51
|
Buckley KH, Nestor-Kalinoski AL, Pizza FX. Positional Context of Myonuclear Transcription During Injury-Induced Muscle Regeneration. Front Physiol 2022; 13:845504. [PMID: 35492593 PMCID: PMC9040890 DOI: 10.3389/fphys.2022.845504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/02/2022] [Indexed: 01/31/2023] Open
Abstract
Fundamental aspects underlying downstream processes of skeletal muscle regeneration, such as myonuclear positioning and transcription are poorly understood. This investigation begins to address deficiencies in knowledge by examining the kinetics of myonuclear accretion, positioning, and global transcription during injury-induced muscle regeneration in mice. We demonstrate that myonuclear accretion plateaus within 7 days of an injury and that the majority (∼70%) of myonuclei are centrally aligned in linear arrays (nuclear chains) throughout the course of regeneration. Relatively few myonuclei were found in a peripheral position (∼20%) or clustered (∼10%) together during regeneration. Importantly, transcriptional activity of individual myonuclei in nuclear chains was high, and greater than that of peripheral or clustered myonuclei. Transcription occurring primarily in nuclear chains elevated the collective transcriptional activity of regenerating myofibers during the later stage of regeneration. Importantly, the number of myonuclei in chains and their transcriptional activity were statistically correlated with an increase in myofiber size during regeneration. Our findings demonstrate the positional context of transcription during regeneration and highlight the importance of centralized nuclear chains in facilitating hypertrophy of regenerating myofibers after injury.
Collapse
Affiliation(s)
- Kole H. Buckley
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, OH, United States
| | | | - Francis X. Pizza
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
52
|
Myogenic Precursor Cells Show Faster Activation and Enhanced Differentiation in a Male Mouse Model Selected for Advanced Endurance Exercise Performance. Cells 2022; 11:cells11061001. [PMID: 35326452 PMCID: PMC8947336 DOI: 10.3390/cells11061001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 01/21/2023] Open
Abstract
Satellite cells (SATC), the most abundant skeletal muscle stem cells, play a main role in muscle plasticity, including the adaptive response following physical activity. Thus, we investigated how long-term phenotype selection of male mice for high running performance (Dummerstorf high Treadmill Performance; DUhTP) affects abundance, creatine kinase activity, myogenic marker expression (Pax7, MyoD), and functionality (growth kinetics, differentiation) of SATC and their progeny. SATC were isolated from sedentary male DUhTP and control (Dummerstorf Control; DUC) mice at days 12, 43, and 73 of life and after voluntary wheel running for three weeks (day 73). Marked line differences occur at days 43 and 73 (after activity). At both ages, analysis of SATC growth via xCELLigence system revealed faster activation accompanied by a higher proliferation rate and lower proportion of Pax7+ cells in DUhTP mice, indicating reduced reserve cell formation and faster transition into differentiation. Cultures from sedentary DUhTP mice contain an elevated proportion of actively proliferating Pax7+/MyoD+ cells and have a higher fusion index leading to the formation of more large and very large myotubes at day 43. This robust hypertrophic response occurs without any functional load in the donor mice. Thus, our selection model seems to recruit myogenic precursor cells/SATC with a lower activation threshold that respond more rapidly to external stimuli and are more primed for differentiation at the expense of more primitive cells.
Collapse
|
53
|
Attwaters M, Hughes SM. Cellular and molecular pathways controlling muscle size in response to exercise. FEBS J 2022; 289:1428-1456. [PMID: 33755332 DOI: 10.1111/febs.15820] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
From the discovery of ATP and motor proteins to synaptic neurotransmitters and growth factor control of cell differentiation, skeletal muscle has provided an extreme model system in which to understand aspects of tissue function. Muscle is one of the few tissues that can undergo both increase and decrease in size during everyday life. Muscle size depends on its contractile activity, but the precise cellular and molecular pathway(s) by which the activity stimulus influences muscle size and strength remain unclear. Four correlates of muscle contraction could, in theory, regulate muscle growth: nerve-derived signals, cytoplasmic calcium dynamics, the rate of ATP consumption and physical force. Here, we summarise the evidence for and against each stimulus and what is known or remains unclear concerning their molecular signal transduction pathways and cellular effects. Skeletal muscle can grow in three ways, by generation of new syncytial fibres, addition of nuclei from muscle stem cells to existing fibres or increase in cytoplasmic volume/nucleus. Evidence suggests the latter two processes contribute to exercise-induced growth. Fibre growth requires increase in sarcolemmal surface area and cytoplasmic volume at different rates. It has long been known that high-force exercise is a particularly effective growth stimulus, but how this stimulus is sensed and drives coordinated growth that is appropriately scaled across organelles remains a mystery.
Collapse
Affiliation(s)
- Michael Attwaters
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| |
Collapse
|
54
|
Ganassi M, Muntoni F, Zammit PS. Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Exp Cell Res 2022; 411:112906. [PMID: 34740639 PMCID: PMC8784828 DOI: 10.1016/j.yexcr.2021.112906] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022]
Abstract
Muscular dystrophies and congenital myopathies arise from specific genetic mutations causing skeletal muscle weakness that reduces quality of life. Muscle health relies on resident muscle stem cells called satellite cells, which enable life-course muscle growth, maintenance, repair and regeneration. Such tuned plasticity gradually diminishes in muscle diseases, suggesting compromised satellite cell function. A central issue however, is whether the pathogenic mutation perturbs satellite cell function directly and/or indirectly via an increasingly hostile microenvironment as disease progresses. Here, we explore the effects on satellite cell function of pathogenic mutations in genes (myopathogenes) that associate with muscle disorders, to evaluate clinical and muscle pathological hallmarks that define dysfunctional satellite cells. We deploy transcriptomic analysis and comparison between muscular dystrophies and myopathies to determine the contribution of satellite cell dysfunction using literature, expression dynamics of myopathogenes and their response to the satellite cell regulator PAX7. Our multimodal approach extends current pathological classifications to define Satellite Cell-opathies: muscle disorders in which satellite cell dysfunction contributes to pathology. Primary Satellite Cell-opathies are conditions where mutations in a myopathogene directly affect satellite cell function, such as in Progressive Congenital Myopathy with Scoliosis (MYOSCO) and Carey-Fineman-Ziter Syndrome (CFZS). Primary satellite cell-opathies are generally characterised as being congenital with general hypotonia, and specific involvement of respiratory, trunk and facial muscles, although serum CK levels are usually within the normal range. Secondary Satellite Cell-opathies have mutations in myopathogenes that affect both satellite cells and muscle fibres. Such classification aids diagnosis and predicting probable disease course, as well as informing on treatment and therapeutic development.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
55
|
Minai L, Yelin D. Plasmonic fusion between fibroblasts and skeletal muscle cells for skeletal muscle regeneration. BIOMEDICAL OPTICS EXPRESS 2022; 13:608-619. [PMID: 35284171 PMCID: PMC8884231 DOI: 10.1364/boe.445290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Normal regeneration of skeletal muscle takes place by the differentiation of muscle-specific stem cells into myoblasts that fuse with existing myofibers for muscle repair. This natural repair mechanism could be ineffective in some cases, for example in patients with genetic muscular dystrophies or massive musculoskeletal injuries that lead to volumetric muscle loss. In this study we utilize the effect of plasmonic cell fusion, i.e. the fusion between cells conjugated by gold nanospheres and irradiated by resonant femtosecond laser pulses, for generating human heterokaryon cells of myoblastic and fibroblastic origin, which further develop into viable striated myotubes. The heterokaryon cells were found to express the myogenic transcription factors MyoD and Myogenin, as well as the Desmin protein that is essential in the formation of sarcomeres, and could be utilized in various therapeutic approaches that involve transplantation of cells or engineered tissue into the damaged muscle.
Collapse
|
56
|
Ato S, Fukada SI, Kokubo H, Ogasawara R. Implication of satellite cell behaviors in capillary growth via VEGF expression-independent mechanism in response to mechanical loading in HeyL-null mice. Am J Physiol Cell Physiol 2022; 322:C275-C282. [PMID: 35020502 DOI: 10.1152/ajpcell.00343.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 11/22/2022]
Abstract
Angiogenesis and muscle satellite cell (SC)-mediated myonuclear accretion are considered essential for the robust response of contraction-induced muscle hypertrophy. Moreover, both myonucleus and SCs are physically adjacent to capillaries and are the major sites for the expression of proangiogenic factors, such as VEGF, in the skeletal muscle. Thus, events involving the addition of new myonuclei via activation of SCs may play an important role in angiogenesis during muscle hypertrophy. However, the relevance among myonuclei number, capillary supply, and angiogenesis factor is not demonstrated. The Notch effector HeyL is specifically expressed in SCs in the skeletal muscle and is crucial for SC proliferation by inhibiting MyoD in overload-induced muscle hypertrophy. Here, we tested whether the addition of new myonuclei by SC in overloaded muscle is associated with angiogenic adaptation by reanalyzing skeletal muscle from HeyL-knockout (KO) mice, which show blunted responses of SC proliferation, myonucleus addition, and overload-induced muscle hypertrophy. Reanalysis confirmed blunted SC proliferation and myonuclear accretion in the plantaris muscle of HeyL-KO mice 9 wk after synergist ablation. Interestingly, the increase in capillary-to-fiber ratio observed in wild-type (WT) mice was impaired in HeyL-KO mice. In both WT and HeyL-KO mice, the expression of VEGFA and VEGFB was similarly increased in response to overload. In addition, the expression pattern of TSP-1, a negative regulator of angiogenesis, was also not changed between WT and HeyL-KO mice. Collectively, these results suggest that SCs activation-myonuclear accretion plays a crucial role in angiogenesis during overload-induced muscle hypertrophy via independent of angiogenesis regulators.
