951
|
Abstract
The dentine-pulp complex displays exquisite regenerative potential in response to injury. The postnatal dental pulp contains a variety of potential progenitor/stem cells, which may participate in dental regeneration. A population of multipotent mesenchymal progenitor cells known as dental pulp stem cells with high proliferative potential for self-renewal has been described and may be important to the regenerative capacity of the tissue. The nature of the progenitor/stem cell populations in the pulp is of importance in understanding their potentialities and development of isolation or recruitment strategies, and allowing exploitation of their use in regeneration and tissue engineering. Various strategies will be required to ensure not only effective isolation of these cells, but also controlled signalling of their differentiation and regulation of secretory behaviour. Characterization of these cells and determination of their potentialities in terms of specificity of regenerative response will form the foundation for development of new clinical treatment modalities, whether involving directed recruitment of the cells and seeding of stem cells at sites of injury for regeneration or use of the stem cells with appropriate scaffolds for tissue engineering solutions. Such approaches will provide an innovative and novel biologically based new generation of clinical treatments for dental disease.
Collapse
Affiliation(s)
- A J Sloan
- Oral Surgery, Medicine & Pathology, School of Dentistry, Cardiff University, Heath Park, Cardiff, UK.
| | | |
Collapse
|
952
|
Zhu W, Boachie-Adjei O, Rawlins BA, Frenkel B, Boskey AL, Ivashkiv LB, Blobel CP. A novel regulatory role for stromal-derived factor-1 signaling in bone morphogenic protein-2 osteogenic differentiation of mesenchymal C2C12 cells. J Biol Chem 2007; 282:18676-85. [PMID: 17439946 DOI: 10.1074/jbc.m610232200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stromal-derived factor 1 (SDF-1) is a chemokine with important functions in development and postnatal tissue homeostasis. SDF-1 signaling via the G-protein-coupled receptor CXCR4 regulates the recruitment of stem and precursor cells to support tissue-specific repair or regeneration. In this study we examined the contribution of SDF-1 signaling to osteogenic differentiation of mesenchymal C2C12 cells induced by bone morphogenic protein 2 (BMP2). Blocking SDF-1 signaling before BMP2 stimulation by treatment with siRNA, antibodies against SDF-1 or CXCR4, or the G-protein-coupled receptor inhibitor pertussis toxin strongly suppressed BMP2 induction of osteogenic differentiation in C2C12 cells, as evidenced by an early decrease in the expression of the myogenesis inhibitor Id1, the osteogenic master regulators Runx2 and Osx, the osteoblast-associated transcription factors JunB, Plzf, Msx2, and Dlx5, and later of the bone marker proteins osteocalcin and alkaline phosphatase. Similarly, blocking SDF-1/CXCR4 signaling strongly inhibited BMP2-induced osteogenic differentiation of ST2 bone marrow stromal cells. Moreover, we found that the interaction between SDF-1 and BMP2 signaling was mediated via intracellular Smads and MAPK activation. Our data provide the first evidence for a co-requirement of the SDF-1/CXCR4 signaling axis in BMP2-induced osteogenic differentiation of C2C12 and ST2 cells and, thus, uncover a new potential target for modulation of osteogenesis.
Collapse
Affiliation(s)
- Wei Zhu
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
953
|
Cheng JC, Horwitz EM, Karsten SL, Shoemaker L, Kornblum HI, Malik P, Sakamoto KM. Report on the Workshop “New Technologies in Stem Cell Research,” Society for Pediatric Research, San Francisco, California, April 29, 2006. Stem Cells 2007; 25:1070-88. [PMID: 17255523 DOI: 10.1634/stemcells.2006-0397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jerry C Cheng
- Division of Hematology/Oncology, Department of Pediatrics, Gwynne Hazen Cherry Memorial Laboratories and Mattel Children's Hospital, Jonsson Comprehensive Cancer Center, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
954
|
Abstract
Common pathologies of the dental pulp differentiate between acute and chronic inflammatory states caused by caries or dental trauma. Inflammations of the dental pulp as a result of neoplastic alterations are generally considered non-existent. In fact, using the search phrase "dental pulp" combined with "sarcoma", "carcinoma", or "neoplasms" in PubMed when using the MeSH search mode yielded no reports on primary malignant neoplasms. However, a hand search yields clinical reports on pulpal tumours that were published over a century ago. In this Essay, the results of a hand search in historic published work are presented. Furthermore, deductive reflections are done on general tumour pathogenesis with respect to specific anatomical prerequisites of the dental pulp. Because of the restricted space in a tooth, tumour expansion will probably lead to the formation of irritation dentine by secondary odontoblasts and, subsequently, to a haemorrhage infarct of the pulp. One hypothesis states that a purported neoplasm of the dental pulp leads to a chronic appositive pulpitis and-sooner or later-will be treated likewise by root-canal treatment or extraction. Further research, including stem-cell studies, is recommended.
Collapse
Affiliation(s)
- Klaus W Neuhaus
- Clinic for Periodontology, Endodontology, and Cariology, School of Dentistry, University of Basle, Hebelstrasse 3, CH-4056 Basel, Switzerland.
| |
Collapse
|
955
|
Shur I, Zemer-Tov E, Socher R, Benayahu D. SVEP1 expression is regulated in estrogen-dependent manner. J Cell Physiol 2007; 210:732-9. [PMID: 17139625 DOI: 10.1002/jcp.20895] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The SVEP1 protein comprises modules related to the selectin super family and other motifs found in cell surface molecules. Earlier, we demonstrated that SVEP1 is expressed in osteogenic cells both in vivo and in vitro; in the current study we elaborate on the regulation of SVEP1 by 17beta-Estradiol (17betaE2). SVEP1 message is expressed in vivo by bone marrow cells of sham-operated rats, but not in estrogen-depleted ovariectomized (OVX) rats. We demonstrated that 17betaE2 treatment increases the level of the SVEP1 expression in cultured osteoblasts. SVEP1 was identified also in breast carcinoma (BC) cells known to reside in bone when metastasized from the primary tumor. SVEP1 expression was demonstrated by immunohistochemistry and fluorescence-activated cell sorting (FACS) on various BC cell lines. The chromatin immunoprecipitation (ChIP) assay was applied to analyze the estrogen receptor (ER) binding to the putative SVEP1 promoter. We demonstrated that treatment with 17betaE2 or ICI 182,780 affects this binding and regulates the mRNA and protein levels of SVEP1 in BC cells. We propose that SVEP1 may serve as a useful biomarker for studying the mechanism of cells interactions within the local microenvironment affected by estrogen.
Collapse
Affiliation(s)
- I Shur
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
956
|
Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 2007; 25:1384-92. [PMID: 17332507 DOI: 10.1634/stemcells.2006-0709] [Citation(s) in RCA: 732] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human umbilical cord perivascular cells (HUCPVCs) have been shown to have a high proliferative potential and the capacity to differentiate into an osteogenic phenotype. HUCPVCs have thus been considered a possible extra-embryonic mesenchymal stem cell (MSC) source for cell-based therapies. To assess this potential, we compared HUCPVCs to the "gold standard" bone marrow mesenchymal stromal cells (BMSCs) with respect to their proliferation, differentiation, and transfection capacities. HUCPVCs showed a higher proliferative potential than BMSCs and were capable of osteogenic, chondrogenic, and adipogenic differentiation. Interestingly, osteogenic differentiation of HUCPVCs proceeded more rapidly than BMSCs. Additionally, HUCPVCs expressed higher levels of CD146, a putative MSC marker, relative to BMSCs. HUCPVCs showed comparable transfection efficiency as BMSCs using a nucleofection method but were more amenable to transfection with liposomal methods (FuGENE). Gene array analysis showed that HUCPVCs also expressed Wnt signaling pathway genes that have been implicated in the regulation of MSCs. The similar characteristics between HUCPVCs and MSCs support the applicability of HUCPVCs for cell-based therapies. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Dolores Baksh
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, 50 South Dr., Room 1503, BMSC 8022, National Institutes of Health, Bethesda, Maryland 20892-8022, USA
| | | | | |
Collapse
|
957
|
Durand SH, Romeas A, Couble ML, Langlois D, Li JY, Magloire H, Bleicher F, Staquet MJ, Farges JC. Expression of the TGF-beta/BMP inhibitor EVI1 in human dental pulp cells. Arch Oral Biol 2007; 52:712-9. [PMID: 17328861 DOI: 10.1016/j.archoralbio.2007.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/12/2006] [Accepted: 01/07/2007] [Indexed: 12/19/2022]
Abstract
Members of the TGF-beta/BMP family of growth factors induce odontoblast differentiation and reparative dentin synthesis, and their use has been proposed to stimulate pulp healing during dental therapeutics in human. However, factors that modulate TGF-beta and/or BMP signalling during odontoblast differentiation and physiology remain largely unknown. To identify them, we compared expression profiles of TGF-beta/BMP-related genes in pulp fibroblast- and odontoblast-like cells cultured from human dental pulp explants using cDNA gene arrays. We evidenced that the gene encoding ecotropic viral integration site-1 (EVI1), a transcription factor that inhibits TGF-beta/BMP signalling, was under-expressed in odontoblast-like cells. This result was verified by real-time PCR and, at the protein level, by immunohistochemistry. In vivo, real-time PCR analysis revealed that EVI1 was expressed in the dental pulp, at a level similar to brain, but lower than in lung, kidney or trachea. The protein was localized in dental pulp samples in pulp core and subodontoblast cells. Staining intensity progressively decreased from the radicular to the coronal pulp where EVI1 staining was almost undetectable in odontoblasts. Our data suggest that fine regulation of the EVI1 level in the human dental pulp might be important in the TGF-beta/BMP-induced modulation of dental pulp cell kinetics and/or odontoblast differentiation.
