951
|
Shu KX, Li B, Wu LX. The p53 network: p53 and its downstream genes. Colloids Surf B Biointerfaces 2007; 55:10-8. [PMID: 17188467 DOI: 10.1016/j.colsurfb.2006.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/17/2006] [Accepted: 11/03/2006] [Indexed: 12/13/2022]
Abstract
The tumor-suppressor gene p53 and its downstream genes consist of a complicated gene network. p53 is a key molecular node in the network, which is activated in response to several cellular signals resulting in the maintenance of genetic stability. Several cellular signals may activate the p53 network. When the expression of P53 is elevated, P53-MDM2 module and the ubiquitin system can accurately regulate the expression level of P53. P53 can bind to specific DNA sequence, activate its downstream genes expression, and control cell-cycle arrest, DNA repair, and apoptosis. Elucidating the function of p53 gene network will help understand the interaction mechanisms of p53 and its downstream genes.
Collapse
Affiliation(s)
- Kun-Xian Shu
- College of Bioinformation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | | | | |
Collapse
|
952
|
Abstract
Gastric cancer is the second most common cancer worldwide. Treatment of localized gastric cancer relies primarily on surgical intervention, although growing evidence suggests that the addition of chemoradiation may improve disease-free intervals and overall survival. In this regard, the current high rates of recurrence and subsequent poor survival have prompted an ever-increasing use of multimodal strategies, even for early-stage disease. However, these therapies are often limited by debilitating toxicities and varying degrees of response efficacy. As a result, pharmacogenomics, the study of specific genetic and molecular signatures that may be predictive of treatment outcomes, has gained considerable interest. For example, studies have demonstrated that the expression of enzymes involved in the metabolism or conjugation of commonly used chemotherapy agents, such as fluoropyrimidines and cisplatin, can serve as surrogate markers predictive of chemotherapy response. Polymorphisms in the genes encoding these enzymes have also been identified and may further account for altered expression patterns, resulting in varied clinical responses. Future work is necessary to further refine the list of molecular genetic markers and to identify novel markers for prognostic and predictive purposes. Technologies such as microarray analysis may be useful in identifying new molecular genetic markers, and further work may determine whether these markers can be employed to help stratify patients into different multimodal treatment regimens.
Collapse
Affiliation(s)
- Casandra Anderson
- Department of General Oncologic Surgery, City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | |
Collapse
|
953
|
Abstract
Irrespective of the morphological features of end-stage cell death (that may be apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event that delimits the frontier between survival and death. Thus mitochondrial membranes constitute the battleground on which opposing signals combat to seal the cell's fate. Local players that determine the propensity to MMP include the pro- and antiapoptotic members of the Bcl-2 family, proteins from the mitochondrialpermeability transition pore complex, as well as a plethora of interacting partners including mitochondrial lipids. Intermediate metabolites, redox processes, sphingolipids, ion gradients, transcription factors, as well as kinases and phosphatases link lethal and vital signals emanating from distinct subcellular compartments to mitochondria. Thus mitochondria integrate a variety of proapoptotic signals. Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria. These catabolic enzymes as well as the cessation of the bioenergetic and redox functions of mitochondria finally lead to cell death, meaning that mitochondria coordinate the late stage of cellular demise. Pathological cell death induced by ischemia/reperfusion, intoxication with xenobiotics, neurodegenerative diseases, or viral infection also relies on MMP as a critical event. The inhibition of MMP constitutes an important strategy for the pharmaceutical prevention of unwarranted cell death. Conversely, induction of MMP in tumor cells constitutes the goal of anticancer chemotherapy.
Collapse
Affiliation(s)
- Guido Kroemer
- Institut Gustave Roussy, Institut National de la Santé et de la Recherche Médicale Unit "Apoptosis, Cancer and Immunity," Université de Paris-Sud XI, Villejuif, France
| | | | | |
Collapse
|
954
|
Kaushal N, Bansal MP. Dietary selenium variation-induced oxidative stress modulates CDC2/cyclin B1 expression and apoptosis of germ cells in mice testis. J Nutr Biochem 2007; 18:553-64. [PMID: 17320365 DOI: 10.1016/j.jnutbio.2006.11.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 11/08/2006] [Accepted: 11/16/2006] [Indexed: 01/12/2023]
Abstract
Oxidative stress has been linked with apoptosis in germ cells and with male infertility. However, the molecular mechanism of oxidative-stress-mediated apoptosis in germ cells has not been clearly defined so far. Because of the involvement of CDC2 and cyclin B1 in cell cycle regulation and their plausible role in apoptosis, the present study aimed to investigate the possibility that selenium (Se)-induced oxidative-stress-mediated modulations of these cell cycle regulators cause DNA damage and apoptosis in germ cells. To create different Se status (deficient, adequate and excess), male Balb/c mice were fed yeast-based Se-deficient diet (Group I) and a deficient diet supplemented with Se as sodium selenite (0.2 and 1 ppm Se in Groups II and III, respectively) for a period of 8 weeks. After the completion of the diet feeding schedule, a significant decrease in Se levels and glutathione peroxidase activity was observed in the Se-deficient group (Group I), whereas the Se-excess group (Group III) demonstrated an increase in Se levels. Increased levels of lipid peroxidation were seen in both Groups I and III when compared to Group II, indicating oxidative stress. The mRNA and protein expressions of both CDC2 and cyclin B1 were found to be significantly decreased in Groups I and III. A decrease in the immunohistochemical localization of these proteins was also observed in spermatogenic cells. The mRNA expressions of apoptotic factors such as Bcl-2, Bax, caspase-3 and caspase-9 were found to be increased in Groups I and III. A decrease in CDC2 kinase activity was also seen in these groups. Increased apoptosis was observed in Group I and Group III animals by terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling assay indicating oxidative-stress-mediated DNA damage. These findings suggest the effect of Se-induced oxidative stress on the cell cycle regulators and apoptotic activity of germ cells, thus providing new dimensions to molecular mechanisms underlying male infertility.
Collapse
Affiliation(s)
- Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
955
|
Hinnis AR, Luckett JCA, Walker RA. Survivin is an independent predictor of short-term survival in poor prognostic breast cancer patients. Br J Cancer 2007; 96:639-45. [PMID: 17285125 PMCID: PMC2360044 DOI: 10.1038/sj.bjc.6603616] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Established clinico–pathological factors can place patients with breast cancer into good and poor prognostic categories, but even within these groups behaviour and response to treatment can differ. This study examined the value of cell cycle and apoptotic regulatory proteins in predicting behaviour in a poor prognostic group. A total of 165 patients, all of whom had died of breast cancer with duration of survival 12–127 months, median 38 months, were examined using immunohistochemistry for proliferation, apoptosis, p53, phosphorylated p53, p21, checkpoint kinase 2 (Chk2), bcl-2, bax, survivin and XIAP. All had received chemotherapy and/or hormonal therapy and were predominantly T2, node positive, grade III with only half oestrogen-receptor (ER) positive. High proliferation, phosphorylated p53, Chk2 and survivin expression correlated with grade III and lack of ER, whereas low proliferation, p21 and bcl-2 related to better grade and presence of ER. On univariate analysis grade, proliferation, phosphorylated p53, bcl-2, ER and survivin related to duration of survival. In multivariate analysis, grade (P=0.001) and survivin (P=0.005) were independent prognostic factors, grade III and presence of survivin relating to shorter survival. The latter was particularly for those patients receiving neoadjuvant therapy and adjuvant chemo- and hormonal therapy. The presence of the inhibitor of apoptosis protein survivin is a highly significant independent predictor of shorter duration of survival of patients with poor prognostic features, and merits investigation as a marker in other prognostic groups.
Collapse
Affiliation(s)
- A R Hinnis
- Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, LE2 7LX, UK
| | - J C A Luckett
- Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, LE2 7LX, UK
| | - R A Walker
- Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, LE2 7LX, UK
- Department of Cancer Studies & Molecular Medicine, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK. E-mail:
| |
Collapse
|
956
|
Wesierska-Gadek J, Schreiner T, Maurer M, Waringer A, Ranftler C. Phenol red in the culture medium strongly affects the susceptibility of human MCF-7 cells to roscovitine. Cell Mol Biol Lett 2007; 12:280-93. [PMID: 17235438 PMCID: PMC6276014 DOI: 10.2478/s11658-007-0002-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 10/26/2006] [Indexed: 11/20/2022] Open
Abstract
Estrogens play an important role in the growth and terminal differentiation of the mammary gland. Prolonged exposure to estrogens seems to predispose women to breast cancer. It recently became evident that not only the intrinsic hormonal status but also external factors such as the occurrence of pharmaceuticals and chemicals with hormone activity in the environment may put women at greater risk of developing breast cancer. We focused on the interference of endocrine disruptors in breast cancer therapy. We observed that phenol red added to the culture medium strongly promoted the cell proliferation and cell cycle progression of human cells expressing the estrogen receptor, and affected their susceptibility to chemotherapy.
Collapse
Affiliation(s)
- Józefa Wesierska-Gadek
- Institute of Cancer Research, Department of Medicine I, Vienna Medical University, Vienna, Austria.
| | | | | | | | | |
Collapse
|
957
|
Zhang XT, Song TB, Du BL, Li DM, Li XM. Caspase-3 antisense oligodeoxynucleotides inhibit apoptosis in gamma-irradiated human leukemia HL-60 cells. Apoptosis 2007; 12:743-51. [PMID: 17219053 DOI: 10.1007/s10495-006-0018-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 11/27/2006] [Indexed: 01/06/2023]
Abstract
To study the inhibitory effects of caspase-3 mRNA antisense oligodeoxynucleotides (ASODNs) on apoptosis, we designed four ASODNs targeting different regions of caspase-3 mRNA and transfected them into human leukemia HL-60 cells. The transfected cells were given 10 Gy gamma-irradiation followed by incubation for 18 h and measurement of apoptosis and caspase-3 expression. Our results showed that ASODN-2 targeting the 5' non-coding region of sites -62 to -46, and ASODN-3 targeting the 5' coding region of sites -1 to 16, both reduced apoptosis measured by gel electrophoresis and flow cytometry. Hoechst 33258 staining and TUNEL assay revealed that apoptotic indexes in the ASODN-2 and ASODN-3 groups were significantly lower than those in the untransfected and mismatched oligodeoxynucleotide (MODN) groups. Immunocytochemistry, Western blotting and RT-PCR showed that expression levels of caspase-3 protein and mRNA in both ASODN-2 and ASODN-3 groups were decreased compared with those in the untransfected and MODN groups. In conclusion, caspase-3 mRNA ASODNs can inhibit gamma-radiation-induced apoptosis of HL-60 cells and reduce expression of caspase-3 protein and mRNA. The results suggest that antisense approach may be useful for therapeutic treatment of certain neurodegenerative diseases in which apoptosis is involved.
