1051
|
Teiten MH, Gaascht F, Eifes S, Dicato M, Diederich M. Chemopreventive potential of curcumin in prostate cancer. GENES AND NUTRITION 2009; 5:61-74. [PMID: 19806380 DOI: 10.1007/s12263-009-0152-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 09/21/2009] [Indexed: 12/11/2022]
Abstract
The long latency and high incidence of prostate carcinogenesis provides the opportunity to intervene with chemoprevention in order to prevent or eradicate prostate malignancies. We present here an overview of the chemopreventive potential of curcumin (diferuloylmethane), a well-known natural compound that exhibits therapeutic promise for prostate cancer. In fact, it interferes with prostate cancer proliferation and metastasis development through the down-regulation of androgen receptor and epidermal growth factor receptor, but also through the induction of cell cycle arrest. It regulates the inflammatory response through the inhibition of pro-inflammatory mediators and the NF-kappaB signaling pathway. These results are consistent with this compound's ability to up-induce pro-apoptotic proteins and to down-regulate the anti-apoptotic counterparts. Alone or in combination with TRAIL-mediated immunotherapy or radiotherapy, curcumin is also reported to be a good inducer of prostate cancer cell death by apoptosis. Curcumin appears thus as a non-toxic alternative for prostate cancer prevention, treatment or co-treatment.
Collapse
Affiliation(s)
- Marie-Hélène Teiten
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9 rue Edward Steichen, 2540 Luxembourg, Luxembourg
| | | | | | | | | |
Collapse
|
1052
|
O'Sullivan-Coyne G, O'Sullivan GC, O'Donovan TR, Piwocka K, McKenna SL. Curcumin induces apoptosis-independent death in oesophageal cancer cells. Br J Cancer 2009; 101:1585-95. [PMID: 19809435 PMCID: PMC2778521 DOI: 10.1038/sj.bjc.6605308] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines. METHODS MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting. RESULTS Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug. CONCLUSION Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.
Collapse
Affiliation(s)
- G O'Sullivan-Coyne
- Leslie C. Quick Laboratory, Cork Cancer Research Centre, BioSciences Institute, University College Cork and Mercy University Hospital, Cork, Ireland
| | | | | | | | | |
Collapse
|
1053
|
Cohen AD, Ikonomovic MD, Abrahamson EE, Paljug WR, Dekosky ST, Lefterov IM, Koldamova RP, Shao L, Debnath ML, Mason NS, Mathis CA, Klunk WE. Anti-Amyloid Effects of Small Molecule Aβ-Binding Agents in PS1/APP Mice. LETT DRUG DES DISCOV 2009; 6:437. [PMID: 20119496 DOI: 10.2174/157018009789057526] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AIMS: One promising approach for treatment of Alzheimer's disease (AD) is use of anti-amyloid therapies, based on the hypothesis that increases in amyloid-beta (Aβ) deposits in brain are a major cause of AD. Several groups have focused on Aβ immunotherapy with some success. Small molecules derivatives of Congo red have been shown to inhibit Aβ aggregation and protect against Aβ neurotoxicity in vitro. The agents described here are all small molecule Aβ-binding agents (SMAβBA's) derivatives of Congo red. MAIN METHODS: Here, we have explored the anti-amyloid properties of these SMAβBA's in mice doubly transgenic for human prensenilin-1 (PS1) and APP gene mutations that cause early-onset AD. Mice were treated with either methoxy-X04, X:EE:B34 and X:034-3-OMe1. After treatment, brains were examined for Aβ-deposition, using histochemistry, and soluble and insoluble Aβ levels were determined using ELISA. KEY FINDINGS: A range of anti-amyloid activity was observed with these three compounds. PS1/APP mice treated with methoxy-X04 and X:EE:B34 showed decrease in total Aβ load, a decrease in Aβ fibril load, and a decrease in average plaque size. Treatment with methoxy-X04 also resulted in a decrease in insoluble Aβ levels. The structurally similar compound, X:034:3-OMe1, showed no significant effect on any of these measures. The effectiveness of the SMAβBA's may be related to a combination of binding affinity for Aβ and entry into brain, but other factors appear to apply as well. SIGNIFICANCE: These data suggest that SMAβBA's may significantly decrease amyloid burden in brain during the pathogenesis of AD and could be useful therapeutics alone, or in combination with immunotherapy.
Collapse
Affiliation(s)
- A D Cohen
- University of Pittsburgh, Room 1422 WPIC, 3811 O'Hara Street, Pittsburgh, PA 15213-2593, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1054
|
Bill MA, Bakan C, Benson DM, Fuchs J, Young G, Lesinski GB. Curcumin induces proapoptotic effects against human melanoma cells and modulates the cellular response to immunotherapeutic cytokines. Mol Cancer Ther 2009; 8:2726-35. [PMID: 19723881 DOI: 10.1158/1535-7163.mct-09-0377] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Curcumin has potential as a chemopreventative and chemotherapeutic agent, but its interactions with clinically relevant cytokines are poorly characterized. Because cytokine immunotherapy is a mainstay of treatment for malignant melanoma, we hypothesized that curcumin could modulate the cellular responsiveness to interferons and interleukins. As a single agent, curcumin induced a dose-dependent increase in apoptosis of human melanoma cell lines, which was most prominent at doses >10 micromol/L. Immunoblot analysis confirmed that curcumin induced apoptosis and revealed caspase-3 processing, poly ADP ribose polymerase cleavage, reduced Bcl-2, and decreased basal phosphorylated signal transducers and activators of transcription 3 (STAT3). Despite its proapoptotic effects, curcumin pretreatment of human melanoma cell lines inhibited the phosphorylation of STAT1 protein and downstream gene transcription following IFN-alpha and IFN-gamma as determined by immunoblot analysis and real time PCR, respectively. Pretreatment of peripheral blood mononuclear cells from healthy donors with curcumin also inhibited the ability of IFN-alpha, IFN-gamma, and interleukin-2 to phosphorylate STAT proteins critical for their antitumor activity (STAT1 and STAT5, respectively) and their respective downstream gene expression as measured by real time PCR. Finally, stimulation of natural killer (NK) cells with curcumin reduced the level of interleukin-12-induced IFN-gamma secretion, and production of granzyme b or IFN-gamma upon coculture with A375 melanoma cells or NK-sensitive K562 cells as targets. These data show that although curcumin can induce apoptosis of melanoma cells, it can also adversely affect the responsiveness of immune effector cells to clinically relevant cytokines that possess antitumor properties.
Collapse
Affiliation(s)
- Matthew A Bill
- Department of Internal Medicine, Division of Hematology and Oncology, 302B Comprehensive Cancer Center, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
1055
|
Padhye S, Banerjee S, Chavan D, Pandye S, Swamy KV, Ali S, Li J, Dou QP, Sarkar FH. Fluorocurcumins as cyclooxygenase-2 inhibitor: molecular docking, pharmacokinetics and tissue distribution in mice. Pharm Res 2009; 26:2438-45. [PMID: 19714451 DOI: 10.1007/s11095-009-9955-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 08/10/2009] [Indexed: 01/12/2023]
Abstract
PURPOSE The purpose of the current study was to assess the effect of newly synthesized Curcumin analogs on COX-2 protein by molecular docking studies and by assessments of the effect of one such analog (CDF) on nuclear factor NF-kappaB and PGE(2). In addition, we have determined the pharmacokinetics and tissue distribution of CDF in mice compared to Curcumin. METHODS Molecular docking on COX-2 protein was assessed by standard computer modeling studies. PGE(2) assay in conditioned media was done utilizing high sensitivity immunoassay kit following manufacturer's instructions, while NF-kappaB was done by routine EMSA. Serum pharmacokinetics and tissue distribution studies were carried out using the validated high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS) methods. RESULTS The molecular docking showed that fluorocurcumin analogs do not introduce any major steric changes compared to the parent Curcumin molecule, which was consistent with down-regulation of NF-kappaB and reduced PGE(2) levels in cells treated with CDF. Pharmacokinetic parameters revealed that CDF had better retention and bioavailability and that the concentration of CDF in the pancreas tissue was 10-fold higher compared to Curcumin. CONCLUSION Our observations clearly suggest that the bioavailability of CDF is much superior compared to Curcumin, suggesting that CDF would be clinically useful.
