99951
|
The insulin receptor endocytosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:79-107. [PMID: 36631202 DOI: 10.1016/bs.pmbts.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Insulin signaling controls multiple aspects of animal physiology. At the cell surface, insulin binds and activates the insulin receptor (IR), a receptor tyrosine kinase. Insulin promotes a large conformational change of IR and stabilizes the active conformation. The insulin-activated IR triggers signaling cascades, thus controlling metabolism, growth, and proliferation. The activated IR undergoes internalization by clathrin- or caveolae-mediated endocytosis. The IR endocytosis plays important roles in insulin clearance from blood, and distribution and termination of the insulin signaling. Despite decades of extensive studies, the mechanism and regulation of IR endocytosis and its contribution to pathophysiology remain incompletely understood. Here we discuss recent findings that provide insights into the molecular mechanisms and regulatory pathways that mediate the IR endocytosis.
Collapse
|
99952
|
Cheng D, Cui Z, Chen C, Xu X, Niu K, He Z, Zhou X. The database for extracting numerical and visual properties of numerosity processing in the Chinese population. Sci Data 2023; 10:28. [PMID: 36641531 PMCID: PMC9840615 DOI: 10.1038/s41597-023-01933-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
The ability to handle non-symbolic numerosity has been recurrently linked to mathematical abilities. The accumulated data provide a rich resource that can reflect the underlying properties (i.e., dot ratio, area, convex hull, perimeters, distance, and hash) of numerosity processing. This article reports a database of numerosity processing in the Chinese population. The database contains five independent datasets with 7459, 4902, 415, 671, 414 participants respectively. For each dataset, all data were collected in the same online computerized test, examination room, professorial tester, and using the same protocols. Computational modeling method could be used to extract the dot ratio and visual properties of numerosity from five types of dot stimuli. This database enables researchers to test the theoretical hypotheses regarding numerosity processing using a large sample population. The database can also indicate the individual difference of non-symbolic numerosity in mathematical abilities.
Collapse
Affiliation(s)
- Dazhi Cheng
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China
- School of Psychology, Capital Normal University, 100073, Beijing, China
- Research Association for Brain and Mathematical Learning, Beijing Normal University, 100875, Beijing, China
- Department of Pediatric Neurology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Zhijun Cui
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China
- Research Association for Brain and Mathematical Learning, Beijing Normal University, 100875, Beijing, China
| | - Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China
| | - Xin Xu
- Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, 100876, Beijing, China
| | - Kai Niu
- Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, 100876, Beijing, China
| | - Zhiqiang He
- Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, 100876, Beijing, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China.
- Research Association for Brain and Mathematical Learning, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
99953
|
Viggiano E, Picillo E, Passamano L, Onore ME, Piluso G, Scutifero M, Torella A, Nigro V, Politano L. Spectrum of Genetic Variants in the Dystrophin Gene: A Single Centre Retrospective Analysis of 750 Duchenne and Becker Patients from Southern Italy. Genes (Basel) 2023; 14:214. [PMID: 36672955 PMCID: PMC9859256 DOI: 10.3390/genes14010214] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Dystrophinopathies are X-linked recessive muscle disorders caused by mutations in the dystrophin (DMD) gene that include deletions, duplications, and point mutations. Correct diagnosis is important for providing adequate patient care and family planning, especially at this time when mutation-specific therapies are available. We report a large single-centre study on the spectrum of DMD gene variants observed in 750 patients analyzed for suspected Duchenne (DMD) or Becker (BMD) muscular dystrophy, over the past 30 years, at the Cardiomyology and Medical Genetics of the University of Campania. We found 534 (71.21%) large deletions, 73 (9.73%) large duplications, and 112 (14.93%) point mutations, of which 44 (5.9%) were small ins/del causing frame-shifts, 57 (7.6%) nonsense mutations, 8 (1.1%) splice site and 3 (0.4%) intronic mutations, and 31 (4.13%) non mutations. Moreover, we report the prevalence of the different types of mutations in patients with DMD and BMD according to their decade of birth, from 1930 to 2020, and correlate the data to the different techniques used over the years. In the most recent decades, we observed an apparent increase in the prevalence of point mutations, probably due to the use of Next-Generation Sequencing (NGS). In conclusion, in southern Italy, deletions are the most frequent variation observed in DMD and BMD patients followed by point mutations and duplications, as elsewhere in the world. NGS was useful to identify point mutations in cases of strong suspicion of DMD/BMD negative on deletions/duplications analyses. In the era of personalized medicine and availability of new causative therapies, a collective effort is necessary to enable DMD and BMD patients to have timely genetic diagnoses and avoid late implementation of standard of care and late initiation of appropriate treatment.
Collapse
Affiliation(s)
- Emanuela Viggiano
- Department of Prevention, Hygiene and Public Health Service, ASL Roma 2, 00157 Rome, Italy
| | - Esther Picillo
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Luigia Passamano
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Maria Elena Onore
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Giulio Piluso
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Marianna Scutifero
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Annalaura Torella
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Vincenzo Nigro
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| |
Collapse
|
99954
|
Millet LJ, Jain A, Gillette MU. Less Is More: Oligomer Extraction and Hydrothermal Annealing Increase PDMS Adhesion Forces for Materials Studies and for Biology-Focused Microfluidic Applications. MICROMACHINES 2023; 14:214. [PMID: 36677275 PMCID: PMC9866318 DOI: 10.3390/mi14010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Cues in the micro-environment are key determinants in the emergence of complex cellular morphologies and functions. Primary among these is the presence of neighboring cells that form networks. For high-resolution analysis, it is crucial to develop micro-environments that permit exquisite control of network formation. This is especially true in cell science, tissue engineering, and clinical biology. We introduce a new approach for assembling polydimethylsiloxane (PDMS)-based microfluidic environments that enhances cell network formation and analyses. We report that the combined processes of PDMS solvent-extraction and hydrothermal annealing create unique conditions that produce high-strength bonds between solvent-extracted PDMS (E-PDMS) and glass-properties not associated with conventional PDMS. Extraction followed by hydrothermal annealing removes unbound oligomers, promotes polymer cross-linking, facilitates covalent bond formation with glass, and retains the highest biocompatibility. Herein, our extraction protocol accelerates oligomer removal from 5 to 2 days. Resulting microfluidic platforms are uniquely suited for cell-network studies owing to high adhesion forces, effectively corralling cellular extensions and eliminating harmful oligomers. We demonstrate the simple, simultaneous actuation of multiple microfluidic domains for invoking ATP- and glutamate-induced Ca2+ signaling in glial-cell networks. These E-PDMS modifications and flow manipulations further enable microfluidic technologies for cell-signaling and network studies as well as novel applications.
Collapse
Affiliation(s)
- Larry J. Millet
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- The Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
- The Center for Environmental Biotechnology, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Anika Jain
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- The Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martha U. Gillette
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- The Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
99955
|
Kozlov EN, Tokmatcheva EV, Khrustaleva AM, Grebenshchikov ES, Deev RV, Gilmutdinov RA, Lebedeva LA, Zhukova M, Savvateeva-Popova EV, Schedl P, Shidlovskii YV. Long-Term Memory Formation in Drosophila Depends on the 3'UTR of CPEB Gene orb2. Cells 2023; 12:cells12020318. [PMID: 36672258 PMCID: PMC9856895 DOI: 10.3390/cells12020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Activation of local translation in neurites in response to stimulation is an important step in the formation of long-term memory (LTM). CPEB proteins are a family of translation factors involved in LTM formation. The Drosophila CPEB protein Orb2 plays an important role in the development and function of the nervous system. Mutations of the coding region of the orb2 gene have previously been shown to impair LTM formation. We found that a deletion of the 3'UTR of the orb2 gene similarly results in loss of LTM in Drosophila. As a result of the deletion, the content of the Orb2 protein remained the same in the neuron soma, but significantly decreased in synapses. Using RNA immunoprecipitation followed by high-throughput sequencing, we detected more than 6000 potential Orb2 mRNA targets expressed in the Drosophila brain. Importantly, deletion of the 3'UTR of orb2 mRNA also affected the localization of the Csp, Pyd, and Eya proteins, which are encoded by putative mRNA targets of Orb2. Therefore, the 3'UTR of the orb2 mRNA is important for the proper localization of Orb2 and other proteins in synapses of neurons and the brain as a whole, providing a molecular basis for LTM formation.
Collapse
Affiliation(s)
- Eugene N. Kozlov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena V. Tokmatcheva
- Institute of Physiology, Russian Academy of Sciences, 188680 St. Petersburg, Russia
| | - Anastasia M. Khrustaleva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Eugene S. Grebenshchikov
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Roman V. Deev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Rudolf A. Gilmutdinov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Lyubov A. Lebedeva
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mariya Zhukova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton University, Princeton, NJ 08544-1014, USA
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
- Correspondence:
| |
Collapse
|
99956
|
Pletcher C, Dabbs K, Barzgari A, Pozorski V, Haebig M, Wey S, Krislov S, Theisen F, Okonkwo O, Cary P, Oh J, Illingworth C, Wakely M, Law L, Gallagher CL. Cerebral cortical thickness and cognitive decline in Parkinson's disease. Cereb Cortex Commun 2023; 4:tgac044. [PMID: 36660417 PMCID: PMC9840947 DOI: 10.1093/texcom/tgac044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 10/05/2022] [Indexed: 01/21/2023] Open
Abstract
In Parkinson's disease (PD), reduced cerebral cortical thickness may reflect network-based degeneration. This study performed cognitive assessment and brain MRI in 30 PD participants and 41 controls at baseline and 18 months later. We hypothesized that cerebral cortical thickness and volume, as well as change in these metrics, would differ between PD participants who remained cognitively stable and those who experienced cognitive decline. Dividing the participant sample into PD-stable, PD-decline, and control-stable groups, we compared mean cortical thickness and volume within segments that comprise the prefrontal cognitive-control, memory, dorsal spatial, and ventral object-based networks at baseline. We then compared the rate of change in cortical thickness and volume between the same groups using a vertex-wise approach. We found that the PD-decline group had lower cortical thickness within all 4 cognitive networks in comparison with controls, as well as lower cortical thickness within the prefrontal and medial temporal networks in comparison with the PD-stable group. The PD-decline group also experienced a greater rate of volume loss in the lateral temporal cortices in comparison with the control group. This study suggests that lower thickness and volume in prefrontal, medial, and lateral temporal regions may portend cognitive decline in PD.