Collapse
Affiliation(s)
- Xiao-Tian Zhang
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Department of Human Anatomy and Histology-Embryology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, 710061, China
| | | | | | | | | |
Collapse
|
958
|
p53, BRCA1 and breast Cancer chemoresistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 608:70-86. [PMID: 17993233 DOI: 10.1007/978-0-387-74039-3_5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor suppressor genes p53 and BRCA1 are involved in hereditary as well as sporadic breast cancer development and therapeutic responses. While p53 mutations contribute to resistance to chemo- and radiotherapy, BRCA1 dysfunction leads to enhanced sensitivity to DNA damaging therapeutic agents. The biochemical pathways used by p53 and BRCA1 for signaling tumor suppression involve some cross-talk including repression of BRCA1 transcription by p53 and altered selectivity of p53-dependent gene activation by BRCA1. In this chapter we review clinical and preclinical data implicating p53 and BRCA1 in breast cancer chemosensitivity. We discuss the known signaling pathways downstream of p53 or BRCA1 that contribute to their modulation of therapeutic responses, and we discuss the implications of p53 or BRCA1 mutation in therapeutic design.
Collapse
|
959
|
Tian Z, Shen J, Moseman AP, Yang Q, Yang J, Xiao P, Wu E, Kohane IS. Dulxanthone A induces cell cycle arrest and apoptosisvia up-regulation of p53 through mitochondrial pathway in HepG2 cells. Int J Cancer 2007; 122:31-8. [PMID: 17847033 DOI: 10.1002/ijc.23048] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Natural products derived from plants provide a rich source for development of new anticancer drugs. Dulxanthone A was found to be an active cytotoxic component in Garcinia cowa by bioactivity-directed isolation. Studies to elucidate the cytotoxic mechanisms of dulxanthone A showed that dulxanthone A consistently induced S phase arrest and apoptosis in the most sensitive cell line HepG2. Furthermore, p53 was dramatically up-regulated, leading to altered expression of downstream proteins upon dulxanthone A treatment. Cell cycle related proteins, such as cyclin A, cyclin B, cyclin E, cdc-2, p21 and p27 were down-regulated. Some apoptosis correlated proteins were also altered following the drug treatment. Bcl-2 family members PUMA was up-regulated while Bcl-2 and Bax were down-regulated. However, the expression ratio of Bax/Bcl-2 was increased. This resulted in the release of cytochrome C from the mitochondria to the cytosol. Concurrently, Apaf-1 was stimulated with p53 by dulxanthone A. In result, cytochrome C, Apaf-1 and procaspase-9 form an apoptosome, which in turn triggered the activation of caspase-9, caspase-3 and downstream caspase substrates. Lamin A/C and PARP were down-regulated or cleaved, respectively. Moreover, cell cycle arrest and apoptosis in HepG2 cells induced by dulxanthone A were markedly inhibited by siRNA knockdown of p53. In summary, dulxanthone A is an active cytotoxic component of G. cowa. It induces cell cycle arrest at lower concentrations and triggers apoptosis at higher concentrations via up-regulation of p53 through the intrinsic mitochondrial pathway in HepG2 cells. Dulxanthone A is therefore likely a promising preventive and/or therapeutic agent against Hepatoma.
Collapse
Affiliation(s)
- Ze Tian
- Children's Hospital Informatics Program at Harvard- MIT Division of Health Sciences and Technology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
960
|
Wu Y, Kim SG, Xing D, Liu L, Park JC, Chen T, Chen WR. Fluorescence resonance energy transfer analysis of bid activation in living cells during ultraviolet-induced apoptosis. Acta Biochim Biophys Sin (Shanghai) 2007; 39:37-45. [PMID: 17213957 DOI: 10.1111/j.1745-7270.2007.00246.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ultraviolet (UV) irradiation is a DNA-damaging agent that triggers apoptosis through both the membrane death receptor and mitochondrial apoptotic signaling pathways. Bid, a pro-apoptotic Bcl-2 family member, is important in most cell types to apoptosis in response to DNA damage. In this study, a recombinant plasmid, YFP-Bid-CFP, comprised of yellow and cyan fluorescent protein and a full length Bid, was used as a fluorescence resonance energy transfer analysis (FRET) probe. Using the FRET technique based on YFP-Bid-CFP, we found that Bid activation was initiated at 9+/-1 h after UV irradiation, and the average duration of the activation was 75+/-10 min. Bid activation coincided with a collapse of the mitochondrial membrane potential with an average duration of 50+/-10 min. When cells were pretreated with Z-IETD-fmk (caspase-8 specific inhibitor) the process of Bid activation was completely inhibited, but the apoptosis was only partially affected. Z-DEVD-fmk (caspase-3 inhibitor) and Z-FA-fmk (non asp specific inhibitor) did not block Bid activation. Furthermore, the endogenous Bid activation with or without Z-IETD-fmk in response to UV irradiation was confirmed by Western blotting. In summary, using the FRET technique, we observed the dynamics of Bid activation during UV-induced apoptosis and found that it was a caspase-8 dependent event.
Collapse
Affiliation(s)
- Yinyuan Wu
- Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | | | | | | | | | | | | |
Collapse
|
961
|
Wesierska-Gadek J, Gueorguieva M, Herbacek I, Ranftler C. Effect of Distinct Anticancer Drugs on the Phosphorylation of p53 Protein at Serine 46 in Human MCF-7 Breast Cancer Cells. Ann N Y Acad Sci 2007; 1095:45-52. [PMID: 17404016 DOI: 10.1196/annals.1397.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Roscovitine (ROSC), a potent cyclin-dependent kinase inhibitor (CDI), inactivates cyclin-dependent kinase (CDK)2 resulting in the arrest of human MCF-7 breast cancer cells in G2 phase of the cell cycle. We have recently observed a strong activation of wild-type (wt) p53 protein in human MCF-7 breast cancer cells upon treatment with ROSC implicating that upregulated p53 might additionally modulate the primary action of ROSC. ROSC stabilized wt p53 protein resulting in a marked extension of its half-life. Since ROSC exhibits low cytotoxicity, it seems to upregulate p53 protein in a way different from DNA damage. ROSC induced phosphorylation of p53 protein at serine 46. Therefore, we decided to examine whether other anticancer drugs are also able to induce phosphorylation of wt p53 protein at serine 46. Exposure of MCF-7 cells to doxorubicin (DOX) at doses inducing a strong G2 arrest resulted in a weak upregulation of p53. No site-specific phosphorylation of p53 at serine 46 was detected. These results indicate that p53 activation is dispensable for DOX-induced G2 arrest. Moreover, the pattern of p53 phosphorylation strongly depends on the type of the stimulating factor.
Collapse
Affiliation(s)
- Józefa Wesierska-Gadek
- Cell Cycle Regulation Group, Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8 A, A-1090 Vienna, Austria.
| | | | | | | |
Collapse
|
962
|
Liu S, Li J, Tao Y, Xiao X. Small heat shock protein alphaB-crystallin binds to p53 to sequester its translocation to mitochondria during hydrogen peroxide-induced apoptosis. Biochem Biophys Res Commun 2006; 354:109-14. [PMID: 17222797 DOI: 10.1016/j.bbrc.2006.12.152] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 12/19/2006] [Indexed: 01/20/2023]
Abstract
Apoptosis is a highly conserved procedure of cell death and occurs under various stimuli, including oxidative stress. A small heat shock protein, alphaB-crystallin, is found to process resistance to apoptosis in some cells and tissues. But the mechanisms under this protective role are not fully understood. In the present study, we reported the early protective role of alphaB-crystallin against hydrogen peroxide-induced apoptosis in mice myogenic C(2)C(12) cells. alphaB-Crystallin interacted with p53, a proapoptotic protein, during cell apoptosis and such protein interaction mainly occurred in the cytoplasm of the cells, suggesting that the interaction of alphaB-crystallin with p53 might prevent the translocation of p53 from cytoplasm to mitochondria. Hence, this study provides a hint that alphaB-crystallin affects on p53 mitochondrial translocation during oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | | | | | | |
Collapse
|
963
|
Kabolizadeh P, Ryan J, Farrell N. Differences in the cellular response and signaling pathways of cisplatin and BBR3464 ([[trans-PtCl(NH3)(2)]2mu-(trans-Pt(NH3)(2)(H2N(CH2)(6)-NH2)2)]4+) influenced by copper homeostasis. Biochem Pharmacol 2006; 73:1270-9. [PMID: 17234160 DOI: 10.1016/j.bcp.2006.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 12/06/2006] [Accepted: 12/12/2006] [Indexed: 11/22/2022]
Abstract
[[trans-PtCl(NH(3))(2)](2)mu-(trans-Pt(NH(3))(2)(H(2)N(CH(2))(6)-NH(2))(2))](4+) (BBR3464) is a cationic trinuclear platinum drug that is being evaluated in phase II clinical trials for treatment of lung and ovarian cancers. The structure and DNA binding profile of BBR3464 is different from drugs commonly used clinically. It is of great interest to evaluate the difference between the mechanisms of uptake employed by BBR3464 and cisplatin (c-DDP), as altered uptake may explain chemoresistance. Using transfected cell lines, we show that both c-DDP and BBR3464 use the copper transporter hCTR1 to enter cells and to a lesser extent, the ATP7B transporter to exit cells. Copper influenced c-DDP and BBR3464 uptake similarly; it increased the c-DDP and BBR3464 uptake in ovarian (A2780) and colorectal (HCT116) carcinoma cell lines as detected by ICP-OES. However, the effects of copper on c-DDP- and BBR3464-mediated cytotoxicity differed. Copper decreased c-DDP-induced apoptosis, caspase-3/7 activation, p53 induction and PARP cleavage in cancer cell lines. In contrast, copper increased BBR3464-induced apoptosis, and had little effect on caspase activation, PARP cleavage, and p53 induction. It was concluded that BBR3464 employs mechanisms of intracellular action distinct from c-DDP. Although these drugs use the same cellular transporters (hCTR1 and ATP7B) for influx and efflux, downstream effects are different for the two drugs. These experiments illustrate fundamental differences in the mechanisms of action between cisplatin and the novel Pt-based drug BBR3464.