Collapse
Affiliation(s)
- Subhash Padhye
- D.Y.Patil Institute of Pharmaceutical Sciences, Pune, 411018, India
| | | | | | | | | | | | | | | | | |
Collapse
|
1056
|
Lim HW, Lim HY, Wong KP. Uncoupling of oxidative phosphorylation by curcumin: implication of its cellular mechanism of action. Biochem Biophys Res Commun 2009; 389:187-92. [PMID: 19715674 DOI: 10.1016/j.bbrc.2009.08.121] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 08/22/2009] [Indexed: 10/20/2022]
Abstract
Curcumin is a phytochemical isolated from the rhizome of turmeric. Recent reports have shown curcumin to have antioxidant, anti-inflammatory and anti-tumor properties as well as affecting the 5'-AMP activated protein kinase (AMPK), mTOR and STAT-3 signaling pathways. We provide evidence that curcumin acts as an uncoupler. Well-established biochemical techniques were performed on isolated rat liver mitochondria in measuring oxygen consumption, F(0)F(1)-ATPase activity and ATP biosynthesis. Curcumin displays all the characteristics typical of classical uncouplers like fccP and 2,4-dinitrophenol. In addition, at concentrations higher than 50 microM, curcumin was found to inhibit mitochondrial respiration which is a characteristic feature of inhibitory uncouplers. As a protonophoric uncoupler and as an activator of F(0)F(1)-ATPase, curcumin causes a decrease in ATP biosynthesis in rat liver mitochondria. The resulting change in ATP:AMP could disrupt the phosphorylation status of the cell; this provides a possible mechanism for its activation of AMPK and its downstream mTOR and STAT-3 signaling.
Collapse
Affiliation(s)
- Han Wern Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
| | | | | |
Collapse
|
1057
|
Sompamit K, Kukongviriyapan U, Nakmareong S, Pannangpetch P, Kukongviriyapan V. Curcumin improves vascular function and alleviates oxidative stress in non-lethal lipopolysaccharide-induced endotoxaemia in mice. Eur J Pharmacol 2009; 616:192-199. [PMID: 19540224 DOI: 10.1016/j.ejphar.2009.06.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 05/29/2009] [Accepted: 06/09/2009] [Indexed: 12/12/2022]
Abstract
Oxidative stress is implicated in various pathological conditions, including septic shock, and other diseases associated with local or systemic inflammation. Curcumin, a major component from turmeric (Curcuma longa), possesses diverse anti-inflammatory, anti-tumour and antioxidant properties. The aim of this study was to investigate the effect of curcumin on modulation of vascular dysfunction and oxidative stress induced by lipopolysaccharide (LPS) in mice. Male ICR mice were treated with curcumin (50 or 100 mg/kg), administered intragastrically, either before or after intraperitoneal injection of LPS (10 mg/kg). Fifteen hours after LPS administration, arterial blood pressure was measured and vascular response to vasoactive agents were assessed. Aortic tissues and blood samples were taken for assays of antioxidant and oxidative stress markers. LPS caused marked hypotension, tachycardia and vascular hyporeactivity. The mean arterial pressures in responses to phenylephrine, acetylcholine, and sodium nitroprusside of LPS-treated mice were significantly decreased when compared with the untreated controls. Curcumin modulated heart rate and restored arterial blood pressure in a dose-dependent manner in both protectively- and therapeutically-treated regimens. Furthermore, the vascular responsiveness of LPS-treated mice was improved by curcumin. Interestingly, the improvements of haemodynamics and vascular response during endotoxaemia were related to alleviation of oxidative stress by reducing aortic-derived superoxide production, suppression of lipid peroxidation and protein oxidation, and decrease in urinary nitric oxide metabolites with preservation of the ratio of glutathione/glutathione disulfide. This study provides the first evidence for the potential role of curcumin in prevention and treatment of vascular dysfunction in mice with endotoxaemia elicited by LPS.
Collapse
Affiliation(s)
- Kwanjit Sompamit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | |
Collapse
|
1058
|
Kim T, Davis J, Zhang AJ, He X, Mathews ST. Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells. Biochem Biophys Res Commun 2009; 388:377-82. [PMID: 19665995 DOI: 10.1016/j.bbrc.2009.08.018] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
Curcumin, the bioactive component of curry spice turmeric, and its related structures possess potent anti-oxidant and anti-inflammatory properties. Several lines of evidence suggest that curcumin may play a beneficial role in animal models of diabetes, both by lowering blood glucose levels and by ameliorating the long-term complications of diabetes. However, current understanding of the mechanism of curcumin action is rudimentary and is limited to its anti-oxidant and anti-inflammatory effects. In this study we examine potential anti-diabetic mechanisms of curcumin, curcumin C3 complex), and tetrahydrocurcuminoids (THC). Curcuminoids did not exert a direct effect on receptor tyrosine kinase activity, 2-deoxy glucose uptake in L6-GLUT4myc cells, or intestinal glucose metabolism measured by DPP4/alpha-glucosidase inhibitory activity. We demonstrate that curcuminoids effectively suppressed dexamethasone-induced phosphoenol pyruvate carboxy kinase (PEPCK) and glucose6-phosphatase (G6Pase) in H4IIE rat hepatoma and Hep3B human hepatoma cells. Furthermore, curcuminoids increased the phosphorylation of AMP-activated protein kinase (AMPK) and its downstream target acetyl-CoA carboxylase (ACC) in H4IIE and Hep3B cells with 400 times (curcumin) to 100,000 times (THC) the potency of metformin. These results suggest that AMPK mediated suppression of hepatic gluconeogenesis may be a potential mechanism mediating glucose-lowering effects of curcuminoids.
Collapse
Affiliation(s)
- Teayoun Kim
- Department of Nutrition and Food Science, Boshell Diabetes and Metabolic Diseases, Research Program, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | |
Collapse
|
1059
|
Chin SF, Iyer KS, Saunders M, St Pierre TG, Buckley C, Paskevicius M, Raston CL. Encapsulation and sustained release of curcumin using superparamagnetic silica reservoirs. Chemistry 2009; 15:5661-5. [PMID: 19396886 DOI: 10.1002/chem.200802747] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For controlled release and targeted delivery of curcumin in an aqueous medium a method of encapsulating curcumin and magnetic nanoparticles inside porous silica matrix has been developed. Curcumin and superparamagnetic nanoparticles are loaded inside porous silica in a single process. The graphic shows the TEM image of microtomed sample of Fe(3)O(4) particles surrounded by a silica matrix.
Collapse
Affiliation(s)
- Suk Fun Chin
- Centre for Strategic Nano-Fabrication, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | | | | | | | |
Collapse
|
1060
|
Padhye S, Yang H, Jamadar A, Cui QC, Chavan D, Dominiak K, McKinney J, Banerjee S, Dou QP, Sarkar FH. New difluoro Knoevenagel condensates of curcumin, their Schiff bases and copper complexes as proteasome inhibitors and apoptosis inducers in cancer cells. Pharm Res 2009; 26:1874-80. [PMID: 19421843 DOI: 10.1007/s11095-009-9900-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 04/16/2009] [Indexed: 01/20/2023]
Abstract
PURPOSE Emerging evidence clearly suggests the potential chemopreventive and anti-tumor activity of a well known "natural agent" curcumin. However, studies have shown that curcumin is not readily bioavailable, and thus the tissue bioavailability of curcumin is also poor except for gastrointestinal track. Because of the potential biological activity of curcumin, many studies have attempted for making a better analog of curcumin that is equally effective or better with increased bioavailability, which was the purpose of our current study. METHODS We have designed and synthesized new difluoro Knoevenagel condensates of curcumin and Schiff bases along with their copper (II) complexes and evaluated their biological activities with respect to the inhibitory effects on purified rabbit 26S proteasome, and growth inhibition and induction of apoptosis in colon and pancreatic cancer cell lines. RESULTS All copper complexes possess distorted square planar geometries with 1:1 metal to ligand stoichiometry with reversible copper redox couple. The difluoro compound CDF exhibited inhibitory effects on purified rabbit 20S proteasome or cellular 26S proteasome, and caused both growth inhibition of cancer cell lines and induced apoptotic cell death in our preliminary assessment. CONCLUSION Our results suggest that our newly synthesized classes of curcumin analogs could be useful as chemopreventive and/or therapeutic agents against cancers.
Collapse
Affiliation(s)
- Subhash Padhye
- D.Y.Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1061
|
Dujic J, Kippenberger S, Ramirez-Bosca A, Diaz-Alperi J, Bereiter-Hahn J, Kaufmann R, Bernd A, Hofmann M. Curcumin in combination with visible light inhibits tumor growth in a xenograft tumor model. Int J Cancer 2009; 124:1422-8. [DOI: 10.1002/ijc.23997] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
1062
|
Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MNVR. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 2009; 37:223-30. [PMID: 19491009 DOI: 10.1016/j.ejps.2009.02.019] [Citation(s) in RCA: 633] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 02/09/2009] [Accepted: 02/13/2009] [Indexed: 12/11/2022]
Abstract
Curcumin, a derived product from common spice turmeric that is safe and beneficial in several aliments was formulated into biodegradable nanoparticles with a view to improve its oral bioavailability. The curcumin encapsulated nanoparticles prepared by emulsion technique were spherical in shape with particle size of 264nm (polydispersity index 0.31) and 76.9% entrapment at 15% loading. The curcumin encapsulated nanoparticles were able to withstand the International Conference on Harmonisation (ICH) accelerated stability test conditions for refrigerated products for the studied duration of 3 months. X-ray diffraction analysis revealed the amorphous nature of the encapsulated curcumin. The in vitro release was predominantly by diffusion phenomenon and followed Higuchi's release pattern. The in vivo pharmacokinetics revealed that curcumin entrapped nanoparticles demonstrate at least 9-fold increase in oral bioavailability when compared to curcumin administered with piperine as absorption enhancer. Together the results clearly indicate the promise of nanoparticles for oral delivery of poorly bioavailable molecules like curcumin.