Collapse
Affiliation(s)
- Satoru Ato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Hiroki Kokubo
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
57
|
Petrosino JM, Longenecker JZ, Angell CD, Hinger SA, Martens CR, Accornero F. CCN2 participates in overload-induced skeletal muscle hypertrophy. Matrix Biol 2022; 106:1-11. [PMID: 35045313 PMCID: PMC8854352 DOI: 10.1016/j.matbio.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Accepted: 01/10/2022] [Indexed: 02/03/2023]
Abstract
The regulation of skeletal muscle growth following pro-hypertrophic stimuli requires a coordinated response by different cell types that leads to extracellular matrix (ECM) remodeling and increases in muscle cross-sectional area. Indeed, matricellular proteins serve a key role as communication vehicles that facilitate the propagation of signaling stimuli required for muscle adaptation to environmental challenges. We found that the matricellular protein cellular communication network factor 2 (CCN2), also known as connective tissue growth factor (CTGF), is induced during a time course of overload-driven skeletal muscle hypertrophy in mice. To elucidate the role of CCN2 in mediating the hypertrophic response, we utilized genetically engineered mouse models for myofiber-specific CCN2 gain- and loss-of-function and then examined their response to mechanical stimuli through muscle overload. Interestingly, myofiber-specific deletion of CCN2 blunted muscle's hypertrophic response to overload without interfering with ECM deposition. On the other hand, when in excess through transgenic CCN2 overexpression, CCN2 was efficient in promoting overload-induced aberrant ECM accumulation without affecting myofiber growth. Altogether, our genetic approaches highlighted independent ECM and myofiber stress adaptation responses, and positioned CCN2 as a central mediator of both. Mechanistically, CCN2 acts by regulating focal adhesion kinase (FAK) mediated transduction of overload-induced extracellular signals, including interleukin 6 (IL6), and their regulatory impact on global protein synthesis in skeletal muscle. Overall, our study highlights the contribution of muscle-derived extracellular matrix factor CCN2 for proper hypertrophic muscle growth.
Collapse
Affiliation(s)
- Jennifer M Petrosino
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Jacob Z Longenecker
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Colin D Angell
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Scott A Hinger
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Colton R Martens
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH 43210, USA.
| |
Collapse
|
58
|
Fine-Tuning of Piezo1 Expression and Activity Ensures Efficient Myoblast Fusion during Skeletal Myogenesis. Cells 2022; 11:cells11030393. [PMID: 35159201 PMCID: PMC8834081 DOI: 10.3390/cells11030393] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 01/19/2022] [Indexed: 01/12/2023] Open
Abstract
Mechanical stimuli, such as stretch and resistance training, are essential in regulating the growth and functioning of skeletal muscles. However, the molecular mechanisms involved in sensing mechanical stress during muscle formation remain unclear. Here, we investigated the role of the mechanosensitive ion channel Piezo1 during myogenic progression of both fast and slow muscle satellite cells. We found that Piezo1 level increases during myogenic differentiation and direct manipulation of Piezo1 in muscle stem cells alters the myogenic progression. Indeed, Piezo1 knockdown suppresses myoblast fusion, leading to smaller myotubes. Such an event is accompanied by significant downregulation of the fusogenic protein Myomaker. In parallel, while Piezo1 knockdown also lowers Ca2+ influx in response to stretch, Piezo1 activation increases Ca2+ influx in response to stretch and enhances myoblasts fusion. These findings may help understand molecular defects present in some muscle diseases. Our study shows that Piezo1 is essential for terminal muscle differentiation acting on myoblast fusion, suggesting that Piezo1 deregulation may have implications in muscle aging and degenerative diseases, including muscular dystrophies and neuromuscular disorders.
Collapse
|
59
|
The m 6A methyltransferase METTL3 regulates muscle maintenance and growth in mice. Nat Commun 2022; 13:168. [PMID: 35013323 PMCID: PMC8748755 DOI: 10.1038/s41467-021-27848-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/14/2021] [Indexed: 01/05/2023] Open
Abstract
Skeletal muscle serves fundamental roles in organismal health. Gene expression fluctuations are critical for muscle homeostasis and the response to environmental insults. Yet, little is known about post-transcriptional mechanisms regulating such fluctuations while impacting muscle proteome. Here we report genome-wide analysis of mRNA methyladenosine (m6A) dynamics of skeletal muscle hypertrophic growth following overload-induced stress. We show that increases in METTL3 (the m6A enzyme), and concomitantly m6A, control skeletal muscle size during hypertrophy; exogenous delivery of METTL3 induces skeletal muscle growth, even without external triggers. We also show that METTL3 represses activin type 2 A receptors (ACVR2A) synthesis, blunting activation of anti-hypertrophic signaling. Notably, myofiber-specific conditional genetic deletion of METTL3 caused spontaneous muscle wasting over time and abrogated overload-induced hypertrophy; a phenotype reverted by co-administration of a myostatin inhibitor. These studies identify a previously unrecognized post-transcriptional mechanism promoting the hypertrophic response of skeletal muscle via control of myostatin signaling. Muscle undergoes hypertrophy and atrophy in response to physiological stimuli or in pathological conditions, which is partially controlled through altered gene expression. Here the authors report that m6A methyltransferase METTL3 and mRNA m6A post-transcriptional modifications as a mechanism that regulates muscle hypertrophy and atrophy via myostatin signalling in mice.
Collapse
|
60
|
Fukada SI. [Involvement of muscle stem cell in skeletal muscle hypertrophy induced by mechanical loading and drugs]. Nihon Yakurigaku Zasshi 2022; 157:23-25. [PMID: 34980805 DOI: 10.1254/fpj.21047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Skeletal muscle is the largest organ in our body, consisting of bundles of multinuclear cells called myofibers. Skeletal muscle is responsible for locomotion, metabolism, and life activities such as swallowing and respiration, and is also attracting attention as an endocrine organ. Skeletal muscle has two abilities, regeneration and adaptation, and the understanding of these mechanisms is expected to contribute to the development of therapies for muscle diseases such as muscular dystrophies and muscle atrophy. Skeletal muscle-specific stem cells, muscle satellite cells (MuSCs), are involved in these abilities. As well as other tissue stem cells, MuSCs are also maintained in a dormant state under steady-state conditions. However, when myofibers are damaged, they start to proliferate and eventually rebuilt new myofibers. While, muscle hypertrophy is one of the "adaptation", and MuSCs contribute to muscle hypertrophy by supplying new nuclei to myofibers. In contrast to studies of MuSCs during regeneration, the dynamics of MuSCs during hypertrophy had not been well studied. One reason is that the specific regulatory mechanisms of MuSC in hypertrophic muscle had not been elucidated. In addition to physical stimuli, drugs such as dopings, hormones, and myostatin inhibition are known to induce muscle hypertrophy. The necessity of MuSCs and new myonuclei in various model of muscle hypertrophy has been highly debated. In this review, we introduce the mechanism of MuSC proliferation specific to hypertrophic muscle, and outline the mechanism of muscle hypertrophy induced by exercise and drugs and the involvement of MuSCs.
Collapse
|
61
|
Emmert ME, Aggarwal P, Shay-Winkler K, Lee SJ, Goh Q, Cornwall R. Sex-specific role of myostatin signaling in neonatal muscle growth, denervation atrophy, and neuromuscular contractures. eLife 2022; 11:81121. [PMID: 36314781 PMCID: PMC9873256 DOI: 10.7554/elife.81121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/31/2022] [Indexed: 01/27/2023] Open
Abstract
Neonatal brachial plexus injury (NBPI) causes disabling and incurable muscle contractures that result from impaired longitudinal growth of denervated muscles. This deficit in muscle growth is driven by increased proteasome-mediated protein degradation, suggesting a dysregulation of muscle proteostasis. The myostatin (MSTN) pathway, a prominent muscle-specific regulator of proteostasis, is a putative signaling mechanism by which neonatal denervation could impair longitudinal muscle growth, and thus a potential target to prevent NBPI-induced contractures. Through a mouse model of NBPI, our present study revealed that pharmacologic inhibition of MSTN signaling induces hypertrophy, restores longitudinal growth, and prevents contractures in denervated muscles of female but not male mice, despite inducing hypertrophy of normally innervated muscles in both sexes. Additionally, the MSTN-dependent impairment of longitudinal muscle growth after NBPI in female mice is associated with perturbation of 20S proteasome activity, but not through alterations in canonical MSTN signaling pathways. These findings reveal a sex dimorphism in the regulation of neonatal longitudinal muscle growth and contractures, thereby providing insights into contracture pathophysiology, identifying a potential muscle-specific therapeutic target for contracture prevention, and underscoring the importance of sex as a biological variable in the pathophysiology of neuromuscular disorders.
Collapse
Affiliation(s)
- Marianne E Emmert
- Department of Medical Sciences, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Parul Aggarwal
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Kritton Shay-Winkler
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Se-Jin Lee
- The Jackson LaboratoryFarmingtonUnited States,Department of Genetics and Genome Sciences, University of Connecticut School of MedicineFarmingtonUnited States
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States,Department of Orthopaedic Surgery, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States,Department of Orthopaedic Surgery, University of Cincinnati College of MedicineCincinnatiUnited States,Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States,Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
62
|
RhoA within myofibers controls satellite cell microenvironment to allow hypertrophic growth. iScience 2022; 25:103616. [PMID: 35106464 PMCID: PMC8786647 DOI: 10.1016/j.isci.2021.103616] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/02/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Adult skeletal muscle is a plastic tissue that can adapt its size to workload. Here, we show that RhoA within myofibers is needed for overload-induced hypertrophy by controlling satellite cell (SC) fusion to the growing myofibers without affecting protein synthesis. At the molecular level, we demonstrate that RhoA controls in a cell autonomous manner Erk1/2 activation and the expressions of extracellular matrix (ECM) regulators such as Mmp9/Mmp13/Adam8 and macrophage chemo-attractants such as Ccl3/Cx3cl1. Their decreased expression in RhoA mutants is associated with ECM and fibrillar collagen disorganization and lower macrophage infiltration. Moreover, matrix metalloproteinases inhibition and macrophage depletion in controls phenocopied the altered growth of RhoA mutants while having no effect in mutants showing that their action is RhoA-dependent. These findings unravel the implication of RhoA within myofibers, in the building of a permissive microenvironment for muscle hypertrophic growth and for SC accretion through ECM remodeling and inflammatory cell recruitment. RhoA within myofibers controls SC fusion and muscle hypertrophic growth RhoA controls the expression of Mmps and of macrophage chemoattractants (Ccl3/Cx3cl1) RhoA controls ECM remodeling and macrophage recruitment upon hypertrophy Mmp inhibition and macrophage depletion phenocopy the blunted growth of RhoA mutant muscles
Collapse
|
63
|
Kaneshige A, Kaji T, Zhang L, Saito H, Nakamura A, Kurosawa T, Ikemoto-Uezumi M, Tsujikawa K, Seno S, Hori M, Saito Y, Matozaki T, Maehara K, Ohkawa Y, Potente M, Watanabe S, Braun T, Uezumi A, Fukada SI. Relayed signaling between mesenchymal progenitors and muscle stem cells ensures adaptive stem cell response to increased mechanical load. Cell Stem Cell 2021; 29:265-280.e6. [PMID: 34856120 DOI: 10.1016/j.stem.2021.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
Adaptation to mechanical load, leading to enhanced force and power output, is a characteristic feature of skeletal muscle. Formation of new myonuclei required for efficient muscle hypertrophy relies on prior activation and proliferation of muscle stem cells (MuSCs). However, the mechanisms controlling MuSC expansion under conditions of increased load are not fully understood. Here we demonstrate that interstitial mesenchymal progenitors respond to mechanical load and stimulate MuSC proliferation in a surgical mouse model of increased muscle load. Mechanistically, transcriptional activation of Yes-associated protein 1 (Yap1)/transcriptional coactivator with PDZ-binding motif (Taz) in mesenchymal progenitors results in local production of thrombospondin-1 (Thbs1), which, in turn, drives MuSC proliferation through CD47 signaling. Under homeostatic conditions, however, CD47 signaling is insufficient to promote MuSC proliferation and instead depends on prior downregulation of the Calcitonin receptor. Our results suggest that relayed signaling between mesenchymal progenitors and MuSCs through a Yap1/Taz-Thbs1-CD47 pathway is critical to establish the supply of MuSCs during muscle hypertrophy.