Collapse
Affiliation(s)
- Peyman Kabolizadeh
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, VA 23284, United States
| | | | | |
Collapse
|
964
|
Lin SY, Lai WW, Chou CC, Kuo HM, Li TM, Chung JG, Yang JH. Sodium ascorbate inhibits growth via the induction of cell cycle arrest and apoptosis in human malignant melanoma A375.S2 cells. Melanoma Res 2006; 16:509-19. [PMID: 17119452 DOI: 10.1097/01.cmr.0000232297.99160.9e] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vitamin C has been reported to be useful in the treatment and prevention of cancer. Inconsistent effects from growth stimulation to induction of apoptosis of malignant tumor cells, however, have been reported. Melanoma is an increasingly common and potentially lethal malignancy. It was reported that melanoma cells were more susceptible to ascorbate toxicity than any other tumor cells. The mechanisms accounting for ascorbate-induced apoptosis in human melanoma cells, however, have remained unclear. This study was undertaken to investigate the effect of sodium ascorbate on cytotoxicity and apoptosis in human malignant melanoma A375.S2 cells. A375.S2 cells were incubated with a certain range of concentrations of sodium ascorbate for various time periods. In order to examine the effects of sodium ascorbate on cell proliferation, cell cycle, apoptosis and necrosis, we performed 4,6-diamidino-2-phenylindole dihydrochloride assays and flow cytometry analysis. Polymerase chain reaction was used to examine the mRNA levels of p53, p21, p27, cyclin A, cyclin E, CDK2 and CDK4, which are associated with cell cycle S-phase arrest and apoptosis. Flow cytometric analysis showed that sodium ascorbate significantly induced cell cycle arrest and apoptosis in the A375.S2 cell line in a dose-dependent manner. The increased expressions of p53 and p21, and the decreased expressions of cyclin A, cyclin E, CDK2 and CDK4, indicated the cell cycle arrest at G1/S phase after the cells had been treated with sodium ascorbate. Induction of apoptosis involved an increase in the levels of p53, p21 and cellular Ca, and a decrease in mitochondrial membrane potential and activation of caspase 3 before culminating in apoptosis in sodium ascorbate-treated A375.S2 cells.
Collapse
Affiliation(s)
- Shuw-Yuan Lin
- Department of Food and Nutrition, Hung-Kuang University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
965
|
Keswani RN, Noffsinger A, Waxman I, Bissonnette M. Clinical use of p53 in Barrett's esophagus. Cancer Epidemiol Biomarkers Prev 2006; 15:1243-9. [PMID: 16835318 DOI: 10.1158/1055-9965.epi-06-0010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Barrett's esophagus is an established precursor to esophageal adenocarcinoma. Whereas most patients with Barrett's esophagus do not progress to adenocarcinoma, patients with progression have a poor prognosis. Current management strategies use frequent endoscopic surveillance and multiple nontargeted biopsies. This approach, however, may miss dysplastic areas. Furthermore, given the relatively high prevalence of Barrett's esophagus but low incidence of progression, this invasive and expensive approach has not been shown to be cost-effective. Thus, there is intense interest in using biomarkers to identify patients at increased risk of progressing to adenocarcinoma. This has included examination of mutations in the tumor suppressor gene, p53. In this report, we discuss the biology of p53 and the incidence of p53 mutations in Barrett's esophagus and review relevant studies regarding the ability of p53 to predict neoplastic progression. Additionally, we report our results of the expression of p53 by immunohistochemistry in a group of 18 patients that have undergone endoscopic esophageal mucosal resection for dysplasia. Although the presence of a p53 mutation increases the risk of neoplastic progression, the absence of this mutation does not abrogate the risk. Continuing efforts, therefore, are needed to define and prospectively validate a panel of biomarkers to risk-stratify patients with Barrett's esophagus. Determination of p53 mutational status may ultimately be a component of such a panel.
Collapse
Affiliation(s)
- Rajesh N Keswani
- Section of Gastroenterology, Department of Medicine, University of Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
966
|
Nam C, Yamauchi H, Nakayama H, Doi K. Etoposide induces apoptosis and cell cycle arrest of neuroepithelial cells in a p53-related manner. Neurotoxicol Teratol 2006; 28:664-72. [PMID: 17095187 DOI: 10.1016/j.ntt.2006.09.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 08/23/2006] [Accepted: 09/11/2006] [Indexed: 10/24/2022]
Abstract
We clarified that etoposide (VP-16), a topoisomerase II inhibitor, induced apoptosis in the mouse fetal brain. Apoptotic mechanisms and cell cycle arrest in this system were investigated. Four mg/kg of VP-16 was injected into pregnant mice on day 12 of gestation (GD12). The cell cycle and expression of protein and mRNA of p53 and its transcriptional target genes were examined in the fetal brain. The number of p53- and p21-protein-positive cells peaked at 4 h after treatment (HAT). The expression of p21 mRNA was significantly increased at 4 HAT and 8 HAT. The expression of fas mRNA was significantly increased from 2 to 12 HAT. Significant expression of puma mRNA was observed from 1 HAT to 48 HAT. Flow cytometric analysis revealed that VP-16 induced S-phase accumulation and G2 arrest at 4 and 8 HAT, and VP-16-induced apoptosis was significantly increased from 4 to 24 HAT. In an experiment using BrdU treatment of pregnant mice, the migration of neuroepithelial cells in the fetuses was delayed as compared to the migration of controls, and BrdU-positive signals were observed in some pyknotic cells from 8 to 12 HAT. The present results suggest that VP-16 might induce cell cycle arrest at G2/M phase and apoptosis in a p53-related manner.
Collapse
Affiliation(s)
- Chunja Nam
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | |
Collapse
|
967
|
Kisurina-Evgen’eva OP, Bryantseva SA, Shtil’ AA, Onishchenko GE. Antitubulin agents can initiate different apoptotic pathways. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906050174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
968
|
Abstract
One of the functional roles of the corneal epithelial layer is to protect the cornea, lens and other underlying ocular structures from damages caused by environmental insults. It is important for corneal epithelial cells to maintain this function by undergoing continuous renewal through a dynamic process of wound healing. Previous studies in corneal epithelial cells have provided substantial evidence showing that environmental insults, such as ultraviolet (UV) irradiation and other biohazards, can induce stress-related cellular responses resulting in apoptosis and thus interrupt the dynamic process of wound healing. We found that UV irradiation-induced apoptotic effects in corneal epithelial cells are started by the hyperactivation of K+ channels in the cell membrane resulting in a fast loss of intracellular K+ ions. Recent studies provide further evidence indicating that these complex responses in corneal epithelial cells are resulted from the activation of stress-related signaling pathways mediated by K+ channel activity. The effect of UV irradiation on corneal epithelial cell fate shares common signaling mechanisms involving the activation of intracellular responses that are often activated by the stimulation of various cytokines. One piece of evidence for making this distinction is that at early times UV irradiation activates a Kv3.4 channel in corneal epithelial cells to elicit activation of c-Jun N-terminal kinase cascades and p53 activation leading to cell cycle arrest and apoptosis. The hypothetic model is that UV-induced potassium channel hyperactivity as an early event initiates fast cell shrinkages due to the loss of intracellular potassium, resulting in the activation of scaffolding protein kinases and cytoskeleton reorganizations. This review article presents important control mechanisms that determine Kv channel activity-mediated cellular responses in corneal epithelial cells, involving activation of stress-induced signaling pathways, arrests of cell cycle progression and/or induction of apoptosis.
Collapse
Affiliation(s)
- Luo Lu
- Department of Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Harbor-UCLA Medical Center, CA 90502, USA.
| |
Collapse
|
969
|
Mueller LP, Luetzkendorf J, Mueller T, Reichelt K, Simon H, Schmoll HJ. Presence of mesenchymal stem cells in human bone marrow after exposure to chemotherapy: evidence of resistance to apoptosis induction. Stem Cells 2006; 24:2753-65. [PMID: 16931776 DOI: 10.1634/stemcells.2006-0108] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
For various potential clinical applications, the use of autologous human MSCs (hMSCs) would be favorable. In vitro observations suggested that hMSCs are resistant for chemotherapeutic substances; however, no data exist on the characteristics of hMSCs from bone marrow (BM) of chemotherapeutically treated patients. Here, we analyzed the character of hMSCs derived from chemotherapy-exposed BM and the in vitro response of hMSCs to chemotherapeutic substances. Colony-forming units-fibroblast (CFU-Fs) were isolated from BM aspirates of patients after high-dose or standard chemotherapy and of donors with unaffected BM. CFU-Fs from chemotherapy-exposed and unaffected BM contained hMSCs with similar phenotype, proliferation capacity, and differentiation potential. No obvious influence of age, sex, or time since chemotherapy exposure on the presence and characteristics of hMSCs was observed. In vitro, hMSCs showed a significant resistance for cisplatin, vincristine, and etoposide compared with sensitive tumor cell lines, particularly at apoptosis-inducing doses. The phenotype and differentiation potential of hMSCs was not altered by genotoxic treatment under clinically relevant conditions in vitro. hMSCs showed an elevated threshold for cisplatin-induced apoptosis, which was characterized by a lack of caspase-9 activity in apoptotic cells. In vitro exposure of hMSCs to cisplatin, vincristine, and etoposide resulted in an increased p53 expression, independent of apoptosis induction. We conclude that hMSCs can be isolated from chemotherapy-exposed BM in sufficient number and quality for potential clinical applications in chemotherapeutically treated patients. Our data suggest that an elevated apoptotic threshold contributes not only to the persistence of hMSCs in the BM after chemotherapy but also to their lifelong presence in the adult BM.