Collapse
Affiliation(s)
- J Shaikh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India
| | | | | | | | | |
Collapse
|
1063
|
Girish C, Pradhan SC. Drug development for liver diseases: focus on picroliv, ellagic acid and curcumin. Fundam Clin Pharmacol 2009; 22:623-32. [PMID: 19049667 DOI: 10.1111/j.1472-8206.2008.00618.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The use of herbal drugs for the treatment of liver diseases has a long tradition in many eastern countries. The easy accessibility without the need for laborious pharmaceutical synthesis has drawn increased attention towards herbal medicines. Few herbal preparations exist as standardized extracts with major known ingredients or even as pure compounds. Some of the herbals, which show promising activity, are ellagic acid for antifibrotic treatment, phyllanthin for treating chronic hepatitis B, glycyrrhizin to treat chronic viral hepatitis and picroliv for liver regeneration. These compounds, which have proven antioxidant, antiviral or anticarcinogenic properties, can serve as primary compounds for further development as hepatoprotective drugs. This review provides the chemistry, pharmacology and future aspects of picroliv, ellagic acid and curcumin with focus on hepatoprotective properties. These phytochemicals may prove to be very useful in the treatment of hepatotoxicity induced by viral agents, toxic drugs and plant poisons. The high safety profile may be an added advantage. However, poor bioavailability and temperature and light sensitivity can reduce the efficacy of drugs like curcumin. In future, the derivatives or new combinations of these drugs may prove to be useful.
Collapse
Affiliation(s)
- C Girish
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605 006, India.
| | | |
Collapse
|
1064
|
Steward WP, Gescher AJ. Curcumin in cancer management: recent results of analogue design and clinical studies and desirable future research. Mol Nutr Food Res 2009; 52:1005-9. [PMID: 18186103 DOI: 10.1002/mnfr.200700148] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ability of the curry constituent curcumin to delay the onset of cancer has been the topic of extensive research for many years. Abundant literature is devoted to mechanisms by which curcumin may mediate this activity. These insights have prompted investigations in which curcumin as lead molecule serves as a scaffold for synthetic chemical attempts to optimize pharmacological potency. Among the published analogues with notable efficacy are dimethylcurcumin, 1,5-bis(3-pyridyl)-1,4-pentadien-3-one and 3,5-bis-(2-fluorobenzylidene)-piperidinium-4-one acetate. Results of a small number of clinical pilot studies conducted with curcumin at doses of up to 12 g suggest tentatively that it is safe in humans. Prevention of adenoma recurrence constitutes a clinical paradigm worthy of further investigation for curcumin. Future clinical study should include measurement of mechanism-based pharmacodynamic parameters.
Collapse
Affiliation(s)
- William P Steward
- Cancer Biomarkers and Prevention Group, Department of Cancer Studies, University of Leicester, Leicester Royal Infirmary, Leicester, UK
| | | |
Collapse
|
1065
|
Calabrese V, Bates TE, Mancuso C, Cornelius C, Ventimiglia B, Cambria MT, Di Renzo L, De Lorenzo A, Dinkova-Kostova AT. Curcumin and the cellular stress response in free radical-related diseases. Mol Nutr Food Res 2009; 52:1062-73. [PMID: 18792015 DOI: 10.1002/mnfr.200700316] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Free radicals play a main pathogenic role in several human diseases such as neurodegenerative disorders, diabetes, and cancer. Although there has been progress in treatment of these diseases, the development of important side effects may complicate the therapeutic course. Curcumin, a well known spice commonly used in India to make foods colored and flavored, is also used in traditional medicine to treat mild or moderate human diseases. In the recent years, a growing body of literature has unraveled the antioxidant, anticarcinogenic, and antinfectious activity of curcumin based on the ability of this compound to regulate a number of cellular signal transduction pathways. These promising data obtained in vitro are now being translated to the clinic and more than ten clinical trials are currently ongoing worldwide. This review outlines the biological activities of curcumin and discusses its potential use in the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, Clinical Biochemistry and Clinical Molecular Biology Chair, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
1066
|
Biswas S, Rahman I. Modulation of steroid activity in chronic inflammation: a novel anti-inflammatory role for curcumin. Mol Nutr Food Res 2009; 52:987-94. [PMID: 18327875 DOI: 10.1002/mnfr.200700259] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The expression of NF-kappaB (NF-kappaB)-dependent pro-inflammatory genes in response to oxidative stress is regulated by the acetylation-deacetylation status of histones bound to the DNA. It has been suggested that in severe asthma and in chronic obstructive pulmonary disease (COPD) patients, oxidative stress not only activates the NF-kappaB pathway but also alters the histone acetylation and deacetylation balance via post-translational modification of histone deacetylases (HDACs). Corticosteroids have been one of the major modes of therapy against various chronic respiratory diseases such as asthma and COPD. Failure of corticosteroids to ameliorate such disease conditions has been attributed to their inability to either recruit HDAC2 or to the presence of an oxidatively modified HDAC2 in asthmatics and COPD subjects. Naturally occurring polyphenols such as curcumin and resveratrol have been increasingly considered as safer nutraceuticals. Curcumin is a polyphenol present in the spice turmeric, which can directly scavenge free radicals such as superoxide anion and nitric oxide and modulate important signaling pathways mediated via NF-kappaB and mitogen-activated protein kinase pathways. Polyphenols also down-regulate expression of pro-inflammatory mediators, matrix metalloproteinases, adhesion molecules, and growth factor receptor genes and they up-regulate HDAC2 in the lung. Thus, curcumin may be a potential antioxidant and anti-inflammatory therapeutic agent against chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Saibal Biswas
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
1067
|
Villegas I, Sánchez-Fidalgo S, Alarcón de la Lastra C. New mechanisms and therapeutic potential of curcumin for colorectal cancer. Mol Nutr Food Res 2009; 52:1040-61. [PMID: 18655004 DOI: 10.1002/mnfr.200700280] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Curcumin is a polyphenol derived from Curcuma longa. Over the last few years, a number of studies have provided evidence of its main pharmacological properties including chemosensitizing, radiosensitizing, wound healing activities, antimicrobial, antiviral, antifungical, immunomodulatory, antioxidant and anti-inflammatory. More recent data provide interesting insights into the effect of this compound on cancer chemoprevention and chemotherapy. In fact, preclinical studies have shown its ability to inhibit carcinogenesis in various types of cancer including colorectal cancer (CRC). Curcumin has the capacity of interact with multiple molecular targets affecting the multistep process of carcinogenesis. Also, curcumin is able to arrest the cell cycle, to inhibit the inflammatory response and the oxidative stress and to induce apoptosis in cancer cells. Likewise, it has been shown to possess marked antiangiogenic properties. Furthermore, curcumin potentiates the growth inhibitory effect of cyclo-oxygenase (COX)-2 inhibitors and traditional chemotherapy agents implicating another promising therapy regimen in the future treatment of CRC. However, its clinical advance has been hindered by its short biological half-life and low bioavailability after oral administration. This review is intended to provide the reader an update of the bioavailability and pharmacokinetics of curcumin and describes the recently identified molecular pathways responsible of its anticancer potential in CRC.
Collapse
Affiliation(s)
- Isabel Villegas
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | | | | |
Collapse
|
1068
|
Goel A, Jhurani S, Aggarwal BB. Multi-targeted therapy by curcumin: how spicy is it? Mol Nutr Food Res 2009; 52:1010-30. [PMID: 18384098 DOI: 10.1002/mnfr.200700354] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although traditional medicines have been used for thousands of years, for most such medicines neither the active component nor their molecular targets have been very well identified. Curcumin, a yellow component of turmeric or curry powder, however, is an exception. Although inhibitors of cyclooxygenase-2, HER2, tumor necrosis factor, EGFR, Bcr-abl, proteosome, and vascular endothelial cell growth factor have been approved for human use by the United States Food and Drug Administration (FDA), curcumin as a single agent can down-regulate all these targets. Curcumin can also activate apoptosis, down-regulate cell survival gene products, and up-regulate p53, p21, and p27. Although curcumin is poorly absorbed after ingestion, multiple studies have suggested that even low levels of physiologically achievable concentrations of curcumin may be sufficient for its chemopreventive and chemotherapeutic activity. Thus, curcumin regulates multiple targets (multitargeted therapy), which is needed for treatment of most diseases, and it is inexpensive and has been found to be safe in human clinical trials. The present article reviews the key molecular mechanisms of curcumin action and compares this to some of the single-targeted therapies currently available for human cancer.