Collapse
|
958
|
Intrinsic differentiation potential of adolescent human tendon tissue: an in-vitro cell differentiation study. BMC Musculoskelet Disord 2007; 8:16. [PMID: 17319938 PMCID: PMC1808058 DOI: 10.1186/1471-2474-8-16] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 02/23/2007] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tendinosis lesions show an increase of glycosaminoglycan amount, calcifications, and lipid accumulation. Therefore, altered cellular differentiation might play a role in the etiology of tendinosis. This study investigates whether adolescent human tendon tissue contains a population of cells with intrinsic differentiation potential. METHODS Cells derived from adolescent non-degenerative hamstring tendons were characterized by immunohistochemistry and FACS-analysis. Cells were cultured for 21 days in osteogenic, adipogenic, and chondrogenic medium and phenotypical evaluation was carried out by immunohistochemical and qPCR analysis. The results were compared with the results of similar experiments on adult bone marrow-derived stromal cells (BMSCs). RESULTS Tendon-derived cells stained D7-FIB (fibroblast-marker) positive, but alpha-SMA (marker for smooth muscle cells and pericytes) negative. Tendon-derived cells were 99% negative for CD34 (endothelial cell marker), and 73% positive for CD105 (mesenchymal progenitor-cell marker). In adipogenic medium, intracellular lipid vacuoles were visible and tendon-derived fibroblasts showed upregulation of adipogenic markers FABP4 (fatty-acid binding protein 4) and PPARG (peroxisome proliferative activated receptor gamma). In chondrogenic medium, some cells stained positive for collagen 2 and tendon-derived fibroblasts showed upregulation of collagen 2 and collagen 10. In osteogenic medium Von Kossa staining showed calcium deposition although osteogenic markers remained unaltered. Tendon-derived cells and BMCSs behaved largely comparable, although some distinct differences were present between the two cell populations. CONCLUSION This study suggests that our population of explanted human tendon cells has an intrinsic differentiation potential. These results support the hypothesis that there might be a role for altered tendon-cell differentiation in the pathophysiology of tendinosis.
Collapse
|
959
|
Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod 2007; 33:377-90. [PMID: 17368324 DOI: 10.1016/j.joen.2006.09.013] [Citation(s) in RCA: 542] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/10/2006] [Accepted: 09/18/2006] [Indexed: 12/16/2022]
Abstract
Millions of teeth are saved each year by root canal therapy. Although current treatment modalities offer high levels of success for many conditions, an ideal form of therapy might consist of regenerative approaches in which diseased or necrotic pulp tissues are removed and replaced with healthy pulp tissue to revitalize teeth. Researchers are working toward this objective. Regenerative endodontics is the creation and delivery of tissues to replace diseased, missing, and traumatized pulp. This review provides an overview of regenerative endodontics and its goals, and describes possible techniques that will allow regenerative endodontics to become a reality. These potential approaches include root-canal revascularization, postnatal (adult) stem cell therapy, pulp implant, scaffold implant, three-dimensional cell printing, injectable scaffolds, and gene therapy. These regenerative endodontic techniques will possibly involve some combination of disinfection or debridement of infected root canal systems with apical enlargement to permit revascularization and use of adult stem cells, scaffolds, and growth factors. Although the challenges of introducing endodontic tissue engineering therapies are substantial, the potential benefits to patients and the profession are equally ground breaking. Patient demand is staggering both in scope and cost, because tissue engineering therapy offers the possibility of restoring natural function instead of surgical placement of an artificial prosthesis. By providing an overview of the methodological issues required to develop potential regenerative endodontic therapies, we hope to present a call for action to develop these therapies for clinical use.
Collapse
Affiliation(s)
- Peter E Murray
- Department of Endodontics, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | | | | |
Collapse
|
960
|
Wilkinson FL, Liu Y, Rucka AK, Jeziorska M, Hoyland JA, Heagerty AM, Canfield AE, Alexander MY. Contribution of VCAF-positive cells to neovascularization and calcification in atherosclerotic plaque development. J Pathol 2007; 211:362-9. [PMID: 17154367 PMCID: PMC1868967 DOI: 10.1002/path.2114] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 10/30/2006] [Indexed: 12/21/2022]
Abstract
Calcification of the vessel wall is a regulated process with many similarities to osteogenesis. Progenitor cells may play a role in this process. Previously, we identified a novel gene, Vascular Calcification Associated Factor (VCAF), which was shown to be important in pericyte osteogenic differentiation. The aim of this study was to determine the localization and expression pattern of VCAF in human cells and tissues. Immunohistochemical analysis of seven atherosclerotic arteries confirmed VCAF protein expression within calcified lesions. In addition, individual VCAF-positive cells were detected within the intima and adventitia in areas where sporadic 3G5-positive pericytes were localized. Furthermore, VCAF-positive cells were identified in newly formed microvessels in association with CD34-positive/CD146-positive/c-kit-positive cells as well as in intact CD31-positive endothelium in internal mammary arteries. Western blot analysis confirmed the presence of VCAF (18 kD) in protein lysates extracted from human smooth muscle cells, endothelial cells, macrophages, and osteoblasts. In fracture callus samples from three patients, VCAF was detected in osteoblasts and microvessels. This study demonstrates the presence of VCAF in neovessels and raises the possibility that VCAF could be a new marker for vascular progenitor cells involved in a number of differentiation pathways. These data may have implications for the prevention or treatment of vascular disease.
Collapse
Affiliation(s)
- FL Wilkinson
- Cardiovascular Research Group, Division of Cardiovascular and Endocrine Sciences, University of Manchester, Manchester, UK
| | - Y Liu
- Cardiovascular Research Group, Division of Cardiovascular and Endocrine Sciences, University of Manchester, Manchester, UK
| | - AK Rucka
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - M Jeziorska
- Division of Laboratory and Regenerative Medicine, University of Manchester, Manchester, UK
| | - JA Hoyland
- Division of Laboratory and Regenerative Medicine, University of Manchester, Manchester, UK
| | - AM Heagerty
- Cardiovascular Research Group, Division of Cardiovascular and Endocrine Sciences, University of Manchester, Manchester, UK
| | - AE Canfield
- Cardiovascular Research Group, Division of Cardiovascular and Endocrine Sciences, University of Manchester, Manchester, UK
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - MY Alexander
- Cardiovascular Research Group, Division of Cardiovascular and Endocrine Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
961
|
McTaggart SJ, Atkinson K. Mesenchymal stem cells: Immunobiology and therapeutic potential in kidney disease (Review Article). Nephrology (Carlton) 2007; 12:44-52. [PMID: 17295660 DOI: 10.1111/j.1440-1797.2006.00753.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cells (MSC) are non-haematopoietic cells that are prevalent in the adult bone marrow but can also be isolated from a variety of other postnatal tissues. MSC are non-immunogenic and are immunosuppressive, with the ability to inhibit maturation of dendritic cells and suppress the function of naïve and memory T cells, B cells and NK cells. In addition to their immunomodulatory properties, MSC are capable of differentiating into various tissues of mesenchymal and non-mesenchymal origin and migrating to sites of tissue injury and inflammation to participate in tissue repair. A number of studies in animal models of cardiac injury, stroke and ischaemic renal injury have demonstrated the clinical potential of MSC in tissue regeneration and repair. MSC are currently being evaluated in various preclinical and clinical studies in humans and offer significant potential as a novel cellular therapy for tissue regeneration and immunological conditions. The present review focuses on the unique immunomodulatory and regenerative properties of MSC and their potential role in the treatment of kidney disease.