Collapse
Affiliation(s)
- Lutz P Mueller
- Department of Medicine IV, Hematology/Oncology, Centre for Applied Medical and Human-Biological Research, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| | | | | | | | | | | |
Collapse
|
970
|
Alli E, Yang JM, Hait WN. Silencing of stathmin induces tumor-suppressor function in breast cancer cell lines harboring mutant p53. Oncogene 2006; 26:1003-12. [PMID: 16909102 DOI: 10.1038/sj.onc.1209864] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancers harboring dominant-negative p53 mutations are often aggressive and difficult to treat. Direct attempts to restore wild-type p53 function have produced little clinical benefit. We investigated whether targeting a p53-target gene could induce certain tumor-suppressor characteristics. We found that inhibition of stathmin, a microtubule regulator that can be transcriptionally repressed by wild-type p53, restored certain wild-type functions to cancer cells with mutant p53. Silencing of stathmin by small interfering RNA (siRNA) in mutant p53 cell lines lowered expression to that observed following activation of wild-type p53 by DNA damage in wild-type p53 cell lines. siRNA-induced repression of stathmin decreased cell proliferation, viability and clonogenicity in mutant p53 cell lines. Furthermore, knockdown of stathmin partially restored cell-cycle regulation and activation of apoptosis. Therefore, targeting stathmin, a gene product that is overexpressed in the presence of mutant p53, may represent a novel approach to treating cancers with aberrant p53 function.
Collapse
Affiliation(s)
- E Alli
- Department of Pharmacology, The Cancer Institute of New Jersey, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | | | | |
Collapse
|
971
|
Subapriya R, Kumaraguruparan R, Nagini S. Expression of PCNA, cytokeratin, Bcl-2 and p53 during chemoprevention of hamster buccal pouch carcinogenesis by ethanolic neem (Azadirachta indica) leaf extract. Clin Biochem 2006; 39:1080-7. [PMID: 16989797 DOI: 10.1016/j.clinbiochem.2006.06.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 06/13/2006] [Accepted: 06/28/2006] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To evaluate the effect of ethanolic neem leaf extract (ENLE) on cell proliferation, differentiation and apoptosis associated proteins during 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. DESIGN AND METHODS Hamsters were divided into four groups. The right buccal pouches of animals in group 1 were painted with 0.5% DMBA three times a week. Animals in group 2 painted with DMBA as in group 1, received in addition, intragastric administration of ENLE (200 mg/kg bw) on days alternate to DMBA application. Group 3 animals were given ENLE (200 mg/kg bw) alone. Animals in group 4 served as control. All the animals were sacrificed after an experimental period of 14 weeks. The expression of proliferating cell nuclear antigen (PCNA), cytokeratin, Bcl-2 and p53 in the buccal pouch tissues were investigated using immunohistochemical staining. In addition, the expression of p53 was confirmed by Western blot analysis. RESULTS Topical application of DMBA for 14 weeks induced buccal pouch carcinomas associated with increased expression of PCNA, mutant p53 and Bcl-2 and decreased expression of cytokeratin. Administration of ENLE significantly inhibited the development of HBP carcinomas as revealed by decreased expression of PCNA, mutant p53 and Bcl-2 and overexpression of cytokeratin. CONCLUSION These findings suggest that ENLE exerts its anticancer properties by inhibiting cell proliferation and inducing differentiation and apoptosis.
Collapse
Affiliation(s)
- Rajamanickam Subapriya
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608 002, Tamil Nadu, India
| | | | | |
Collapse
|
972
|
Bonofiglio D, Aquila S, Catalano S, Gabriele S, Belmonte M, Middea E, Qi H, Morelli C, Gentile M, Maggiolini M, Andò S. Peroxisome proliferator-activated receptor-gamma activates p53 gene promoter binding to the nuclear factor-kappaB sequence in human MCF7 breast cancer cells. Mol Endocrinol 2006; 20:3083-92. [PMID: 16887883 DOI: 10.1210/me.2006-0192] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The aim of the present study was to provide new mechanistic insight into the growth arrest and apoptosis elicited by peroxisome proliferator-activated receptor (PPAR)gamma in breast cancer cells. We ascertained that PPARgamma mediates the inhibition of cycle progression in MCF7 cells exerted by the specific PPARgamma agonist rosiglitazone [BRL4653 (BRL)], because this response was no longer notable in the presence of the receptor antagonist GW9662. We also provided evidence that BRL is able to up-regulate mRNA and protein levels of the tumor suppressor gene p53 and its effector p21(WAF1/Cip1) in a time- and dose-dependent manner. Moreover, in transfection experiments with deletion mutants of the p53 gene promoter, we documented that the nuclear factor-kappaB sequence is required for the transcriptional response to BRL. Interestingly, EMSA showed that PPARgamma binds directly to the nuclear factor-kappaB site located in the promoter region of p53, and chromatin immunoprecipitation experiments demonstrated that BRL increases the recruitment of PPARgamma on the p53 promoter sequence. Next, both PPARgamma and p53 were involved in the cleavage of caspases-9 and DNA fragmentation induced by BRL, given that GW9662 and an expression vector for p53 antisense blunted these effects. Our findings provide evidence that the PPARgamma agonist BRL promotes the growth arrest and apoptosis in MCF7 cells, at least in part, through a cross talk between p53 and PPARgamma, which may be considered an additional target for novel therapeutic interventions in breast cancer patients.
Collapse
Affiliation(s)
- Daniela Bonofiglio
- Department of Pharmaco-Biology, University of Calabria, 87030 Arcavacata di Rende, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
973
|
Hussain SP, Harris CC. p53 biological network: at the crossroads of the cellular-stress response pathway and molecular carcinogenesis. J NIPPON MED SCH 2006; 73:54-64. [PMID: 16641528 DOI: 10.1272/jnms.73.54] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
p53 as a key molecular node in the stress response pathway, including inflammation. p53 is involved in several critical pathways including cell cycle arrest, apoptosis, DNA repair, and cellular senescence, which are essential for normal cellular homeostasis and maintaining genome integrity. The alteration of the TP53 gene or posttranslational modification in the p53 protein can alter its response to cellular stress. The molecular archaeology of the TP53 mutation spectrum generates hypotheses concerning the etiology and molecular pathogenesis of human cancer. The spectrum of somatic mutations in the TP53 gene implicates environmental carcinogens, and both endogenous agents and processes in the etiology of human cancer.
Collapse
Affiliation(s)
- S Perwez Hussain
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | | |
Collapse
|
974
|
Gu W, Putral L, Hengst K, Minto K, Saunders NA, Leggatt G, McMillan NAJ. Inhibition of cervical cancer cell growth in vitro and in vivo with lentiviral-vector delivered short hairpin RNA targeting human papillomavirus E6 and E7 oncogenes. Cancer Gene Ther 2006; 13:1023-32. [PMID: 16810314 DOI: 10.1038/sj.cgt.7700971] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this study, we investigated the suppressive effect of a short hairpin RNA delivered by a lentiviral vector (LV-shRNA) against human papillomavirus (HPV) type 18 E6 on the expression of the oncogenes E6 and E7 in cervical cancer HeLa cells both in vitro and in vivo. The LV-shRNA effectively delivered the shRNA to HeLa cells and lead to a dose-dependent reduction of E7 protein and the stabilization of E6 target proteins, p53 and p21. Low-dose infection of HeLa cells with LV-shRNA caused reduced cell growth and the induction of senescence, whereas a high-dose infection resulted in specific cell death via apoptosis. Transplant of HeLa cells infected with a low dose of LV-shRNA into Rag-/- mice significantly reduced the tumor weight, whereas transplant of cells infected with a high dose resulted in a complete loss of tumor growth. Systemic delivery of LV-shRNA into mice with established HeLa cell lung metastases led to a significant reduction in the number of tumor nodules. Our data collectively suggest that lentiviral delivery is an effective way to achieve stable suppression of E6/E7 oncogene expression and induce inhibition of tumor growth both in vitro and in vivo. These results encourage further investigation of this form of RNA interference as a promising treatment for cervical cancer.
Collapse
Affiliation(s)
- W Gu
- Cancer Biology Program, Centre for Immunology and Cancer Research, Princess Alexandra Hospital, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | |
Collapse
|
975
|
Spillare EA, Wang XW, von Kobbe C, Bohr VA, Hickson ID, Harris CC. Redundancy of DNA helicases in p53-mediated apoptosis. Oncogene 2006; 25:2119-23. [PMID: 16288211 PMCID: PMC1420682 DOI: 10.1038/sj.onc.1209242] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A subset of DNA helicases, the RecQ family, has been found to be associated with the p53-mediated apoptotic pathway and is involved in maintaining genomic integrity. This family contains the BLM and WRN helicases, in which germline mutations are responsible for Bloom and Werner syndromes, respectively. TFIIH DNA helicases, XPB and XPD, are also components in this apoptotic pathway. We hypothesized that there may be some redundancy between helicases in their ability to complement the attenuated p53-mediated apoptotic levels seen in cells from individuals with diseases associated with these defective helicase genes. The attenuated apoptotic phenotype in Bloom syndrome cells was rescued not only by ectopic expression of BLM, but also by WRN or XPB, both 3' --> 5' helicases, but not expression of the 5' --> 3' helicase XPD. Overexpression of Sgs1, a WRN/BLM yeast homolog, corrected the reduction in BS cells only, which is consistent with Sgs1 being evolutionarily most homologous to BLM. A restoration of apoptotic levels in cells from WS, XPB or XPD patients was attained only by overexpression of the specific helicase. Our data suggest a limited redundancy in the pathways of these RecQ helicases in p53-induced apoptosis.