Collapse
Affiliation(s)
- Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Department of Internal Medicine, Charles A Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
1069
|
Marczylo TH, Steward WP, Gescher AJ. Rapid analysis of curcumin and curcumin metabolites in rat biomatrices using a novel ultraperformance liquid chromatography (UPLC) method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:797-803. [PMID: 19152267 DOI: 10.1021/jf803038f] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The bioavailability of the putative cancer chemopreventive agent curcumin is limited, making measurement either in target tissues or in biofluids difficult and variable between studies. The purposes of these investigations were to develop validated methods of extraction of curcumin from biomatrices and of detection of curcumin and its conjugated metabolites using ultraperformance liquid chromatography (UPLC) and to identify metabolites of curcumin using online tandem mass spectrometry (MS/MS). The limit of detection for curcumin after solid-phase extraction from plasma or urine was 2.5 ng/mL. Extraction efficiencies were 62 and 64% for urine and plasma. Intra- and interday variabilities (RSD) for extraction of curcumin from biofluids were less than 10 and 15%, respectively, and accuracies were 92 +/- 10% for plasma and 95 +/- 6% for urine. Curcumin was extracted from tissues using protein precipitation with quercetin as internal standard. Curcumin extraction from intestinal mucosa spiked with 0.2, 1, and 5 mug/g curcumin was validated. Extraction efficiency was 65-84%, accuracy was 94-106%, limit of detection was 12.5 ng/g, and intra- and interday variabilitiies (RSD) were 0.7-4.9 and 4.9-5.5%, respectively. The methods were applied to measure curcumin in tissues from rats that had received oral curcumin (340 mg/kg). Curcumin was found in plasma (16.1 ng/mL), urine (2.0 ng/mL), intestinal mucosa (1.4 mg/g), liver (3671.8 ng/g), and, for the first time, kidney (206.8 ng/g) and heart (807.6 ng/g). Curcumin metabolites identified by UPLC-MS/MS in plasma and urine were phenolic glucuronides and, probably, alcoholic glucuronides. Products of reduction of curcumin and their metabolites were found in the liver. The methods described here represent improvements on existing analytical methods for curcuminoids and metabolites in terms of sensitivity, speed, and separation.
Collapse
Affiliation(s)
- Timothy H Marczylo
- Department of Cancer Studies and Molecular Medicine, Leicester Royal Infirmary, University of Leicester, Leicester, United Kingdom.
| | | | | |
Collapse
|
1070
|
Abstract
Dietary compounds can influence the risk of cancer and other diseases through diverse mechanisms which include the activation or inhibition of macroautophagy. Macroautophagy is a catabolic process for the lysosomal degradation and recycling of cytoplasmic constituents which has been implicated in several pathologies, including cancer and neurodegeneration. In some instances, macroautophagy acts to suppress tumor formation and neural degeneration. Thus, it may be feasible to design diets, supplements or therapeutics that can alter the level of macroautophagy within cells to prevent or treat disease. While critical questions still need to be answered before we can safely and effectively implement such a strategy, we provide here a review of the literature regarding dietary constituents that have a demonstrated macroautophagy-modulating function.
Collapse
Affiliation(s)
- Adrienne M. Hannigan
- The Genome Sciences Centre; British Columbia Cancer Agency; Vancouver, British Columbia, Canada
| | - Sharon M. Gorski
- The Genome Sciences Centre; British Columbia Cancer Agency; Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry; Simon Fraser University; Burnaby, British Columbia, Canada
| |
Collapse
|
1071
|
Amolins MW, Peterson LB, Blagg BSJ. Synthesis and evaluation of electron-rich curcumin analogues. Bioorg Med Chem 2009; 17:360-7. [PMID: 19019687 PMCID: PMC2753864 DOI: 10.1016/j.bmc.2008.10.057] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/24/2008] [Accepted: 10/25/2008] [Indexed: 01/01/2023]
Abstract
The natural product curcumin has long been recognized for its medicinal properties and is utilized for the treatment of many diseases. However, it remains unknown whether this activity is based on its presumably promiscuous scaffold, or if it results from the Michael acceptor properties of the alpha,beta-unsaturated 1,3-diketone moiety central to its structure. To probe this issue, electron-rich pyrazole and isoxazole analogues were prepared and evaluated against two breast cancer cell lines, which resulted in the identification of several compounds that exhibit low micromolar to mid nanomolar anti-proliferative activity. A conjugate addition study was also performed to compare the relative electrophilicity of the diketone, pyrazole and isoxazole analogues.
Collapse
Affiliation(s)
| | | | - Brian S. J. Blagg
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott 4070, Lawrence, KS 66045-7563, USA
| |
Collapse
|
1072
|
Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 2009; 41:40-59. [PMID: 18662800 PMCID: PMC2637808 DOI: 10.1016/j.biocel.2008.06.010] [Citation(s) in RCA: 1204] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 06/16/2008] [Accepted: 06/23/2008] [Indexed: 12/12/2022]
Abstract
Although safe in most cases, ancient treatments are ignored because neither their active component nor their molecular targets are well defined. This is not the case, however, with curcumin, a yellow-pigment substance and component of turmeric (Curcuma longa), which was identified more than a century ago. For centuries it has been known that turmeric exhibits anti-inflammatory activity, but extensive research performed within the past two decades has shown that this activity of turmeric is due to curcumin (diferuloylmethane). This agent has been shown to regulate numerous transcription factors, cytokines, protein kinases, adhesion molecules, redox status and enzymes that have been linked to inflammation. The process of inflammation has been shown to play a major role in most chronic illnesses, including neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. In the current review, we provide evidence for the potential role of curcumin in the prevention and treatment of various proinflammatory chronic diseases. These features, combined with the pharmacological safety and negligible cost, render curcumin an attractive agent to explore further.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA.
| | | |
Collapse
|
1073
|
Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 2008; 30:85-94. [PMID: 19110321 DOI: 10.1016/j.tips.2008.11.002] [Citation(s) in RCA: 745] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/01/2008] [Accepted: 11/05/2008] [Indexed: 12/14/2022]
Abstract
Curcumin (diferuloylmethane), a yellow pigment in the spice turmeric (also called curry powder), has been used for centuries as a treatment for inflammatory diseases. Extensive research within the past two decades has shown that curcumin mediates its anti-inflammatory effects through the downregulation of inflammatory transcription factors (such as nuclear factor kappaB), enzymes (such as cyclooxygenase 2 and 5 lipoxygenase) and cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6). Because of the crucial role of inflammation in most chronic diseases, the potential of curcumin has been examined in neoplastic, neurological, cardiovascular, pulmonary and metabolic diseases. The pharmacodynamics and pharmacokinetics of curcumin have been examined in animals and in humans. Various pharmacological aspects of curcumin in vitro and in vivo are discussed in detail here.
Collapse
|
1074
|
Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. Int J Pharm 2008; 371:148-55. [PMID: 19124065 DOI: 10.1016/j.ijpharm.2008.12.009] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Revised: 12/04/2008] [Accepted: 12/06/2008] [Indexed: 11/24/2022]
Abstract
Curcumin is a poorly water-soluble drug and its oral bioavailability is very low. A new self-microemulsifying drug delivery system (SMEDDS) has been successfully developed to improve the solubility and oral absorption of curcumin. Suitable compositions of SMEDDS formulation were screened via solubility studies of curcumin and compatibility tests. The formulation of curcumin-loaded SMEDDS was optimized by a simplex lattice experiment design. The optimal formulation of SMEDDS was comprised of 57.5% surfactant (emulsifier OP:Cremorphor EL = 1:1), 30.0% co-surfactant (PEG 400) and 12.5% oil (ethyl oleate). The solubility of curcumin (21 mg/g) significantly increased in SMEDDS. The average particle size of SMEDDS-containing curcumin was about 21 nm when diluted in water. No significant variations in particle size and curcumin content in SMEDDS were observed over a period of 3 months at 4 degrees C. The spherical shape of microemulsion droplet was observed under TEM. The dissolution study in vitro showed that more than 95% of curcumin in SMEDDS could be dissolved in pH 1.2 or pH 6.8 buffer solutions in 20 min, however, less than 2% for crude curcumin in 60 min.The in situ absorption property of curcumin-loaded SMEDDS was evaluated in intestines of rats. The results showed the absorption of curcumin in SMEDDS was via passive transfer by diffusion across the lipid membranes. The results of oral absorption experiment in mice showed that SMEDDS could significantly increase the oral absorption of curcumin compared with its suspension. Our study illustrated that the developed SMEDDS formulation held great potential as a possible alternative to traditional oral formulations of curcumin.