Collapse
Affiliation(s)
- Steven J McTaggart
- Queensland Child & Adolescent Renal Service, Royal Children's Hospital, Australia.
| | | |
Collapse
|
962
|
Chen SC, Marino V, Gronthos S, Bartold PM. Location of putative stem cells in human periodontal ligament. J Periodontal Res 2007; 41:547-53. [PMID: 17076780 DOI: 10.1111/j.1600-0765.2006.00904.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVE The origin of cells in the mature periodontium, and the location of their progenitors, are still unknown. It is also unknown whether inflammation influences the number and distribution of these cells within the periodontium. Molecules such as STRO-1, CD146 and CD44 have been identified on a variety of mesenchymal stem cells. The aim of this study was to identify and localize putative stem cells in diseased and healthy human periodontal ligament using cell-surface markers for mesenchymal stem cells. MATERIAL AND METHODS Healthy and periodontitis-affected teeth were collected, fixed in 10% neutral-buffered formalin, decalcified and embedded in paraffin in preparation for immunohistochemistry. Antibodies against STRO-1, CD146 and CD44 were used to identify putative stem cells in the periodontal ligament. RESULTS Putative stem cells were identified in both healthy and diseased periodontal ligament. They were mainly located in the paravascular region and small clusters of cells were also found in the extravascular region. Wider distributions of these cells were detected in sections of diseased ligament. CONCLUSION Within the periodontal ligament of both healthy and diseased teeth, cells have been identified consistent with their identification as putative stem cells. The presence of an inflammatory reaction associated with periodontitis may enhance the number of these cells.
Collapse
Affiliation(s)
- S C Chen
- Colgate Australian Clinical Dental Research Centre, Dental School, University of Adelaide, SA, Australia
| | | | | | | |
Collapse
|
963
|
Huang GTJ, Shagramanova K, Chan SW. Formation of odontoblast-like cells from cultured human dental pulp cells on dentin in vitro. J Endod 2007; 32:1066-73. [PMID: 17055908 DOI: 10.1016/j.joen.2006.05.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 05/15/2006] [Accepted: 05/17/2006] [Indexed: 01/09/2023]
Abstract
Recent characterization of human dental pulp stem cells has shed new light on the understanding of the odontoblastic lineage. The purpose of the study was to characterize human adult dental pulp cells isolated and cultured in vitro and to examine the cell differentiation potential grown on dentin. We observed that some pulp cells isolated with an enzyme-digestion approach proliferated at a similar rate as the immortal cell line NIH 3T3. Population doubling time (PDt) for pulp cells at passage 3 was 22.6 +/- 0.5 hours and for NIH 3T3 was 23.1 +/- 2.3 hours. The pulp cells formed mineral nodules stimulated with dexamethasone or dexamethasone plus 1,25-dihydroxyvitamin D3. Pulp cells, after being seeded onto mechanically and chemically treated dentin surface, appeared to establish an odontoblast-like morphology with a cytoplasmic process extending into a dentinal tubule revealed by scanning electron microscopy analysis. Our data demonstrated the formation of cells with odontoblastic morphologies on existing dentin, suggesting that isolated human pulp stem cells may differentiate into odontoblasts on dentin in vitro.
Collapse
Affiliation(s)
- George T-J Huang
- University of Maryland, College of Dental Surgery, Dental School, Department of Endodontics, Prosthodontics and Operative Dentistry, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
964
|
Miura M, Miura Y, Sonoyama W, Yamaza T, Gronthos S, Shi S. Bone marrow-derived mesenchymal stem cells for regenerative medicine in craniofacial region. Oral Dis 2007; 12:514-22. [PMID: 17054762 DOI: 10.1111/j.1601-0825.2006.01300.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The craniofacial region contains many specified tissues including bone, cartilage, muscle, blood vessels and neurons. Defect or dysfunction of the craniofacial tissue after post-cancer ablative surgery, trauma, congenital malformations and progressive deforming skeletal diseases has a huge influence on the patient's life. Therefore, functional reconstruction of damaged tissues is highly expected. Bone marrow-derived mesenchymal stem cells (BMMSCs) are one of the most well characterized postnatal stem cell populations, and considered to be utilized for cell-based clinical therapies. Here, the current understanding and the potential applications in craniofacial tissue regeneration of BMMSCs are reviewed, and the current limitations and drawbacks are also discussed.
Collapse
Affiliation(s)
- M Miura
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
965
|
Tonomura A, Sumita Y, Ando Y, Iejima D, Kagami H, Honda MJ, Ueda M. Differential inducibility of human and porcine dental pulp-derived cells into odontoblasts. Connect Tissue Res 2007; 48:229-38. [PMID: 17882698 DOI: 10.1080/03008200701507909] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A robust method for generating odontoblasts from cultured dental pulp cells has not been established. In this study, efficient methods for deriving odontoblasts from cultured human and porcine dental pulp-derived cells were investigated with special attention to species differences. Cultured human cells showed relatively low alkaline phosphatase (ALP) activity in the presence of dexamethasone (Dex) and beta-glycerophosphate (beta-Gly). In contrast, the addition of 1,25-dihydroxyvitaminD(3) (VitD3) significantly increased the ALP activity. In porcine cells, beta-Gly alone or a combination of Dex and beta-Gly significantly increased ALP activity; however, addition of VitD3 reduced this activity. RT-PCR and Western blotting analysis revealed that the combination of three induction reagents on human cells significantly upregulates the expression of osteocalcin mRNA, and dentin sialoprotein. We propose that the combination of Dex, beta-Gly, and VitD3 is critical for differentiation of human dental pulp-derived cells into odontoblasts. In addition, the inducibility of dental pulp-derived cells presented remarkable species differences.
Collapse
Affiliation(s)
- Akiko Tonomura
- Research & Development Center, Hitachi Medical Corporation, Kashiwa, Japan
| | | | | | | | | | | | | |
Collapse
|
966
|
Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 2007; 9:204. [PMID: 17316462 PMCID: PMC1860068 DOI: 10.1186/ar2116] [Citation(s) in RCA: 661] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Recent advances in understanding the cellular and molecular signaling pathways and global transcriptional regulators of adult mesenchymal stem cells have provided new insights into their biology and potential clinical applications, particularly for tissue repair and regeneration. This review focuses on these advances, specifically in the context of self-renewal and regulation of lineage-specific differentiation of mesenchymal stem cells. In addition we review recent research on the concept of stem cell niche, and its relevance to adult mesenchymal stem cells.
Collapse
Affiliation(s)
- Catherine M Kolf
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, 50 South Drive, Bethesda, MD 20892, USA
| | - Elizabeth Cho
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, 50 South Drive, Bethesda, MD 20892, USA
| | - Rocky S Tuan
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
967
|
Ito K, Arakawa T, Murata M, Takuma T, Arisue M. Expression of Bone morphogenetic proteins (BMPs) in human dental pulp. J HARD TISSUE BIOL 2007. [DOI: 10.2485/jhtb.16.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
968
|
Yang X, van den Dolder J, Walboomers XF, Zhang W, Bian Z, Fan M, Jansen JA. The odontogenic potential of STRO-1 sorted rat dental pulp stem cellsin vitro. J Tissue Eng Regen Med 2007; 1:66-73. [DOI: 10.1002/term.16] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
969
|
Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Shi S, Wang S. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 2006; 1:e79. [PMID: 17183711 PMCID: PMC1762318 DOI: 10.1371/journal.pone.0000079] [Citation(s) in RCA: 889] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 11/13/2006] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla). Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs) to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance.