Collapse
Affiliation(s)
- E A Spillare
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | |
Collapse
|
976
|
Yim H, Hwang IS, Choi JS, Chun KH, Jin YH, Ham YM, Lee KY, Lee SK. Cleavage of Cdc6 by caspase-3 promotes ATM/ATR kinase-mediated apoptosis of HeLa cells. ACTA ACUST UNITED AC 2006; 174:77-88. [PMID: 16801388 PMCID: PMC2064166 DOI: 10.1083/jcb.200509141] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We show that caspase-3 cleaves Cdc6 at D290/S and D442/G sites, producing p32-tCdc6 (truncated Cdc6) and p49-tCdc6, respectively, during etoposide- or tumor necrosis factor (TNF)-α–induced apoptosis. The expression of these tCdc6 proteins, p32- and p49-tCdc6, promotes etoposide-induced apoptosis. The expression of tCdc6 perturbs the loading of Mcm2 but not Orc2 onto chromatin and activates ataxia telangiectasia mutated (ATM) and ATM and Rad-3 related (ATR) kinase activities with kinetics similar to that of the phosphorylation of Chk1/2. The activation kinetics are consistent with elevated cellular levels of p53 and mitochondrial levels of Bax. The tCdc6-induced effects are all suppressed to control levels by expressing a Cdc6 mutant that cannot be cleaved by caspase-3 (Cdc6-UM). Cdc6-UM expression attenuates the TNF-α–induced activation of ATM and caspase-3 activities. When ATM or ATR is down-expressed by using the small interfering RNA technique, the TNF-α– or tCdc6-induced activation of caspase-3 activities is suppressed in the cells. These results suggest that tCdc6 proteins act as dominant-negative inhibitors of replication initiation and that they disrupt chromatin structure and/or induce DNA damage, leading to the activation of ATM/ATR kinase activation and p53–Bax-mediated apoptosis.
Collapse
Affiliation(s)
- Hyungshin Yim
- Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
977
|
Xu J, Ji LD, Xu LH. Lead-induced apoptosis in PC 12 cells: involvement of p53, Bcl-2 family and caspase-3. Toxicol Lett 2006; 166:160-7. [PMID: 16887300 DOI: 10.1016/j.toxlet.2006.06.643] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 06/19/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Abstract
It has been reported that lead could induce apoptosis in a variety of cell types. Although mitochondrion is regarded as the most pertinent pathway in mediating apoptosis, the exact mechanisms of lead-induced apoptosis are still largely unknown. Furthermore, there is little information about expressions and regulations of Bax, Bcl-2, and p53 in lead-induced apoptosis, which are critical regulators of mitochondrial stability. The present study was undertaken to determine whether lead could induce DNA damage and apoptosis in PC 12 cells, and the involvement of Bax, Bcl-2, p53, and caspase-3 in this process. The results showed that lead could induce DNA damage and apoptosis in PC 12 cells, accompanying with upregulation of Bax and downregulation of Bcl-2. Additionally, the expression of p53 increased, and caspase-3 was activated. Therefore, it suggests that lead can induce activation of p53 by DNA damage, which may lead to imbalance of Bax/Bcl-2 and mitochondrial dysfunction. Subsequently, after activation of caspase-3, lead-induced apoptosis occurres.
Collapse
Affiliation(s)
- Jin Xu
- Department of Biochemistry and Molecular biology, School of Medicine, Zhejiang University, Hangzhou 310031, PR China
| | | | | |
Collapse
|
978
|
Batinac T, Zamolo G, Coklo M, Hadzisejdic I, Stemberger C, Zauhar G. Expression of cell cycle and apoptosis regulatory proteins in keratoacanthoma and squamous cell carcinoma. Pathol Res Pract 2006; 202:599-607. [PMID: 16781827 DOI: 10.1016/j.prp.2006.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 04/11/2006] [Indexed: 11/20/2022]
Abstract
Some authors view keratoacanthoma (KA) as a variant of squamous cell carcinoma (SCC), while others consider it a separate entity that must be distinguished from SCC. Involution displayed by KA is an important difference between these two entities. It has been suggested that apoptosis plays a role in the involution process of KA, although the exact trigger for it remains unclear. A hundred and fifty specimens were included in this study, 30 cases for each of the following groups: normal skin (NS), proliferative keratoacanthoma (pKA), regressing keratoacanthoma (rKA), well-differentiated squamous cell carcinoma (wdSCC), and poorly differentiated squamous cell carcinoma (pdSCC). They were immunohistochemically examined for the expression of p53, Ki-67, bak, and bcl-2. Significantly higher p53 and Ki-67 expressions were observed in all tumor lesions examined as compared with NS. There was higher bak expression in KAs compared to NS and a significant reduction of bak expression in pdSCC together with a significant reduction of bak expression in SCCs compared to pKA. Bcl-2 expression was similar in NS and SCCs, but was lower in rKA. We found a significant positive correlation between p53 and Ki-67, p53 and Bak in NS and examined skin tumors. Lower bcl-2 expression in conjunction with higher bak expression in rKA suggests a possible role of these apoptosis-regulating proteins in tumor regression. In contrast to this finding, a steady level of bcl-2 expression in pdSCC combined with lower bak expression levels and a high proliferation rate could contribute to progression and aggressiveness in these tumors. Bak and p53 expression is a sun-related and age-dependent process in NS and skin tumors.
Collapse
Affiliation(s)
- Tanja Batinac
- Department of Dermatovenerology, Rijeka University Hospital, Rijeka, Croatia
| | | | | | | | | | | |
Collapse
|
979
|
Rezvani HR, Mazurier F, Cario-André M, Pain C, Ged C, Taïeb A, de Verneuil H. Protective Effects of Catalase Overexpression on UVB-induced Apoptosis in Normal Human Keratinocytes. J Biol Chem 2006; 281:17999-8007. [PMID: 16644728 DOI: 10.1074/jbc.m600536200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UV-induced apoptosis in keratinocytes is a highly complex process in which various molecular pathways are involved. These include the extrinsic pathway via triggering of death receptors and the intrinsic pathway via DNA damage and reactive oxygen species (ROS) formation. In this study we investigated the effect of catalase and CuZn-superoxide dismutase (SOD) overexpression on apoptosis induced by UVB exposure at room temperature or 4 degrees C on normal human keratinocytes. Irradiation at low temperature reduced UV-induced apoptosis by 40% in normal keratinocytes independently of any change in p53 and with a decrease in caspase-8 activation. Catalase overexpression decreased apoptosis by 40% with a reduction of caspase-9 activation accompanied by a decrease in p53. Keeping cells at low temperature and catalase overexpression had additive effects. CuZn-SOD overexpression had no significant effect on UVB-induced apoptosis. UVB induced an increase in ROS levels at two distinct stages: immediately following irradiation and around 3 h after irradiation. Catalase overexpression inhibited only the late increase in ROS levels. We conclude that catalase overexpression has a protective role against UVB irradiation by preventing DNA damage mediated by the late ROS increase.
Collapse
Affiliation(s)
- Hamid Reza Rezvani
- INSERM E0217, University Victor Segalen Bordeaux 2, Bordeaux F-33000, France
| | | | | | | | | | | | | |
Collapse
|
980
|
Wee KB, Aguda BD. Akt versus p53 in a network of oncogenes and tumor suppressor genes regulating cell survival and death. Biophys J 2006; 91:857-65. [PMID: 16648169 PMCID: PMC1563780 DOI: 10.1529/biophysj.105.077693] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The tumor suppressor protein, p53, and the oncoprotein, Akt, are involved in a cross talk that could be at the core of a cell's control machinery for switching between survival and death. This cross talk is a combination of reciprocally antagonistic pathways emanating from p53 and Akt, and also involves another tumor suppressor gene, PTEN, and another oncogene, Mdm2; such a connected network of cancer-relevant genes must be significant and demands a critical study. The p53-Akt network is shown in this report to possess the potential to exhibit bistability, a phenomenon in which two stable steady states of the system coexist for a fixed set of control parameter values. A hierarchy of qualitative networks and abstract kinetic models are analyzed and simulated on a computer to demonstrate the robustness of the bistable behavior, which, as argued in this study, is a likely candidate mechanism for a cellular survival-death switch. The analysis applies to cells that are neither p53-null nor Akt-null. The models presented here offer experimental predictions on the identity of control parameters of apoptotic thresholds and on network perturbations (including DNA damage and Akt inhibition) that are sufficient to generate switching between pro-survival and pro-death cellular states.
Collapse
|
981
|
Jeon HK, Choi SU, Jung NP. Association of the ERK1/2 and p38 kinase pathways with nitric oxide-induced apoptosis and cell cycle arrest in colon cancer cells. Cell Biol Toxicol 2006; 21:115-25. [PMID: 16142585 DOI: 10.1007/s10565-005-0148-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 05/03/2005] [Indexed: 12/16/2022]
Abstract
To investigate the mechanism by which nitric oxide (NO) induces cell death in colon cancer cells, we compared two types of colon cancer cells with different p53 status: HCT116 (p53 wild-type) cells and SW620 (p53-deficient) cells. We found that S-nitrosoglutathione (GSNO), the NO donor, induced apoptosis in both types of colon cancer cells. However, SW620 cells were much more susceptible than HCT116 cells to apoptotic death by NO. We investigated the role of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 kinase on NO-induced apoptosis in both types of colon cancer cells. GSNO treatment effectively stimulated activation of the ERK1/2 and p38 kinase in both types of cells. In HCT116 cells, pretreatment with PD98059, an inhibitor of ERK1/2, or SB203580, an inhibitor of p38 kinase, had no marked effect on GSNO-induced apoptosis. However, in SW620 cells, SB203580 significantly reduced the NO-induced apoptosis, whereas PD098059 increases NO-induced apoptosis. Furthermore, we found evidence of cell cycle arrest of the G0/G1 phase in SW620 cells but not in HCT116 cells. Inhibition of ERK1/2 with PD098059, or of p38 kinase with SB203580, reduced the GSNO-induced cell cycle arrest of the G0/G1 phase in SW620 cells. We therefore conclude that NO-induced apoptosis in colon cancer cells is mediated by a p53-independent mechanism and that the pathways of ERK1/2 and p38 kinase are important in NO-induced apoptosis and in the cell cycle arrest of the G0/G1 phase.