Collapse
Affiliation(s)
- Colleen Pletcher
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Kevin Dabbs
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Amy Barzgari
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Vincent Pozorski
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Maureen Haebig
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Sasha Wey
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Stephanie Krislov
- Institute for Clinical and Translational Research, Madison, WI, United States
| | - Frances Theisen
- Cox Medical Centers, Department of Surgery, Springfield, MO, United States
| | - Ozioma Okonkwo
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, Madison, WI, United States
| | - Paul Cary
- Wisconsin Alzheimer’s Disease Research Center, Madison, WI, United States
| | - Jennifer Oh
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, Madison, WI, United States
| | - Chuck Illingworth
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, Madison, WI, United States
| | - Michael Wakely
- Wisconsin Alzheimer’s Disease Research Center, Madison, WI, United States
| | - Lena Law
- Wisconsin Alzheimer’s Disease Research Center, Madison, WI, United States
| | - Catherine L Gallagher
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, Madison, WI, United States
| |
Collapse
|
99957
|
Zheng ZS, Reggente N, Monti MM. Arousal Regulation by the External Globus Pallidus: A New Node for the Mesocircuit Hypothesis. Brain Sci 2023; 13:brainsci13010146. [PMID: 36672127 PMCID: PMC9856495 DOI: 10.3390/brainsci13010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
In the decade since its debut, the Mesocircuit Hypothesis (MH) has provided researchers a scaffolding for interpreting their findings by associating subcortical-cortical dysfunction with the loss and recovery of consciousness following severe brain injury. Here, we leverage new findings from human and rodent lesions, as well as chemo/optogenetic, tractography, and stimulation studies to propose the external segment of the globus pallidus (GPe) as an additional node in the MH, in hopes of increasing its explanatory power. Specifically, we discuss the anatomical and molecular mechanisms involving the GPe in sleep-wake control and propose a plausible mechanistic model explaining how the GPe can modulate cortical activity through its direct connections with the prefrontal cortex and thalamic reticular nucleus to initiate and maintain sleep. The inclusion of the GPe in the arousal circuitry has implications for understanding a range of phenomena, such as the effects of the adenosine (A2A) and dopamine (D2) receptors on sleep-wake cycles, the paradoxical effects of zolpidem in disorders of consciousness, and sleep disturbances in conditions such as Parkinson's Disease.
Collapse
Affiliation(s)
- Zhong Sheng Zheng
- Research Institute, Casa Colina Hospitals and Centers for Healthcare, Pomona, CA 91767, USA
- Correspondence: ; Tel.: +1-909-596-7733 (ext. 2279)
| | - Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA 90403, USA
| | - Martin M. Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
99958
|
Exploring Genetic and Neural Risk of Specific Reading Disability within a Nuclear Twin Family Case Study: A Translational Clinical Application. J Pers Med 2023; 13:jpm13010156. [PMID: 36675818 PMCID: PMC9862148 DOI: 10.3390/jpm13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Imaging and genetic studies have characterized biological risk factors contributing to specific reading disability (SRD). The current study aimed to apply this literature to a family of twins discordant for SRD and an older sibling with reading difficulty. Intraclass correlations were used to understand the similarity of imaging phenotypes between pairs. Reading-related genes and brain region phenotypes, including asymmetry indices representing the relative size of left compared to right hemispheric structures, were descriptively examined. SNPs that corresponded between the SRD siblings and not the typically developing (TD) siblings were in genes ZNF385D, LPHN3, CNTNAP2, FGF18, NOP9, CMIP, MYO18B, and RBFOX2. Imaging phenotypes were similar among all sibling pairs for grey matter volume and surface area, but cortical thickness in reading-related regions of interest (ROIs) was more similar among the siblings with SRD, followed by the twins, and then the TD twin and older siblings, suggesting cortical thickness may differentiate risk for this family. The siblings with SRD had more symmetry of cortical thickness in the transverse temporal and superior temporal gyri, while the TD sibling had greater rightward asymmetry. The TD sibling had a greater leftward asymmetry of grey matter volume and cortical surface area in the fusiform, supramarginal, and transverse temporal gyrus. This exploratory study demonstrated that reading-related risk factors appeared to correspond with SRD within this family, suggesting that early examination of biological factors may benefit early identification. Future studies may benefit from the use of polygenic risk scores or machine learning to better understand SRD risk.
Collapse
|
99959
|
Neurophysiological assessment of cortical activity in DEPDC5- and NPRL3-related epileptic mTORopathies. Orphanet J Rare Dis 2023; 18:11. [PMID: 36639812 PMCID: PMC9840333 DOI: 10.1186/s13023-022-02600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mutations in the GATOR1 complex genes, DEPDC5 and NPRL3, play a major role in the development of lesional and non-lesional focal epilepsy through increased mTORC1 signalling. We aimed to assess the effects of mTORC1 hyperactivation on GABAergic inhibitory circuits, in 3 and 5 individuals carrying DEPDC5 and NPRL3 mutations respectively using a multimodal approach including transcranial magnetic stimulation (TMS), magnetic resonance spectroscopy (MRS), and electroencephalography (EEG). RESULTS Inhibitory functions probed by TMS and MRS showed no effect of mutations on cortical GABAergic receptor-mediated inhibition and GABA concentration, in both cortical and subcortical regions. However, stronger EEG theta oscillations and stronger and more synchronous gamma oscillations were observed in DEPDC5 and NPRL3 mutations carriers. CONCLUSIONS These results suggest that DEPDC5 and NPRL3-related epileptic mTORopathies may not directly modulate GABAergic functions but are nonetheless characterized by a stronger neural entrainment that may be reflective of a cortical hyperexcitability mediated by increased mTORC1 signaling.
Collapse
|
99960
|
Farabolini G, Ceravolo MG, Marini A. Towards a Characterization of Late Talkers: The Developmental Profile of Children with Late Language Emergence through a Web-Based Communicative-Language Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1563. [PMID: 36674318 PMCID: PMC9862326 DOI: 10.3390/ijerph20021563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Children acquire language naturally, but there is variation in language acquisition patterns. Indeed, different internal and external variables play a role in acquiring language. However, there are open research questions about the contribution of different variables to language development. Moreover, with societal changes and due to the pandemic situation, there has been a growing interest in testing digitalization related to indirect language acquisition assessment. In this study, a web-based assessment survey was developed to (1) describe the relation between expressive vocabulary, Socio-Conversational Skills (SCS), gender, parental education, executive functions (EFs), and pretend play; (2) determine whether the survey can detect differences between late talkers (LTs) and children with typical language development; (3) identify children with "overall high" and "overall low" communicative-language scores to test the validity of expressive vocabulary as a main indicator to detect LTs. The parents of 108 Italian children (51 males) aged 24-36 months participated in the study. The results showed that expressive vocabulary correlates with measures of SCS (assertiveness and responsiveness) and is reliable in identifying LTs (d = 2.73). Furthermore, SCS and EFs contribute to better characterizing the developmental profile of children aged 24-36 months.
Collapse
Affiliation(s)
- Gianmatteo Farabolini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Maria Gabriella Ceravolo
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Andrea Marini
- Department of Languages, Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy
| |
Collapse
|
99961
|
Okada K, Iyer BR, Lammers LG, Gutierrez P, Li W, Markus SM, McKenney RJ. Conserved Roles for the Dynein Intermediate Chain and Ndel1 in Assembly and Activation of Dynein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523097. [PMID: 36711700 PMCID: PMC9882231 DOI: 10.1101/2023.01.13.523097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cytoplasmic dynein, the primary retrograde microtubule transport motor within cells, must be activated for processive motility through the regulated assembly of a dynein-dynactin-adapter (DDA) complex. The interaction between dynein and dynactin was initially ascribed to the N-terminus of the dynein intermediate chain (IC) and a coiled-coil of the dynactin subunit p150 Glued . However, cryo-EM structures of DDA complexes have not resolve these regions of the IC and p150 Glued , raising questions about the importance of this interaction. The IC N-terminus (ICN) also interacts with the dynein regulators Nde1/Ndel1, which compete with p150 Glued for binding to ICN. Using a combination of approaches, we reveal that the ICN plays critical, evolutionarily conserved roles in DDA assembly by interacting with dynactin and Ndel1, the latter of which recruits the DDA assembly factor LIS1 to the dynein complex. In contrast to prior models, we find that LIS1 cannot simultaneously bind to Ndel1 and dynein, indicating that LIS1 must be handed off from Ndel1 to dynein in temporally discrete steps. Whereas exogenous Ndel1 or p150 Glued disrupts DDA complex assembly in vitro , neither perturbs preassembled DDA complexes, indicating that the IC is stably bound to p150 Glued within activated DDA complexes. Our study reveals previously unknown regulatory steps in the dynein activation pathway, and provides a more complete model for how the activities of LIS1/Ndel1 and dynactin/cargo-adapters are integrated to regulate dynein motor activity.
Collapse
Affiliation(s)
- Kyoko Okada
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Bharat R. Iyer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Lindsay G. Lammers
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Pedro Gutierrez
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Wenzhe Li
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Steven M. Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Richard J. McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
99962
|
Tan S, Gao H, Sun J, Li N, Zhang Y, Yang L, Wang M, Wang Q, Zhai Q. CD33/TREM2 Signaling Mediates Sleep Deprivation-Induced Memory Impairment by Regulating Microglial Phagocytosis. Neuromolecular Med 2023:10.1007/s12017-023-08733-6. [PMID: 36639554 DOI: 10.1007/s12017-023-08733-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Sleep deprivation causes significant memory impairment in healthy adults. Extensive research has focused on identifying the biological mechanisms underlying memory impairment. Microglia-mediated synaptic elimination plays an indispensable role in sleep deprivation. Here, the potential role of the CD33/TREM2 signaling pathway in modulating memory decline during chronic sleep restriction (CSR) was evaluated. In this study, adult male C57BL/6 mice were sleep-restricted using an automated sleep deprivation apparatus for 20 h per day for 7 days. The Y-maze test revealed that spontaneous alternation was significantly reduced in CSR mice compared with control mice. The percentage of exploratory preference for the novel object in CSR mice was significantly decreased compared with that in control mice. These memory deficits correlated with aberrant microglial activation and increased phagocytic ability. Moreover, in CSR mice, the CD33 protein level in hippocampal tissue was significantly downregulated, but the TREM2 protein level was increased. In BV2 microglial cells, downregulation of CD33 increased TREM2 expression and improved microglial phagocytosis. Then, the sialic ligand monosialo-ganglioside 1 (GM1, 20 mg/kg, i.p.) was administered to mice once a day during CSR. Our results further showed that GM1 activated CD33 and consequently disturbed TREM2-mediated microglial phagocytosis. Finally, GM1 reversed CSR-induced synaptic loss and memory impairment via the CD33/TREM2 signaling pathway in the CA1 region of the hippocampus. This study provides novel evidence that activating CD33 and/or inhibiting TREM2 activity represent potential therapies for sleep loss-induced memory deficits through the modulation of microglial phagocytosis.
Collapse
Affiliation(s)
- Shuwen Tan
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hui Gao
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jianyu Sun
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Na Li
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yuxin Zhang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liu Yang
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Min Wang
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Qian Zhai
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
99963
|
Endocytosis of LXRs: Signaling in liver and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:347-375. [PMID: 36631198 DOI: 10.1016/bs.pmbts.2022.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nuclear receptors are among one of the major transcriptional factors that induces gene regulation in the nucleus. Liver X receptor (LXR) is a transcription factor which regulates essential lipid homeostasis in the body including fatty acid, cholesterol and phospholipid synthesis. Liver X receptor-retinoid X receptor (LXR-RXR) heterodimer is activated by either of the ligand binding on LXR or RXR. The promoter region of the gene which is targeted by LXR is bound to the response element of LXR. The activators bind to the heterodimer once the corepressor is dissociated. The cellular process such as endocytosis aids in intracellular trafficking and endosomal formation in transportation of molecules for essential signaling within the cell. LXR isotypes play a crucial role in maintaining lipid homeostasis by regulating the level of cholesterol. In the liver, the deficiency of LXRα can alter the normal physiological conditions depicting the symptoms of various cardiovascular and liver diseases. LXR can degrade low density lipoprotein receptors (LDLR) by the signaling of LXR-IDOL through endocytic trafficking in lipoprotein uptake. Various gene expressions associated with cholesterol level and lipid synthesis are regulated by LXR transcription factor. With its known diversified ligand binding, LXR is capable of regulating expression of various specific genes responsible for the progression of autoimmune diseases. The agonists and antagonists of LXR stand to be an important factor in transcription of the ABC family, essential for high density lipoprotein (HDL) formation. Endocytosis and signaling mechanism of the LXR family is broad and complex despite their involvement in cellular growth and proliferation. Here in this chapter, we aimed to emphasize the master regulation of LXR activation, regulators, and their implications in various metabolic activities especially in lipid homeostasis. Furthermore, we also briefed the significant role of LXR endocytosis in T cell immune regulation and a variety of human diseases including cardiovascular and neuroadaptive.