Collapse
Affiliation(s)
- Wataru Sonoyama
- Center for Craniofacial Molecular Biology, University of Southern California School of Dentistry, Los Angeles, CaliforniaUnited States of America
- Department of Oral and Maxillofacial Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Yi Liu
- Salivary Gland Disease Center and the Molecular Laboratory for Gene Therapy, Capital Medical University School of StomatologyBeijing, China
| | - Dianji Fang
- Salivary Gland Disease Center and the Molecular Laboratory for Gene Therapy, Capital Medical University School of StomatologyBeijing, China
| | - Takayoshi Yamaza
- Center for Craniofacial Molecular Biology, University of Southern California School of Dentistry, Los Angeles, CaliforniaUnited States of America
| | - Byoung-Moo Seo
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Research Institute, Seoul National UniversitySeoul, Korea
| | - Chunmei Zhang
- Salivary Gland Disease Center and the Molecular Laboratory for Gene Therapy, Capital Medical University School of StomatologyBeijing, China
| | - He Liu
- Peking University School of StomatologyBeijing, China
| | - Stan Gronthos
- Mesenchymal Stem Cell Group, Division of Haematology, Institute of Medical and Veterinary ScienceAdelaide, South Australia, Australia
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling and Apoptosis, Department of Biologic and Materials Sciences and Program in Cellular and Molecular Biology, University of MichiganAnn Arbor, Michigan, United States of America
| | - Songtao Shi
- Salivary Gland Disease Center and the Molecular Laboratory for Gene Therapy, Capital Medical University School of StomatologyBeijing, China
- * To whom correspondence should be addressed. E-mail:
| | - Songlin Wang
- Center for Craniofacial Molecular Biology, University of Southern California School of Dentistry, Los Angeles, CaliforniaUnited States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
970
|
Martens TP, See F, Schuster MD, Sondermeijer HP, Hefti MM, Zannettino A, Gronthos S, Seki T, Itescu S. Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium. ACTA ACUST UNITED AC 2006; 3 Suppl 1:S18-22. [PMID: 16501624 DOI: 10.1038/ncpcardio0404] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Accepted: 10/16/2005] [Indexed: 01/04/2023]
Abstract
Mesenchymal lineage precursors can be reproducibly isolated from adult mammalian bone marrow and grown in culture. Immunoselection with monoclonal antibodies against STRO-1 and vascular-cell-adhesion molecule 1 (VCAM1/CD106) prior to expansion results in a 1,000-fold enrichment of mesenchymal precursors compared to standard isolation techniques. Intramyocardial injection of human STRO-1-selected precursors in an athymic rat model of acute myocardial infarction results in induction of vascular network formation and arteriogenesis coupled with global functional cardiac recovery.
Collapse
Affiliation(s)
- Timothy P Martens
- Division of Cardiothoracic Surgery, Columbia University, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
971
|
Mao JJ, Giannobile WV, Helms JA, Hollister SJ, Krebsbach PH, Longaker MT, Shi S. Craniofacial tissue engineering by stem cells. J Dent Res 2006; 85:966-79. [PMID: 17062735 PMCID: PMC2571078 DOI: 10.1177/154405910608501101] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Craniofacial tissue engineering promises the regeneration or de novo formation of dental, oral, and craniofacial structures lost to congenital anomalies, trauma, and diseases. Virtually all craniofacial structures are derivatives of mesenchymal cells. Mesenchymal stem cells are the offspring of mesenchymal cells following asymmetrical division, and reside in various craniofacial structures in the adult. Cells with characteristics of adult stem cells have been isolated from the dental pulp, the deciduous tooth, and the periodontium. Several craniofacial structures--such as the mandibular condyle, calvarial bone, cranial suture, and subcutaneous adipose tissue--have been engineered from mesenchymal stem cells, growth factor, and/or gene therapy approaches. As a departure from the reliance of current clinical practice on durable materials such as amalgam, composites, and metallic alloys, biological therapies utilize mesenchymal stem cells, delivered or internally recruited, to generate craniofacial structures in temporary scaffolding biomaterials. Craniofacial tissue engineering is likely to be realized in the foreseeable future, and represents an opportunity that dentistry cannot afford to miss.
Collapse
Affiliation(s)
- J J Mao
- Columbia University College of Dental Medicine and Biomedical Engineering, 630 W. 168 St.--PH7 CDM, New York, NY 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
972
|
Gronthos S, Mrozik K, Shi S, Bartold PM. Ovine periodontal ligament stem cells: isolation, characterization, and differentiation potential. Calcif Tissue Int 2006; 79:310-7. [PMID: 17033723 DOI: 10.1007/s00223-006-0040-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 05/28/2006] [Indexed: 01/09/2023]
Abstract
Periodontal disease leads to destruction of the connective tissues responsible for restraining teeth within the jaw. To date, various conventional therapies for periodontal regeneration have shown limited and variable clinical outcomes. Recent studies have suggested that newly identified human periodontal ligament stem cells (PDLSCs) may offer an alternate and more reliable strategy for the treatment of periodontal disease using a cell-based tissue engineering approach. In the present study, we generated enriched preparations of PDLSCs derived from ovine periodontal ligament using immunomagnetic bead selection, based on expression of the mesenchymal stem cell-associated antigen CD106 (vascular cell adhesion molecule 1). These CD106+ ovine PDLSCs demonstrated the capacity to form adherent clonogenic clusters of fibroblast-like cells when plated at low densities in vitro. Ex vivo-expanded ovine PDLSCs exhibited a high proliferation rate in vitro and expressed a phenotype (CD44+, CD166+, CBFA-1+, collagen-I+, bone sialoprotein+) consistent with human-derived PDLSCs. Furthermore, cultured ovine PDLSCs expressed high transcript levels of the ligament/tendon-specific early transcription factor scleraxis. Importantly, ex vivo-expanded ovine PDLSCs demonstrated the capacity to regenerate both cementum-like mineral and periodontal ligament when transplanted into NOD/SCID mice. The results from the present study suggest that ovine PDLSCs may potentially be used as a novel cellular therapy to facilitate successful and more predictable regeneration of periodontal tissue using an ovine preclinical model of periodontal disease as a prelude to human clinical studies.
Collapse
Affiliation(s)
- S Gronthos
- Division of Haematology, Mesenchymal Stem Cell Group, Frome Road, Adelaide 5000, SA, Australia
| | | | | | | |
Collapse
|
973
|
Yu J, Deng Z, Shi J, Zhai H, Nie X, Zhuang H, Li Y, Jin Y. Differentiation of Dental Pulp Stem Cells into Regular-Shaped Dentin-Pulp Complex Induced by Tooth Germ Cell Conditioned Medium. ACTA ACUST UNITED AC 2006; 12:3097-105. [PMID: 17518625 DOI: 10.1089/ten.2006.12.3097] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Investigations of the odontoblast phenotype are hindered by obstacles such as the limited number of odontoblasts within the dental pulp and the difficulty in purification of these cells. Therefore, it is necessary to develop a cell culture system in which the local environment is inductive and can promote dental pulp stem cells (DPSCs) to differentiate into odontoblast lineage. In this study, we investigated the effect of conditioned medium from developing tooth germ cells (TGCs) on the differentiation and dentinogenesis of DPSCs both in vitro and in vivo. DPSCs were enzymatically isolated from the lower incisors of 4-week-old Sprague-Dawley rats and co-cultured with TGC conditioned medium (TGC-CM). The cell phenotype of induced DPSCs presents many features of odontoblasts, as assessed by the morphologic appearance, cell cycle modification, increased alkaline phosphatase level, synthesis of dentin sialoprotein, type I collagen and several other noncollagenous proteins, expression of the dentin sialophosphoprotein and dentin matrix protein 1 genes, and the formation of mineralized nodules in vitro. The induced DPSC pellets in vivo generated a regular-shaped dentin-pulp complex containing distinct dentinal tubules and predentin, while untreated pellets spontaneously differentiated into bone-like tissues. To our knowledge, this is the first study to mimic the dentinogenic microenvironment from TGCs in vitro, and our data suggest that TGC-CM creates the most odontogenic microenvironment, a feature essential and effective for the regular dentinogenesis mediated by DPSCs.
Collapse
Affiliation(s)
- Jinhua Yu
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
974
|
|
975
|
Abstract
The mucosal lining (endometrium) of the human uterus undergoes cyclical processes of regeneration, differentiation and shedding as part of the menstrual cycle. Endometrial regeneration also follows parturition, almost complete resection and in post-menopausal women taking estrogen replacement therapy. In non-menstruating species, there are cycles of endometrial growth and apoptosis rather than physical shedding. The concept that endometrial stem/progenitor cells are responsible for the remarkable regenerative capacity of endometrium was proposed many years ago. However, attempts to isolate, characterize and locate endometrial stem cells have only been undertaken in the last few years as experimental approaches to identify adult stem/progenitor cells in other tissues have been developed. Adult stem cells are defined by their functional properties rather than by marker expression. Evidence for the existence of adult stem/progenitor cells in human and mouse endometrium is now emerging because functional stem cell assays are being applied to uterine cells and tissues. These fundamental studies on endometrial stem/progenitor cells will provide new insights into the pathophysiology of various gynaecological disorders associated with abnormal endometrial proliferation, including endometrial cancer, endometrial hyperplasia, endometriosis and adenomyosis.