Collapse
Affiliation(s)
- H-K Jeon
- Department of Biology, Yonsei University, Seoul, Korea.
| | | | | |
Collapse
|
982
|
Leiser AL, Anderson SE, Nonaka D, Chuai S, Olshen AB, Chi DS, Soslow RA. Apoptotic and cell cycle regulatory markers in uterine leiomyosarcoma. Gynecol Oncol 2006; 101:86-91. [PMID: 16289259 DOI: 10.1016/j.ygyno.2005.09.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 09/01/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The primary aim of this study was to investigate the expression of apoptotic and cell cycle regulators p53, p21, p27, bax, and bcl-2 in uterine leiomyosarcoma in order to identify molecular pathways that possibly could be important in the development of leiomyosarcoma. A secondary aim was to examine if the apoptotic and cell cycle regulatory protein expression profile of uterine leiomyosarcoma is potentially useful for clinical prognostic purposes. METHODS A tissue microarray representing 36 uterine leiomyosarcomas and 19 uterine leiomyomas was created with 3 representative cores from each tumor. Immunohistochemical staining was performed for bcl-2, bax, p21, p27, and p53 using standard techniques. Staining was scored 0-12 for each marker, 0-3 being negative and 4-12 positive. Outcome analyses were performed only for leiomyosarcomas. First recurrence was determined from the time of initial diagnosis. Survival was determined from the time of initial diagnosis to last follow-up. RESULTS Associations were found between disease type (leiomyosarcoma vs. leiomyoma) and the positivity status of p21 (43% vs. 0%, P < 0.001), p53 (54% vs. 0%, P < 0.001), and bax (34% vs. 94%, P < 0.001). bcl-2-positive leiomyosarcoma was associated with a longer time to recurrence (P = 0.02) in a univariate analysis. In a multivariate analysis, tumor stage was the only independent significant prognostic factor (P = 0.002). CONCLUSION The significant differential expression of apoptotic and cell cycle regulatory proteins in uterine leiomyosarcoma as compared to benign smooth muscle tumors suggests that pathways involving these proteins may be important in the development of malignant disease and, therefore, could be potential targets for molecular therapies.
Collapse
Affiliation(s)
- Aliza L Leiser
- Developmental Chemotherapy Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
983
|
Kuo YC, Kuo PL, Hsu YL, Cho CY, Lin CC. Ellipticine induces apoptosis through p53-dependent pathway in human hepatocellular carcinoma HepG2 cells. Life Sci 2006; 78:2550-7. [PMID: 16337242 DOI: 10.1016/j.lfs.2005.10.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 10/06/2005] [Indexed: 11/22/2022]
Abstract
Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole), one of the simplest naturally occurring alkaloids, was isolated from the leaves of the evergreen tree Ochrosia elliptica Labill (Apocynaceae). Here, we reported that ellipticine inhibited the cell growth of human hepatocellular carcinoma cell line HepG2 and provided molecular understanding of this effect. The XTT assay results showed that ellipticine decreased the cell viability of HepG2 cells in a dose- and time-dependent manner, and the IC50 value was 4.1 microM. Furthermore, apoptosis induction by ellipticine in HepG2 cells was verified by the appearance of DNA fragmentation and annexin V-FITC/propidium iodide (PI) staining assay. Ellipticine treatment was found to result in the upregulation of p53, Fas/APO-1 receptor and Fas ligand. Besides, ellipticine also initiated mitochondrial apoptotic pathway through regulation of Bcl-2 family proteins expression, alteration of mitochondrial membrane potential (DeltaPsim), and activation of caspase-9 and caspase-3. Taken together, ellipticine decreased the cell growth and induced apoptosis in HepG2 cell.
Collapse
Affiliation(s)
- Yu-Chun Kuo
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
984
|
Abstract
Apoptosis or programmed cell death occurs in the liver as in other organs. In the normal state it is not a frequent mode of hepatic cell destruction. Morphological and biochemical characteristics of liver cell apoptosis do not differ from what is observed in other cells. The Fas receptor pathway, a frequent hepatic apoptotic pathway among various others, involves intra-cellular signals amplified by mitochondria. Although hepatic apoptosis may occur by following several others pathways, Fas, which is abundantly expressed in the plasma membrane of hepatocytes, is very often involved in hepatocyte demise during B or C viral hepatitis irrespective of their clinical form, alcoholic hepatitis, cholestasis due to accumulation of hepatic biliary salts, or certain types of drug-induced hepatitis. Fas is also probably responsible for the death of biliary cells in primary biliary cirrhosis. In contrast one of the causes of resistance to apoptosis of hepatic cancerous cells could be related to an alteration of the Fas receptor. This is why much experimental work is presently performed to achieve inhibition of the Fas receptor either at the mRNA level or at the level of Fas-inductible proteolytic enzymes called caspases. One perspective is a specific treatment of apoptosis as an adjuvant treatment of liver diseases.
Collapse
Affiliation(s)
- Gérard Feldmann
- INSERM U 773, Faculté de Médecine Xavier Bichat, Université Paris 7- Denis Diderot, Paris.
| |
Collapse
|
985
|
Panno ML, Giordano F, Mastroianni F, Morelli C, Brunelli E, Palma MG, Pellegrino M, Aquila S, Miglietta A, Mauro L, Bonofiglio D, Andò S. Evidence that low doses of Taxol enhance the functional transactivatory properties of p53 on p21 waf promoter in MCF-7 breast cancer cells. FEBS Lett 2006; 580:2371-80. [PMID: 16616141 DOI: 10.1016/j.febslet.2006.03.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/10/2006] [Accepted: 03/14/2006] [Indexed: 12/01/2022]
Abstract
In the present study, we evidence how in breast cancer cells low doses of Taxol for 18 h determined the upregulation of p53 and p21 waf expression concomitantly with a decrease of the anti-apoptotic Bcl-2. P53 and its gene product, the mdm2 protein, in treated cells exhibits a prevalent nuclear compartmentalization, thus potentiating p53 transactivatory properties. Indeed, the most important finding of this study consists with the evidence that Taxol at lower concentrations is able to produce the activation of p21 promoter via p53. Prolonged exposure of MCF-7 cells to Taxol (48 h) resulted in an increased co-association between p21 and PCNA compared to control and this well fits with the simultaneous block of cell cycle into the G2/M phase.
Collapse
Affiliation(s)
- M Luisa Panno
- Department of Cellular Biology, University of Calabria, Ponte Pietro Bucci, Cubo 4C, 87030, Arcavacata di Rende, Cosenza, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
986
|
Plaster N, Sonntag C, Busse CE, Hammerschmidt M. p53 deficiency rescues apoptosis and differentiation of multiple cell types in zebrafish flathead mutants deficient for zygotic DNA polymerase delta1. Cell Death Differ 2006; 13:223-35. [PMID: 16096653 DOI: 10.1038/sj.cdd.4401747] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cell culture work has identified the tumor suppressor p53 as a component of the S-phase checkpoint control system, while in vivo studies of this role of p53 in whole-vertebrate systems were limited. Here, we describe zebrafish mutants in the DNA polymerase delta catalytic subunit 1, based on the positional cloning of the flathead (fla) gene. fla mutants display specific defects in late proliferative zones, such as eyes, brain and cartilaginous elements of the visceral head skeleton, where cells display compromised DNA replication, followed by apoptosis, and partial or complete loss of affected tissues. Antisense-mediated knockdown of p53 in fla mutants leads to a striking rescue of all phenotypic traits, including completion of replication, survival of cells, and normal differentiation and tissue formation. This indicates that under replication-compromised conditions, the p53 branch of the S-phase checkpoint is responsible for eliminating stalled cells that, given more time, would have otherwise finished their normal developmental program.
Collapse
Affiliation(s)
- N Plaster
- Georges-Köhler-Laboratory, Max-Planck Institute of Immunobiology, Stuebeweg 51, 79108 Freiburg, Germany
| | | | | | | |
Collapse
|
987
|
Abstract
One of the most frequently mutated genes in human cancers, tumour suppressor p53 (TP53), can induce cell-cycle arrest and apoptosis. The apoptotic function of p53 is tightly linked to its tumour-suppression function and the efficacy of many cancer therapies depends on this. The identification of a new family of proteins, known as ASPPs (ankyrin-repeat-, SH3-domain- and proline-rich-region-containing proteins), has led to the discovery of a novel mechanism that selectively regulates the apoptotic function, but not the cell-cycle-arrest function, of p53, and gives an insight into how p53 responds to different stress signals. ASPPs might be new molecular targets for cancer therapy.
Collapse
Affiliation(s)
- Giuseppe Trigiante
- Ludwig Institute for Cancer Research, Courtauld Building, 91 Riding House Street, London W1W 7BS, UK
| | | |
Collapse
|
988
|
Abstract
Trp53 is arguably the most critical tumour suppressor gene product that inhibits malignant transformation. Besides mutations that inactivate Trp53 functions, genetic polymorphisms have been suggested to be risk factors for cancer. A polymorphic site at codon 72 in exon 4 encodes either an arginine amino acid (Trp53(72R)) or a proline residue (Trp53(72P)). Previous studies have shown that the Trp53(72R) form is more efficient in apoptosis induction, whereas the Trp53(72P) form was suggested to induce G1 arrest better. Here we report that Trp53(72P) is more efficient than Trp53(72R) in specifically activating several Trp53-dependent DNA-repair target genes in several cellular systems. Moreover, using isogenic cell lines and several DNA-repair assays, we show that Trp53(72P) cells have a significantly higher DNA-repair capacity than the Trp53(72R) cells. Furthermore, Trp53(72P)-expressing cells exhibit reduced micronuclei formation compared to Trp53(72R)-expressing cells, suggesting that genomic instability is reduced in these cells. Together, the data highlight the functional differences between the Trp53 polymorphic variants, and suggest that their expression status may influence cancer risk.
Collapse
Affiliation(s)
- M Siddique
- Laboratory of Molecular Carcinogenesis, National Cancer Centre, Singapore
| | | |
Collapse
|
989
|
Bressin C, Bourgarel-Rey V, Carré M, Pourroy B, Arango D, Braguer D, Barra Y. Decrease in c-Myc activity enhances cancer cell sensitivity to vinblastine. Anticancer Drugs 2006; 17:181-7. [PMID: 16428936 DOI: 10.1097/00001813-200602000-00009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The c-myc oncogene encodes for a transcriptional factor involved in many cellular processes such as proliferation, differentiation and apoptosis. According to these different functions, the role of c-Myc protein in cellular sensitivity to anti-cancer drugs is controversial. We defined the role of c-Myc in cancer cell sensitivity to vinblastine (VLB) using human colon cancer cells: LoVo wild-type or transfected with a plasmid containing the human c-myc gene in antisense orientation (LoVo-mycANS). Analysis of VLB cytotoxicity demonstrated a 3-fold increase in VLB sensitivity in LoVo-mycANS cells. Comparison between cells revealed different apoptosis kinetics: accumulation of cells in sub-G1 phase and poly(ADP-ribose) polymerase cleavage occurred earlier in LoVo-mycANS. Then, we demonstrated a mitochondrial membrane potential disruption followed by cytochrome c release that indicates the involvement of mitochondria in this apoptotic signaling pathway. This earlier apoptosis was accompanied by a Bcl-2 decrease and a p53 increase. In conclusion, the decrease in c-Myc expression enhanced the VLB sensitivity, triggering earlier apoptosis through induction of the intrinsic pathway. Thus, c-myc induction is a resistance factor and our findings suggest that tumors carrying low levels of c-Myc protein could be more responsive to vinca alkaloids treatment. Moreover, the downregulation of c-myc oncogene by an antisense strategy might represent a useful goal for improving the efficacy of this anti-neoplastic drug family.