Collapse
|
99964
|
Jiao F, Hu X, Yin H, Yuan F, Zhou Z, Wu W, Chen S, Liu Z, Guo F. Inhibition of c-Jun in AgRP neurons increases stress-induced anxiety and colitis susceptibility. Commun Biol 2023; 6:50. [PMID: 36641530 PMCID: PMC9840628 DOI: 10.1038/s42003-023-04425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Psychiatric disorders, such as anxiety, are associated with inflammatory bowel disease (IBD), however, the neural mechanisms regulating this comorbidity are unknown. Here, we show that hypothalamic agouti-related protein (AgRP) neuronal activity is suppressed under chronic restraint stress (CRS), a condition known to increase anxiety and colitis susceptibility. Consistently, chemogenic activation or inhibition of AgRP neurons reverses or mimics CRS-induced increase of anxiety-like behaviors and colitis susceptibility, respectively. Furthermore, CRS inhibits AgRP neuronal activity by suppressing the expression of c-Jun. Moreover, overexpression of c-Jun in these neurons protects against the CRS-induced effects, and knockdown of c-Jun in AgRP neurons (c-Jun∆AgRP) promotes anxiety and colitis susceptibility. Finally, the levels of secreted protein thrombospondin 1 (THBS1) are negatively associated with increased anxiety and colitis, and supplementing recombinant THBS1 rescues colitis susceptibility in c-Jun∆AgRP mice. Taken together, these results reveal critical roles of hypothalamic AgRP neuron-derived c-Jun in orchestrating stress-induced anxiety and colitis susceptibility.
Collapse
Affiliation(s)
- Fuxin Jiao
- grid.8547.e0000 0001 0125 2443Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Xiaoming Hu
- grid.8547.e0000 0001 0125 2443Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032 China
| | - Hanrui Yin
- grid.410726.60000 0004 1797 8419CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Feixiang Yuan
- grid.8547.e0000 0001 0125 2443Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032 China
| | - Ziheng Zhou
- grid.410726.60000 0004 1797 8419CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Wei Wu
- grid.24516.340000000123704535Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072 China
| | - Shanghai Chen
- grid.8547.e0000 0001 0125 2443Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032 China
| | - Zhanju Liu
- grid.24516.340000000123704535Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072 China
| | - Feifan Guo
- grid.8547.e0000 0001 0125 2443Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032 China
| |
Collapse
|
99965
|
Yang X, Xu C, Yao F, Ding Q, Liu H, Luo C, Wang D, Huang J, Li Z, Shen Y, Yang W, Li Z, Yu F, Fu Y, Wang L, Ma Q, Zhu J, Xu F, Cong X, Kong W. Targeting endothelial tight junctions to predict and protect thoracic aortic aneurysm and dissection. Eur Heart J 2023; 44:1248-1261. [PMID: 36638776 DOI: 10.1093/eurheartj/ehac823] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
AIMS Whether changes in endothelial tight junctions (TJs) lead to the formation of thoracic aortic aneurysm and dissection (TAAD) and serve as an early indicator and therapeutic target remains elusive. METHODS AND RESULTS Single-cell RNA sequencing analysis showed aberrant endothelial TJ expressions in the thoracic aortas of patients with TAAD. In a β-aminopropionitrile (BAPN)-induced TAAD mouse model, endothelial TJ function was disrupted in the thoracic aortas at an early stage (5 and 10 days) as observed by a vascular permeability assay, while the intercellular distribution of crucial TJ components was significantly decreased by en face staining. For the non-invasive detection of endothelial TJ function, two dextrans of molecular weights 4 and 70 kDa were conjugated with the magnetic resonance imaging (MRI) contrast agent Gd-DOTA to synthesize FITC-dextran-DOTA-Gd and rhodamine B-dextran-DOTA-Gd. MRI images showed that both probes accumulated in the thoracic aortas of the BAPN-fed mice. Particularly, the mice with increased accumulated signals from 5 to 10 days developed TAAD at 14 days, whereas the mice with similar signals between the two time points did not. Furthermore, the protease-activated receptor 2 inhibitor AT-1001, which seals TJs, alleviated the BAPN-induced impairment of endothelial TJ function and expression and subsequently reduced TAAD incidence. Notably, endothelial-targeted ZO-1 conditional knockout increased TAAD incidence. Mechanistically, vascular inflammation and edema were observed in the thoracic aortas of the BAPN-fed mice, whereas these phenomena were attenuated by AT-1001. CONCLUSION The disruption of endothelial TJ function is an early event prior to TAAD formation, herein serving as a potential indicator and a promising target for TAAD.
Collapse
Affiliation(s)
- Xueyuan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Chen Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fang Yao
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.,Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Qianhui Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Center of Vascular Prostheses, Beijing 100029, China
| | - Congcong Luo
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Center of Vascular Prostheses, Beijing 100029, China
| | - Daidai Wang
- Department of Emergency, Peking University Third Hospital, Beijing 100191, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Yicong Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Weijie Yang
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuofan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Li Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.,Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Qingbian Ma
- Department of Emergency, Peking University Third Hospital, Beijing 100191, China
| | - Junming Zhu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Center of Vascular Prostheses, Beijing 100029, China
| | - Fujian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| |
Collapse
|
99966
|
Tan X, Gao M, Chang C. A new means of energy supply driven by terahertz photons recovers related neural activity. iScience 2023; 26:105979. [PMID: 36756372 PMCID: PMC9900506 DOI: 10.1016/j.isci.2023.105979] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Continuous and efficient energy capture represents a long-sought dream of mankind. The brain is a major energy-consuming organ; an adult brain accounts for about 2% of the body weight but consumes about 20% of the body's energy. However, it is still unclear how the brain achieves efficient use of energy. Here, using nerve cells as test subjects, we found that THz photons with a specific frequency can effectively restore the reduced frequency of action potentials caused by inadequate ATP supply, which has been demonstrated as a novel mode of energy supply, present photons emission at a particular frequency from the breaking of the ATP phosphate bond. This energy supply mechanism may play a key biophysical basis for explaining how the body efficiently obtains energy, because the quantized chemical reactions could have a high energy efficiency and ultrahigh selectivity compared with the traditional thermochemistry and photochemistry.
Collapse
Affiliation(s)
- Xiaoxuan Tan
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China,Astronaut Center of China, Beijing 100084, China,Corresponding author
| | - Mingxin Gao
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China,School of physics, Peking University, Beijing 100084, China,Corresponding author
| |
Collapse
|
99967
|
FM1-43 Dye Memorizes Piezo1 Activation in the Trigeminal Nociceptive System Implicated in Migraine Pain. Int J Mol Sci 2023; 24:ijms24021688. [PMID: 36675204 PMCID: PMC9861983 DOI: 10.3390/ijms24021688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
It has been proposed that mechanosensitive Piezo1 channels trigger migraine pain in trigeminal nociceptive neurons, but the mechanosensitivity of satellite glial cells (SGCs) supporting neuronal sensitization has not been tested before. Moreover, tools to monitor previous Piezo1 activation are not available. Therefore, by using live calcium imaging with Fluo-4 AM and labeling with FM1-43 dye, we explored a new strategy to identify Piezo channels' activity in mouse trigeminal neurons, SGCs, and isolated meninges. The specific Piezo1 agonist Yoda1 induced calcium transients in both neurons and SGCs, suggesting the functional expression of Piezo1 channels in both types of cells. In Piezo1-transfected HEK cells, FM1-43 produced only a transient fluorescent response, whereas co-application with Yoda1 provided higher transient signals and a remarkable long-lasting FM1-43 'tail response'. A similar Piezo1-related FM1-43 trapping was observed in neurons and SGCs. The non-specific Piezo channel blocker, Gadolinium, inhibited the transient peak, confirming the involvement of Piezo1 receptors. Finally, FM1-43 labeling demonstrated previous activity in meningeal tissues 3.5 h after Yoda1 washout. Our data indicated that trigeminal neurons and SGCs express functional Piezo channels, and their activation provides sustained labeling with FM1-43. This long-lasting labelling can be used to monitor the ongoing and previous activation of Piezo1 channels in the trigeminal nociceptive system, which is implicated in migraine pain.
Collapse
|
99968
|
Pandita P, Bhalla R, Saini A, Mani I. Emerging tools for studying receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:19-48. [PMID: 36631193 DOI: 10.1016/bs.pmbts.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ligands, agonists, or antagonists use receptor-mediated endocytosis (RME) to reach their intracellular targets. After the internalization of ligand-receptor complexes, it traffics through different subcellular organelles such as early endosome, recycling endosome, lysosome, etc. Further, after the ligand binding to the receptor, different second messengers are generated, such as cGMP, cAMP, IP3, etc. Several methods have been used, such as radioligand binding assay, western blotting, co-immunoprecipitation (co-IP), qRT-PCR, immunofluorescence and confocal microscopy, microRNA/siRNA, and bioassays to understand the various events, such as internalization, subcellular trafficking, signaling, metabolic degradation, etc. This chapter briefly discusses the key principles and methods used to study internalization, subcellular trafficking, signaling, and metabolic degradation of numerous receptors.
Collapse
Affiliation(s)
- Pratiksha Pandita
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rhea Bhalla
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
99969
|
Barendrecht S, Schreurs A, Geissler S, Sabanov V, Ilse V, Rieckmann V, Eichentopf R, Künemund A, Hietel B, Wussow S, Hoffmann K, Körber-Ferl K, Pandey R, Carter GW, Demuth HU, Holzer M, Roßner S, Schilling S, Preuss C, Balschun D, Cynis H. A novel human tau knock-in mouse model reveals interaction of Abeta and human tau under progressing cerebral amyloidosis in 5xFAD mice. Alzheimers Res Ther 2023; 15:16. [PMID: 36641439 PMCID: PMC9840277 DOI: 10.1186/s13195-022-01144-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/14/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Hyperphosphorylation and intraneuronal aggregation of the microtubule-associated protein tau is a major pathological hallmark of Alzheimer's disease (AD) brain. Of special interest is the effect of cerebral amyloid beta deposition, the second main hallmark of AD, on human tau pathology. Therefore, studying the influence of cerebral amyloidosis on human tau in a novel human tau knock-in (htau-KI) mouse model could help to reveal new details on their interplay. METHODS We studied the effects of a novel human htau-KI under fast-progressing amyloidosis in 5xFAD mice in terms of correlation of gene expression data with human brain regions, development of Alzheimer's-like pathology, synaptic transmission, and behavior. RESULTS The main findings are an interaction of human beta-amyloid and human tau in crossbred 5xFADxhtau-KI observed at transcriptional level and corroborated by electrophysiology and histopathology. The comparison of gene expression data of the 5xFADxhtau-KI mouse model to 5xFAD, control mice and to human AD patients revealed conspicuous changes in pathways related to mitochondria biology, extracellular matrix, and immune function. These changes were accompanied by plaque-associated MC1-positive pathological tau that required the htau-KI background. LTP deficits were noted in 5xFAD and htau-KI mice in contrast to signs of rescue in 5xFADxhtau-KI mice. Increased frequencies of miniature EPSCs and miniature IPSCs indicated an upregulated presynaptic function in 5xFADxhtau-KI. CONCLUSION In summary, the multiple interactions observed between knocked-in human tau and the 5xFAD-driven progressing amyloidosis have important implications for future model development in AD.