Collapse
Affiliation(s)
- Akihiro Kaneshige
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan; Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan; Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kaji
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Lidan Zhang
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hayato Saito
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ayasa Nakamura
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tamaki Kurosawa
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan; Laboratory of Veterinary Pharmacology, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, Tokyo University, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Madoka Ikemoto-Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masatoshi Hori
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, Tokyo University, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Michael Potente
- Angiogenesis & Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; Berlin Institute of Health at Charité (BIH) - Universitätsmedizin Berlin, 13125 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Shuichi Watanabe
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan.
| | - So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
64
|
Fukada SI, Ito N. Regulation of muscle hypertrophy: Involvement of the Akt-independent pathway and satellite cells in muscle hypertrophy. Exp Cell Res 2021; 409:112907. [PMID: 34793776 DOI: 10.1016/j.yexcr.2021.112907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Skeletal muscles are composed of multinuclear cells called myofibers and have unique abilities, one of which is plasticity. In response to the mechanical load induced by physical activity, skeletal muscle exerts several local adaptations, including an increase in myofiber size and myonuclear number, known as muscle hypertrophy. Protein synthesis and muscle satellite cells (MuSCs) are mainly responsible for these adaptations. However, the upstream signaling pathways that promote protein synthesis remain controversial. Further, the necessity of MuSCs in muscle hypertrophy is also a highly debated issue. In this review, we summarized the insulin-like growth factor 1 (IGF-1)/Akt-independent activation of mammalian target of rapamycin (mTOR) signaling in muscle hypertrophy and the involvement of mTOR signaling in age-related loss of skeletal muscle function and mass and in sarcopenia. The roles and behaviors of MuSCs, characteristics of new myonuclei in muscle hypertrophy, and their relevance to sarcopenia have also been updated in this review.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| | - Naoki Ito
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
| |
Collapse
|
65
|
Murach KA, Fry CS, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation. FASEB J 2021; 35:e21893. [PMID: 34480776 PMCID: PMC9293230 DOI: 10.1096/fj.202101096r] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Satellite cells support adult skeletal muscle fiber adaptations to loading in numerous ways. The fusion of satellite cells, driven by cell-autonomous and/or extrinsic factors, contributes new myonuclei to muscle fibers, associates with load-induced hypertrophy, and may support focal membrane damage repair and long-term myonuclear transcriptional output. Recent studies have also revealed that satellite cells communicate within their niche to mediate muscle remodeling in response to resistance exercise, regulating the activity of numerous cell types through various mechanisms such as secretory signaling and cell-cell contact. Muscular adaptation to resistance and endurance activity can be initiated and sustained for a period of time in the absence of satellite cells, but satellite cell participation is ultimately required to achieve full adaptive potential, be it growth, function, or proprioceptive coordination. While significant progress has been made in understanding the roles of satellite cells in adult muscle over the last few decades, many conclusions have been extrapolated from regeneration studies. This review highlights our current understanding of satellite cell behavior and contributions to adaptation outside of regeneration in adult muscle, as well as the roles of satellite cells beyond fusion and myonuclear accretion, which are gaining broader recognition.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
66
|
Fukada SI, Nakamura A. Exercise/Resistance Training and Muscle Stem Cells. Endocrinol Metab (Seoul) 2021; 36:737-744. [PMID: 34372625 PMCID: PMC8419599 DOI: 10.3803/enm.2021.401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
Skeletal muscle has attracted attention as endocrine organ, because exercise-dependent cytokines called myokines/exerkines are released from skeletal muscle and are involved in systemic functions. While, local mechanical loading to skeletal muscle by exercise or resistance training alters myofiber type and size and myonuclear number. Skeletal muscle-resident stem cells, known as muscle satellite cells (MuSCs), are responsible for the increased number of myonuclei. Under steady conditions, MuSCs are maintained in a mitotically quiescent state but exit from that state and start to proliferate in response to high physical activity. Alterations in MuSC behavior occur when myofibers are damaged, but the lethal damage to myofibers does not seem to evoke mechanical loading-dependent MuSC activation and proliferation. Given that MuSCs proliferate without damage, it is unclear how the different behaviors of MuSCs are controlled by different physical activities. Recent studies demonstrated that myonuclear number reflects the size of myofibers; hence, it is crucial to know the properties of MuSCs and the mechanism of myonuclear accretion by MuSCs. In addition, the elucidation of mechanical load-dependent changes in muscle resident cells, including MuSCs, will be necessary for the discovery of new myokines/exerkines and understating skeletal muscle diseases.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Ayasa Nakamura
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|
67
|
Yaseen W, Kraft-Sheleg O, Zaffryar-Eilot S, Melamed S, Sun C, Millay DP, Hasson P. Fibroblast fusion to the muscle fiber regulates myotendinous junction formation. Nat Commun 2021; 12:3852. [PMID: 34158500 PMCID: PMC8219707 DOI: 10.1038/s41467-021-24159-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Vertebrate muscles and tendons are derived from distinct embryonic origins yet they must interact in order to facilitate muscle contraction and body movements. How robust muscle tendon junctions (MTJs) form to be able to withstand contraction forces is still not understood. Using techniques at a single cell resolution we reexamine the classical view of distinct identities for the tissues composing the musculoskeletal system. We identify fibroblasts that have switched on a myogenic program and demonstrate these dual identity cells fuse into the developing muscle fibers along the MTJs facilitating the introduction of fibroblast-specific transcripts into the elongating myofibers. We suggest this mechanism resulting in a hybrid muscle fiber, primarily along the fiber tips, enables a smooth transition from muscle fiber characteristics towards tendon features essential for forming robust MTJs. We propose that dual characteristics of junctional cells could be a common mechanism for generating stable interactions between tissues throughout the musculoskeletal system.
Collapse
Affiliation(s)
- Wesal Yaseen
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ortal Kraft-Sheleg
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shelly Zaffryar-Eilot
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shay Melamed
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
68
|
Prasad V, Millay DP. Skeletal muscle fibers count on nuclear numbers for growth. Semin Cell Dev Biol 2021; 119:3-10. [PMID: 33972174 DOI: 10.1016/j.semcdb.2021.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Skeletal muscle cells are noteworthy for their syncytial nature, with each myofiber accumulating hundreds or thousands of nuclei derived from resident muscle stem cells (MuSCs). These nuclei are accrued through cell fusion, which is controlled by the two essential fusogens Myomaker and Myomerger that are transiently expressed within the myogenic lineage. While the absolute requirement of fusion for muscle development has been known for decades, the underlying need for the magnitude of multinucleation in muscle remains mysterious. Possible advantages of multinucleation include the potential it affords for transcriptional diversity within these massive cells, and as a means of increasing DNA content to support optimal cell size and function. In this article, we review recent advances that elucidate the relationship between myonuclear numbers and establishment of myofiber size, and discuss how this new information refines our understanding of the concept of myonuclear domains (MND), the cytoplasmic volumes that each resident myonucleus can support. Finally, we explore the potential consequences and costs of multinucleation and its impacts on myonuclear transcriptional reserve capacity, growth potential, myofiber size regulation, and muscle adaptability. We anticipate this report will not only serve to highlight the latest advances in the basic biology of syncytial muscle cells but also provide information to help design the next generation of therapeutic strategies to maintain muscle mass and function.
Collapse
Affiliation(s)
- Vikram Prasad
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
69
|
Solsona R, Pavlin L, Bernardi H, Sanchez AMJ. Molecular Regulation of Skeletal Muscle Growth and Organelle Biosynthesis: Practical Recommendations for Exercise Training. Int J Mol Sci 2021; 22:2741. [PMID: 33800501 PMCID: PMC7962973 DOI: 10.3390/ijms22052741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
The regulation of skeletal muscle mass and organelle homeostasis is dependent on the capacity of cells to produce proteins and to recycle cytosolic portions. In this investigation, the mechanisms involved in skeletal muscle mass regulation-especially those associated with proteosynthesis and with the production of new organelles-are presented. Thus, the critical roles of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway and its regulators are reviewed. In addition, the importance of ribosome biogenesis, satellite cells involvement, myonuclear accretion, and some major epigenetic modifications related to protein synthesis are discussed. Furthermore, several studies conducted on the topic of exercise training have recognized the central role of both endurance and resistance exercise to reorganize sarcomeric proteins and to improve the capacity of cells to build efficient organelles. The molecular mechanisms underlying these adaptations to exercise training are presented throughout this review and practical recommendations for exercise prescription are provided. A better understanding of the aforementioned cellular pathways is essential for both healthy and sick people to avoid inefficient prescriptions and to improve muscle function with emergent strategies (e.g., hypoxic training). Finally, current limitations in the literature and further perspectives, notably on epigenetic mechanisms, are provided to encourage additional investigations on this topic.