Collapse
Affiliation(s)
- Céline Bressin
- CNRS FRE 2737, UFR Pharmacie, University of La Mediterranée, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
990
|
Brégégère F, Milner Y, Friguet B. The ubiquitin-proteasome system at the crossroads of stress-response and ageing pathways: a handle for skin care? Ageing Res Rev 2006; 5:60-90. [PMID: 16330259 DOI: 10.1016/j.arr.2005.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 09/22/2005] [Accepted: 09/26/2005] [Indexed: 02/07/2023]
Abstract
The regulation of gene expression at the transcriptional level has been considered for long as the main mechanism of cellular adaptive responses. Since the turn of the century, however, it is becoming clear that higher organisms developed a complex, sensitive and maybe equally important network of regulatory pathways, relying largely on protein interactions, post-translational modifications and proteolysis. Here we review the involvement of the ubiquitin-proteasome pathway of protein degradation at different levels of cellular life in relation with ageing, and with a special focus on skin. It comes out that the ubiquitin system plays a major role in signal transduction associated with stress and ageing, in skin in particular through the control of retinoid and NF-kappaB pathways. The understanding of specific proteolytic targeting by E3 ubiquitin-ligases paves the way for a new generation of active molecules that may control particular steps of normal and pathological ageing.
Collapse
Affiliation(s)
- François Brégégère
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Université Denis Diderot-Paris 7, C.C.7128, 2 Place Jussieu, 75251 Paris Cédex 05, France.
| | | | | |
Collapse
|
991
|
Abstract
Integrin-mediated cell adhesion to extracellular matrix proteins is known to promote cell survival, whereas detachment from the matrix can cause rapid apoptotic death in some cell types. Contrary to this paradigm, we show that fibroblast adhesion to the angiogenic matrix protein CCN1 (CYR61) induces apoptosis, whereas endothelial cell adhesion to CCN1 promotes cell survival. CCN1 induces fibroblast apoptosis through its adhesion receptors, integrin α6β1 and the heparan sulfate proteoglycan (HSPG) syndecan-4, triggering the transcription-independent p53 activation of Bax to render cytochrome c release and activation of caspase-9 and -3. Neither caspase-8 activity nor de novo transcription or translation is required for this process. These results show that cellular interaction with a specific matrix protein can either induce or suppress apoptosis in a cell type–specific manner and that integrin α6β1-HSPGs can function as receptors to induce p53-dependent apoptosis.
Collapse
Affiliation(s)
- Viktor Todorovic
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
992
|
Krüger-Krasagakis S, Galanopoulos VK, Giannikaki L, Stefanidou M, Tosca AD. Programmed cell death of keratinocytes in infliximab-treated plaque-type psoriasis. Br J Dermatol 2006; 154:460-6. [PMID: 16445776 DOI: 10.1111/j.1365-2133.2005.07078.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Tumour necrosis factor (TNF)-alpha blockade using infliximab, a chimeric anti-TNF-alpha antibody, is an effective treatment for plaque-type psoriasis, inducing remission in about 80% of patients. OBJECTIVES To examine infliximab-induced programmed cell death (PCD) of keratinocytes in psoriatic plaques on serial skin biopsy samples. METHODS Five patients with moderate to severe plaque-type psoriasis received infliximab infusions intravenously (5 mg kg(-1)) at weeks 0, 2 and 6. Biopsies of nonlesional and lesional skin (days 0, 5, 14 and 21) were obtained. Conventional microscopy was used to examine the morphology of the psoriatic keratinocytes. In situ detection of apoptosis was performed by electron microscopy and by immunohistochemical staining with anti-p53 and anti-caspase-3 antibodies. Results Infusion of infliximab induced a clinical response in all five patients with psoriasis, with a mean Psoriasis Area and Severity Index improvement of 24.8% already at day 5. This was accompanied by significant histopathological changes in the skin biopsy samples after infliximab treatment. Light and electron microscopic evaluation revealed apoptosis-like morphological changes in lesional keratinocytes, i.e. nuclear condensation, chromatin fragmentation and cytoplasmic vesiculation, visible already after the first infusion. These damaged keratinocytes stained positively for p53, but not for active caspase-3. CONCLUSIONS The effects of infliximab in psoriasis extend beyond merely anti-inflammatory actions, and may include caspase-independent PCD of lesional keratinocytes. The PCD of keratinocytes may be an important mechanism that could explain at least in part the rapid and sustained therapeutic effect of infliximab in psoriasis.
Collapse
Affiliation(s)
- S Krüger-Krasagakis
- Department of Biology, University Hospital of Heraklion, University of Crete, Greece.
| | | | | | | | | |
Collapse
|
993
|
Prabhakar BT, Khanum SA, Jayashree K, Salimath BP, Shashikanth S. Anti-tumor and proapoptotic effect of novel synthetic benzophenone analogues in Ehrlich ascites tumor cells. Bioorg Med Chem 2006; 14:435-46. [PMID: 16214348 DOI: 10.1016/j.bmc.2005.08.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 08/09/2005] [Accepted: 08/09/2005] [Indexed: 10/25/2022]
Abstract
A series of substituted benzophenone analogues, (2-aroyl-4-methylphenoxy)acetamides 4a-e, have been synthesized via three-step synthesis sequence beginning with the 2-hydroxybenzophenones 1a-e in excellent yield. 1a-e on reaction with ethyl chloroacetate afford ethyl (2-aroyl-4-methylphenoxy)acetates 2a-e which on alkaline hydrolysis afforded (2-aroyl-4-methylphenoxy)ethanoic acid 3a-e. Compounds 3a-e on condensation with p-chloroaniline furnished benzophenone analogues 4a-e. In the present report, we investigated the anti-tumor and proapoptotic effect of benzophenones in Ehrlich ascites tumor (EAT) cells. Treatment of benzophenones in vivo resulted in inhibition of proliferation of EAT cells and ascites formation. Further, we demonstrate that the induction of apoptosis in EAT cells is mediated through activation of caspase-3. These results suggest a further possible clinical application of these synthetic compounds as potent anti-tumor and proapoptotic compounds.
Collapse
Affiliation(s)
- B T Prabhakar
- Department of Studies in Applied Botany and Biotechnology, University of Mysore, Manasagangotri, Mysore 570 006, India
| | | | | | | | | |
Collapse
|
994
|
In vivo model for research of breast cancer biomarkers. ARCHIVE OF ONCOLOGY 2006. [DOI: 10.2298/aoo0604141k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The preoperative (neoadjuvant) setting of breast cancer treatment is an optimal in vivo model by which to allow the characterization of biomarker expression pattern with the tumor remaining in situ throughout treatment as an in vivo measure of response to particular therapy. Elucidating surrogate molecular or cellular markers of tumor response to therapy, may provide biological insight into both, the mechanism of tumor growth dynamics and drug sensitivity/resistance. Owing to the knowledge that many drugs are effective on actively proliferating cells and more intriguingly, that many anticancer agents with differing modes of action achieve cytotoxic effects by inducing apoptosis, has lead to a reappraisal of traditional views of tumor response/resistance to cytotoxic drugs in vivo. Accordingly, this review article will focus on discussing apoptosis phenomena and the p53 and bcl-2 protein as its regulators of principal impor?tance; a cell proliferation determined by the Ki-67 expression, as the major counterbalancing process to apoptosis is also considered. This paper reviews the rationale for the use of these proteins as indices of tumor response to therapy, as well as the published literature regarding their clinical relevance. So far, no firm conclusions can be made concerning their predictive utility. .
Collapse
|
995
|
Rahmani M, Wong BW, Ang L, Cheung CC, Carthy JM, Walinski H, McManus BM. Versican: signaling to transcriptional control pathways. Can J Physiol Pharmacol 2006; 84:77-92. [PMID: 16845893 DOI: 10.1139/y05-154] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Versican, a chondroitin sulfate proteoglycan, is one of the main components of the extracellular matrix, which provides a loose and hydrated matrix during key events in development and disease. Versican participates in cell adhesion, proliferation, migration, and angiogenesis, and hence plays a central role in tissue morphogenesis and maintenance. In addition, versican contributes to the development of a number of pathologic processes including atherosclerotic vascular diseases, cancer, tendon remodeling, hair follicle cycling, central nervous system injury, and neurite outgrowth. Versican is a complex molecule consisting of modular core protein domains and glycosaminoglycan side chains, and there are various steps of synthesis and processes regulating them. Also, there is differential temporal and spatial expression of versican by multiple cell types and in different developmental and pathological time frames. To fully appreciate the functional roles of versican as it relates to changing patterns of expression in development and disease, an in depth knowledge of versican's biosynthetic processing is necessary. The goal of this review is to evaluate the current status of our knowledge regarding the transcriptional control of versican gene regulation. We will be focusing on the signal transduction pathways, promoter regions, cis-acting elements, and trans-factors that have been characterized.