Collapse
Affiliation(s)
- Susan Barendrecht
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - An Schreurs
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Stefanie Geissler
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Victor Sabanov
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Victoria Ilse
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Vera Rieckmann
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Rico Eichentopf
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Anja Künemund
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Benjamin Hietel
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Sebastian Wussow
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Katrin Hoffmann
- grid.9018.00000 0001 0679 2801Martin Luther University Halle-Wittenberg, Institute for Human Genetics, Magdeburger Strasse 2, 06112 Halle, Germany
| | - Kerstin Körber-Ferl
- grid.9018.00000 0001 0679 2801Martin Luther University Halle-Wittenberg, Institute for Human Genetics, Magdeburger Strasse 2, 06112 Halle, Germany
| | - Ravi Pandey
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609 USA
| | - Gregory W. Carter
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609 USA
| | - Hans-Ulrich Demuth
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Max Holzer
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstraße 19, 04103 Leipzig, Germany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstraße 19, 04103 Leipzig, Germany
| | - Stephan Schilling
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany ,grid.427932.90000 0001 0692 3664Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany
| | - Christoph Preuss
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609 USA
| | - Detlef Balschun
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Holger Cynis
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| |
Collapse
|
99970
|
Chowdhury S, Wu G, Lu ZH, Kumar R, Ledeen R. Age-Related Decline in Gangliosides GM1 and GD1a in Non-CNS Tissues of Normal Mice: Implications for Peripheral Symptoms of Parkinson's Disease. Biomedicines 2023; 11:biomedicines11010209. [PMID: 36672717 PMCID: PMC9855670 DOI: 10.3390/biomedicines11010209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
The purpose of this study was to determine whether the age-related decline in a-series gangliosides (especially GM1), shown to be a factor in the brain-related etiology of Parkinson's disease (PD), also pertains to the peripheral nervous system (PNS) and aspects of PD unrelated to the central nervous system (CNS). Following Svennerholm's demonstration of the age-dependent decline in a-series gangliosides (both GM1 and GD1a) in the human brain, we previously demonstrated a similar decline in the normal mouse brain. The present study seeks to determine whether a similar a-series decline occurs in the periphery of normal mice as a possible prelude to the non-CNS symptoms of PD. We used mice of increasing age to measure a-series gangliosides in three peripheral tissues closely associated with PD pathology. Employing high-performance thin-layer chromatography (HPTLC), we found a substantial decrease in both GM1 and GD1a in all three tissues from 191 days of age. Motor and cognitive dysfunction were also shown to worsen, as expected, in synchrony with the decrease in GM1. Based on the previously demonstrated parallel between mice and humans concerning age-related a-series ganglioside decline in the brain, we propose the present findings to suggest a similar a-series decline in human peripheral tissues as the primary contributor to non-CNS pathologies of PD. An onset of sporadic PD would thus be seen as occurring simultaneously throughout the brain and body, albeit at varying rates, in association with the decline in a-series gangliosides. This would obviate the need to postulate the transfer of aggregated α-synuclein between brain and body or to debate brain vs. body as the origin of PD.
Collapse
|
99971
|
Lupan BM, Solecki RA, Musso CM, Alsina FC, Silver DL. The exon junction complex component EIF4A3 is essential for mouse and human cortical progenitor mitosis and neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.524010. [PMID: 36711736 PMCID: PMC9882224 DOI: 10.1101/2023.01.13.524010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mutations in components of the exon junction complex (EJC) are associated with neurodevelopment and disease. In particular, reduced levels of the RNA helicase EIF4A3 cause Richieri-Costa-Pereira Syndrome (RCPS) and CNVs are linked to intellectual disability. Consistent with this, Eif4a3 haploinsufficient mice are microcephalic. Altogether, this implicates EIF4A3 in cortical development; however, the underlying mechanisms are poorly understood. Here, we use mouse and human models to demonstrate that EIF4A3 promotes cortical development by controlling progenitor mitosis, cell fate, and survival. Eif4a3 haploinsufficiency in mice causes extensive cell death and impairs neurogenesis. Using Eif4a3 ; p53 compound mice, we show that apoptosis is most impactful for early neurogenesis, while additional p53-independent mechanisms contribute to later stages. Live imaging of mouse and human neural progenitors reveals Eif4a3 controls mitosis length, which influences progeny fate and viability. These phenotypes are conserved as cortical organoids derived from RCPS iPSCs exhibit aberrant neurogenesis. Finally, using rescue experiments we show that EIF4A3 controls neuron generation via the EJC. Altogether, our study demonstrates that EIF4A3 mediates neurogenesis by controlling mitosis duration and cell survival, implicating new mechanisms underlying EJC-mediated disorders. Summary statement This study shows that EIF4A3 mediates neurogenesis by controlling mitosis duration in both mouse and human neural progenitors, implicating new mechanisms underlying neurodevelopmental disorders.
Collapse
|
99972
|
Sun Q, van de Lisdonk D, Ferrer M, Gegenhuber B, Wu M, Tollkuhn J, Janowitz T, Li B. Area postrema neurons mediate interleukin-6 function in cancer-associated cachexia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523716. [PMID: 36711916 PMCID: PMC9882141 DOI: 10.1101/2023.01.12.523716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Interleukin-6 (IL-6) has been long considered a key player in cancer-associated cachexia 1-15 . It is believed that sustained elevation of IL-6 production during cancer progression causes brain dysfunctions, which ultimately result in cachexia 16-20 . However, how peripheral IL-6 influences the brain remains poorly understood. Here we show that neurons in the area postrema (AP), a circumventricular structure in the hindbrain, mediate the function of IL-6 in cancer-associated cachexia in mice. We found that circulating IL-6 can rapidly enter the AP and activate AP neurons. Peripheral tumor, known to increase circulating IL-6 1-5,15,18,21-23 , leads to elevated IL-6 and neuronal hyperactivity in the AP, and causes potentiated excitatory synaptic transmission onto AP neurons. Remarkably, neutralization of IL-6 in the brain of tumor-bearing mice with an IL-6 antibody prevents cachexia, reduces the hyperactivity in an AP network, and markedly prolongs lifespan. Furthermore, suppression of Il6ra , the gene encoding IL-6 receptor, specifically in AP neurons with CRISPR/dCas9 interference achieves similar effects. Silencing of Gfral-expressing AP neurons also ameliorates the cancer-associated cachectic phenotypes and AP network hyperactivity. Our study identifies a central mechanism underlying the function of peripheral IL-6, which may serve as a target for treating cancer-associated cachexia.
Collapse
|
99973
|
Liefooghe B, van Maanen L. Three levels at which the user's cognition can be represented in artificial intelligence. Front Artif Intell 2023; 5:1092053. [PMID: 36714204 PMCID: PMC9880274 DOI: 10.3389/frai.2022.1092053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Artificial intelligence (AI) plays an important role in modern society. AI applications are omnipresent and assist many decisions we make in daily life. A common and important feature of such AI applications are user models. These models allow an AI application to adapt to a specific user. Here, we argue that user models in AI can be optimized by modeling these user models more closely to models of human cognition. We identify three levels at which insights from human cognition can be-and have been-integrated in user models. Such integration can be very loose with user models only being inspired by general knowledge of human cognition or very tight with user models implementing specific cognitive processes. Using AI-based applications in the context of education as a case study, we demonstrate that user models that are more deeply rooted in models of cognition offer more valid and more fine-grained adaptations to an individual user. We propose that such user models can also advance the development of explainable AI.
Collapse
|
99974
|
Semesta KM, Garces A, Tsvetanova NG. The psychosis risk factor RBM12 encodes a novel repressor of GPCR/cAMP signal transduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523776. [PMID: 36711667 PMCID: PMC9882185 DOI: 10.1101/2023.01.12.523776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
RBM12 is a high-penetrance risk factor for familial schizophrenia and psychosis, yet its precise cellular functions and the pathways to which it belongs are not known. We utilize two complementary models, HEK293 cells and human iPSC-derived neurons, and delineate RBM12 as a novel repressor of the G protein-coupled receptor/cyclic AMP/protein kinase A (GPCR/cAMP/PKA) signaling axis. We establish that loss of RBM12 leads to hyperactive cAMP production and increased PKA activity as well as altered neuronal transcriptional responses to GPCR stimulation. Notably, the cAMP and transcriptional signaling steps are subject to discrete RBM12-dependent regulation. We further demonstrate that the two RBM12 truncating variants linked to familial psychosis impact this interplay, as the mutants fail to rescue GPCR/cAMP signaling hyperactivity in cells depleted of RBM12. Lastly, we present a mechanism underlying the impaired signaling phenotypes. In agreement with its activity as an RNA-binding protein, loss of RBM12 leads to altered gene expression, including that of multiple effectors of established significance within the receptor pathway. Specifically, the abundance of adenylyl cyclases, phosphodiesterase isoforms, and PKA regulatory and catalytic subunits is impacted by RBM12 depletion. We note that these expression changes are fully consistent with the entire gamut of hyperactive signaling outputs. In summary, the current study identifies a previously unappreciated role for RBM12 in the context of the GPCR/cAMP pathway that could be explored further as a tentative molecular mechanism underlying the functions of this factor in neuronal physiology and pathophysiology.
Collapse
Affiliation(s)
- Khairunnisa M Semesta
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| | - Angelica Garces
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| | - Nikoleta G Tsvetanova
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| |
Collapse
|
99975
|
Shekar A, Mabry SJ, Cheng MH, Aguilar JI, Patel S, Zanella D, Saleeby DP, Zhu Y, Romanazzi T, Ulery-Reynolds P, Bahar I, Carter AM, Matthies HJG, Galli A. Syntaxin 1 Ser 14 phosphorylation is required for nonvesicular dopamine release. SCIENCE ADVANCES 2023; 9:eadd8417. [PMID: 36630507 PMCID: PMC9833662 DOI: 10.1126/sciadv.add8417] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/14/2022] [Indexed: 05/30/2023]
Abstract
Amphetamine (AMPH) is a psychostimulant that is commonly abused. The stimulant properties of AMPH are associated with its ability to increase dopamine (DA) neurotransmission. This increase is promoted by nonvesicular DA release mediated by reversal of DA transporter (DAT) function. Syntaxin 1 (Stx1) is a SNARE protein that is phosphorylated at Ser14 by casein kinase II. We show that Stx1 phosphorylation is critical for AMPH-induced nonvesicular DA release and, in Drosophila melanogaster, regulates the expression of AMPH-induced preference and sexual motivation. Our molecular dynamics simulations of the DAT/Stx1 complex demonstrate that phosphorylation of these proteins is pivotal for DAT to dwell in a DA releasing state. This state is characterized by the breakdown of two key salt bridges within the DAT intracellular gate, causing the opening and hydration of the DAT intracellular vestibule, allowing DA to bind from the cytosol, a mechanism that we hypothesize underlies nonvesicular DA release.