Collapse
Affiliation(s)
- Robert Solsona
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120 Font-Romeu, France;
| | - Laura Pavlin
- DMEM, University of Montpellier, INRAE UMR866, 2 Place Pierre Viala, 34060 Montpellier, France; (L.P.); (H.B.)
| | - Henri Bernardi
- DMEM, University of Montpellier, INRAE UMR866, 2 Place Pierre Viala, 34060 Montpellier, France; (L.P.); (H.B.)
| | - Anthony MJ Sanchez
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120 Font-Romeu, France;
| |
Collapse
|
70
|
Ho BL, Goh Q, Nikolaou S, Hu L, Shay‐Winkler K, Cornwall R. NRG/ErbB signaling regulates neonatal muscle growth but not neuromuscular contractures in neonatal brachial plexus injury. FEBS Lett 2021; 595:655-666. [PMID: 33421114 PMCID: PMC7940581 DOI: 10.1002/1873-3468.14034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 01/14/2023]
Abstract
Neonatal brachial plexus injury (NBPI) causes disabling and incurable muscle contractures that are driven by impaired growth of denervated muscles. A rare form of NBPI, which maintains afferent muscle innervation despite motor denervation, does not cause contractures. As afferent innervation regulates various aspects of skeletal muscle homeostasis through NRG/ErbB signaling, our current study investigated the role of this pathway in modulating contracture development. Through pharmacologic modification with an ErbB antagonist and NRG1 isoforms, we discovered that NRG/ErbB signaling does not modulate the development of contractures in neonatal mice. Instead, ErbB inhibition impeded growth in nondenervated skeletal muscles, whereas increased ErbB activation exacerbated denervation-induced skeletal muscle atrophy. This potential regulatory effect of NRG/ErbB signaling on neonatal muscle growth warrants deeper investigation.
Collapse
Affiliation(s)
- Brendan L. Ho
- Department of Biomedical SciencesUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| | - Qingnian Goh
- Division of Orthopaedic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Sia Nikolaou
- Division of Orthopaedic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Liangjun Hu
- Division of Orthopaedic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Kritton Shay‐Winkler
- Division of Orthopaedic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Roger Cornwall
- Division of Orthopaedic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOHUSA
- Division of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
- Department of Orthopaedic SurgeryUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| |
Collapse
|
71
|
Girardi F, Taleb A, Ebrahimi M, Datye A, Gamage DG, Peccate C, Giordani L, Millay DP, Gilbert PM, Cadot B, Le Grand F. TGFβ signaling curbs cell fusion and muscle regeneration. Nat Commun 2021; 12:750. [PMID: 33531466 PMCID: PMC7854756 DOI: 10.1038/s41467-020-20289-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Muscle cell fusion is a multistep process involving cell migration, adhesion, membrane remodeling and actin-nucleation pathways to generate multinucleated myotubes. However, molecular brakes restraining cell-cell fusion events have remained elusive. Here we show that transforming growth factor beta (TGFβ) pathway is active in adult muscle cells throughout fusion. We find TGFβ signaling reduces cell fusion, regardless of the cells' ability to move and establish cell-cell contacts. In contrast, inhibition of TGFβ signaling enhances cell fusion and promotes branching between myotubes in mouse and human. Exogenous addition of TGFβ protein in vivo during muscle regeneration results in a loss of muscle function while inhibition of TGFβR2 induces the formation of giant myofibers. Transcriptome analyses and functional assays reveal that TGFβ controls the expression of actin-related genes to reduce cell spreading. TGFβ signaling is therefore requisite to limit mammalian myoblast fusion, determining myonuclei numbers and myofiber size.
Collapse
Affiliation(s)
- Francesco Girardi
- Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Anissa Taleb
- Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Majid Ebrahimi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S3E1, Canada
| | - Asiman Datye
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S3E1, Canada
| | - Dilani G Gamage
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Cécile Peccate
- Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Lorenzo Giordani
- Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S3E1, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada
| | - Bruno Cadot
- Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Fabien Le Grand
- Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France.
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, 69008, Lyon, France.
| |
Collapse
|
72
|
Goh Q, Nikolaou S, Shay‐Winkler K, Emmert ME, Cornwall R. Timing of proteasome inhibition as a pharmacologic strategy for prevention of muscle contractures in neonatal brachial plexus injury. FASEB J 2021; 35:e21214. [PMID: 33236396 PMCID: PMC7821701 DOI: 10.1096/fj.202002194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022]
Abstract
Neonatal brachial plexus injury (NBPI) causes disabling and incurable contractures, or limb stiffness, which result from proteasome-mediated protein degradation impairing the longitudinal growth of neonatally denervated muscles. We recently showed in a mouse model that the 20S proteasome inhibitor, bortezomib, prevents contractures after NBPI. Given that contractures uniquely follow neonatal denervation, the current study tests the hypothesis that proteasome inhibition during a finite window of neonatal development can prevent long-term contracture development. Following neonatal forelimb denervation in P5 mice, we first outlined the minimum period for proteasome inhibition to prevent contractures 4 weeks post-NBPI by treating mice with saline or bortezomib for varying durations between P8 and P32. We then compared the ability of varying durations of longer-term proteasome inhibition to prevent contractures at 8 and 12 weeks post-NBPI. Our findings revealed that proteasome inhibition can be delayed 3-4 days after denervation but is required throughout skeletal growth to prevent contractures long term. Furthermore, proteasome inhibition becomes less effective in preventing contractures beyond the neonatal period. These therapeutic effects are primarily associated with bortezomib-induced attenuation of 20S proteasome β1 subunit activity. Our collective results, therefore, demonstrate that temporary neonatal proteasome inhibition is not a viable strategy for preventing contractures long term. Instead, neonatal denervation causes a permanent longitudinal growth deficiency that must be continuously ameliorated during skeletal growth. Additional mechanisms must be explored to minimize the necessary period of proteasome inhibition and reduce the risk of toxicity from long-term treatment.
Collapse
Affiliation(s)
- Qingnian Goh
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Sia Nikolaou
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Kritton Shay‐Winkler
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Marianne E. Emmert
- Department of Biomedical SciencesUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| | - Roger Cornwall
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOHUSA
- Division of Developmental BiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
- Department of Orthopaedic SurgeryUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| |
Collapse
|
73
|
Abstract
Skeletal muscle hypertrophy can be induced by hormones and growth factors acting directly as positive regulators of muscle growth or indirectly by neutralizing negative regulators, and by mechanical signals mediating the effect of resistance exercise. Muscle growth during hypertrophy is controlled at the translational level, through the stimulation of protein synthesis, and at the transcriptional level, through the activation of ribosomal RNAs and muscle-specific genes. mTORC1 has a central role in the regulation of both protein synthesis and ribosomal biogenesis. Several transcription factors and co-activators, including MEF2, SRF, PGC-1α4, and YAP promote the growth of the myofibers. Satellite cell proliferation and fusion is involved in some but not all muscle hypertrophy models.
Collapse
Affiliation(s)
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Italy
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | | | - Bert Blaauw
- Venetian Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
74
|
Xu B, Siehr A, Shen W. Functional skeletal muscle constructs from transdifferentiated human fibroblasts. Sci Rep 2020; 10:22047. [PMID: 33328524 PMCID: PMC7744552 DOI: 10.1038/s41598-020-78987-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Transdifferentiation of human non-muscle cells directly into myogenic cells by forced expression of MyoD represents one route to obtain highly desirable human myogenic cells. However, functional properties of the tissue constructs derived from these transdifferentiated cells have been rarely studied. Here, we report that three-dimensional (3D) tissue constructs engineered with iMyoD-hTERT-NHDFs, normal human dermal fibroblasts transduced with genes encoding human telomerase reverse transcriptase and doxycycline-inducible MyoD, generate detectable contractile forces in response to electrical stimuli upon MyoD expression. Withdrawal of doxycycline in the middle of 3D culture results in 3.05 and 2.28 times increases in twitch and tetanic forces, respectively, suggesting that temporally-controlled MyoD expression benefits functional myogenic differentiation of transdifferentiated myoblast-like cells. Treatment with CHIR99021, a Wnt activator, and DAPT, a Notch inhibitor, leads to further enhanced contractile forces. The ability of these abundant and potentially patient-specific and disease-specific cells to develop into functional skeletal muscle constructs makes them highly valuable for many applications, such as disease modeling.
Collapse
Affiliation(s)
- Bin Xu
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Allison Siehr
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Shen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
75
|
Hansson KA, Eftestøl E, Bruusgaard JC, Juvkam I, Cramer AW, Malthe-Sørenssen A, Millay DP, Gundersen K. Myonuclear content regulates cell size with similar scaling properties in mice and humans. Nat Commun 2020; 11:6288. [PMID: 33293572 PMCID: PMC7722898 DOI: 10.1038/s41467-020-20057-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Muscle fibers are the largest cells in the body, and one of its few syncytia. Individual cell sizes are variable and adaptable, but what governs cell size has been unclear. We find that muscle fibers are DNA scarce compared to other cells, and that the nuclear number (N) adheres to the relationship N = aVb where V is the cytoplasmic volume. N invariably scales sublinearly to V (b < 1), making larger cells even more DNA scarce. N scales linearly to cell surface in adult humans, in adult and developing mice, and in mice with genetically reduced N, but in the latter the relationship eventually fails when they reach adulthood with extremely large myonuclear domains. Another exception is denervation-atrophy where nuclei are not eliminated. In conclusion, scaling exponents are remarkably similar across species, developmental stages and experimental conditions, suggesting an underlying scaling law where DNA-content functions as a limiter of muscle cell size.