Collapse
Affiliation(s)
- C E Gargett
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
976
|
Herrera MB, Bruno S, Buttiglieri S, Tetta C, Gatti S, Deregibus MC, Bussolati B, Camussi G. Isolation and characterization of a stem cell population from adult human liver. Stem Cells 2006; 24:2840-50. [PMID: 16945998 DOI: 10.1634/stemcells.2006-0114] [Citation(s) in RCA: 312] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several studies suggested the presence of stem cells in the adult normal human liver; however, a population with stem cell properties has not yet been isolated. The purpose of the present study was to identify and characterize progenitor cells in normal adult human liver. By stringent conditions of liver cell cultures, we isolated and characterized a population of human liver stem cells (HLSCs). HLSCs expressed the mesenchymal stem cell markers CD29, CD73, CD44, and CD90 but not the hematopoietic stem cell markers CD34, CD45, CD117, and CD133. HLSCs were also positive for vimentin and nestin, a stem cell marker. The absence of staining for cytokeratin-19, CD117, and CD34 indicated that HLSCs were not oval stem cells. In addition, HLSCs expressed albumin, alpha-fetoprotein, and in a small percentage of cells, cytokeratin-8 and cytokeratin-18, indicating a partial commitment to hepatic cells. HLSCs differentiated in mature hepatocytes when cultured in the presence of hepatocyte growth factor and fibroblast growth factor 4, as indicated by the expression of functional cytochrome P450, albumin, and urea production. Under this condition, HLSCs downregulated alpha-fetoprotein and expressed cytokeratin-8 and cytokeratin-18. HLSCs were also able to undergo osteogenic and endothelial differentiation when cultured in the appropriated differentiation media, but they did not undergo lipogenic differentiation. Moreover, HLSCs differentiated in insulin-producing islet-like structures. In vivo, HLSCs contributed to regeneration of the liver parenchyma in severe-combined immunodeficient mice. In conclusion, we here identified a pluripotent progenitor population in adult human liver that could provide a basis for cell therapy strategies.
Collapse
|
977
|
Abstract
The ability to identify and manipulate stem cells has been a significant advancement in regenerative medicine and has contributed to the development of tissue engineering-based clinical therapies. Difficulties associated with achieving predictable periodontal regeneration, means that novel techniques such as tissue engineering need to be developed in order to regenerate the extensive soft and hard tissue destruction that results from periodontitis. One of the critical requirements for a tissue engineering approach is the delivery of ex vivo expanded progenitor populations or the mobilization of endogenous progenitor cells capable of proliferating and differentiating into the required tissues. By definition, stem cells fulfill these requirements and the recent identification of stem cells within the periodontal ligament represents a significant development in the progress toward predictable periodontal regeneration. In order to explore the importance of stem cells in periodontal wound healing and regeneration, this review will examine contemporary concepts in stem cell biology, the role of periodontal ligament progenitor cells in the regenerative process, recent developments in identifying periodontal stem cells and the clinical implications of these findings.
Collapse
Affiliation(s)
- S Ivanovski
- School of Dentistry, University of Queensland, Brisbane, Qld
| | | | | | | |
Collapse
|
978
|
Huh WJ, Pan XO, Mysorekar IU, Mills JC. Location, allocation, relocation: isolating adult tissue stem cells in three dimensions. Curr Opin Biotechnol 2006; 17:511-7. [PMID: 16889955 DOI: 10.1016/j.copbio.2006.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 06/02/2006] [Accepted: 07/21/2006] [Indexed: 02/06/2023]
Abstract
The literature on isolation of adult tissue stem cells is vast and disparate. To better organize the field, we redefine 'isolation', re-expressing it as the sum of three component vectors: location, allocation and relocation. Location is the isolation of stem cells in situ by anatomical features. Allocation is physical isolation by cell sorting. Relocation is isolation of the functional properties of a stem cell to regenerate its normal progeny when relocated to a new environment. Techniques for the allocation and relocation of stem cells from certain tissues (e.g. hematopoietic) are currently better defined than their location, whereas those of other tissues (e.g. mammary glands) have had recent advances along all three vectors. Yet another group (e.g. gastric glands), have stem cells with well characterized location, emerging techniques for allocation but still rudimentary techniques for relocation.
Collapse
Affiliation(s)
- Won Jae Huh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
979
|
Abstract
Stem-cell populations are established in 'niches'--specific anatomic locations that regulate how they participate in tissue generation, maintenance and repair. The niche saves stem cells from depletion, while protecting the host from over-exuberant stem-cell proliferation. It constitutes a basic unit of tissue physiology, integrating signals that mediate the balanced response of stem cells to the needs of organisms. Yet the niche may also induce pathologies by imposing aberrant function on stem cells or other targets. The interplay between stem cells and their niche creates the dynamic system necessary for sustaining tissues, and for the ultimate design of stem-cell therapeutics.
Collapse
Affiliation(s)
- David T Scadden
- Massachusetts General Hospital Center for Regenerative Medicine, Harvard Stem Cell Institute, 185 Cambridge Street, CPZN - 4265A, Boston, Massachusetts 02114, USA.
| |
Collapse
|
980
|
Iohara K, Zheng L, Ito M, Tomokiyo A, Matsushita K, Nakashima M. Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells 2006; 24:2493-503. [PMID: 16873765 DOI: 10.1634/stemcells.2006-0161] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dental pulp has the potential to form dentin as a regenerative response to caries. This regeneration is mediated by stem/progenitor cells. Thus, stem cell therapy might be of potential utility in induction of reparative dentin. We isolated side population (SP) cells from dental pulp based on the exclusion of the DNA binding dye Hoechst 33342 by flow cytometry and compared its self-renewal capacities and multipotency with non-SP cells and primary pulp cells. The cumulative cell number of the SP cells was greater than the non-SP cells and primary pulp cells. Bmi1 was continuously expressed in SP cells, suggesting longer proliferative lifespan and self-renewal capacity of SP cells. Next, the maintenance of the multilineage differentiation potential of pulp SP cells was investigated. Expression of type II collagen and aggrecan confirmed chondrogenic conversion (30%) of SP cells. SP cells expressed peroxisome proliferator-activated receptor gamma and adaptor protein 2, showing adipogenic conversion. Expression of mRNA and proteins of neurofilament and neuromodulin confirmed neurogenic conversion (90%). These results demonstrate that pulp SP cells maintain multilineage differentiation potential. We further examined whether bone morphogenetic protein 2 (BMP2) could induce differentiation of pulp SP cells into odontoblasts. BMP2 stimulated the expression of dentin sialophosphoprotein (Dspp) and enamelysin in three-dimensional pellet cultures. Autogenous transplantation of the Bmp2-supplemented SP cells on the amputated pulp stimulated the reparative dentin formation. Thus, adult pulp contains SP cells, which are enriched for stem cell properties and useful for cell therapy with BMP2 for dentin regeneration.
Collapse
Affiliation(s)
- Koichiro Iohara
- Laboratory of Oral Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
981
|
Affiliation(s)
- Silvio E Duailibi
- Department of Otorhinolaringology and Head and Neck Surgery, Centro Interdisciplinar de Terapia Gênica, University Federal of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
982
|
Affiliation(s)
- Stan Gronthos
- Mesenchymal Stem Cell Group, Division of Haemotology, Institute of Medical and Veterinary Science, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
983
|
Mimeault M, Batra SK. Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 2006; 24:2319-45. [PMID: 16794264 DOI: 10.1634/stemcells.2006-0066] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we report on recent advances on the functions of embryonic, fetal, and adult stem cell progenitors for tissue regeneration and cancer therapies. We describe new procedures for derivation and maturation of these stem cells into the tissue-specific cell progenitors. The localization of the adult stem cells and their niches, as well as their implication in the tissue repair after injuries and during cancer progression, are also described. The emphasis is on the interactions among certain developmental signaling factors, such as hormones, epidermal growth factor, hedgehog, Wnt/beta-catenin, and Notch. These factors and their pathways are involved in the stringent regulation of the self-renewal and/or differentiation of adult stem cells. Novel strategies for the treatment of both diverse degenerating disorders, by cell replacement, and some metastatic cancer types, by molecular targeting multiple tumorigenic signaling elements in cancer progenitor cells, are also illustrated.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute of Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA.