Collapse
|
1075
|
Kulkarni SK, Bhutani MK, Bishnoi M. Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berl) 2008; 201:435-42. [PMID: 18766332 DOI: 10.1007/s00213-008-1300-y] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 08/10/2008] [Indexed: 01/20/2023]
Abstract
RATIONALE Curcumin is a major active principle of Curcuma longa, one of the widely used preparations in the Indian system of medicine. It is known for its diverse biological actions. OBJECTIVE The present study was designed to investigate the involvement of monoaminergic system(s) in the antidepressant activity of curcumin and the effect of piperine, a bioavailability enhancer, on the bioavailability and biological effects of curcumin. METHODS AND OBSERVATIONS Behavioral (forced swim test), biochemical (monoamine oxidase (MAO) enzyme inhibitory activity), and neurochemical (neurotransmitter levels estimation) tests were carried out. Curcumin (10-80 mg/kg, i.p.) dose dependently inhibited the immobility period, increased serotonin (5-hydroxytryptamine, 5-HT) as well as dopamine levels (at higher doses), and inhibited the monoamine oxidase enzymes (both MAO-A and MAO-B, higher doses) in mice. Curcumin (20 mg/kg, i.p.) enhanced the anti-immobility effect of subthreshold doses of various antidepressant drugs like fluoxetine, venlafaxine, or bupropion. However, no significant change in the anti-immobility effect of imipramine and desipramine was observed. Furthermore, combination of subthreshold dose of curcumin and various antidepressant drugs resulted in synergistic increase in serotonin (5-HT) levels as compared to their effect per se. There was no change in the norepinephrine levels. The coadministration of piperine (2.5 mg/kg, i.p.), a bioavailability enhancing agent, with curcumin (20 and 40 mg/kg, i.p.) resulted in potentiation of pharmacological, biochemical, and neurochemical activities. CONCLUSION The study provides evidences for mechanism-based antidepressant actions of curcumin. The coadministration of curcumin along with piperine may prove to be a useful and potent natural antidepressant approach in the management of depression.
Collapse
Affiliation(s)
- Shrinivas K Kulkarni
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | | | | |
Collapse
|
1076
|
Wu SJ, Lin YH, Chu CC, Tsai YH, Chao JCJ. Curcumin or saikosaponin a improves hepatic antioxidant capacity and protects against CCl4-induced liver injury in rats. J Med Food 2008; 11:224-9. [PMID: 18598162 DOI: 10.1089/jmf.2007.555] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Curcumin and saikosaponin a, the bioactive phytochemicals of turmeric and Bupleurum, act as antioxidants. This study investigated the effects of supplementation with curcumin and/or saikosaponin a on hepatic lipids and antioxidant status in rats with CCl(4)-induced liver injury. Male Sprague-Dawley rats were randomly divided into control, CCl(4), CCl(4) + curcumin (0.005%; CU), CCl(4) + saikosaponin a (0.004%; SS), and CCl(4) + curcumin + saikosaponin a (0.005% + 0.004%; CU+SS) groups. CCl(4) (40% in olive oil) was injected intraperitoneally at a dose of 0.75 mL/kg once a week. Curcumin and/or saikosaponin a was administered orally 1 week before CCl(4) injection for 8 weeks. The pathological results showed that liver fibrosis was ameliorated in the SS and CU+SS groups. After 8 weeks, supplementation with curcumin and/or saikosaponin a significantly decreased plasma alanine aminotransferase and aspartate aminotransferase activities, as well as plasma and hepatic cholesterol and triglyceride levels. The CU+SS group showed reversal of the impaired hepatic superoxide dismutase activity and an increase in total glutathione level. Supplementation with curcumin and/or saikosaponin a significantly improved hepatic antioxidant status and suppressed malondialdehyde formation. Therefore, supplementation with curcumin and/or saikosaponin a protects against CCl(4)-induced liver injury by attenuating hepatic lipids and lipid peroxidation and enhancing antioxidant defense. Curcumin and saikosaponin a had no additive effects on hepatoprotection except for greater improvement in the total glutathione level and antioxidant status.
Collapse
Affiliation(s)
- Shu-Ju Wu
- Schools of Pharmacy, Taipei Medical University, Taipei, Republic of China
| | | | | | | | | |
Collapse
|
1077
|
Sahu A, Bora U, Kasoju N, Goswami P. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater 2008; 4:1752-1761. [PMID: 18524701 DOI: 10.1016/j.actbio.2008.04.021] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/17/2008] [Accepted: 04/25/2008] [Indexed: 12/17/2022]
Abstract
A novel polymeric amphiphile, mPEG-PA, was synthesized with methoxy poly(ethylene glycol) (mPEG) as the hydrophilic and palmitic acid (PA) as the hydrophobic segment. The conjugate prepared in a single-step reaction showed minimal toxicity on HeLa cells. (1)H nuclear magnetic resonance imaging and Fourier transform infrared spectroscopy revealed that the conjugation was through an ester linkage, which is biodegradable. Enzymes having esterase activity, such as lipase, can degrade the conjugate easily, as observed by in vitro studies. mPEG-PA conjugate undergoes self-assembly in an aqueous environment, as evidenced by fluorescence spectroscopic studies with pyrene as a probe. The mPEG-PA conjugate formed micelles in the aqueous solution with critical micelle concentration of 0.12 g l(-1). Atomic force microscopy and dynamic light scattering studies showed that the micelles were spherical in shape, with a mean diameter of 41.43 nm. The utility of mPEG-PA to entrap the potent chemopreventive agent curcumin in the core of nanocarrier was investigated. The encapsulation of a highly hydrophobic compound like curcumin in the nanocarrier makes the drug readily soluble in an aqueous system, which can increase the ease of dosing and makes intravenous dosing possible. Drug-loaded micelle nanoparticles showed good stability in physiological condition (pH 7.4), in simulated gastric fluid (pH 1.2) and in simulated intestinal fluid (pH 6.8). This micellar formulation can be used as an enzyme-triggered drug release carrier, as suggested by in vitro enzyme-catalyzed drug release using pure lipase and HeLa cell lysate. The IC(50) of free curcumin and encapsulated curcumin was found to be 14.32 and 15.58 microM, respectively.
Collapse
Affiliation(s)
- Abhishek Sahu
- Biomaterials and Tissue Engineering Laboratory, Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | | | | | | |
Collapse
|
1078
|
Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav 2008; 92:39-43. [PMID: 19000708 DOI: 10.1016/j.pbb.2008.10.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 10/10/2008] [Accepted: 10/14/2008] [Indexed: 11/22/2022]
Abstract
Curcumin, a yellow pigment extracted from rhizomes of the plant Curcuma longa (turmeric), has been widely used as food additive and also as a herbal medicine throughout Asia. The present study was designed to study the pharmacological, biochemical and neurochemical effects of daily administration of curcumin to rats subjected to chronic unpredictable stress. Curcumin treatment (20 and 40 mg/kg, i.p., 21 days) significantly reversed the chronic unpredictable stress-induced behavioral (increase immobility period), biochemical (increase monoamine oxidase activity) and neurochemical (depletion of brain monoamine levels) alterations. The combination of piperine (2.5 mg/kg, i.p., 21 days), a bioavailability enhancer, with curcumin (20 and 40 mg/kg, i.p., 21 days) showed significant potentiation of its anti-immobility, neurotransmitter enhancing (serotonin and dopamine) and monoamine oxidase inhibitory (MAO-A) effects as compared to curcumin effect per se. This study provided a scientific rationale for the use of curcumin and its co-administration with piperine in the treatment of depressive disorders.
Collapse
|
1079
|
López-Lázaro M. Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res 2008; 52 Suppl 1:S103-27. [PMID: 18496811 DOI: 10.1002/mnfr.200700238] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A growing body of research suggests that curcumin, the major active constituent of the dietary spice turmeric, has potential for the prevention and therapy of cancer. Preclinical data have shown that curcumin can both inhibit the formation of tumors in animal models of carcinogenesis and act on a variety of molecular targets involved in cancer development. In vitro studies have demonstrated that curcumin is an efficient inducer of apoptosis and some degree of selectivity for cancer cells has been observed. Clinical trials have revealed that curcumin is well tolerated and may produce antitumor effects in people with precancerous lesions or who are at a high risk for developing cancer. This seems to indicate that curcumin is a pharmacologically safe agent that may be used in cancer chemoprevention and therapy. Both in vitro and in vivo studies have shown, however, that curcumin may produce toxic and carcinogenic effects under specific conditions. Curcumin may also alter the effectiveness of radiotherapy and chemotherapy. This review article analyzes the in vitro and in vivo cancer-related activities of curcumin and discusses that they are linked to its known antioxidant and pro-oxidant properties. Several considerations that may help develop curcumin as an anticancer agent are also discussed.