Collapse
Affiliation(s)
- Kenth-Arne Hansson
- Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Einar Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Jo C Bruusgaard
- Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Health Sciences, Kristiania University College, Oslo, Norway
| | - Inga Juvkam
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Alyssa W Cramer
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Anders Malthe-Sørenssen
- Center for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | | |
Collapse
|
76
|
Cramer AAW, Prasad V, Eftestøl E, Song T, Hansson KA, Dugdale HF, Sadayappan S, Ochala J, Gundersen K, Millay DP. Nuclear numbers in syncytial muscle fibers promote size but limit the development of larger myonuclear domains. Nat Commun 2020; 11:6287. [PMID: 33293533 PMCID: PMC7722938 DOI: 10.1038/s41467-020-20058-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian cells exhibit remarkable diversity in cell size, but the factors that regulate establishment and maintenance of these sizes remain poorly understood. This is especially true for skeletal muscle, comprised of syncytial myofibers that each accrue hundreds of nuclei during development. Here, we directly explore the assumed causal relationship between multinucleation and establishment of normal size through titration of myonuclear numbers during mouse neonatal development. Three independent mouse models, where myonuclear numbers were reduced by 75, 55, or 25%, led to the discovery that myonuclei possess a reserve capacity to support larger functional cytoplasmic volumes in developing myofibers. Surprisingly, the results revealed an inverse relationship between nuclei numbers and reserve capacity. We propose that as myonuclear numbers increase, the range of transcriptional return on a per nuclear basis in myofibers diminishes, which accounts for both the absolute reliance developing myofibers have on nuclear accrual to establish size, and the limits of adaptability in adult skeletal muscle.
Collapse
Affiliation(s)
- Alyssa A W Cramer
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Vikram Prasad
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Einar Eftestøl
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Taejeong Song
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Kenth-Arne Hansson
- Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Integrative Neuroplasticity (CINPLA), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hannah F Dugdale
- Center of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Julien Ochala
- Center of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Randall Center for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, Guy's Campus, King's College London, London, UK
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
77
|
Englund DA, Figueiredo VC, Dungan CM, Murach KA, Peck BD, Petrosino JM, Brightwell CR, Dupont AM, Neal AC, Fry CS, Accornero F, McCarthy JJ, Peterson CA. Satellite Cell Depletion Disrupts Transcriptional Coordination and Muscle Adaptation to Exercise. FUNCTION 2020; 2:zqaa033. [PMID: 34109314 PMCID: PMC8179974 DOI: 10.1093/function/zqaa033] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/06/2023] Open
Abstract
Satellite cells are required for postnatal development, skeletal muscle regeneration across the lifespan, and skeletal muscle hypertrophy prior to maturity. Our group has aimed to address whether satellite cells are required for hypertrophic growth in mature skeletal muscle. Here, we generated a comprehensive characterization and transcriptome-wide profiling of skeletal muscle during adaptation to exercise in the presence or absence of satellite cells in order to identify distinct phenotypes and gene networks influenced by satellite cell content. We administered vehicle or tamoxifen to adult Pax7-DTA mice and subjected them to progressive weighted wheel running (PoWeR). We then performed immunohistochemical analysis and whole-muscle RNA-seq of vehicle (SC+) and tamoxifen-treated (SC-) mice. Further, we performed single myonuclear RNA-seq to provide detailed information on how satellite cell fusion affects myonuclear transcription. We show that while skeletal muscle can mount a robust hypertrophic response to PoWeR in the absence of satellite cells, growth, and adaptation are ultimately blunted. Transcriptional profiling reveals several gene networks key to muscle adaptation are altered in the absence of satellite cells.
Collapse
Affiliation(s)
- Davis A Englund
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Vandré C Figueiredo
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Cory M Dungan
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Bailey D Peck
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Jennifer M Petrosino
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Alec M Dupont
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Ally C Neal
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
78
|
Kobayashi Y, Tanaka T, Mulati M, Ochi H, Sato S, Kaldis P, Yoshii T, Okawa A, Inose H. Cyclin-Dependent Kinase 1 Is Essential for Muscle Regeneration and Overload Muscle Fiber Hypertrophy. Front Cell Dev Biol 2020; 8:564581. [PMID: 33163487 PMCID: PMC7591635 DOI: 10.3389/fcell.2020.564581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022] Open
Abstract
Satellite cell proliferation is an essential step in proper skeletal muscle development and muscle regeneration. However, the mechanisms regulating satellite cell proliferation are relatively unknown compared to the knowledge associated with the differentiation of satellite cells. Moreover, it is still unclear whether overload muscle fiber hypertrophy is dependent on satellite cell proliferation. In general, cell proliferation is regulated by the activity of cell cycle regulators, such as cyclins and cyclin-dependent kinases (CDKs). Despite recent reports on the function of CDKs and CDK inhibitors in satellite cells, the physiological role of Cdk1 in satellite cell proliferation remains unknown. Herein, we demonstrate that Cdk1 regulates satellite cell proliferation, muscle regeneration, and muscle fiber hypertrophy. Cdk1 is highly expressed in myoblasts and is downregulated upon myoblast differentiation. Inhibition of CDK1 activity inhibits myoblast proliferation. Deletion of Cdk1 in satellite cells leads to inhibition of muscle recovery after muscle injury due to reduced satellite cell proliferation in vivo. Finally, we provide direct evidence that Cdk1 expression in satellite cells is essential for overload muscle fiber hypertrophy in vivo. Collectively, our results demonstrate that Cdk1 is essential for myoblast proliferation, muscle regeneration, and muscle fiber hypertrophy. These findings could help to develop treatments for refractory muscle injuries and muscle atrophy, such as sarcopenia.
Collapse
Affiliation(s)
- Yutaka Kobayashi
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoyuki Tanaka
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mieradilli Mulati
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Ochi
- Department of Rehabilitation for Movement Functions, National Rehabilitation Center for Persons with Disabilities, Research Institute, Tokorozawa, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Toshitaka Yoshii
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Okawa
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Inose
- Department of Orthopedic and Trauma Research, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
79
|
Yablonka-Reuveni Z, Lepper C. New Insight into a Classic Stem Cell: the Satellite Cell may Communicate with the Muscle Fiber via Extracellular Vesicles-A Perspective on "Fusion-Independent Satellite Cell Communication to Muscle Fibers During Load-Induced Hypertrophy". FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa015. [PMID: 35330641 PMCID: PMC8788824 DOI: 10.1093/function/zqaa015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Zipora Yablonka-Reuveni
- Department of Biological Structure, School of Medicine, University of Washington, 1959 NE Pacific Street, Box 357420, Seattle, WA 98195, USA,Address correspondence to Z.Y.-R. (e-mail: ), C.L. (e-mail: )
| | - Christoph Lepper
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, 1645 Neil Ave., Columbus, OH 43210, USA,Address correspondence to Z.Y.-R. (e-mail: ), C.L. (e-mail: )
| |
Collapse
|
80
|
Ciecierska A, Motyl T, Sadkowski T. Transcriptomic profile of semitendinosus muscle of bulls of different breed and performance. J Appl Genet 2020; 61:581-592. [PMID: 32851594 PMCID: PMC7652804 DOI: 10.1007/s13353-020-00577-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The aim of the study was to compare the transcriptomic profiles of fully differentiated skeletal muscle derived from bulls belonging to different breeds of varying performance. Microarray analyses were performed to determine the differences in the expression profiles of genes between semitendinosus muscles of 15-month-old beef-breed bulls (Limousin—LIM and Hereford—HER) and dairy-breed bulls (Holstein Friesian—HF). These analyses allowed for the identification of those genes the expression of which is similar and characteristic of fully differentiated muscle in beef breeds, but differs in skeletal muscle of a typical dairy breed. The analysis revealed 463 transcripts showing similar expression in the semitendinosus muscle of beef breeds (LIM/HER), in comparison with the dairy breed (HF). Among the identified genes, 227 were upregulated and 236 were downregulated in beef breeds. The ontological analyses revealed that the largest group of genes similarly expressed in LIM and HER was involved in the processes of protein metabolism and development of muscle organ. In beef breeds, some genes involved in protein synthesis and proteolysis showed an upregulation, including ctsd, ctsf, fhl2, fhl3, fst, sirt1, and trim63, whereas some were downregulated, including bmpr1a, bmpr2, mstn, smad2, hspa8, gsk3β, and tgfβ2. The expression of the chosen genes was confirmed by RT-qPCR technique. Thus, it can be assumed that the identified genes involved in the regulation of growth and development of muscle tissue and the processes of protein metabolism in the examined cattle breeds may be responsible for the greater gain of muscle mass in beef-breed bulls.
Collapse
Affiliation(s)
- Anna Ciecierska
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Tomasz Motyl
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
81
|
Vitamin D Inhibits Myogenic Cell Fusion and Expression of Fusogenic Genes. Nutrients 2020; 12:nu12082192. [PMID: 32717927 PMCID: PMC7469064 DOI: 10.3390/nu12082192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/18/2020] [Accepted: 07/18/2020] [Indexed: 01/02/2023] Open
Abstract
Vitamin D, a fat-soluble vitamin, is an important nutrient for tissue homeostasis and is recently gaining attention for its role in sarcopenia. Although several studies have focused on the role of vitamin D in muscle homeostasis, the molecular mechanism underlying its action on skeletal muscle remains unclear. This study investigated the role of vitamin D in myogenesis and muscle fiber maintenance in an immortalized mouse myogenic cell line. A high concentration of active vitamin D, 1α,25(OH)2D3, decreased the expression of myogenic regulatory factors (MRFs), myf5 and myogenin in proliferating myoblasts. In addition, high concentration of vitamin D reduced myoblast-to-myoblast and myoblast-to-myotube fusion through the inhibition of Tmem8c (myomaker) and Gm7325 (myomerger), which encode muscle-specific fusion-related micropeptides. A similar inhibitory effect of vitamin D was also observed in immortalized human myogenic cells. A high concentration of vitamin D also induced hypertrophy of multinucleated myotubes by stimulating protein anabolism. The results from this study indicated that vitamin D had both positive and negative effects on muscle homeostasis, such as in muscle regeneration and myofiber maintenance. Elderly individuals face a higher risk of falling and suffering fractures; hence, administration of vitamin D for treating fractures in the elderly could actually promote fusion impairment and, consequently, severe defects in muscle regeneration. Therefore, our results suggest that vitamin D replacement therapy should be used for prevention of age-related muscle loss, rather than for treatment of sarcopenia.