Collapse
Affiliation(s)
- Maziar Rahmani
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, St Paul's Hospital, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
996
|
Zhao M, Guo T, Wang M, Zhao Q, Liu Y, Sun X, Wang H, Hou Y. The Course of Uncarinic Acid E-Induced Apoptosis of HepG2 Cells from Damage to DNA and p53 Activation to Mitochondrial Release of Cytochrome c. Biol Pharm Bull 2006; 29:1639-44. [PMID: 16880619 DOI: 10.1248/bpb.29.1639] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uncarinic acid E, an active component isolated from Gelsemium elegans BENTH, has been reported to exhibit antitumor effects, but little is known about its molecular mechanisms of action. In this study, the growth-inhibitory activity of uncarinic acid E for HepG2 cells is in time- and dose-dependent manner. HepG2 cells treated with uncarinic acid E exhibited several typical characteristics of apoptosis through photomicroscopical observation, DNA agarose gel electrophoresis. The inhibitory effect of uncarinic acid E on HepG2 cells was partially reversed by the inhibitors of pan-caspase, caspase-3 and caspase-6. The protein expression ratio of Bcl-xL/Bax and Bcl-2/Bax was down-regulated and uncarinic acid E-induced apoptosis involves the initial phase mediated by the balance among Bcl-xL, Bcl-2 and Bax proteins, resulting in cytochrome c release from the mitochondria. Uncarinic acid E significantly increased the expression of p53 proteins indicates that p53 plays a pivotal role in the initiation phase of uncarinic acid E-induced HepG2 cell apoptosis. The phoshatidylinositol 3-kinase (PI3-K) family inhibitor wortmanin and the MEK inhibitor (PD98059) rescued the viability loss induced by uncarinic acid E through the expression of p53. Taken together, uncarinic acid E induces apoptosis in HepG2 cells via accumulation of p53, alters the Bax/Bcl-2 ratio, and activates caspases, resulting in cytochrome c release from the mitochondria.
Collapse
Affiliation(s)
- Minghong Zhao
- The General Hospital of Shenyang Military Region, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
997
|
Pfoertner S, Jeron A, Probst-Kepper M, Guzman CA, Hansen W, Westendorf AM, Toepfer T, Schrader AJ, Franzke A, Buer J, Geffers R. Signatures of human regulatory T cells: an encounter with old friends and new players. Genome Biol 2006; 7:R54. [PMID: 16836768 PMCID: PMC1779567 DOI: 10.1186/gb-2006-7-7-r54] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 05/16/2006] [Accepted: 06/02/2006] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Naturally occurring CD4+ CD25+ regulatory T cells (TReg) are involved in the control of autoimmune diseases, transplantation tolerance, and anti-tumor immunity. Thus far, genomic studies on TReg cells were restricted to murine systems, and requirements for their development, maintenance, and mode of action in humans are poorly defined. RESULTS To improve characterization of human TReg cells, we compiled a unique microarray consisting of 350 TReg cell associated genes (Human TReg Chip) based on whole genome transcription data from human and mouse TReg cells. TReg cell specific gene signatures were created from 11 individual healthy donors. Statistical analysis identified 62 genes differentially expressed in TReg cells, emphasizing some cross-species differences between mice and humans. Among them, several 'old friends' (including FOXP3, CTLA4, and CCR7) that are known to be involved in TReg cell function were recovered. Strikingly, the vast majority of genes identified had not previously been associated with human TReg cells (including LGALS3, TIAF1, and TRAF1). Most of these 'new players' however, have been described in the pathogenesis of autoimmunity. Real-time RT-PCR of selected genes validated our microarray results. Pathway analysis was applied to extract signaling modules underlying human TReg cell function. CONCLUSION The comprehensive set of genes reported here provides a defined starting point to unravel the unique characteristics of human TReg cells. The Human TReg Chip constructed and validated here is available to the scientific community and is a useful tool with which to study the molecular mechanisms that orchestrate TReg cells under physiologic and diseased conditions.
Collapse
Affiliation(s)
- Susanne Pfoertner
- Department of Mucosal Immunity, German Research Centre for Biotechnology, Braunschweig, Germany
| | - Andreas Jeron
- Department of Mucosal Immunity, German Research Centre for Biotechnology, Braunschweig, Germany
| | - Michael Probst-Kepper
- Volkswagen Foundation Junior Research Group, Department of Visceral and Transplant Surgery, Hanover Medical School, Hanover, Germany
| | - Carlos A Guzman
- Department of Vaccinology, German Research Centre for Biotechnology, Braunschweig, Germany
| | - Wiebke Hansen
- Department of Mucosal Immunity, German Research Centre for Biotechnology, Braunschweig, Germany
| | - Astrid M Westendorf
- Department of Mucosal Immunity, German Research Centre for Biotechnology, Braunschweig, Germany
| | - Tanja Toepfer
- Department of Mucosal Immunity, German Research Centre for Biotechnology, Braunschweig, Germany
| | - Andres J Schrader
- Department of Urology, Philipps-University Medical School, Marburg, Germany
| | - Anke Franzke
- Department of Hematology and Oncology, Hanover Medical School, Hanover, Germany
| | - Jan Buer
- Department of Mucosal Immunity, German Research Centre for Biotechnology, Braunschweig, Germany
- Institute of Medical Microbiology, Hanover Medical School, Hanover, Germany
| | - Robert Geffers
- Department of Mucosal Immunity, German Research Centre for Biotechnology, Braunschweig, Germany
| |
Collapse
|
998
|
Wesierska-Gadek J, Schmid G. Dual action of the inhibitors of cyclin-dependent kinases: targeting of the cell-cycle progression and activation of wild-type p53 protein. Expert Opin Investig Drugs 2005; 15:23-38. [PMID: 16370931 DOI: 10.1517/13543784.15.1.23] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The inhibition of cyclin-dependent kinases (CDKs) represents a novel approach to the therapy of human malignancies. Already in clinical trials, recently developed CDK inhibitors very efficiently target the rapidly proliferating cancer cells and inhibit their cell-cycle progression. Interestingly, some CDK inhibitors additionally affect the stability and activity of the tumour-suppressor protein p53, thereby enhancing their antiproliferative action towards cancer cells. Considering the fact that the p53 protein is mutated or inactivated in approximately 50% of all human cancers, the efficacy of CDK inhibitor therapy could differ between cancer cells depending on their p53 status. Moreover, recent reports demonstrating that some cancer cells can proliferate despite CDK2 inhibition questioned the central role of CDK2 in the cell-cycle control and suitability of CDK2 as a therapeutic target; however, the p53 activation that is mediated by CDK inhibitors could be essential for the efficacy of CDK inhibitors in therapy of CDK2-independent cancers. Furthermore, there is also reason to believe that CDK2 inhibitors could be used for another purpose, to protect normal cells from the effects of chemotherapy.
Collapse
Affiliation(s)
- Józefa Wesierska-Gadek
- Division Institute of Cancer Research, Dept. of Medicine I, Cell Cycle Regulation Group, Medical University of Vienna, Borschkegasse 8 a, A-1090 Vienna, Austria.
| | | |
Collapse
|
999
|
Song G, Mao YB, Cai QF, Yao LM, Ouyang GL, Bao SD. Curcumin induces human HT-29 colon adenocarcinoma cell apoptosis by activating p53 and regulating apoptosis-related protein expression. Braz J Med Biol Res 2005; 38:1791-8. [PMID: 16302093 DOI: 10.1590/s0100-879x2005001200007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Curcumin, a major yellow pigment and active component of turmeric, has multiple anti-cancer properties. However, its molecular targets and mechanisms of action on human colon adenocarcinoma cells are unknown. In the present study, we examined the effects of curcumin on the proliferation of human colon adenocarcinoma HT-29 cells by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide method and confirmed the curcumin-induced apoptosis by morphology and DNA ladder formation. At the same time, p53, phospho-p53 (Ser15), and other apoptosis-related proteins such as Bax, Bcl-2, Bcl-xL, pro-caspase-3, and pro-caspase-9 were determined by Western blot analysis. The colon adenocarcinoma cells were treated with curcumin (0-75 microM) for 0-24 h. We observed that p53 was highly expressed in HT-29 cells and curcumin could up-regulate the serine phosphorylation of p53 in a time- and concentration-dependent manner. An increase in expression of the pro-apoptotic factor Bax and a decrease in expression of the anti-apoptotic factor Bcl-2 were also observed in a time-dependent manner after exposure of 50 microM curcumin, while the expression of the anti-apoptotic factor Bcl-xL was unchanged. Curcumin could also down-regulate the expression of pro-caspase-3 and pro-caspase-9 in a time-dependent manner. These data suggest a possible underlying molecular mechanism whereby curcumin could induce the apoptosis signaling pathway in human HT-29 colon adenocarcinoma cells by p53 activation and by the regulation of apoptosis-related proteins. This property of curcumin suggests that it could have a possible therapeutic potential in colon adenocarcinoma patients.
Collapse
Affiliation(s)
- G Song
- The Key Laboratory, Ministry of Education for Cell Biology and Tumor Cell Engineering, Xiamen University, 422 South Siming Road, Xiamen 361005, China
| | | | | | | | | | | |
Collapse
|
1000
|
Khan MZ, Shimizu S, Patel JP, Nelson A, Le MT, Mullen-Przeworski A, Brandimarti R, Fatatis A, Meucci O. Regulation of neuronal P53 activity by CXCR 4. Mol Cell Neurosci 2005; 30:58-66. [PMID: 16005638 PMCID: PMC2665035 DOI: 10.1016/j.mcn.2005.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 05/19/2005] [Accepted: 05/20/2005] [Indexed: 11/26/2022] Open
Abstract
Abnormal activation of CXCR 4 during inflammatory/infectious states may lead to neuronal dysfunction or damage. The major goal of this study was to determine the coupling of CXCR 4 to p53-dependent survival pathways in primary neurons. Neurons were stimulated with the HIV envelope protein gp120(IIIB) or the endogenous CXCR 4 agonist, SDF-1 alpha. We found that gp120 stimulates p53 activity and induces expression of the p53 pro-apoptotic target Apaf-1 in cultured neurons. Inhibition of CXCR 4 by AMD 3100 abrogates the effect of gp120 on both p53 and Apaf-1. Moreover, gp120 neurotoxicity is markedly reduced by the p53-inhibitor, pifithrin-alpha. The viral protein also regulates p53 phosphorylation and expression of other p53-responsive genes, such as MDM 2 and p21. Conversely, SDF-1 alpha, which can promote neuronal survival, increases p53 acetylation and p21 expression in neurons. Thus, the stimulation of different p53 targets could be instrumental in determining the outcome of CXCR 4 activation on neuronal survival in neuro-inflammatory disorders.
Collapse
Affiliation(s)
- Muhammad Z Khan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, NCB 8804, Philadelphia, PA 19102, USA
| | | | | | | | | | | | | | | | | |
Collapse
|