Collapse
Affiliation(s)
- Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Sevilla, Spain.
| |
Collapse
|
1080
|
Yang CS, Sang S, Lambert JD, Lee MJ. Bioavailability issues in studying the health effects of plant polyphenolic compounds. Mol Nutr Food Res 2008; 52 Suppl 1:S139-51. [PMID: 18551457 DOI: 10.1002/mnfr.200700234] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polyphenolic compounds are common in the diet and have been suggested to have a number of beneficial health effects including prevention of cancer, cardiovascular disease, diabetes, and others. For some dietary polyphenols, certain benficial effects are suggested by epidemiological studies, some are supported by studies in animal models, and still others are extrapolated from studies in vitro. Because of the relatively poor bioavailability of many of these compounds, the molecular basis of these beneficial effects is not clear. In the present review, we discuss the potential health benefits of dietary polyphenols from the point of view of bioavailability. Tea catechins, curcumin, and proanthocyanidins are used as examples to illustrate some of the problems that need to be resolved. Further research on both the biological activity and bioavailability of dietary polyphenols is needed to properly assess their usefulness for the prevention and treatment of disease.
Collapse
Affiliation(s)
- Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA.
| | | | | | | |
Collapse
|
1081
|
Shirley SA, Montpetit AJ, Lockey RF, Mohapatra SS. Curcumin prevents human dendritic cell response to immune stimulants. Biochem Biophys Res Commun 2008; 374:431-6. [PMID: 18639521 PMCID: PMC3319308 DOI: 10.1016/j.bbrc.2008.07.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 07/03/2008] [Indexed: 12/23/2022]
Abstract
Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14(+) monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4(+) T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant.
Collapse
Affiliation(s)
- Shawna A Shirley
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
1082
|
Milacic V, Banerjee S, Landis-Piwowar KR, Sarkar FH, Majumdar AP, Dou QP. Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo. Cancer Res 2008; 68:7283-92. [PMID: 18794115 PMCID: PMC2556983 DOI: 10.1158/0008-5472.can-07-6246] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Curcumin (diferuloylmethane) is the major active ingredient of turmeric (Curcuma longa) used in South Asian cuisine for centuries. Curcumin has been shown to inhibit the growth of transformed cells and to have a number of potential molecular targets. However, the essential molecular targets of curcumin under physiologic conditions have not been completely defined. Herein, we report that the tumor cellular proteasome is most likely an important target of curcumin. Nucleophilic susceptibility and in silico docking studies show that both carbonyl carbons of the curcumin molecule are highly susceptible to a nucleophilic attack by the hydroxyl group of the NH(2)-terminal threonine of the proteasomal chymotrypsin-like (CT-like) subunit. Consistently, curcumin potently inhibits the CT-like activity of a purified rabbit 20S proteasome (IC(50) = 1.85 micromol/L) and cellular 26S proteasome. Furthermore, inhibition of proteasome activity by curcumin in human colon cancer HCT-116 and SW480 cell lines leads to accumulation of ubiquitinated proteins and several proteasome target proteins, and subsequent induction of apoptosis. Furthermore, treatment of HCT-116 colon tumor-bearing ICR SCID mice with curcumin resulted in decreased tumor growth, associated with proteasome inhibition, proliferation suppression, and apoptosis induction in tumor tissues. Our study shows that proteasome inhibition could be one of the mechanisms for the chemopreventive and/or therapeutic roles of curcumin in human colon cancer. Based on its ability to inhibit the proteasome and induce apoptosis in both HCT-116 and metastatic SW480 colon cancer cell lines, our study suggests that curcumin could potentially be used for treatment of both early-stage and late-stage/refractory colon cancer.
Collapse
Affiliation(s)
- Vesna Milacic
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Sanjeev Banerjee
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Kristin R. Landis-Piwowar
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Fazlul H. Sarkar
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Adhip P.N. Majumdar
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
- Department of Internal Medicine, School of Medicine, Wayne State University, Detroit, Michigan
- John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan
| | - Q. Ping Dou
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
- Department of Pathology, Wayne State University, Detroit, Michigan
| |
Collapse
|
1083
|
Kasinski AL, Du Y, Thomas SL, Zhao J, Sun SY, Khuri FR, Wang CY, Shoji M, Sun A, Snyder JP, Liotta D, Fu H. Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin. Mol Pharmacol 2008; 74:654-61. [PMID: 18577686 PMCID: PMC2638506 DOI: 10.1124/mol.108.046201] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nuclear factor-kappaB (NF-kappaB) signaling pathway has been targeted for therapeutic applications in a variety of human diseases, includuing cancer. Many naturally occurring substances, including curcumin, have been investigated for their actions on the NF-kappaB pathway because of their significant therapeutic potential and safety profile. A synthetic monoketone compound termed 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24) was developed from curcumin and exhibited potent anticancer activity. Here, we report a mechanism by which EF24 potently suppresses the NF-kappaB signaling pathway through direct action on IkappaB kinase (IKK). We demonstrate that 1) EF24 induces death of lung, breast, ovarian, and cervical cancer cells, with a potency about 10 times higher than that of curcumin; 2) EF24 rapidly blocks the nuclear translocation of NF-kappaB, with an IC(50) value of 1.3 microM compared with curcumin, with an IC(50) value of 13 microM; 3) EF24 effectively inhibits tumor necrosis factor (TNF)-alpha-induced IkappaB phosphorylation and degradation, suggesting a role of this compound in targeting IKK; and 4) EF24 indeed directly inhibits the catalytic activity of IKK in an in vitro-reconstituted system. Our study identifies IKK as an effective target for EF24 and provides a molecular explanation for a superior activity of EF24 over curcumin. The effective inhibition of TNF-alpha-induced NF-kappaB signaling by EF24 extends the therapeutic application of EF24 to other NF-kappaB-dependent diseases, including inflammatory diseases such as rheumatoid arthritis.
Collapse
|
1084
|
Ghoneim AI. Effects of curcumin on ethanol-induced hepatocyte necrosis and apoptosis: implication of lipid peroxidation and cytochrome c. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:47-60. [PMID: 18716759 DOI: 10.1007/s00210-008-0335-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Accepted: 07/06/2008] [Indexed: 11/28/2022]
Abstract
Ethanol-induced hepatocyte necrosis and apoptosis are valid in vitro models to investigate the modulatory effects of hepatoprotective/toxic agents such as curcumin. In this study, suspension and monolayer cultures of isolated rat hepatocytes were used. Levels of trypan blue uptake, reduced glutathione, and lipid peroxidation were quantified. Chromatin condensation, caspase-3 activity, and cytochrome c extramitochondrial translocation were also evaluated. Results revealed that curcumin did not protect against either ethanol-induced necrosis or glutathione depletion. Neither did curcumin reduce caspase-3 activation nor chromatin condensation. In contrast, curcumin induced glutathione depletion, caspase-3 activation, necrosis, and apoptosis. Fortunately, all tested curcumin concentrations (1 microM-10 mM) diminished the ethanol-induced lipid peroxidation. In addition, 1 microM curcumin decreased cytochrome c translocation in hepatocyte monolayers. In conclusion, low concentrations of curcumin may protect hepatocytes by reducing lipid peroxidation and cytochrome c release. Conversely, higher concentrations provoke glutathione depletion, caspase-3 activation, and hepatocytotoxicity.
Collapse
Affiliation(s)
- Asser I Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
1085
|
Desai S, Gawali V, Naik A, D`souza L. Potentiating Effect of Piperine on Hepatoprotective Activity of Boerhaavia diffusa to Combat Oxidative Stress. INT J PHARMACOL 2008. [DOI: 10.3923/ijp.2008.393.397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
1086
|
Ma Z, Haddadi A, Molavi O, Lavasanifar A, Lai R, Samuel J. Micelles of poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J Biomed Mater Res A 2008; 86:300-10. [PMID: 17957721 DOI: 10.1002/jbm.a.31584] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Curcumin is recognized as a potential chemotherapeutic agent against a variety of tumors. However, the clinical application of curcumin is hindered due to its poor water solubility and fast degradation. The objective of this study was to investigate amphiphilic block copolymer micelles of poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-PCL) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. Curcumin-loaded PEO-PCL micelles were prepared by a cosolvent evaporation technique. PEO-PCL micelles were able to solubilize curcumin effectively, protect the encapsulated curcumin from hydrolytical degradation in physiological matrix, and control the release of curcumin over a few days. The characteristics of resultant micelles were found to depend on the polymerization degrees of epsilon-caprolactone. Among different PEO-PCL micelles, PEO(5000)-PCL(24500) was the most efficient in solubilizing curcumin while PEO(5000)-PCL(13000) was the best carrier in reducing its release rate. PEO-PCL micelle-encapsulated curcumin retained its cytotoxicity in B16-F10, a mouse melanoma cell line, and SP-53, Mino, and JeKo-1 human mantle cell lymphoma cell lines. These results demonstrated the potential of PEO-PCL micelles as an injectable formulation for efficient solubilization, stabilization, and controlled delivery of curcumin.