Collapse
Affiliation(s)
- Aparna Shekar
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samuel J. Mabry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary H. Cheng
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jenny I. Aguilar
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shalin Patel
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniele Zanella
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David P. Saleeby
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yanqi Zhu
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tiziana Romanazzi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angela M. Carter
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
99976
|
Cunningham KL, Littleton JT. Mechanisms controlling the trafficking, localization, and abundance of presynaptic Ca 2+ channels. Front Mol Neurosci 2023; 15:1116729. [PMID: 36710932 PMCID: PMC9880069 DOI: 10.3389/fnmol.2022.1116729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) mediate Ca2+ influx to trigger neurotransmitter release at specialized presynaptic sites termed active zones (AZs). The abundance of VGCCs at AZs regulates neurotransmitter release probability (Pr ), a key presynaptic determinant of synaptic strength. Given this functional significance, defining the processes that cooperate to establish AZ VGCC abundance is critical for understanding how these mechanisms set synaptic strength and how they might be regulated to control presynaptic plasticity. VGCC abundance at AZs involves multiple steps, including channel biosynthesis (transcription, translation, and trafficking through the endomembrane system), forward axonal trafficking and delivery to synaptic terminals, incorporation and retention at presynaptic sites, and protein recycling. Here we discuss mechanisms that control VGCC abundance at synapses, highlighting findings from invertebrate and vertebrate models.
Collapse
Affiliation(s)
- Karen L. Cunningham
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | |
Collapse
|
99977
|
Naz N, Moshkdanian G, Miyan S, Eljabri S, James C, Miyan J. A Paternal Methylation Error in the Congenital Hydrocephalic Texas (H-Tx) Rat Is Partially Rescued with Natural Folate Supplements. Int J Mol Sci 2023; 24:1638. [PMID: 36675153 PMCID: PMC9860872 DOI: 10.3390/ijms24021638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Folate deficiencies, folate imbalance and associated abnormal methylation are associated with birth defects, developmental delays, neurological conditions and diseases. In the hydrocephalic Texas (H-Tx) rat, 10-formyl tetrahydrofolate dehydrogenase (FDH) is reduced or absent from the CSF and the nuclei of cells in the brain and liver and this is correlated with decreased DNA methylation. In the present study, we tested whether impaired folate metabolism or methylation exists in sexually mature, unaffected H-Tx rats, which may explain the propagation of hydrocephalus in their offspring. We compared normal Sprague Dawley (SD, n = 6) rats with untreated H-Tx (uH-Tx, n = 6 and folate-treated H-Tx (TrH-Tx, n = 4). Structural abnormalities were observed in the testis of uH-Tx rats, with decreased methylation, increased demethylation, and cell death, particularly of sperm. FDH and FRα protein expression was increased in uH-Tx males but not in folate-treated males but tissue folate levels were unchanged. 5-Methylcytosine was significantly reduced in untreated and partially restored in treated individuals, while 5-hydroxymethylcytosine was not significantly changed. Similarly, a decrease in DNA-methyltransferase-1 expression in uH-Tx rats was partially reversed with treatment. The data expose a significant germline methylation error in unaffected adult male H-Tx rats from which hydrocephalic offspring are obtained. Reduced methylation in the testis and sperm was partially recovered by treatment with folate supplements leading us to conclude that this neurological disorder may not be completely eradicated by maternal supplementation alone.
Collapse
Affiliation(s)
| | | | | | | | | | - Jaleel Miyan
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, 3.540 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
99978
|
Munoz C, Jayanthi S, Ladenheim B, Cadet JL. Compulsive methamphetamine self-administration in the presence of adverse consequences is associated with increased hippocampal mRNA expression of cellular adhesion molecules. Front Mol Neurosci 2023; 15:1104657. [PMID: 36710935 PMCID: PMC9880890 DOI: 10.3389/fnmol.2022.1104657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Methamphetamine (METH) is a popular but harmful psychostimulant. METH use disorder (MUD) is characterized by compulsive and continued use despite adverse life consequences. METH users experience impairments in learning and memory functions that are thought to be secondary to METH-induced abnormalities in the hippocampus. Recent studies have reported that about 50% of METH users develop MUD, suggesting that there may be differential molecular effects of METH between the brains of individuals who met criteria for addiction and those who did not after being exposed to the drug. The present study aimed at identifying potential transcriptional differences between compulsive and non-compulsive METH self-administering male rats by measuring global gene expression changes in the hippocampus using RNA sequencing. Herein, we used a model of METH self-administration (SA) accompanied by contingent foot-shock punishment. This approach led to the separation of animals into shock-resistant rats (compulsive) that continued to take METH and shock-sensitive rats (non-compulsive) that suppressed their METH intake in the presence of punished METH taking. Rats were euthanized 2 h after the last METH SA plus foot-shock session. Their hippocampi were immediately removed, frozen, and used later for RNA sequencing and qRT-PCR analyses. RNA sequencing analyses revealed differential expression of mRNAs encoding cell adhesion molecules (CAMs) between the two rat phenotypes. qRT-PCR analyses showed significant higher levels of Cdh1, Glycam1, and Mpzl2 mRNAs in the compulsive rats in comparison to non-compulsive rats. The present results implicate altered CAM expression in the hippocampus in the behavioral manifestations of continuous compulsive METH taking in the presence of adverse consequences. Our results raise the novel possibility that altered CAM expression might play a role in compulsive METH taking and the cognitive impairments observed in MUD patients.
Collapse
|
99979
|
Reviewing the Potential Links between Viral Infections and TDP-43 Proteinopathies. Int J Mol Sci 2023; 24:ijms24021581. [PMID: 36675095 PMCID: PMC9867397 DOI: 10.3390/ijms24021581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Transactive response DNA binding protein 43 kDa (TDP-43) was discovered in 2001 as a cellular factor capable to inhibit HIV-1 gene expression. Successively, it was brought to new life as the most prevalent RNA-binding protein involved in several neurological disorders, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite the fact that these two research areas could be considered very distant from each other, in recent years an increasing number of publications pointed out the existence of a potentially important connection. Indeed, the ability of TDP-43 to act as an important regulator of all aspects of RNA metabolism makes this protein also a critical factor during expression of viral RNAs. Here, we summarize all recent observations regarding the involvement of TDP-43 in viral entry, replication and latency in several viruses that include enteroviruses (EVs), Theiler's murine encephalomyelitis virus (TMEV), human immunodeficiency virus (HIV), human endogenous retroviruses (HERVs), hepatitis B virus (HBV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), West Nile virus (WNV), and herpes simplex virus-2 (HSV). In particular, in this work, we aimed to highlight the presence of similarities with the most commonly studied TDP-43 related neuronal dysfunctions.
Collapse
|
99980
|
Coates BS, Walden KKO, Lata D, Vellichirammal NN, Mitchell RF, Andersson MN, McKay R, Lorenzen MD, Grubbs N, Wang YH, Han J, Xuan JL, Willadsen P, Wang H, French BW, Bansal R, Sedky S, Souza D, Bunn D, Meinke LJ, Miller NJ, Siegfried BD, Sappington TW, Robertson HM. A draft Diabrotica virgifera virgifera genome: insights into control and host plant adaption by a major maize pest insect. BMC Genomics 2023; 24:19. [PMID: 36639634 PMCID: PMC9840275 DOI: 10.1186/s12864-022-08990-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Adaptations by arthropod pests to host plant defenses of crops determine their impacts on agricultural production. The larval host range of western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is restricted to maize and a few grasses. Resistance of D. v. virgifera to crop rotation practices and multiple insecticides contributes to its status as the most damaging pest of cultivated maize in North America and Europe. The extent to which adaptations by this pest contributes to host plant specialization remains unknown. RESULTS A 2.42 Gb draft D. v. virgifera genome, Dvir_v2.0, was assembled from short shotgun reads and scaffolded using long-insert mate-pair, transcriptome and linked read data. K-mer analysis predicted a repeat content of ≥ 61.5%. Ortholog assignments for Dvir_2.0 RefSeq models predict a greater number of species-specific gene duplications, including expansions in ATP binding cassette transporter and chemosensory gene families, than in other Coleoptera. A majority of annotated D. v. virgifera cytochrome P450s belong to CYP4, 6, and 9 clades. A total of 5,404 transcripts were differentially-expressed between D. v. virgifera larvae fed maize roots compared to alternative host (Miscanthus), a marginal host (Panicum virgatum), a poor host (Sorghum bicolor) and starvation treatments; Among differentially-expressed transcripts, 1,908 were shared across treatments and the least number were between Miscanthus compared to maize. Differentially-expressed transcripts were enriched for putative spliceosome, proteosome, and intracellular transport functions. General stress pathway functions were unique and enriched among up-regulated transcripts in marginal host, poor host, and starvation responses compared to responses on primary (maize) and alternate hosts. CONCLUSIONS Manual annotation of D. v. virgifera Dvir_2.0 RefSeq models predicted expansion of paralogs with gene families putatively involved in insecticide resistance and chemosensory perception. Our study also suggests that adaptations of D. v. virgifera larvae to feeding on an alternate host plant invoke fewer transcriptional changes compared to marginal or poor hosts. The shared up-regulation of stress response pathways between marginal host and poor host, and starvation treatments may reflect nutrient deprivation. This study provides insight into transcriptomic responses of larval feeding on different host plants and resources for genomic research on this economically significant pest of maize.