| | | |
Collapse
|
984
|
Popowics T, Foster BL, Swanson EC, Fong H, Somerman MJ. Defining the roots of cementum formation. Cells Tissues Organs 2006; 181:248-57. [PMID: 16612090 DOI: 10.1159/000091386] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Significant progress has been seen in research aimed at regeneration of the disease-damaged periodontium. Our own strategy has been to approach periodontal tissue development (i.e. root, cementum, periodontal ligament, and bone) as a source for the identification of key regulators of cellular processes that may be applicable to periodontal tissue repair. Specifically, enamel-like molecules, bone morphogenetic proteins (BMPs), and phosphates have been investigated for their role in altering gene expression and cell functions in follicle cells, periodontal ligament cells, and cementoblasts. Amelogenin, leucine-rich amelogenin peptide, and tyrosine-rich amelogenin peptide have been found to similarly affect cementoblast gene expression and cementoblast-mediated mineralization in vitro; however, these enamel-like factors do not increase cell proliferation as has been observed in cells treated with Emdogain (Biora AB, Malmö, Sweden), an enamel matrix derivative. BMP-2 has been found to promote differentiation of follicle cells into a cementoblast/osteoblast phenotype, and BMP-3 is being investigated as a negative regulator of mineralization. The increased ratio of phosphate to pyrophosphate in the local region during root development has been found to significantly enhance the extent of cementum formation in animal models. Furthermore, phosphate has been identified as a regulator of cementoblast SIBLING (small integrin-binding ligand N-linked glycoprotein) gene expression in vitro. These investigations of candidate factors for periodontal regeneration have uncovered mechanisms regulating gene expression and cell function in cells controlling the behavior of periodontal tissues (i.e. follicle cells, periodontal cells, and cementoblasts) and offer new directions to consider for clinical repair of periodontal defects.
Collapse
Affiliation(s)
- T Popowics
- Department of Oral Biology, University of Washington School of Dentistry, Seattle, Wash. 98195, USA.
| | | | | | | | | |
Collapse
|
985
|
Akintoye SO, Lam T, Shi S, Brahim J, Collins MT, Robey PG. Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone 2006; 38:758-68. [PMID: 16403496 DOI: 10.1016/j.bone.2005.10.027] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/17/2005] [Accepted: 10/26/2005] [Indexed: 01/06/2023]
Abstract
Autologous grafts from axial and appendicular bones commonly used to repair orofacial bone defects often result in unfavorable outcome. This clinical observation, along with the fact that many bone abnormalities are limited to craniofacial bones, suggests that there are significant differences in bone metabolism in orofacial, axial and appendicular bones. It is plausible that these differences are dictated by site-specificity of embryological progenitor cells and osteogenic properties of resident multipotent human bone marrow stromal cells (hBMSCs). This study investigated skeletal site-specific phenotypic and functional differences between orofacial (maxilla and mandible) and axial (iliac crest) hBMSCs in vitro and in vivo. Primary cultures of maxilla, mandible and iliac crest hBMSCs were established with and without osteogenic inducers. Site-specific characterization included colony forming efficiency, cell proliferation, life span before senescence, relative presence of surface markers, adipogenesis, osteogenesis and transplantation in immunocompromised mice to compare bone regenerative capacity. Compared with iliac crest cells, orofacial hBMSCs (OF-MSCs) proliferated more rapidly with delayed senescence, expressed higher levels of alkaline phosphatase and demonstrated more calcium accumulation in vitro. Cells isolated from the three skeletal sites were variably positive for STRO 1, a marker of hBMSCs. OF-MSCs formed more bone in vivo, while iliac crest hBMSCs formed more compacted bone that included hematopoietic tissue and were more responsive in vitro and in vivo to osteogenic and adipogenic inductions. These data demonstrate that hBMSCs from the same individuals differ in vitro and in vivo in a skeletal site-specific fashion and identified orofacial marrow stromal cells as unique cell populations. Further understanding of site-specific properties of hBMSCs and their impact on site-specific bone diseases and regeneration are needed.
Collapse
Affiliation(s)
- Sunday O Akintoye
- Department of Oral Medicine, University of Pennsylvania School of Dental Medicine, The Robert Schattner Center Room 209 240 South 40th Street, Philadelphia, 19104, USA.
| | | | | | | | | | | |
Collapse
|
986
|
Edwards PC, Mason JM. Gene-enhanced tissue engineering for dental hard tissue regeneration: (2) dentin-pulp and periodontal regeneration. Head Face Med 2006; 2:16. [PMID: 16725030 PMCID: PMC1481630 DOI: 10.1186/1746-160x-2-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 05/25/2006] [Indexed: 01/09/2023] Open
Abstract
Potential applications for gene-based tissue engineering therapies in the oral and maxillofacial complex include the delivery of growth factors for periodontal regeneration, pulp capping/dentin regeneration, and bone grafting of large osseous defects in dental and craniofacial reconstruction. Part 1 reviewed the principals of gene-enhanced tissue engineering and the techniques of introducing DNA into cells. This manuscript will review recent advances in gene-based therapies for dental hard tissue regeneration, specifically as it pertains to dentin regeneration/pulp capping and periodontal regeneration.
Collapse
Affiliation(s)
- Paul C Edwards
- Creighton University School of Dentistry, Omaha, NE, USA
| | - James M Mason
- NorthShore- Long Island JewishFeinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
987
|
da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006; 119:2204-13. [PMID: 16684817 DOI: 10.1242/jcs.02932] [Citation(s) in RCA: 1700] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells which can give rise to mesenchymal and non-mesenchymal tissues in vitro and in vivo. Whereas in vitro properties such as (trans)differentiation capabilities are well known, there is little information regarding natural distribution and biology in the living organism. To investigate the subject further, we generated long-term cultures of cells with mesenchymal stem cell characteristics from different organs and tissues from adult mice. These populations have morphology, immunophenotype and growth properties similar to bone marrow-derived MSCs. The differentiation potential was related to the tissue of origin. The results indicate that (1) cells with mesenchymal stem characteristics can be derived and propagated in vitro from different organs and tissues (brain, spleen, liver, kidney, lung, bone marrow, muscle, thymus, pancreas); (2) MSC long-term cultures can be generated from large blood vessels such as the aorta artery and the vena cava, as well as from small vessels such as those from kidney glomeruli; (3) MSCs are not detected in peripheral blood. Taken together, these results suggest that the distribution of MSCs throughout the post-natal organism is related to their existence in a perivascular niche. These findings have implications for understanding MSC biology, and for clinical and pharmacological purposes.
Collapse
|
988
|
Yen AHH, Sharpe PT. Regeneration of teeth using stem cell-based tissue engineering. Expert Opin Biol Ther 2006; 6:9-16. [PMID: 16370910 DOI: 10.1517/14712598.6.1.9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tooth autotransplantation, allotransplantation and dental implants have existed for many years, but have never been totally satisfactory. Thus, the development of new methods of tooth replacement has become desirable, and with the increasing knowledge of stem cell biology becomes a realistic possibility. Stem cell-based tissue engineering involving the recapitulation of the embryonic environment demonstrates that dental, non-dental, embryonic and adult stem cells can contribute to teeth formation in the appropriate setting. Evidence that stem cell populations may be present in human teeth provides the opportunity to consider biological tooth replacement 'new for old'.
Collapse
Affiliation(s)
- Amanda H-H Yen
- Dental Institute, Department of Craniofacial Development, Odontis Ltd, Kings College London, Guy's Hospital, London Bridge, SE1 9RT, UK
| | | |
Collapse
|
989
|
Huang GTJ, Sonoyama W, Chen J, Park SH. In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell Tissue Res 2006; 324:225-36. [PMID: 16440193 DOI: 10.1007/s00441-005-0117-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2005] [Accepted: 11/04/2005] [Indexed: 01/09/2023]
Abstract
Our purpose was to characterize human dental pulp cells isolated by various methods and to examine the behavior of cells grown under various conditions for the purpose of pulp/dentin tissue engineering and regeneration. We compared the growth of human pulp cells isolated by either enzyme digestion or the outgrowth method. Expression of dentin sialophosphoprotein, Cbfa1, and two types of collagen (I and III) in these cells was examined by Western blot or reverse transcription/polymerase chain reaction. Growth of pulp cells on dentin and in collagen gel was also characterized. We found that different isolation methods give rise to different populations or lineages of pulp cells during in vitro passage based on their collagen gene expression patterns. Cells isolated by enzymedigestion had a higher proliferation rate than those isolated by outgrowth. Pulp cells did not proliferate or grew minimally on chemically and mechanically treated dentin surface and appeared to establish an odontoblast-like morphology with a cytoplasmic process extending into a dentinal tubule as revealed by scanning electron microscopy. The contraction of the collagen matrix caused by pulp cells was dramatic: down to 34% on day 14. Our data indicate that (1) the choice of the pulp cell isolation method may affect the distribution of the obtained cell populations, (2) a treated dentin surface might still promote odontoblast differentiation, and (3) a collagen matrix may not be a suitable scaffold for pulp tissue regeneration because of the marked contraction caused by pulp cells in the matrix. The present study thus provides important information and a basis for further investigations pre-requisite to establishing pulp tissue engineering/regeneration protocols.