Collapse
Affiliation(s)
- Zengshuan Ma
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| | | | | | | | | | | |
Collapse
|
1087
|
Henning SM, Choo JJ, Heber D. Nongallated compared with gallated flavan-3-ols in green and black tea are more bioavailable. J Nutr 2008; 138:1529S-1534S. [PMID: 18641202 PMCID: PMC2942025 DOI: 10.1093/jn/138.8.1529s] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Green tea and black tea (BT) contain gallated [(-)-epigallocatechin-3-gallate (EGCG), (-)-epicatechin-3-gallate] and nongallated [(-)-epicatechin, (-)-epigallocatechin (EGC)] tea polyphenols (PP). During BT production, PP undergo oxidation and form larger polymers such as theaflavins (THE) and thearubigins, which contribute to the health benefit of BT. This article gives an overview of the role of chemical characteristics and endogenous metabolism of tea PP and their bioavailability in humans and describes attempts to increase their bioavailability. At pH close to neutral, EGCG and EGC form homo- and heterodimers generating hydrogen peroxide. To confirm the pH instability of EGCG, EGC, and THE in cell culture medium, their antiproliferative activity was determined in the presence and absence of catalase. The antiproliferative activity in LNCaP prostate cancer cells was decreased when incubated with catalase prior to EGCG, EGC, and THE treatment. In addition, new findings demonstrated that the formation of methyl-EGC increased the stability at neutral pH compared with EGC. Approaches to increase the bioavailability of flavan-3-ols are reviewed, which include the administration of tea in combination with fruit juices, coadministration with piperine, and peracetylation of EGCG. Future intervention studies will need to focus on the bioactivity not only of green tea and BT PP but also of their metabolites and biotransformation products.
Collapse
Affiliation(s)
- Susanne M Henning
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA.
| | | | | |
Collapse
|
1088
|
Volak LP, Ghirmai S, Cashman JR, Court MH. Curcuminoids inhibit multiple human cytochromes P450, UDP-glucuronosyltransferase, and sulfotransferase enzymes, whereas piperine is a relatively selective CYP3A4 inhibitor. Drug Metab Dispos 2008; 36:1594-605. [PMID: 18480186 PMCID: PMC2574793 DOI: 10.1124/dmd.108.020552] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Curcuminoid extract and piperine are being evaluated for beneficial effects in Alzheimer's disease, among other intractable disorders. Consequently, we studied the potential for herb-drug interactions involving cytochrome P450 (P450), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes. The curcuminoid extract inhibited SULT > CYP2C19 > CYP2B6 > UGT > CYP2C9 > CYP3A activities with IC(50) values ranging from 0.99 +/- 0.04 to 25.3 +/- 1.3 microM, whereas CYP2D6, CYP1A2, and CYP2E1 activities were less affected (IC(50) values > 60 microM). Inhibition of CYP3A activity by curcuminoid extract was consistent with competitive inhibition (K(i) = 11.0 +/- 1.3 microM), whereas inhibition of both CYP2C9 and CYP2C19 activities were consistent with mixed competitive-noncompetitive inhibition (10.6 +/- 1.1 and 7.8 +/- 0.9 microM, respectively). Piperine was a relatively selective noncompetitive inhibitor of CYP3A (IC(50) 5.5 +/- 0.7 microM, K(i) = 5.4 +/- 0.3 microM) with less effect on other enzymes evaluated (IC(50) > 29 microM). Curcuminoid extract and piperine inhibited recombinant CYP3A4 much more potently (by >5-fold) than CYP3A5. Pure synthetic curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) were also evaluated for their effects on CYP3A, CYP2C9, UGT, and SULT activities. All three curcuminoids had similar effects on CYP3A, UGT, and SULT activity, but demethoxycurcumin (IC(50) = 8.8 +/- 1.2 microM) was more active against CYP2C9 than either curcumin or bisdemethoxycurcumin (IC(50) > 50 microM). Based on these data and expected tissue concentrations of inhibitors, we predict that a p.o. administered curcuminoid/piperine combination is most likely to inhibit CYP3A, CYP2C9, UGT, and SULT metabolism within the intestinal mucosa.
Collapse
Affiliation(s)
- Laurie P Volak
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
1089
|
Rahman I. Dietary polyphenols mediated regulation of oxidative stress and chromatin remodeling in inflammation. Nutr Rev 2008; 66 Suppl 1:S42-5. [PMID: 18673489 PMCID: PMC2556856 DOI: 10.1111/j.1753-4887.2008.00067.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Irfan Rahman
- The Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, USA.
| |
Collapse
|
1090
|
Calabrese V, Cornelius C, Mancuso C, Pennisi G, Calafato S, Bellia F, Bates TE, Giuffrida Stella AM, Schapira T, Dinkova Kostova AT, Rizzarelli E. Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res 2008; 33:2444-71. [PMID: 18629638 DOI: 10.1007/s11064-008-9775-9] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 06/09/2008] [Indexed: 12/30/2022]
Abstract
The predominant molecular symptom of aging is the accumulation of altered gene products. Moreover, several conditions including protein, lipid or glucose oxidation disrupt redox homeostasis and lead to accumulation of unfolded or misfolded proteins in the aging brain. Alzheimer's and Parkinson's diseases or Friedreich ataxia are neurological diseases sharing, as a common denominator, production of abnormal proteins, mitochondrial dysfunction and oxidative stress, which contribute to the pathogenesis of these so called "protein conformational diseases". The central nervous system has evolved the conserved mechanism of unfolded protein response to cope with the accumulation of misfolded proteins. As one of the main intracellular redox systems involved in neuroprotection, the vitagene system is emerging as a neurohormetic potential target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins (Hsp) Hsp70 and heme oxygenase-1, as well as thioredoxin reductase and sirtuins. Nutritional studies show that ageing in animals can be significantly influenced by dietary restriction. Thus, the impact of dietary factors on health and longevity is an increasingly appreciated area of research. Reducing energy intake by controlled caloric restriction or intermittent fasting increases lifespan and protects various tissues against disease. Genetics has revealed that ageing may be controlled by changes in intracellular NAD/NADH ratio regulating sirtuin, a group of proteins linked to aging, metabolism and stress tolerance in several organisms. Recent findings suggest that several phytochemicals exhibit biphasic dose responses on cells with low doses activating signaling pathways that result in increased expression of vitagenes encoding survival proteins, as in the case of the Keap1/Nrf2/ARE pathway activated by curcumin and NAD/NADH-sirtuin-1 activated by resveratrol. Consistently, the neuroprotective roles of dietary antioxidants including curcumin, acetyl-L-carnitine and carnosine have been demonstrated through the activation of these redox-sensitive intracellular pathways. Although the notion that stress proteins are neuroprotective is broadly accepted, still much work needs to be done in order to associate neuroprotection with specific pattern of stress responses. In this review the importance of vitagenes in the cellular stress response and the potential use of dietary antioxidants in the prevention and treatment of neurodegenerative disorders is discussed.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Faculty of Medicine, University of Catania, Viale Andrea Doria 6, 95100, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1091
|
Weisberg SP, Leibel R, Tortoriello DV. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology 2008; 149:3549-58. [PMID: 18403477 PMCID: PMC2453081 DOI: 10.1210/en.2008-0262] [Citation(s) in RCA: 332] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is a major risk factor for the development of type 2 diabetes, and both conditions are now recognized to possess significant inflammatory components underlying their pathophysiologies. We tested the hypothesis that the plant polyphenolic compound curcumin, which is known to exert potent antiinflammatory and antioxidant effects, would ameliorate diabetes and inflammation in murine models of insulin-resistant obesity. We found that dietary curcumin admixture ameliorated diabetes in high-fat diet-induced obese and leptin-deficient ob/ob male C57BL/6J mice as determined by glucose and insulin tolerance testing and hemoglobin A1c percentages. Curcumin treatment also significantly reduced macrophage infiltration of white adipose tissue, increased adipose tissue adiponectin production, and decreased hepatic nuclear factor-kappaB activity, hepatomegaly, and markers of hepatic inflammation. We therefore conclude that orally ingested curcumin reverses many of the inflammatory and metabolic derangements associated with obesity and improves glycemic control in mouse models of type 2 diabetes. This or related compounds warrant further investigation as novel adjunctive therapies for type 2 diabetes in man.