Collapse
|
82
|
Masschelein E, D'Hulst G, Zvick J, Hinte L, Soro-Arnaiz I, Gorski T, von Meyenn F, Bar-Nur O, De Bock K. Exercise promotes satellite cell contribution to myofibers in a load-dependent manner. Skelet Muscle 2020; 10:21. [PMID: 32646489 PMCID: PMC7346400 DOI: 10.1186/s13395-020-00237-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Satellite cells (SCs) are required for muscle repair following injury and are involved in muscle remodeling upon muscular contractions. Exercise stimulates SC accumulation and myonuclear accretion. To what extent exercise training at different mechanical loads drive SC contribution to myonuclei however is unknown. RESULTS By performing SC fate tracing experiments, we show that 8 weeks of voluntary wheel running increased SC contribution to myofibers in mouse plantar flexor muscles in a load-dependent, but fiber type-independent manner. Increased SC fusion however was not exclusively linked to muscle hypertrophy as wheel running without external load substantially increased SC fusion in the absence of fiber hypertrophy. Due to nuclear propagation, nuclear fluorescent fate tracing mouse models were inadequate to quantify SC contribution to myonuclei. Ultimately, by performing fate tracing at the DNA level, we show that SC contribution mirrors myonuclear accretion during exercise. CONCLUSIONS Collectively, mechanical load during exercise independently promotes SC contribution to existing myofibers. Also, due to propagation of nuclear fluorescent reporter proteins, our data warrant caution for the use of existing reporter mouse models for the quantitative evaluation of satellite cell contribution to myonuclei.
Collapse
Affiliation(s)
- Evi Masschelein
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Gommaar D'Hulst
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Joel Zvick
- Department Health Sciences and Technology, Laboratory of Regenerative and Movement Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Laura Hinte
- Department Health Sciences and Technology, Laboratory of Nutrition and Metabolic Epigenetics, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Inés Soro-Arnaiz
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Tatiane Gorski
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ferdinand von Meyenn
- Department Health Sciences and Technology, Laboratory of Nutrition and Metabolic Epigenetics, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ori Bar-Nur
- Department Health Sciences and Technology, Laboratory of Regenerative and Movement Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Katrien De Bock
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
83
|
Ciecierska A, Motyl T, Sadkowski T. Transcriptomic Profile of Primary Culture of Skeletal Muscle Cells Isolated from Semitendinosus Muscle of Beef and Dairy Bulls. Int J Mol Sci 2020; 21:E4794. [PMID: 32645861 PMCID: PMC7369917 DOI: 10.3390/ijms21134794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/05/2023] Open
Abstract
The aim of the study was to identify differences in the transcriptomic profiles of primary muscle cell cultures derived from the semitendinosus muscle of bulls of beef breeds (Limousin (LIM) and Hereford (HER)) and a dairy breed (Holstein-Friesian (HF)) (n = 4 for each breed). Finding a common expression pattern for proliferating cells may point to such an early orientation of the cattle beef phenotype at the transcriptome level of unfused myogenic cells. To check this hypothesis, microarray analyses were performed. The analysis revealed 825 upregulated and 1300 downregulated transcripts similar in both beef breeds (LIM and HER) and significantly different when compared with the dairy breed (HF) used as a reference. Ontological analyses showed that the largest group of genes were involved in muscle organ development. Muscle cells of beef breeds showed higher expression of genes involved in myogenesis (including erbb-3, myf5, myog, des, igf-1, tgfb2) and those encoding proteins comprising the contractile apparatus (acta1, actc1, myh3, myh11, myl1, myl2, myl4, tpm1, tnnt2, tnnc1). The obtained results confirmed our hypothesis that the expression profile of several groups of genes is common in beef breeds at the level of proliferating satellite cells but differs from that observed in typical dairy breeds.
Collapse
Affiliation(s)
- Anna Ciecierska
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland;
| | - Tomasz Motyl
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| |
Collapse
|
84
|
Murach KA, Vechetti IJ, Van Pelt DW, Crow SE, Dungan CM, Figueiredo VC, Kosmac K, Fu X, Richards CI, Fry CS, McCarthy JJ, Peterson CA. Fusion-Independent Satellite Cell Communication to Muscle Fibers During Load-Induced Hypertrophy. FUNCTION 2020; 1:zqaa009. [PMID: 32864621 PMCID: PMC7448100 DOI: 10.1093/function/zqaa009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023] Open
Abstract
The "canonical" function of Pax7+ muscle stem cells (satellite cells) during hypertrophic growth of adult muscle fibers is myonuclear donation via fusion to support increased transcriptional output. In recent years, however, emerging evidence suggests that satellite cells play an important secretory role in promoting load-mediated growth. Utilizing genetically modified mouse models of delayed satellite cell fusion and in vivo extracellular vesicle (EV) tracking, we provide evidence for satellite cell communication to muscle fibers during hypertrophy. Myogenic progenitor cell-EV-mediated communication to myotubes in vitro influences extracellular matrix (ECM)-related gene expression, which is congruent with in vivo overload experiments involving satellite cell depletion, as well as in silico analyses. Satellite cell-derived EVs can transfer a Cre-induced, cytoplasmic-localized fluorescent reporter to muscle cells as well as microRNAs that regulate ECM genes such as matrix metalloproteinase 9 (Mmp9), which may facilitate growth. Delayed satellite cell fusion did not limit long-term load-induced muscle hypertrophy indicating that early fusion-independent communication from satellite cells to muscle fibers is an underappreciated aspect of satellite cell biology. We cannot exclude the possibility that satellite cell-mediated myonuclear accretion is necessary to maintain prolonged growth, specifically in the later phases of adaptation, but these data collectively highlight how EV delivery from satellite cells can directly contribute to mechanical load-induced muscle fiber hypertrophy, independent of cell fusion to the fiber.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Ivan J Vechetti
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Douglas W Van Pelt
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Samuel E Crow
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Cory M Dungan
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Vandre C Figueiredo
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Kate Kosmac
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Xu Fu
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher I Richards
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
85
|
Hromowyk KJ, Talbot JC, Martin BL, Janssen PML, Amacher SL. Cell fusion is differentially regulated in zebrafish post-embryonic slow and fast muscle. Dev Biol 2020; 462:85-100. [PMID: 32165147 PMCID: PMC7225055 DOI: 10.1016/j.ydbio.2020.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 02/08/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fusion occurs during development, growth, and regeneration. To investigate how muscle fusion compares among different muscle cell types and developmental stages, we studied muscle cell fusion over time in wild-type, myomaker (mymk), and jam2a mutant zebrafish. Using live imaging, we show that embryonic myoblast elongation and fusion correlate tightly with slow muscle cell migration. In wild-type embryos, only fast muscle fibers are multinucleate, consistent with previous work showing that the cell fusion regulator gene mymk is specifically expressed throughout the embryonic fast muscle domain. However, by 3 weeks post-fertilization, slow muscle fibers also become multinucleate. At this late-larval stage, mymk is not expressed in muscle fibers, but is expressed in small cells near muscle fibers. Although previous work showed that both mymk and jam2a are required for embryonic fast muscle cell fusion, we observe that muscle force and function is almost normal in mymk and jam2a mutant embryos, despite the lack of fast muscle multinucleation. We show that genetic requirements change post-embryonically, with jam2a becoming much less important by late-larval stages and mymk now required for muscle fusion and growth in both fast and slow muscle cell types. Correspondingly, adult mymk mutants perform poorly in sprint and endurance tests compared to wild-type and jam2a mutants. We show that adult mymk mutant muscle contains small mononucleate myofibers with average myonuclear domain size equivalent to that in wild type adults. The mymk mutant fibers have decreased Laminin expression and increased numbers of Pax7-positive cells, suggesting that impaired fiber growth and active regeneration contribute to the muscle phenotype. Our findings identify several aspects of muscle fusion that change with time in slow and fast fibers as zebrafish develop beyond embryonic stages.
Collapse
Affiliation(s)
- Kimberly J Hromowyk
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jared C Talbot
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA.
| | - Brit L Martin
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Paul M L Janssen
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharon L Amacher
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
86
|
Fukada SI, Akimoto T, Sotiropoulos A. Role of damage and management in muscle hypertrophy: Different behaviors of muscle stem cells in regeneration and hypertrophy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118742. [PMID: 32417255 DOI: 10.1016/j.bbamcr.2020.118742] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is a dynamic tissue with two unique abilities; one is its excellent regenerative ability, due to the activity of skeletal muscle-resident stem cells named muscle satellite cells (MuSCs); and the other is the adaptation of myofiber size in response to external stimulation, intrinsic factors, or physical activity, which is known as plasticity. Low physical activity and some disease conditions lead to the reduction of myofiber size, called atrophy, whereas hypertrophy refers to the increase in myofiber size induced by high physical activity or anabolic hormones/drugs. MuSCs are essential for generating new myofibers during regeneration and the increase in new myonuclei during hypertrophy; however, there has been little investigation of the molecular mechanisms underlying MuSC activation, proliferation, and differentiation during hypertrophy compared to those of regeneration. One reason is that 'degenerative damage' to myofibers during muscle injury or upon hypertrophy (especially overloaded muscle) is believed to trigger similar activation/proliferation of MuSCs. However, evidence suggests that degenerative damage of myofibers is not necessary for MuSC activation/proliferation during hypertrophy. When considering MuSC-based therapy for atrophy, including sarcopenia, it will be indispensable to elucidate MuSC behaviors in muscles that exhibit non-degenerative damage, because degenerated myofibers are not present in the atrophied muscles. In this review, we summarize recent findings concerning the relationship between MuSCs and hypertrophy, and discuss what remains to be discovered to inform the development and application of relevant treatments for muscle atrophy.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| | | | - Athanassia Sotiropoulos
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France
| |
Collapse
|
87
|
Petrany MJ, Song T, Sadayappan S, Millay DP. Myocyte-derived Myomaker expression is required for regenerative fusion but exacerbates membrane instability in dystrophic myofibers. JCI Insight 2020; 5:136095. [PMID: 32310830 PMCID: PMC7253022 DOI: 10.1172/jci.insight.136095] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Muscle progenitor cell fusion is required for the formation and regeneration of multinucleated skeletal muscle fibers. Chronic muscle regeneration in Duchenne muscular dystrophy (DMD) is characterized by ongoing fusion of satellite cell (SC) progeny, but the effects of fusion on disease and the mechanisms by which fusion is accomplished in this setting are not fully understood. Using the mdx mouse model of DMD, we deleted the fusogenic protein Myomaker in SCs or myofibers. Following deletion in SCs, mice displayed a complete lack of myocyte fusion, resulting in severe muscle loss, enhanced fibrosis, and significant functional decline. Reduction of Myomaker in mature myofibers in mdx mice, however, led to minimal alterations in fusion dynamics. Unexpectedly, myofiber-specific deletion of Myomaker resulted in improvement of disease phenotype, with enhanced function and decreased muscle damage. Our data indicate that Myomaker has divergent effects on dystrophic disease severity depending upon its compartment of expression. These findings show that myocyte fusion is absolutely required for effective regeneration in DMD, but persistent Myomaker expression in myofibers due to ongoing fusion may have unintended deleterious consequences for muscle integrity. Thus, sustained activation of a component of the myogenic program in dystrophic myofibers exacerbates disease.