Collapse
Affiliation(s)
- Brad S. Coates
- grid.508983.fCorn Insects & Crop Genetics Research Unit, USDA-ARS, 2310 Pammel Dr, 532 Science II, Iowa State University, Ames, IA 50011 USA
| | - Kimberly K. O. Walden
- grid.35403.310000 0004 1936 9991Roy J. Carver Biotechnology Center, University of Illinois at Champaign-Urbana, Urbana, IL USA
| | - Dimpal Lata
- grid.62813.3e0000 0004 1936 7806Department of Biology, Illinois Institute of Technology, Chicago, IL USA
| | | | - Robert F. Mitchell
- grid.267474.40000 0001 0674 4543University of Wisconsin Oshkosh, Oshkosh, WI USA
| | - Martin N. Andersson
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Lund, Sweden
| | - Rachel McKay
- grid.267474.40000 0001 0674 4543University of Wisconsin Oshkosh, Oshkosh, WI USA
| | - Marcé D. Lorenzen
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Nathaniel Grubbs
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Yu-Hui Wang
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Jinlong Han
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Jing Li Xuan
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Peter Willadsen
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Huichun Wang
- grid.24434.350000 0004 1937 0060Department of Entomology, University of Nebraska, Lincoln, NE USA
| | - B. Wade French
- grid.508981.dIntegrated Crop Systems Research Unit, USDA-ARS, Brookings, SD USA
| | - Raman Bansal
- grid.512850.bUSDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA USA
| | - Sammy Sedky
- grid.512850.bUSDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA USA
| | - Dariane Souza
- grid.15276.370000 0004 1936 8091Department of Entomology, University of Florida, Gainesville, FL USA
| | - Dakota Bunn
- grid.62813.3e0000 0004 1936 7806Department of Biology, Illinois Institute of Technology, Chicago, IL USA
| | - Lance J. Meinke
- grid.24434.350000 0004 1937 0060Department of Entomology, University of Nebraska, Lincoln, NE USA
| | - Nicholas J. Miller
- grid.62813.3e0000 0004 1936 7806Department of Biology, Illinois Institute of Technology, Chicago, IL USA
| | - Blair D. Siegfried
- grid.15276.370000 0004 1936 8091Department of Entomology, University of Florida, Gainesville, FL USA
| | - Thomas W. Sappington
- grid.508983.fCorn Insects & Crop Genetics Research Unit, USDA-ARS, 2310 Pammel Dr, 532 Science II, Iowa State University, Ames, IA 50011 USA
| | - Hugh M. Robertson
- grid.35403.310000 0004 1936 9991Department of Entomology, University of Illinois at Champaign-Urbana, Urbana, IL USA
| |
Collapse
|
99981
|
Perna L, Mons U, Stocker H, Beyer L, Beyreuther K, Trares K, Holleczek B, Schöttker B, Perneczky R, Gerwert K, Brenner H. High cholesterol levels change the association of biomarkers of neurodegenerative diseases with dementia risk: Findings from a population-based cohort. Alzheimers Dement 2023. [PMID: 36638231 DOI: 10.1002/alz.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
INTRODUCTION This study assessed whether in a population with comorbidity of neurodegenerative and cerebrovascular disease (mixed pathology) the association of glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), and phosphorylated tau181 (p-tau181) with dementia risk varied depending on levels of total cholesterol and apolipoprotein E (APOE) ε4 genotype. METHODS Plasma biomarkers were measured using Simoa technology in 768 participants of a nested case-control study embedded within an ongoing population-based cohort. Logistic and spline regression models, and receiver operating characteristic curves were calculated. RESULTS The strength of the association between GFAP and NfL with risk of a clinical diagnosis of dementia changed depending on cholesterol levels and on APOE ε4 genotype. No significant association was seen with p-tau181. DISCUSSION In individuals with mixed pathology blood GFAP and NfL are better predictors of dementia risk than p-tau181, and their associations with dementia risk are amplified by hypercholesterolemia, also depending on APOE ε4 genotype. HIGHLIGHTS Cholesterol levels changed the association of blood biomarkers with dementia risk. Blood biomarkers seem to perform differently in community- and clinic-based cohorts. Neurofilament light chain might be a biomarker candidate for dementia risk after stroke.
Collapse
Affiliation(s)
- Laura Perna
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,Division of Mental Health of Older Adults, Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Ute Mons
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Léon Beyer
- Faculty of Biology and Biotechnology, Department of Biophysics, Ruhr-University Bochum, Bochum, Germany.,Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, Bochum, Germany
| | - Konrad Beyreuther
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Kira Trares
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | | | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Robert Perneczky
- Division of Mental Health of Older Adults, Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK
| | - Klaus Gerwert
- Faculty of Biology and Biotechnology, Department of Biophysics, Ruhr-University Bochum, Bochum, Germany.,Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, Bochum, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
99982
|
Jain T, Li YM. Gut microbes modulate neurodegeneration. Science 2023; 379:142-143. [PMID: 36634183 DOI: 10.1126/science.adf9548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Microbiota mediate neuroinflammation in a genetic- and sex-specific manner in mice.
Collapse
Affiliation(s)
- Tanya Jain
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Neuroscience Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Neuroscience Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY, USA.,Pharmacology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| |
Collapse
|
99983
|
Chen XT, Chen LP, Fan LJ, Kan HM, Wang ZZ, Qian B, Pan ZQ, Shen W. Microglial P2Y12 Signaling Contributes to Cisplatin-induced Pain Hypersensitivity via IL-18-mediated Central Sensitization in the Spinal Cord. THE JOURNAL OF PAIN 2023; 24:901-917. [PMID: 36646400 DOI: 10.1016/j.jpain.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/10/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Administration of cisplatin and other chemotherapy drugs is crucial for treating tumors. However, cisplatin-induced pain hypersensitivity is still a critical clinical issue, and the underlying molecular mechanisms have remained unresolved to date. In this study, we found that repeated cisplatin treatments remarkedly upregulated the P2Y12 expression in the spinal cord. Expression of P2Y12 was predominant in the microglia. Pharmacological inhibition of P2Y12 expression markedly attenuated the cisplatin-induced pain hypersensitivity. Meanwhile, blocking the P2Y12 signal also suppressed cisplatin-induced microglia hyperactivity. Furthermore, the microglia Src family kinase/p38 pathway is required for P2Y12-mediated cisplatin-induced pain hypersensitivity via the proinflammatory cytokine IL-18 production in the spinal cord. Blocking the P2Y12/IL-18 signaling pathway reversed cisplatin-induced pain hypersensitivity, as well as activation of N-methyl-D-aspartate receptor and subsequent Ca2+-dependent signals. Collectively, our data suggest that microglia P2Y12-SFK-p38 signaling contributes to cisplatin-induced pain hypersensitivity via IL-18-mediated central sensitization in the spinal, and P2Y12 could be a potential target for intervention to prevent chemotherapy-induced pain hypersensitivity. PERSPECTIVE: Our work identified that P2Y12/IL-18 played a critical role in cisplatin-induced pain hypersensitivity. This work suggests that P2Y12/IL-18 signaling may be a useful strategy for the treatment of chemotherapy-induced pain hypersensitivity.
Collapse
Affiliation(s)
- Xue-Tai Chen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China; Department of anesthesiology, The Yancheng Clinical College of Xuzhou Medical University; Department of central labotatory, The First people's Hospital of Yancheng, Yancheng, Jiangsu 224006, People's Republic of China
| | - Li-Ping Chen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Li-Jun Fan
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Hou-Ming Kan
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Zi-Zhu Wang
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Bin Qian
- Department of anesthesiology, The Yancheng Clinical College of Xuzhou Medical University; Department of central labotatory, The First people's Hospital of Yancheng, Yancheng, Jiangsu 224006, People's Republic of China
| | - Zhi-Qiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Wen Shen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China.
| |
Collapse
|
99984
|
Analysis of Serial Neuroblastoma PDX Passages in Mice Allows the Identification of New Mediators of Neuroblastoma Aggressiveness. Int J Mol Sci 2023; 24:ijms24021590. [PMID: 36675105 PMCID: PMC9866967 DOI: 10.3390/ijms24021590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Neuroblastoma is a neural crest cell-derived pediatric tumor characterized by high inter- and intra-tumor heterogeneity, and by a poor outcome in advanced stages. Patient-derived xenografts (PDXs) have been shown to be useful models for preserving and expanding original patient biopsies in vivo, and for studying neuroblastoma biology in a more physiological setting. The maintenance of genetic, histologic, and phenotypic characteristics of the original biopsy along serial PDX passages in mice is a major concern regarding this model. Here we analyze consecutive PDX passages in mice, at both transcriptomic and histological levels, in order to identify potential changes or highlight similarities to the primary sample. We studied temporal changes using mRNA and miRNA expression and correlate those with neuroblastoma aggressiveness using patient-derived databases. We observed a shortening of tumor onset and an increase in proliferative potential in the PDXs along serial passages. This behavior correlates with changes in the expression of genes related to cell proliferation and neuronal differentiation, including signaling pathways described as relevant for neuroblastoma malignancy. We also identified new genes and miRNAs that can be used to stratify patients according to survival, and which could be potential new players in neuroblastoma aggressiveness. Our results highlight the usefulness of the PDX neuroblastoma model and reflect phenotypic changes that might be occurring in the mouse environment. These findings could be useful for understanding the progression of tumor aggressiveness in this pathology.
Collapse
|
99985
|
Griffin JM, Hingorani Jai Prakash S, Bockemühl T, Benner JM, Schaffran B, Moreno-Manzano V, Büschges A, Bradke F. Rehabilitation enhances epothilone-induced locomotor recovery after spinal cord injury. Brain Commun 2023; 5:fcad005. [PMID: 36744011 PMCID: PMC9893225 DOI: 10.1093/braincomms/fcad005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Microtubule stabilization through epothilones is a promising preclinical therapy for functional recovery following spinal cord injury that stimulates axon regeneration, reduces growth-inhibitory molecule deposition and promotes functional improvements. Rehabilitation therapy is the only clinically validated approach to promote functional improvements following spinal cord injury. However, whether microtubule stabilization can augment the beneficial effects of rehabilitation therapy or act in concert with it to further promote repair remains unknown. Here, we investigated the pharmacokinetic, histological and functional efficacies of epothilone D, epothilone B and ixabepilone alone or in combination with rehabilitation following a moderate contusive spinal cord injury. Pharmacokinetic analysis revealed that ixabepilone only weakly crossed the blood-brain barrier and was subsequently excluded from further investigations. In contrast, epothilones B and D rapidly distributed to CNS compartments displaying similar profiles after either subcutaneous or intraperitoneal injections. Following injury and subcutaneous administration of epothilone B or D, rats were subjected to 7 weeks of sequential bipedal and quadrupedal training. For all outcome measures, epothilone B was efficacious compared with epothilone D. Specifically, epothilone B decreased fibrotic scaring which was associated with a retention of fibronectin localized to perivascular cells in sections distal to the lesion. This corresponded to a decreased number of cells present within the intralesional space, resulting in less axons within the lesion. Instead, epothilone B increased serotonergic fibre regeneration and vesicular glutamate transporter 1 expression caudal to the lesion, which was not affected by rehabilitation. Multiparametric behavioural analyses consisting of open-field locomotor scoring, horizontal ladder, catwalk gait analysis and hindlimb kinematics revealed that rehabilitation and epothilone B both improved several aspects of locomotion. Specifically, rehabilitation improved open-field locomotor and ladder scores, as well as improving the gait parameters of limb coupling, limb support, stride length and limb speed; epothilone B improved these same gait parameters but also hindlimb kinematic profiles. Functional improvements by epothilone B and rehabilitation acted complementarily on gait parameters leading to an enhanced recovery in the combination group. As a result, principal component analysis of gait showed the greatest improvement in the epothilone B plus rehabilitation group. Thus, these results support the combination of epothilone B with rehabilitation in a clinical setting.
Collapse
Affiliation(s)
- Jarred M Griffin
- Correspondence may also be addressed to: Jarred Griffin The German Center for Neurodegenerative Diseases (DZNE) Venusberg-Campus 1/99, Bonn 53127, Germany E-mail:
| | - Sonia Hingorani Jai Prakash
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain
| | - Till Bockemühl
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne 50674, Germany
| | - Jessica M Benner
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Barbara Schaffran
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne 50674, Germany
| | - Frank Bradke
- Correspondence to: Frank Bradke The German Center for Neurodegenerative Diseases (DZNE) Venusberg-Campus 1/99, Bonn 53127, Germany E-mail:
| |
Collapse
|
99986
|
Gürbüz A, Pak OS, Taylor M, Sivaselvan MV, Sachs F. Effects of membrane viscoelasticity on the red blood cell dynamics in a microcapillary. Biophys J 2023:S0006-3495(23)00026-7. [PMID: 36639868 DOI: 10.1016/j.bpj.2023.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/11/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The mechanical properties of red blood cells (RBCs) play key roles in their biological functions in microcirculation. In particular, RBCs must deform significantly to travel through microcapillaries with sizes comparable with or even smaller than their own. Although the dynamics of RBCs in microcapillaries have received considerable attention, the effect of membrane viscoelasticity has been largely overlooked. In this work, we present a computational study based on the boundary integral method and thin-shell mechanics to examine how membrane viscoelasticity influences the dynamics of RBCs flowing through straight and constricted microcapillaries. Our results reveal that the cell with a viscoelastic membrane undergoes substantially different motion and deformation compared with results based on a purely elastic membrane model. Comparisons with experimental data also suggest the importance of accounting for membrane viscoelasticity to properly capture the transient dynamics of an RBC flowing through a microcapillary. Taken together, these findings demonstrate the significant effects of membrane viscoelasticity on RBC dynamics in different microcapillary environments. The computational framework also lays the groundwork for more accurate quantitative modeling of the mechanical response of RBCs in their mechanotransduction process in subsequent investigations.