Collapse
Affiliation(s)
- George T-J Huang
- Division of Associated Clinical Specialties, Section of Endodontics, UCLA School of Dentistry, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
990
|
Uezumi A, Ojima K, Fukada SI, Ikemoto M, Masuda S, Miyagoe-Suzuki Y, Takeda S. Functional heterogeneity of side population cells in skeletal muscle. Biochem Biophys Res Commun 2006; 341:864-73. [PMID: 16455057 DOI: 10.1016/j.bbrc.2006.01.037] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2005] [Accepted: 01/11/2006] [Indexed: 10/25/2022]
Abstract
Skeletal muscle regeneration has been exclusively attributed to myogenic precursors, satellite cells. A stem cell-rich fraction referred to as side population (SP) cells also resides in skeletal muscle, but its roles in muscle regeneration remain unclear. We found that muscle SP cells could be subdivided into three sub-fractions using CD31 and CD45 markers. The majority of SP cells in normal non-regenerating muscle expressed CD31 and had endothelial characteristics. However, CD31(-)CD45(-) SP cells, which are a minor subpopulation in normal muscle, actively proliferated upon muscle injury and expressed not only several regulatory genes for muscle regeneration but also some mesenchymal lineage markers. CD31(-)CD45(-) SP cells showed the greatest myogenic potential among three SP sub-fractions, but indeed revealed mesenchymal potentials in vitro. These SP cells preferentially differentiated into myofibers after intramuscular transplantation in vivo. Our results revealed the heterogeneity of muscle SP cells and suggest that CD31(-)CD45(-) SP cells participate in muscle regeneration.
Collapse
Affiliation(s)
- Akiyoshi Uezumi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
991
|
Affiliation(s)
- P Mark Bartold
- Colgate Australian Clinical Dental Resource Centre, University of Adelaide, South Australia, Australia
| | | | | |
Collapse
|
992
|
Pereira Lopes FR, Camargo de Moura Campos L, Dias Corrêa J, Balduino A, Lora S, Langone F, Borojevic R, Blanco Martinez AM. Bone marrow stromal cells and resorbable collagen guidance tubes enhance sciatic nerve regeneration in mice. Exp Neurol 2006; 198:457-68. [PMID: 16487971 DOI: 10.1016/j.expneurol.2005.12.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 11/23/2005] [Accepted: 12/14/2005] [Indexed: 12/12/2022]
Abstract
We evaluated peripheral nerve regeneration using a tubular nerve guide of resorbable collagen filled with either bone marrow-derived cells (BMDCs) in Dulbecco's cell culture medium (DMEM) or with DMEM alone (control). The control group received just the culture medium (vehicle). The left sciatic nerves of ten isogenic mice were transected and the tubular nerve guides were sutured to the end of the proximal and distal nerve stumps. Motor function was tested at 2, 4 and 6 weeks after surgery using the walking track test. The pawprints were analyzed and the print lengths (PL) were measured to evaluate functional recovery. After 6 weeks, mice were anesthetized, perfused transcardially with fixative containing aldehydes, and the sciatic nerves and tubes were dissected and processed for scanning and transmission electron microscopy. Scanning electron microscopy of the collagen tube revealed that the tube wall became progressively thinner after surgery, proving that the tube can be resorbed in vivo. Quantitative analysis of the regenerating nerves showed that the number of myelinated fibers and the myelin area were significantly increased in the experimental group. Also, motor function recovery was faster in animals that received the cell grafts. These results indicate that the collagen tube filled with BMDCs provided an adequate and favorable environment for the growth and myelination of regenerating axons compared to the collagen tube alone.
Collapse
Affiliation(s)
- Fátima Rosalina Pereira Lopes
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
993
|
Abstract
Human and mouse endometrium (lining of the uterus) undergo cycles of growth and regression as part of each reproductive cycle. A well-known method to identify somatic stem/progenitor cells and their location in the stem cell niche is the label-retaining cell (LRC) approach. We hypothesized that mouse endometrium contains small populations of both epithelial and stromal somatic stem/progenitor cells that may be detected by the LRC technique. The overall objective of this study was to identify and quantify LRCs in mouse endometrium, to determine their location, and to identify their niche in this highly regenerative tissue. Endometrium was labeled for 3 days with bromodeoxyuridine (BrdU) in postnatal day 3 (P3) mice prior to gland development and prepubertal (P19) mice after glands had formed, followed by chase periods of up to 12 weeks. After an 8-week chase, 3% of epithelial nuclei immunostained with BrdU antibody and were considered epithelial LRCs. These were primarily located in the luminal epithelium. Epithelial LRCs did not express estrogen receptor-alpha (ER-alpha). Stromal LRCs (6%) were found adjacent to luminal epithelium, at the endometrial-myometrial junction, and near blood vessels after a 12-week chase. Stromal LRCs were stem cell antigen-1, CD45(-), and some (16%) expressed ER-alpha, indicating their capacity to respond to estrogen and transmit paracrine signals to epithelial cells for endometrial epithelium regeneration. Both epithelial LRCs and some stromal LRCs, mainly located at the endometrial-myometrial junction, were recruited into the cell cycle after estrogen-stimulated endometrial regeneration, indicating a functional response to proliferative signals. This study has demonstrated for the first time the presence of both epithelial and stromal LRCs in mouse endometrium, suggesting that these stem-like cells may be responsible for endometrial regeneration.
Collapse
Affiliation(s)
- Rachel W S Chan
- Centre for Women's Health Research, Monash University Department of Obstetrics and Gynaecology, Monash Medical Centre, Clayton, VIC, Australia
| | | |
Collapse
|
994
|
Brandi ML, Collin-Osdoby P. Vascular biology and the skeleton. J Bone Miner Res 2006; 21:183-92. [PMID: 16418774 DOI: 10.1359/jbmr.050917] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 06/08/2005] [Accepted: 10/03/2005] [Indexed: 12/20/2022]
Affiliation(s)
- Maria Luisa Brandi
- Department of Internal Medicine, University of Florence, Florence, Italy
| | | |
Collapse
|
995
|
Abstract
Caries, pulpitis, and apical periodontitis increase health care costs and attendant loss of economic productivity. They ultimately result in premature tooth loss and therefore diminishing the quality of life. Advances in vital pulp therapy with pulp stem/progenitor cells might give impetus to regenerate dentin-pulp complex without the removal of the whole pulp. Tissue engineering is the science of design and manufacture of new tissues to replace lost parts because of diseases including cancer and trauma. The three key ingredients for tissue engineering are signals for morphogenesis, stem cells for responding to morphogens and the scaffold of extracellular matrix. In preclinical studies cell therapy and gene therapy have been developed for many tissues and organs such as bone, heart, liver, and kidney as a means of delivering growth factors, cytokines, or morphogens with stem/progenitor cells in a scaffold to the sites of tissue injury to accelerate and/or induce a natural biological regeneration. The pulp tissue contains stem/progenitor cells that potentially differentiate into odontoblasts in response to bone morphogenetic proteins (BMPs). There are two strategies to regenerate dentin. First, is in vivo therapy, where BMP proteins or BMP genes are directly applied to the exposed or amputated pulp. Second is ex vivo therapy and consists of isolation of stem/progenitor cells from pulp tissue, differentiation into odontoblasts with recombinant BMPs or BMP genes and finally transplanted autogenously to regenerate dentin. This review is focused on the recent progress in this area and discusses the barriers and challenges for clinical utility in endodontics.
Collapse
Affiliation(s)
- Misako Nakashima
- Division of Oral Rehabilitation, Department of Clinical Oral Molecular Biology Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
996
|
Abstract
Postnatal stem cells have been isolated from a variety of tissues. These stem cells are thought to possess great therapeutic potential for repairing damaged and/or defective tissues. Clinically, hematopoietic stem cells have been successfully used for decades in the treatment of various diseases and disorders. However, the therapeutic potential of other postnatal stem cell populations has yet to be realized, because of the lack of detailed understanding of their stem cell characteristics at the cellular and molecular levels. Furthermore, there is limited knowledge of their therapeutic value at the preclinical level. Therefore, it is necessary to develop optimal strategies and approaches to overcome the substantial challenges currently faced by researchers examining the clinical efficacy of different postnatal stem cell populations. In this review, we introduce methodologies for isolating postnatal stem cells from human dental pulp and discuss their potential role in tissue regeneration.