Collapse
Affiliation(s)
- Michael J. Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Taejeong Song
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, and
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, and
| | - Douglas P. Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
88
|
The effect of resistance training, detraining and retraining on muscle strength and power, myofibre size, satellite cells and myonuclei in older men. Exp Gerontol 2020; 133:110860. [DOI: 10.1016/j.exger.2020.110860] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 01/05/2023]
|
89
|
Chen B, You W, Wang Y, Shan T. The regulatory role of Myomaker and Myomixer-Myomerger-Minion in muscle development and regeneration. Cell Mol Life Sci 2020; 77:1551-1569. [PMID: 31642939 PMCID: PMC11105057 DOI: 10.1007/s00018-019-03341-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
Skeletal muscle plays essential roles in motor function, energy, and glucose metabolism. Skeletal muscle formation occurs through a process called myogenesis, in which a crucial step is the fusion of mononucleated myoblasts to form multinucleated myofibers. The myoblast/myocyte fusion is triggered and coordinated in a muscle-specific way that is essential for muscle development and post-natal muscle regeneration. Many molecules and proteins have been found and demonstrated to have the capacity to regulate the fusion of myoblast/myocytes. Interestingly, two newly discovered muscle-specific membrane proteins, Myomaker and Myomixer (also called Myomerger and Minion), have been identified as fusogenic regulators in vertebrates. Both Myomaker and Myomixer-Myomerger-Minion have the capacity to directly control the myogenic fusion process. Here, we review and discuss the latest studies related to these two proteins, including the discovery, structure, expression pattern, functions, and regulation of Myomaker and Myomixer-Myomerger-Minion. We also emphasize and discuss the interaction between Myomaker and Myomixer-Myomerger-Minion, as well as their cooperative regulatory roles in cell-cell fusion. Moreover, we highlight the areas for exploration of Myomaker and Myomixer-Myomerger-Minion in future studies and consider their potential application to control cell fusion for cell-therapy purposes.
Collapse
Affiliation(s)
- Bide Chen
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China.
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China.
| |
Collapse
|
90
|
Eftestøl E, Psilander N, Cumming KT, Juvkam I, Ekblom M, Sunding K, Wernbom M, Holmberg HC, Ekblom B, Bruusgaard JC, Raastad T, Gundersen K. Muscle memory: are myonuclei ever lost? J Appl Physiol (1985) 2019; 128:456-457. [PMID: 31854249 DOI: 10.1152/japplphysiol.00761.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Einar Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Niklas Psilander
- Department of Sport Performance and Training, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | | | - Inga Juvkam
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Maria Ekblom
- Department of Sport Performance and Training, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Kerstin Sunding
- Stockholm Sport Trauma Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Mathias Wernbom
- Center for Health and Performance, Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Björn Ekblom
- Department of Sport Performance and Training, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Jo C Bruusgaard
- Department of Biosciences, University of Oslo, Oslo, Norway.,Department of Health Sciences, Kristiania University College, Oslo, Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | | |
Collapse
|
91
|
Nikolaou S, Cramer AA, Hu L, Goh Q, Millay DP, Cornwall R. Proteasome inhibition preserves longitudinal growth of denervated muscle and prevents neonatal neuromuscular contractures. JCI Insight 2019; 4:128454. [PMID: 31661460 DOI: 10.1172/jci.insight.128454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
Muscle contractures are a prominent and disabling feature of many neuromuscular disorders, including the 2 most common forms of childhood neurologic dysfunction: neonatal brachial plexus injury (NBPI) and cerebral palsy. There are currently no treatment strategies to directly alter the contracture pathology, as the pathogenesis of these contractures is unknown. We previously showed in a mouse model of NBPI that contractures result from impaired longitudinal muscle growth. Current presumed explanations for growth impairment in contractures focus on the dysregulation of muscle stem cells, which differentiate and fuse to existing myofibers during growth, as this process has classically been thought to control muscle growth during the neonatal period. Here, we demonstrate in a mouse model of NBPI that denervation does not prevent myonuclear accretion and that reduction in myonuclear number has no effect on functional muscle length or contracture development, providing definitive evidence that altered myonuclear accretion is not a driver of neuromuscular contractures. In contrast, we observed elevated levels of protein degradation in NBPI muscle, and we demonstrate that contractures can be pharmacologically prevented with the proteasome inhibitor bortezomib. These studies provide what we believe is the first strategy to prevent neuromuscular contractures by correcting the underlying deficit in longitudinal muscle growth.
Collapse
Affiliation(s)
| | - Alyssa Aw Cramer
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Roger Cornwall
- Division of Orthopaedic Surgery, and.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
92
|
Petrany MJ, Millay DP. Cell Fusion: Merging Membranes and Making Muscle. Trends Cell Biol 2019; 29:964-973. [PMID: 31648852 PMCID: PMC7849503 DOI: 10.1016/j.tcb.2019.09.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Cell fusion is essential for the development of multicellular organisms, and plays a key role in the formation of various cell types and tissues. Recent findings have highlighted the varied protein machinery that drives plasma-membrane merger in different systems, which is characterized by diverse structural and functional elements. We highlight the discovery and activities of several key sets of fusion proteins that together offer an evolving perspective on cell membrane fusion. We also emphasize recent discoveries in vertebrate myoblast fusion in skeletal muscle, which is composed of numerous multinucleated myofibers formed by the fusion of progenitor cells during development.
Collapse
Affiliation(s)
- Michael J Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
93
|
Dvoretskiy S, Garg K, Munroe M, Pincu Y, Mahmassani ZS, Coombs C, Blackwell B, Garcia G, Waterstradt G, Lee I, Drnevich J, Rhodes JS, Boppart MD. The impact of skeletal muscle contraction on CD146 +Lin - pericytes. Am J Physiol Cell Physiol 2019; 317:C1011-C1024. [PMID: 31433691 PMCID: PMC6879875 DOI: 10.1152/ajpcell.00156.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Abstract
Unaccustomed resistance exercise can initiate skeletal muscle remodeling and adaptive mechanisms that can confer protection from damage and enhanced strength with subsequent stimulation. The myofiber may provide the primary origin for adaptation, yet multiple mononuclear cell types within the surrounding connective tissue may also contribute. The purpose of this study was to evaluate the acute response of muscle-resident interstitial cells to contraction initiated by electrical stimulation (e-stim) and subsequently determine the contribution of pericytes to remodeling as a result of training. Mice were subjected to bilateral e-stim or sham treatment. Following a single session of e-stim, NG2+CD45-CD31- (NG2+Lin-) pericyte, CD146+Lin- pericyte, and PDGFRα+ fibroadipogenic progenitor cell quantity and function were evaluated via multiplex flow cytometry and targeted quantitative PCR. Relative quantity was not significantly altered 24 h postcontraction, yet unique gene signatures were observed for each cell population at 3 h postcontraction. CD146+Lin- pericytes appeared to be most responsive to contraction, and upregulation of genes related to immunomodulation and extracellular matrix remodeling was observed via RNA sequencing. Intramuscular injection of CD146+Lin- pericytes did not significantly increase myofiber size yet enhanced ECM remodeling and angiogenesis in response to repeated bouts of e-stim for 4 wk. The results from this study provide the first evidence that CD146+Lin- pericytes are responsive to skeletal muscle contraction and may contribute to the beneficial outcomes associated with exercise.
Collapse
Affiliation(s)
- Svyatoslav Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Koyal Garg
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michael Munroe
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yair Pincu
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ziad S Mahmassani
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Charlotte Coombs
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Brent Blackwell
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Gabriela Garcia
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Garret Waterstradt
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Isaac Lee
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jenny Drnevich
- Roy J. Carver Biotechnology Center, High Performance Biological Computing, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Justin S Rhodes
- Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
94
|
Salizzato V, Zanin S, Borgo C, Lidron E, Salvi M, Rizzuto R, Pallafacchina G, Donella-Deana A. Protein kinase CK2 subunits exert specific and coordinated functions in skeletal muscle differentiation and fusogenic activity. FASEB J 2019; 33:10648-10667. [PMID: 31268746 PMCID: PMC6766657 DOI: 10.1096/fj.201801833rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 06/04/2019] [Indexed: 01/01/2023]
Abstract
Casein kinase 2 (CK2) is a tetrameric protein kinase composed of 2 catalytic (α and α') and 2 regulatory β subunits. Our study provides the first molecular and cellular characterization of the different CK2 subunits, highlighting their individual roles in skeletal muscle specification and differentiation. Analysis of C2C12 cell knockout for each CK2 subunit reveals that: 1) CK2β is mandatory for the expression of the muscle master regulator myogenic differentiation 1 in proliferating myoblasts, thus controlling both myogenic commitment and subsequent muscle-specific gene expression and myotube formation; 2) CK2α is involved in the activation of the muscle-specific gene program; and 3) CK2α' activity regulates myoblast fusion by mediating plasma membrane translocation of fusogenic proteins essential for membrane coalescence, like myomixer. Accordingly, CK2α' overexpression in C2C12 cells and in mouse regenerating muscle is sufficient to increase myofiber size and myonuclei content via enhanced satellite cell fusion. Consistent with these results, pharmacological inhibition of CK2 activity substantially blocks the expression of myogenic markers and muscle cell fusion both in vitro in C2C12 and primary myoblasts and in vivo in mouse regenerating muscle and zebrafish development. Overall, our work describes the specific and coordinated functions of CK2 subunits in orchestrating muscle differentiation and fusogenic activity, highlighting CK2 relevance in the physiopathology of skeletal muscle tissue.-Salizzato, V., Zanin, S., Borgo, C., Lidron, E., Salvi, M., Rizzuto, R., Pallafacchina, G., Donella-Deana, A. Protein kinase CK2 subunits exert specific and coordinated functions in skeletal muscle differentiation and fusogenic activity.
