cells on either side move in a straight line using their microtubules, and though the process was not affected in cells without centrosomes, it was in those without CAMSAP2. Even more striking results were seen in three-dimensional assays. When the same blood vessel cells from human umbilical cords are grown as spheres inside collagen gels, they form sprouts as they would in the body. Without CAMSAP2, the cells could not organize their microtubules and they were unable to elongate in one direction and form stable sprouts. Lastly, depleting CAMSAP2 also prevented the normal formation of blood vessels in zebrafish embryos. Taken together, these findings change our understanding of how microtubules affect cell movement and how important the centrosome is for this process. Further work could have an impact on human health, not least in cancer research. Tumors need a good blood supply to grow, so understanding how to block blood vessel formation could lead to new treatments. Microtubules are already a target for cancer therapy, so future work could help to optimize the use of existing drugs.
Collapse
Affiliation(s)
- Maud Martin
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Alexandra Veloso
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium.,GIGA-Molecular Biology in Diseases, University of Liège, Liège, Belgium
| | - Jingchao Wu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
100
|
Vion AC, Alt S, Klaus-Bergmann A, Szymborska A, Zheng T, Perovic T, Hammoutene A, Oliveira MB, Bartels-Klein E, Hollfinger I, Rautou PE, Bernabeu MO, Gerhardt H. Primary cilia sensitize endothelial cells to BMP and prevent excessive vascular regression. J Cell Biol 2018; 217:1651-1665. [PMID: 29500191 PMCID: PMC5940299 DOI: 10.1083/jcb.201706151] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/01/2017] [Accepted: 01/30/2018] [Indexed: 12/30/2022] Open
Abstract
How endothelial cells sense and react to flow during vascular remodeling is poorly understood. Vion et al. show that endothelial cells utilize their primary cilia to stabilize vessel connections during vascular remodeling. Molecularly, they identify enhanced sensitivity to BMP9 in ciliated endothelial cells, selectively under low flow. Blood flow shapes vascular networks by orchestrating endothelial cell behavior and function. How endothelial cells read and interpret flow-derived signals is poorly understood. Here, we show that endothelial cells in the developing mouse retina form and use luminal primary cilia to stabilize vessel connections selectively in parts of the remodeling vascular plexus experiencing low and intermediate shear stress. Inducible genetic deletion of the essential cilia component intraflagellar transport protein 88 (IFT88) in endothelial cells caused premature and random vessel regression without affecting proliferation, cell cycle progression, or apoptosis. IFT88 mutant cells lacking primary cilia displayed reduced polarization against blood flow, selectively at low and intermediate flow levels, and have a stronger migratory behavior. Molecularly, we identify that primary cilia endow endothelial cells with strongly enhanced sensitivity to bone morphogenic protein 9 (BMP9), selectively under low flow. We propose that BMP9 signaling cooperates with the primary cilia at low flow to keep immature vessels open before high shear stress–mediated remodeling.
Collapse
Affiliation(s)
- Anne-Clémence Vion
- Max Delbrück Center for Molecular Medicine, Berlin, Germany .,Vascular Biology Laboratory, London Research Institute - Cancer Research UK, Lincoln's Inn Fields Laboratories, London, England, UK.,German Center for Cardiovascular Research, Berlin, Germany
| | - Silvanus Alt
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Alexandra Klaus-Bergmann
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,German Center for Cardiovascular Research, Berlin, Germany
| | - Anna Szymborska
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,German Center for Cardiovascular Research, Berlin, Germany
| | - Tuyu Zheng
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Tijana Perovic
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Adel Hammoutene
- Institut National de la Santé et de la Recherche Medicale, U970, Paris Cardiovascular Research Center, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Eireen Bartels-Klein
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,German Center for Cardiovascular Research, Berlin, Germany
| | | | - Pierre-Emmanuel Rautou
- Institut National de la Santé et de la Recherche Medicale, U970, Paris Cardiovascular Research Center, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Departement Hospitalo-Universitaire Unity, Pôle des Maladies de l'Appareil Digestif, Service d'Hépatologie, Centre de Référence des Maladies Vasculaires du Foie, Hôpital Beaujon, Assistance Publique - Hopitaux de Paris, Clichy, France
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, Scotland, UK.,Centre for Computational Science, Department of Chemistry, University College London, London, England, UK
| | - Holger Gerhardt
- Max Delbrück Center for Molecular Medicine, Berlin, Germany .,Vascular Biology Laboratory, London Research Institute - Cancer Research UK, Lincoln's Inn Fields Laboratories, London, England, UK.,German Center for Cardiovascular Research, Berlin, Germany.,Vascular Patterning Laboratory, VIB Center for Cancer Biology, Leuven, Belgium.,Vascular Patterning Laboratory, Department of Oncology, KU Leuven, Leuven, Belgium.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|