Collapse
Affiliation(s)
- He Liu
- Peking University School of Stomatology, Beijing, China
| | | | | |
Collapse
|
997
|
Jones EA, English A, Kinsey SE, Straszynski L, Emery P, Ponchel F, McGonagle D. Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. CYTOMETRY PART B-CLINICAL CYTOMETRY 2006; 70:391-9. [PMID: 16977637 DOI: 10.1002/cyto.b.20118] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND To study the biology of rare bone marrow (BM) multipotent mesenchymal stromal cells (MSCs), recognized protocols are needed. Colony-forming unit-fibroblast (CFU-F) assays have historically been used for the enumeration of MSCs. However, the need to isolate and further analyze MSCs requires new strategies based on cell surface markers. The purpose of this work was to verify the phenotype of BM MSCs in vivo and to develop flow cytometry-based methods for their evaluation. METHODS Pre-enrichment with D7-FIB-conjugated microbeads, cell sorting for CD45low D7-FIB+ LNGFR+ cells, and CFU-F assay were used to confirm the phenotype of BM MSCs in vivo. Further phenotypic characterization of MSCs was performed using three-color flow cytometry following pre-enrichment or by direct four-color flow cytometry. The sensitivity of direct flow cytometry/rare event analysis for the accurate enumeration of MSCs was validated using 85 samples from patients with neoplastic BM diseases. RESULTS In normal BM, a significant correlation was found between the frequencies of CFU-Fs and CD45low D7-FIB+ LNGFR+ cells (n = 19, R = 0.719, P = 0.001). Following cell sorting, 15% of these cells were clonogenic. The same cells were enriched using LNGFR-based positive selection, CD45/Glycophorin A-based depletion, or plastic adherence. CD45low D7-FIB+ LNGFR+ cells expressed classic makers of cultured MSCs CD73/SH3 and CD105/SH2 and markers of stromal reticular cells CD106/VCAM and alkaline phosphatase. Novel markers were identified including leukemia inhibitory factor receptor and gp130. CD45low D7-FIB+ LNGFR+ cells were increased fourfold in the floating fat fraction of normal BM aspirates. Their frequency was decreased in chronic lymphocytic leukemia (threefold, n = 13, P = 0.049) and chronic myelogenous leukemia (ninefold, n = 11, P = 0.001) compared with that in age-matched controls (n = 26 and n = 31, respectively). CONCLUSIONS This study demonstrates the usefulness of flow cytometry-based methods for the detection, enumeration and further phenotypic analysis of BM MSCs. These findings have broad applications for the future evaluation of BM MSCs in health and disease.
Collapse
Affiliation(s)
- Elena A Jones
- Academic Unit of Musculoskeletal Disease, Leeds Institute for Molecular Medicine,University of Leeds, Leeds, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
998
|
Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V, Staffolani N, Franchina M, Grossi A, Bagnara GP. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 2005; 80:836-42. [PMID: 16210973 DOI: 10.1097/01.tp.0000173794.72151.88] [Citation(s) in RCA: 383] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (MSCs) are currently being investigated in preclinical and clinical settings because of their multipotent differentiative capacity or, alternatively, their immunosuppressive function. The aim of this study was to evaluate dental pulp (DP) as a potential source of MSCs instead of bone marrow (BM). METHODS Flow cytometric analysis showed that DP-MSCs and BM-MSCs were equally SH2, SH3, SH4, CD29 and CD 166 positive. The in vitro proliferative kinetics of MSCs were measured by 3H-thymidine incorporation uptake. The immunosuppressive function of MSCs was then tested by coculturing PHA-stimulated allogeneic T cells with or without MSCs for 3 days. RESULTS BM-MSCs could be differentiated in vitro into osteogenic, chondrogenic and adipogenic lineages. DP-MSCs showed osteogenic and adipocytic differentiation, but did not differentiate into chondrocytes. Although DP-MSCs grow rapidly in vitro between day 3 and day 8 of culture and then decrease their proliferation by day 15, BM-MSCs have a stable and continuous proliferation over the same period of time. The addition of DP-MSCs or BM-MSCs resulted in 91 +/- 4% and 75 +/- 3% inhibition of T cell response, respectively, assessed by a 3H-thymidine assay. CONCLUSIONS Dental pulp is an easily accessible and efficient source of MSCs, with different kinetics and differentiation potentialities from MSCs as isolated from the bone marrow. The rapid proliferative capacity together with the immunoregulatory characteristics of DP-MSCs may prompt future studies aimed at using these cells in the treatment or prevention of T-cell alloreactivity in hematopoietic or solid organ allogeneic transplantation.
Collapse
Affiliation(s)
- Laura Pierdomenico
- Department of Histology, Embryology, and Applied Biology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
999
|
Abstract
Ectopic calcification of blood vessels, heart valves, and skeletal muscle is a major clinical problem. There is now good evidence that angiogenesis is associated with ectopic calcification in these tissues and that it is necessary, but not sufficient, for calcification to occur. Angiogenesis may regulate ectopic calcification in several ways. First, many angiogenic factors are now known to exert both direct and indirect effects on bone and cartilage formation. Second, cytokines released by endothelial cells can induce the differentiation of osteoprogenitor cells. Third, the new blood vessels provide oxygen and nutrients to support the growing bone. Finally, the new blood vessels can serve as a conduit for osteoprogenitor cells. These osteoprogenitor cells may be derived from the circulation or from pericytes that are present in the neovessels themselves. Indeed, there is now compelling evidence that pericytes can differentiate into osteoblasts and chondrocytes both in vitro and in vivo. Other vascular cells, including adventitial myofibroblasts, calcifying vascular cells, smooth muscle cells, and valvular interstitial cells, have also been shown to exhibit multilineage potential in vitro. Although these cells share many properties with pericytes, the precise relationship between them is not known. Furthermore, it still remains to be determined whether all or some of these cells contribute to the ectopic calcification observed in vivo. A better understanding of the underlying mechanisms that link angiogenesis, pericytes, and ectopic calcification should provide a basis for development of therapeutic strategies to treat or arrest this clinically significant condition.
Collapse
Affiliation(s)
- G D M Collett
- Wellcome Trust Centre for Cell-Matrix Research & Cardiovascular Research Group, Faculty of Medical & Human Sciences, University of Manchester, Manchester M13 9PT, UK
| | | |
Collapse
|
1000
|
Trubiani O, Di Primio R, Traini T, Pizzicannella J, Scarano A, Piattelli A, Caputi S. Morphological and cytofluorimetric analysis of adult mesenchymal stem cells expanded ex vivo from periodontal ligament. Int J Immunopathol Pharmacol 2005; 18:213-21. [PMID: 15888245 DOI: 10.1177/039463200501800204] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many adult tissues contain a population of stem cells that have the ability of regeneration after trauma, disease or aging. Recently, there has been great interest in mesenchymal stem cells and their roles in maintaining the physiological structure of tissues, and their studies have been considered very important and intriguing, after having shown that this cell population can be expanded ex vivo to regenerate tissues not only of the mesenchymal lineage, such as intervertebral disc cartilage, bone, tooth-associated tissue, cardiomyocytes, but also to differentiate into cells derived from other embryonic layers, including neurons. Currently, different efforts have been focused on the identification of odontogenic progenitors from oral tissues. In this study we isolated and characterized a population of homogeneous human mesenchymal stem cells proliferating in culture with an attached well-spread morphology derived from periodontal ligament, a tissue of ectomesenchymal origin, with the ability to form a specialized joint between alveolar bone and tooth. The adherent cells were harvested and expanded ex vivo under specific conditions and analysed by FACScan flow cytometer and morphological analysis was carried out by light, scanning and transmission electron microscopy. Our results displayed highly evident cells with a fibroblast-like morphology and a secretory apparatus, probably indicating that the enhanced function of the secretory apparatus of the mesenchymal stem cells may be associated with the secretion of molecules that are required to survive and proliferate. Moreover, the presence in periodontal ligament of CD90, CD29, CD44,CD166, CD 105, CD13 positive cells, antigens that are also identified as stromal precursors of the bone marrow, indicate that the periodontal ligament may turn out to be a new efficient source of the cells with intrinsic capacity to self-renewal, high ability to proliferate and differentiate, that can be utilized for a new approach to regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- O Trubiani
- Dipartimento di Scienze Odontostomatologiche, Università G. d'Annunzio Chieti-Pescara, Chieti, Italy.
| | | | | | | | | | | | | |
Collapse
|