Collapse
Affiliation(s)
- Ali Gürbüz
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, California.
| | - On Shun Pak
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, California
| | - Michael Taylor
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, California
| | - Mettupalayam V Sivaselvan
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, New York
| | - Frederick Sachs
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
| |
Collapse
|
99987
|
Liu Y, Wu D, Fu Q, Hao S, Gu Y, Zhao W, Chen S, Sheng F, Xu Y, Chen Z, Yao K. CHAC1 as a Novel Contributor of Ferroptosis in Retinal Pigment Epithelial Cells with Oxidative Damage. Int J Mol Sci 2023; 24:1582. [PMID: 36675091 PMCID: PMC9861460 DOI: 10.3390/ijms24021582] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss in the elderly population. With aging and the accumulated effects of environmental stress, retinal pigment epithelial (RPE) cells are particularly susceptible to oxidative damage, which can lead to retinal degeneration. However, the underlying molecular mechanisms of how RPE responds and progresses under oxidative damage are still largely unknown. Here, we reveal that exogenous oxidative stress led to ferroptosis characterized by Fe2+ accumulation and lipid peroxidation in RPE cells. Glutathione specific gamma-glutamylcyclotransferase 1 (Chac1), as a component of the unfolded protein response (UPR) pathway, plays a pivotal role in oxidative-stress-induced cell ferroptosis via the regulation of glutathione depletion. These results indicate the biological significance of Chac1 as a novel contributor of oxidative-stress-induced ferroptosis in RPE, suggesting its potential role in AMD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhiqing Chen
- Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Ke Yao
- Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
99988
|
Nanni AV, Martinez N, Graze R, Morse A, Newman JRB, Jain V, Vlaho S, Signor S, Nuzhdin SV, Renne R, McIntyre LM. Sex-biased expression is associated with chromatin state in D. melanogaster and D. simulans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523946. [PMID: 36711631 PMCID: PMC9882225 DOI: 10.1101/2023.01.13.523946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We propose a new model for the association of chromatin state and sex-bias in expression. We hypothesize enrichment of open chromatin in the sex where we see expression bias (OS) and closed chromatin in the opposite sex (CO). In this study of D. melanogaster and D. simulans head tissue, sex-bias in expression is associated with H3K4me3 (open mark) in males for male-biased genes and in females for female-biased genes in both species. Sex-bias in expression is also largely conserved in direction and magnitude between the two species on the X and autosomes. In male-biased orthologs, the sex-bias ratio is more divergent between species if both species have H3K27me2me3 marks in females compared to when either or neither species has H3K27me2me3 in females. H3K27me2me3 marks in females are associated with male-bias in expression on the autosomes in both species, but on the X only in D. melanogaster . In female-biased orthologs the relationship between the species for the sex-bias ratio is similar regardless of the H3K27me2me3 marks in males. Female-biased orthologs are more similar in the ratio of sex-bias than male-biased orthologs and there is an excess of male-bias in expression in orthologs that gain/lose sex-bias. There is an excess of male-bias in sex-limited expression in both species suggesting excess male-bias is due to rapid evolution between the species. The X chromosome has an enrichment in male-limited H3K4me3 in both species and an enrichment of sex-bias in expression compared to the autosomes.
Collapse
Affiliation(s)
- Adalena V Nanni
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Natalie Martinez
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
| | - Rita Graze
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Alison Morse
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jeremy R B Newman
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Vaibhav Jain
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
| | - Srna Vlaho
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sarah Signor
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Sergey V Nuzhdin
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
99989
|
Carvajal Ibañez D, Skabkin M, Hooli J, Cerrizuela S, Göpferich M, Jolly A, Volk K, Zumwinkel M, Bertolini M, Figlia G, Höfer T, Kramer G, Anders S, Teleman AA, Marciniak-Czochra A, Martin-Villalba A. Interferon regulates neural stem cell function at all ages by orchestrating mTOR and cell cycle. EMBO Mol Med 2023; 15:e16434. [PMID: 36636818 PMCID: PMC10086582 DOI: 10.15252/emmm.202216434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
Stem cells show intrinsic interferon signalling, which protects them from viral infections at all ages. In the ageing brain, interferon signalling also reduces the ability of stem cells to activate. Whether these functions are linked and at what time interferons start taking on a role in stem cell functioning is unknown. Additionally, the molecular link between interferons and activation in neural stem cells and how this relates to progenitor production is not well understood. Here we combine single-cell transcriptomics, RiboSeq and mathematical models of interferon to show that this pathway is important for proper stem cell function at all ages in mice. Interferon orchestrates cell cycle and mTOR activity to post-transcriptionally repress Sox2 and induces quiescence. The interferon response then decreases in the subsequent maturation states. Mathematical simulations indicate that this regulation is beneficial for the young and harmful for the old brain. Our study establishes molecular mechanisms of interferon in stem cells and interferons as genuine regulators of stem cell homeostasis and a potential therapeutic target to repair the ageing brain.
Collapse
Affiliation(s)
- Damian Carvajal Ibañez
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Maxim Skabkin
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jooa Hooli
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Institute of Applied Mathematics, Heidelberg University, Heidelberg, Germany
| | - Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuel Göpferich
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Adrien Jolly
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Volk
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Zumwinkel
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matilde Bertolini
- Center for Molecular Biology of Heidelberg University (ZMBH) & German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Gianluca Figlia
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guenter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH) & German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Simon Anders
- Bioquant, Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, Heidelberg University, Heidelberg, Germany.,Interdisciplinary Center of Scientific Computing (IWR) and Bioquant, Heidelberg University, Heidelberg, Germany
| | - Ana Martin-Villalba
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
99990
|
Lin S. The making of the Drosophila mushroom body. Front Physiol 2023; 14:1091248. [PMID: 36711013 PMCID: PMC9880076 DOI: 10.3389/fphys.2023.1091248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
The mushroom body (MB) is a computational center in the Drosophila brain. The intricate neural circuits of the mushroom body enable it to store associative memories and process sensory and internal state information. The mushroom body is composed of diverse types of neurons that are precisely assembled during development. Tremendous efforts have been made to unravel the molecular and cellular mechanisms that build the mushroom body. However, we are still at the beginning of this challenging quest, with many key aspects of mushroom body assembly remaining unexplored. In this review, I provide an in-depth overview of our current understanding of mushroom body development and pertinent knowledge gaps.
Collapse
|
99991
|
Hosseini Siyanaki MR, Azab MA, Lucke-Wold B. Traumatic Optic Neuropathy: Update on Management. ENCYCLOPEDIA 2023; 3:88-101. [PMID: 36718432 PMCID: PMC9884099 DOI: 10.3390/encyclopedia3010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Traumatic optic neuropathy is one of the causes of visual loss caused by blunt or penetrating head trauma and is classified as both direct and indirect. Clinical history and examination findings usually allow for the diagnosis of traumatic optic neuropathy. There is still controversy surrounding the management of traumatic optic neuropathy; some physicians advocate observation alone, while others recommend steroid therapy, surgery, or both. In this entry, we tried to highlight traumatic optic neuropathy’s main pathophysiologic mechanisms with the most available updated treatment. Recent research suggests future therapies that may be helpful in traumatic optic neuropathy cases.
Collapse
Affiliation(s)
| | - Mohammed A. Azab
- Department of Neurosurgery, University of Cairo University, Cairo 12613, Egypt
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
99992
|
Rahman M, Bose S, Chakrabartty S. On-device synaptic memory consolidation using Fowler-Nordheim quantum-tunneling. Front Neurosci 2023; 16:1050585. [PMID: 36711131 PMCID: PMC9880265 DOI: 10.3389/fnins.2022.1050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction For artificial synapses whose strengths are assumed to be bounded and can only be updated with finite precision, achieving optimal memory consolidation using primitives from classical physics leads to synaptic models that are too complex to be scaled in-silico. Here we report that a relatively simple differential device that operates using the physics of Fowler-Nordheim (FN) quantum-mechanical tunneling can achieve tunable memory consolidation characteristics with different plasticity-stability trade-offs. Methods A prototype FN-synapse array was fabricated in a standard silicon process and was used to verify the optimal memory consolidation characteristics and used for estimating the parameters of an FN-synapse analytical model. The analytical model was then used for large-scale memory consolidation and continual learning experiments. Results We show that compared to other physical implementations of synapses for memory consolidation, the operation of the FN-synapse is near-optimal in terms of the synaptic lifetime and the consolidation properties. We also demonstrate that a network comprising FN-synapses outperforms a comparable elastic weight consolidation (EWC) network for some benchmark continual learning tasks. Discussions With an energy footprint of femtojoules per synaptic update, we believe that the proposed FN-synapse provides an ultra-energy-efficient approach for implementing both synaptic memory consolidation and continual learning on a physical device.
Collapse
|
99993
|
Dubey A, Markowitz DA, Pesaran B. Top-down control of exogenous attentional selection is mediated by beta coherence in prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523664. [PMID: 36711697 PMCID: PMC9882082 DOI: 10.1101/2023.01.11.523664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Salience-driven exogenous and goal-driven endogenous attentional selection are two distinct forms of attention that guide selection of task-irrelevant and task-relevant targets in primates. During conflict i.e, when salience and goal each favor the selection of different targets, endogenous selection of the task-relevant target relies on top-down control. Top-down attentional control mechanisms enable selection of the task-relevant target by limiting the influence of sensory information. Although the lateral prefrontal cortex (LPFC) is known to mediate top-down control, the neuronal mechanisms of top-down control of attentional selection are poorly understood. Here, using a two-target free-choice luminance-reward selection task, we demonstrate that visual-movement neurons and not visual neurons or movement neurons encode exogenous and endogenous selection. We then show that coherent-beta activity selectively modulates mechanisms of exogenous selection specifically during conflict and consequently may support top-down control. These results reveal the VM-neuron-specific network mechanisms of attentional selection and suggest a functional role for beta-frequency coherent neural dynamics in the modulation of sensory communication channels for the top-down control of attentional selection.
Collapse
Affiliation(s)
- Agrita Dubey
- Center for Neural Science, New York University, New York 10003
- Department of Neurosurgery, University of Pennsylvania, Philadelphia 19104
| | | | - Bijan Pesaran
- Center for Neural Science, New York University, New York 10003
- Department of Neurosurgery, University of Pennsylvania, Philadelphia 19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia 19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia 19104
| |
Collapse
|
99994
|
Moreno FJ, Barbado D, Caballero C, Urbán T, Sabido R. Variations induced by the use of unstable surface do not facilitate motor adaptation to a throwing skill. PeerJ 2023; 11:e14434. [PMID: 36655049 PMCID: PMC9841905 DOI: 10.7717/peerj.14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/31/2022] [Indexed: 01/15/2023] Open
Abstract
Induced variability by the use of unstable surfaces has been proposed to enhance proprioceptive control to deal with perturbations in the support base better. However, there is a lack of evidence about its benefits facilitating motor adaptions in upper body skills. In this experiment, practice on an unstable surface was applied to analyze the adaptations in an upper limb precision throwing skill. After a pretest, twenty-one participants were randomly allocated into two groups: one group practiced the throwing task on a stable surface and the other group practiced the same task on an unstable support base. Differences in throwing performance between pre- and post-practice were analyzed in accuracy, hand movement kinematics and variability of the throw in both surface conditions. Fuzzy entropy of the horizontal force was calculated to assess the complexity dynamics of postural sway. Participants improved their performance on the stable and the unstable surface. Induced variability using an unstable surface reduced participants' variability and the complexity of postural sway, but it did not facilitate a superior adaptation of the throwing task. The results suggest that the variations induced by unstable surfaces would fall far from the family of specific motor solutions and would not facilitate additional motor performance of the throwing task.