Collapse
Affiliation(s)
- Valentina Salizzato
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Italian National Research Council (CNR) Neuroscience Institute, Padua, Italy
| | - Sofia Zanin
- Department of Medicine, University of Padua, Padua, Italy
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Elisa Lidron
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Giorgia Pallafacchina
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Italian National Research Council (CNR) Neuroscience Institute, Padua, Italy
| | | |
Collapse
|
95
|
Englund DA, Peck BD, Murach KA, Neal AC, Caldwell HA, McCarthy JJ, Peterson CA, Dupont-Versteegden EE. Resident muscle stem cells are not required for testosterone-induced skeletal muscle hypertrophy. Am J Physiol Cell Physiol 2019; 317:C719-C724. [PMID: 31314585 PMCID: PMC6851003 DOI: 10.1152/ajpcell.00260.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023]
Abstract
It is postulated that testosterone-induced skeletal muscle hypertrophy is driven by myonuclear accretion as the result of satellite cell fusion. To directly test this hypothesis, we utilized the Pax7-DTA mouse model to deplete satellite cells in skeletal muscle followed by testosterone administration. Pax7-DTA mice (6 mo of age) were treated for 5 days with either vehicle [satellite cell replete (SC+)] or tamoxifen [satellite cell depleted (SC-)]. Following a washout period, a testosterone propionate or sham pellet was implanted for 21 days. Testosterone administration caused a significant increase in muscle fiber cross-sectional area in SC+ and SC- mice in both oxidative (soleus) and glycolytic (plantaris and extensor digitorum longus) muscles. In SC+ mice treated with testosterone, there was a significant increase in both satellite cell abundance and myonuclei that was completely absent in testosterone-treated SC- mice. These findings provide direct evidence that testosterone-induced muscle fiber hypertrophy does not require an increase in satellite cell abundance or myonuclear accretion.Listen to a podcast about this Rapid Report with senior author E. E. Dupont-Versteegden (https://ajpcell.podbean.com/e/podcast-on-paper-that-shows-testosterone-induced-skeletal-muscle-hypertrophy-does-not-need-muscle-stem-cells/).
Collapse
Affiliation(s)
- Davis A Englund
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Bailey D Peck
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Kevin A Murach
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Ally C Neal
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Hannah A Caldwell
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Charlotte A Peterson
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Esther E Dupont-Versteegden
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
96
|
Fukuda S, Kaneshige A, Kaji T, Noguchi YT, Takemoto Y, Zhang L, Tsujikawa K, Kokubo H, Uezumi A, Maehara K, Harada A, Ohkawa Y, Fukada SI. Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle. eLife 2019; 8:48284. [PMID: 31545169 PMCID: PMC6768661 DOI: 10.7554/elife.48284] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022] Open
Abstract
In overloaded and regenerating muscle, the generation of new myonuclei depends on muscle satellite cells (MuSCs). Because MuSC behaviors in these two environments have not been considered separately, MuSC behaviors in overloaded muscle remain unexamined. Here, we show that most MuSCs in overloaded muscle, unlike MuSCs in regenerating muscle, proliferate in the absence of MyoD expression. Mechanistically, MuSCs in overloaded muscle sustain the expression of Heyl, a Notch effector gene, to suppress MyoD expression, which allows effective MuSC proliferation on myofibers and beneath the basal lamina. Although Heyl-knockout mice show no impairment in an injury model, in a hypertrophy model, their muscles harbor fewer new MuSC-derived myonuclei due to increased MyoD expression and diminished proliferation, which ultimately causes blunted hypertrophy. Our results show that sustained HeyL expression is critical for MuSC proliferation specifically in overloaded muscle, and thus indicate that the MuSC-proliferation mechanism differs in overloaded and regenerating muscle.
Collapse
Affiliation(s)
- Sumiaki Fukuda
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, Takatsuki, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Akihiro Kaneshige
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, Takatsuki, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takayuki Kaji
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Yu-Taro Noguchi
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Yusei Takemoto
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Lidan Zhang
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Hiroki Kokubo
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|
97
|
Blaauw B. Platelet-Derived Growth Factor signaling and the role of cellular crosstalk in functional muscle growth. FEBS Lett 2019; 591:690-692. [PMID: 28297119 DOI: 10.1002/1873-3468.12602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
98
|
Munroe M, Dvoretskiy S, Lopez A, Leong J, Dyle MC, Kong H, Adams CM, Boppart MD. Pericyte transplantation improves skeletal muscle recovery following hindlimb immobilization. FASEB J 2019; 33:7694-7706. [PMID: 31021652 PMCID: PMC6529341 DOI: 10.1096/fj.201802580r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
Conditions of extended bed rest and limb immobilization can initiate rapid and significant loss of skeletal muscle mass and function. Physical rehabilitation is standard practice following a period of disuse, yet mobility may be severely compromised, and recovery is commonly delayed or incomplete in special populations. Thus, a novel approach toward recovery of muscle mass is highly desired. Pericytes [neuron-glial antigen 2 (NG2)+CD31-CD45- (Lineage- [Lin-]) and CD146+Lin-] demonstrate capacity to facilitate muscle repair, yet the ability to enhance myofiber growth following disuse is unknown. In the current study, 3-4-mo-old mice were unilaterally immobilized for 14 d (IM) or immobilized for 14 d followed by 14 d of remobilization (RE). Flow cytometry and targeted gene expression analyses were completed to assess pericyte quantity and function following IM and RE. In addition, a transplantation study was conducted to assess the impact of pericytes on recovery. Results from targeted analyses suggest minimal impact of disuse on pericyte gene expression, yet NG2+Lin- pericyte quantity is reduced following IM (P < 0.05). Remarkably, pericyte transplantation recovered losses in myofiber cross-sectional area and the capillary-to-fiber ratio following RE, whereas deficits remained with vehicle alone (P = 0.01). These findings provide the first evidence that pericytes effectively rehabilitate skeletal muscle mass following disuse atrophy.-Munroe, M., Dvoretskiy, S., Lopez, A., Leong, J., Dyle, M. C., Kong, H., Adams, C. M., Boppart, M. D. Pericyte transplantation improves skeletal muscle recovery following hindlimb immobilization.
Collapse
Affiliation(s)
- Michael Munroe
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Svyatoslav Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Amber Lopez
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jiayu Leong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael C. Dyle
- Departments of Internal Medicine and University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois–Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher M. Adams
- Departments of Internal Medicine and University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Marni D. Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois–Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
99
|
Goh Q, Song T, Petrany MJ, Cramer AA, Sun C, Sadayappan S, Lee SJ, Millay DP. Myonuclear accretion is a determinant of exercise-induced remodeling in skeletal muscle. eLife 2019; 8:44876. [PMID: 31012848 PMCID: PMC6497442 DOI: 10.7554/elife.44876] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/22/2019] [Indexed: 01/03/2023] Open
Abstract
Skeletal muscle adapts to external stimuli such as increased work. Muscle progenitors (MPs) control muscle repair due to severe damage, but the role of MP fusion and associated myonuclear accretion during exercise are unclear. While we previously demonstrated that MP fusion is required for growth using a supra-physiological model (Goh and Millay, 2017), questions remained about the need for myonuclear accrual during muscle adaptation in a physiological setting. Here, we developed an 8 week high-intensity interval training (HIIT) protocol and assessed the importance of MP fusion. In 8 month-old mice, HIIT led to progressive myonuclear accretion throughout the protocol, and functional muscle hypertrophy. Abrogation of MP fusion at the onset of HIIT resulted in exercise intolerance and fibrosis. In contrast, ablation of MP fusion 4 weeks into HIIT, preserved exercise tolerance but attenuated hypertrophy. We conclude that myonuclear accretion is required for different facets of exercise-induced adaptive responses, impacting both muscle repair and hypertrophic growth.
Collapse
Affiliation(s)
- Qingnian Goh
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Taejeong Song
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Michael J Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Alyssa Aw Cramer
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Se-Jin Lee
- The Jackson Laboratory, Farmington, United States.,Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| |
Collapse
|
100
|
Schwartz LM. Skeletal Muscles Do Not Undergo Apoptosis During Either Atrophy or Programmed Cell Death-Revisiting the Myonuclear Domain Hypothesis. Front Physiol 2019; 9:1887. [PMID: 30740060 PMCID: PMC6356110 DOI: 10.3389/fphys.2018.01887] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscles are the largest cells in the body and are one of the few syncytial ones. There is a longstanding belief that a given nucleus controls a defined volume of cytoplasm, so when a muscle grows (hypertrophy) or shrinks (atrophy), the number of myonuclei change accordingly. This phenomenon is known as the “myonuclear domain hypothesis.” There is a general agreement that hypertrophy is accompanied by the addition of new nuclei from stem cells to help the muscles meet the enhanced synthetic demands of a larger cell. However, there is a considerable controversy regarding the fate of pre-existing nuclei during atrophy. Many researchers have reported that atrophy is accompanied by the dramatic loss of myonuclei via apoptosis. However, since there are many different non-muscle cell populations that reside within the tissue, these experiments cannot easily distinguish true myonuclei from those of neighboring mononuclear cells. Recently, two independent models, one from rodents and the other from insects, have demonstrated that nuclei are not lost from skeletal muscle fibers when they undergo either atrophy or programmed cell death. These and other data argue against the current interpretation of the myonuclear domain hypothesis and suggest that once a nucleus has been acquired by a muscle fiber it persists.
Collapse
Affiliation(s)
- Lawrence M Schwartz
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|