Collapse
Affiliation(s)
- Francisco J. Moreno
- Sports Research Centre/Department of Sport Sciences, Miguel Hernández University of Elche, Alicante, Spain
| | - David Barbado
- Sports Research Centre/Department of Sport Sciences, Miguel Hernández University of Elche, Alicante, Spain
- Institute for Health and Biomedical Research (ISABIAL Foundation), Miguel Hernández University of Elche, Alicante, Spain
| | - Carla Caballero
- Sports Research Centre/Department of Sport Sciences, Miguel Hernández University of Elche, Alicante, Spain
- Institute for Health and Biomedical Research (ISABIAL Foundation), Miguel Hernández University of Elche, Alicante, Spain
| | - Tomás Urbán
- Sports Research Centre/Department of Sport Sciences, Miguel Hernández University of Elche, Alicante, Spain
| | - Rafael Sabido
- Sports Research Centre/Department of Sport Sciences, Miguel Hernández University of Elche, Alicante, Spain
| |
Collapse
|
99995
|
Wittmer Y, Jami KM, Stowell RK, Le T, Hung I, Murray DT. Liquid Droplet Aging and Seeded Fibril Formation of the Cytotoxic Granule Associated RNA Binding Protein TIA1 Low Complexity Domain. J Am Chem Soc 2023; 145:1580-1592. [PMID: 36638831 PMCID: PMC9881004 DOI: 10.1021/jacs.2c08596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein domains biased toward a few amino acid types are vital for the formation of biomolecular condensates in living cells. These membraneless compartments are formed by molecules exhibiting a range of molecular motions and structural order. Missense mutations increase condensate persistence lifetimes or structural order, properties that are thought to underlie pathological protein aggregation. In the context of stress granules associated with neurodegenerative diseases, this process involves the rigidification of protein liquid droplets into β-strand rich protein fibrils. Here, we characterize the molecular mechanism underlying the rigidification of liquid droplets for the low complexity domain of the Cytotoxic granule associated RNA binding protein TIA1 (TIA1) stress granule protein and the influence of a disease mutation linked to neurodegenerative diseases. A seeding procedure and solid state nuclear magnetic resonance measurements show that the low complexity domain converges on a β-strand rich fibril conformation composed of 21% of the sequence. Additional solid state nuclear magnetic resonance measurements and difference spectroscopy show that aged liquid droplets of wild type and a proline-to-leucine mutant low complexity domain are composed of fibril assemblies that are conformationally heterogeneous and structurally distinct from the seeded fibril preparation. Regarding low complexity domains, our data support the functional template-driven formation of conformationally homogeneous structures, that rigidification of liquid droplets into conformationally heterogenous structures promotes pathological interactions, and that the effect of disease mutations is more nuanced than increasing thermodynamic stability or increasing β-strand structure content.
Collapse
Affiliation(s)
- Yuuki Wittmer
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Khaled M. Jami
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Rachelle K. Stowell
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Truc Le
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Ivan Hung
- National
High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Dylan T. Murray
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States,
| |
Collapse
|
99996
|
Kolch W, Berta D, Rosta E. Dynamic regulation of RAS and RAS signaling. Biochem J 2023; 480:1-23. [PMID: 36607281 PMCID: PMC9988006 DOI: 10.1042/bcj20220234] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
RAS proteins regulate most aspects of cellular physiology. They are mutated in 30% of human cancers and 4% of developmental disorders termed Rasopathies. They cycle between active GTP-bound and inactive GDP-bound states. When active, they can interact with a wide range of effectors that control fundamental biochemical and biological processes. Emerging evidence suggests that RAS proteins are not simple on/off switches but sophisticated information processing devices that compute cell fate decisions by integrating external and internal cues. A critical component of this compute function is the dynamic regulation of RAS activation and downstream signaling that allows RAS to produce a rich and nuanced spectrum of biological outputs. We discuss recent findings how the dynamics of RAS and its downstream signaling is regulated. Starting from the structural and biochemical properties of wild-type and mutant RAS proteins and their activation cycle, we examine higher molecular assemblies, effector interactions and downstream signaling outputs, all under the aspect of dynamic regulation. We also consider how computational and mathematical modeling approaches contribute to analyze and understand the pleiotropic functions of RAS in health and disease.
Collapse
Affiliation(s)
- Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dénes Berta
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| | - Edina Rosta
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
99997
|
Lee J, Jung M, Lustig N, Lee J. Neural representations of the perception of handwritten digits and visual objects from a convolutional neural network compared to humans. Hum Brain Mapp 2023; 44:2018-2038. [PMID: 36637109 PMCID: PMC9980894 DOI: 10.1002/hbm.26189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023] Open
Abstract
We investigated neural representations for visual perception of 10 handwritten digits and six visual objects from a convolutional neural network (CNN) and humans using functional magnetic resonance imaging (fMRI). Once our CNN model was fine-tuned using a pre-trained VGG16 model to recognize the visual stimuli from the digit and object categories, representational similarity analysis (RSA) was conducted using neural activations from fMRI and feature representations from the CNN model across all 16 classes. The encoded neural representation of the CNN model exhibited the hierarchical topography mapping of the human visual system. The feature representations in the lower convolutional (Conv) layers showed greater similarity with the neural representations in the early visual areas and parietal cortices, including the posterior cingulate cortex. The feature representations in the higher Conv layers were encoded in the higher-order visual areas, including the ventral/medial/dorsal stream and middle temporal complex. The neural representations in the classification layers were observed mainly in the ventral stream visual cortex (including the inferior temporal cortex), superior parietal cortex, and prefrontal cortex. There was a surprising similarity between the neural representations from the CNN model and the neural representations for human visual perception in the context of the perception of digits versus objects, particularly in the primary visual and associated areas. This study also illustrates the uniqueness of human visual perception. Unlike the CNN model, the neural representation of digits and objects for humans is more widely distributed across the whole brain, including the frontal and temporal areas.
Collapse
Affiliation(s)
- Juhyeon Lee
- Department of Brain and Cognitive EngineeringKorea UniversitySeoulRepublic of Korea
| | - Minyoung Jung
- Department of Brain and Cognitive EngineeringKorea UniversitySeoulRepublic of Korea
| | - Niv Lustig
- Department of Brain and Cognitive EngineeringKorea UniversitySeoulRepublic of Korea
| | - Jong‐Hwan Lee
- Department of Brain and Cognitive EngineeringKorea UniversitySeoulRepublic of Korea
| |
Collapse
|
99998
|
Djannatian M, Radha S, Weikert U, Safaiyan S, Wrede C, Deichsel C, Kislinger G, Rhomberg A, Ruhwedel T, Campbell DS, van Ham T, Schmid B, Hegermann J, Möbius W, Schifferer M, Simons M. Myelination generates aberrant ultrastructure that is resolved by microglia. J Biophys Biochem Cytol 2023; 222:213804. [PMID: 36637807 PMCID: PMC9856851 DOI: 10.1083/jcb.202204010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/18/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
To enable rapid propagation of action potentials, axons are ensheathed by myelin, a multilayered insulating membrane formed by oligodendrocytes. Most of the myelin is generated early in development, resulting in the generation of long-lasting stable membrane structures. Here, we explored structural and dynamic changes in central nervous system myelin during development. To achieve this, we performed an ultrastructural analysis of mouse optic nerves by serial block face scanning electron microscopy (SBF-SEM) and confocal time-lapse imaging in the zebrafish spinal cord. We found that myelin undergoes extensive ultrastructural changes during early postnatal development. Myelin degeneration profiles were engulfed and phagocytosed by microglia using exposed phosphatidylserine as one "eat me" signal. In contrast, retractions of entire myelin sheaths occurred independently of microglia and involved uptake of myelin by the oligodendrocyte itself. Our findings show that the generation of myelin early in development is an inaccurate process associated with aberrant ultrastructural features that require substantial refinement.
Collapse
Affiliation(s)
- Minou Djannatian
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany,Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany,Minou Djannatian:
| | - Swathi Radha
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Ulrich Weikert
- Max-Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Shima Safaiyan
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Christoph Wrede
- https://ror.org/00f2yqf98Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Cassandra Deichsel
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Georg Kislinger
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Agata Rhomberg
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Torben Ruhwedel
- Max-Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Douglas S. Campbell
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Tjakko van Ham
- https://ror.org/018906e22Department of Clinical Genetics, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bettina Schmid
- https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Jan Hegermann
- https://ror.org/00f2yqf98Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Wiebke Möbius
- Max-Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Martina Schifferer
- https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany,Institute for Stroke and Dementia Research, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany,Correspondence to Mikael Simons:
| |
Collapse
|
99999
|
Tyagi A, Pugazhenthi S. A Promising Strategy to Treat Neurodegenerative Diseases by SIRT3 Activation. Int J Mol Sci 2023; 24:ijms24021615. [PMID: 36675125 PMCID: PMC9866791 DOI: 10.3390/ijms24021615] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
SIRT3, the primary mitochondrial deacetylase, regulates the functions of mitochondrial proteins including metabolic enzymes and respiratory chain components. Although SIRT3's functions in peripheral tissues are well established, the significance of its downregulation in neurodegenerative diseases is beginning to emerge. SIRT3 plays a key role in brain energy metabolism and provides substrate flexibility to neurons. It also facilitates metabolic coupling between fuel substrate-producing tissues and fuel-consuming tissues. SIRT3 mediates the health benefits of lifestyle-based modifications such as calorie restriction and exercise. SIRT3 deficiency is associated with metabolic syndrome (MetS), a precondition for diseases including obesity, diabetes, and cardiovascular disease. The pure form of Alzheimer's disease (AD) is rare, and it has been reported to coexist with these diseases in aging populations. SIRT3 downregulation leads to mitochondrial dysfunction, neuroinflammation, and inflammation, potentially triggering factors of AD pathogenesis. Recent studies have also suggested that SIRT3 may act through multiple pathways to reduce plaque formation in the AD brain. In this review, we give an overview of SIRT3's roles in brain physiology and pathology and discuss several activators of SIRT3 that can be considered potential therapeutic agents for the treatment of dementia.
Collapse
Affiliation(s)
- Alpna Tyagi
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Subbiah Pugazhenthi
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-720-857-5629
| |
Collapse
|
100000
|
Zainal NH, Camprodon JA, Greenberg JL, Hurtado AM, Curtiss JE, Berger-Gutierrez RM, Gillan CM, Wilhelm S. Goal-Directed Learning Deficits in Patients with OCD: A Bayesian Analysis. COGNITIVE THERAPY AND RESEARCH 2023. [DOI: 10.1007/s10608-022-10348-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|