Collapse
MESH Headings
- Adiponectin/genetics
- Adiponectin/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antioxidants/administration & dosage
- Antioxidants/pharmacology
- Blood Glucose/metabolism
- Curcumin/administration & dosage
- Curcumin/pharmacology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/etiology
- Dietary Supplements
- Disease Models, Animal
- Gene Expression/drug effects
- Immunohistochemistry
- Inflammation/drug therapy
- Inflammation/etiology
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Liver/drug effects
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Obese
- NF-kappa B/metabolism
- Obesity/complications
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Stuart P Weisberg
- Russ Berrie Medical Science Pavilion, Diabetes and Endocrinology Research Center, Columbia University Medical Center, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | | | | |
Collapse
|
1092
|
|
1093
|
Plasmodium chabaudi: Efficacy of artemisinin+curcumin combination treatment on a clone selected for artemisinin resistance in mice. Exp Parasitol 2008; 119:304-7. [DOI: 10.1016/j.exppara.2008.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 02/20/2008] [Accepted: 02/27/2008] [Indexed: 11/19/2022]
|
1094
|
Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani. Apoptosis 2008; 13:867-82. [DOI: 10.1007/s10495-008-0224-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
1095
|
Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA. J Nutr Biochem 2008; 20:87-95. [PMID: 18495463 DOI: 10.1016/j.jnutbio.2007.12.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 12/17/2007] [Accepted: 12/17/2007] [Indexed: 11/22/2022]
Abstract
Curcumin (Cur), a component of turmeric (Curcuma longa), has been reported to exhibit antimetastatic activities, but the mechanisms remain unclear. Other curcuminoids present in turmeric, demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) have not been investigated whether they exhibit antimetastatic activity to the same extent as curcumin. The regulation of matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA) play important role in cancer cell invasion by cleavage of extracellular matrix (ECM). In this line, we comparatively examined the influence of Cur, DMC and BDMC on the expressions of uPA, MMP-2, MMP-9, membrane Type 1 MMP (MT1-MMP), tissue inhibitor of metalloproteinases (TIMP-2), and in vitro invasiveness of human fibrosarcoma cells. The results indicate that the differential potency for inhibition of cancer cell invasion was BDMC> or =DMC>Cur, whereas the cell migration was not affected. Zymography analysis exhibited that curcumin, DMC and BDMC significantly decreased uPA, active-MMP-2 and MMP-9 but not pro-MMP-2 secretion from the cells in a dose-dependent manner, in which BDMC and DMC show higher potency than curcumin. The suppression of active MMP-2 level correlated with inhibition of MT1-MMP and TIMP-2 protein levels involved in pro-MMP-2 activation. Importantly, BDMC and DMC at 10 microM reduced MT1-MMP and TIMP-2 protein expression, but curcumin slightly reduced only MT1-MMP but not TIMP-2. In addition, three forms of curcuminoids significantly inhibited collagenase, MMP-2, and MMP-9 but not uPA activity. In summary, these data demonstrated that DMC and BDMC show higher antimetastasis potency than curcumin by the differentially down-regulation of ECM degradation enzymes.
Collapse
|
1096
|
Friedman M, Levin CE, Lee SU, Lee JS, Ohnisi-Kameyama M, Kozukue N. Analysis by HPLC and LC/MS of pungent piperamides in commercial black, white, green, and red whole and ground peppercorns. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:3028-36. [PMID: 18386929 DOI: 10.1021/jf703711z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pepper plants accumulate pungent bioactive alkaloids called piperamides. To facilitate studies in this area, high-performance liquid chromatography (HPLC) and liquid chromatography/mass spectrometry methods were developed and used to measure the following piperamides in 10 commercial whole (peppercorns) and in 10 ground, black, white, green, and red peppers: piperanine, piperdardine, piperine, piperlonguminine, and piperettine. Structural identification of individual compounds in extracts was performed by associating the HPLC peak of each compound with the corresponding mass spectrum. The piperanine content of the peppers (in mg/g piperine equivalents) ranged from 0.3 for the ground white pepper to 1.4 in black peppercorns. The corresponding range for piperdardine was from 0.0 for seven samples to 1.8 in black peppercorns; for four isomeric piperines, from 0.7 for red to 129 in green peppercorns; for piperlonguminine, from 0.0 in red peppercorns to 1.0 in black peppercorns; and for piperyline, from 0.9 in ground black pepper to 5.9 for red peppercorn. Four well-separated stereoisomeric forms of piperettine with the same molecular weight were present in 19 peppers. The sums of the piperamides ranged from 6.6 for red to 153 for green peppercorns. In contrast to large differences in absolute concentrations among the peppers, the ratios of piperines to total piperamide were quite narrow, ranging from 0.76 for black to 0.90 for white peppercorns, with an average value of 0.84 +/- 0.04 ( n = 19). Thus, on average, the total piperamide content of the peppers consists of 84% piperines and 16% other piperamides. These results demonstrate the utility of the described extraction and analytical methods used to determine the wide-ranging individual and total piperamide contents of widely consumed peppers.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, USA.
| | | | | | | | | | | |
Collapse
|
1097
|
Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 2008; 269:199-225. [PMID: 18479807 DOI: 10.1016/j.canlet.2008.03.009] [Citation(s) in RCA: 732] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 03/16/2008] [Accepted: 03/03/2008] [Indexed: 12/23/2022]
Abstract
Because most cancers are caused by dysregulation of as many as 500 different genes, agents that target multiple gene products are needed for prevention and treatment of cancer. Curcumin, a yellow coloring agent in turmeric, has been shown to interact with a wide variety of proteins and modify their expression and activity. These include inflammatory cytokines and enzymes, transcription factors, and gene products linked with cell survival, proliferation, invasion, and angiogenesis. Curcumin has been found to inhibit the proliferation of various tumor cells in culture, prevents carcinogen-induced cancers in rodents, and inhibits the growth of human tumors in xenotransplant or orthotransplant animal models either alone or in combination with chemotherapeutic agents or radiation. Several phase I and phase II clinical trials indicate that curcumin is quite safe and may exhibit therapeutic efficacy. These aspects of curcumin are discussed further in detail in this review.
Collapse
|
1098
|
Janakiraman K, Manavalan R. Studies on effect of piperine on oral bioavailability of ampicillin and norfloxacin. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2008; 5:257-62. [PMID: 20161946 PMCID: PMC2816554 DOI: 10.4314/ajtcam.v5i3.31281] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ampicillin and Norfloxacin are used to treat variety of bacterial infections. These two drugs have low oral bioavailability. Co-administration of Piperine (20 mg/kg), an alkaloid from Piper nigrum L. enhanced oral bioavailability of Ampicillin and Norfloxacin in animal model. This is reflected in various pharmacokinetic measurements like Cmax, Tmax, AUC and t(1/2) of the above antibiotics in animal model.
Collapse
|
1099
|
Subramaniam D, May R, Sureban SM, Lee KB, George R, Kuppusamy P, Ramanujam RP, Hideg K, Dieckgraefe BK, Houchen CW, Anant S. Diphenyl difluoroketone: a curcumin derivative with potent in vivo anticancer activity. Cancer Res 2008; 68:1962-9. [PMID: 18339878 DOI: 10.1158/0008-5472.can-07-6011] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, was reported to inhibit proliferation of a variety of cancer cells in vitro. However, the efficacy and in vivo mechanism of action of EF24 in gastrointestinal cancer cells have not been investigated. Here, we assessed the in vivo therapeutic effects of EF24 on colon cancer cells. Using hexosaminidase assay, we determined that EF24 inhibits proliferation of HCT-116 and HT-29 colon and AGS gastric adenocarcinoma cells but not of mouse embryo fibroblasts. Furthermore, the cancer cells showed increased levels of activated caspase-3 and increased Bax to Bcl-2 and Bax to Bcl-xL ratios, suggesting that the cells were undergoing apoptosis. At the same time, cell cycle analysis showed that there was an increased number of cells in the G(2)-M phase. To determine the effects of EF24 in vivo, HCT-116 colon cancer xenografts were established in nude mice and EF24 was given i.p. EF24 significantly suppressed the growth of colon cancer tumor xenografts. Immunostaining for CD31 showed that there was a lower number of microvessels in the EF24-treated animals coupled with decreased cyclooxygenase-2, interleukin-8, and vascular endothelial growth factor mRNA and protein expression. Western blot analyses also showed decreased AKT and extracellular signal-regulated kinase activation in the tumors. Taken together, these data suggest that the novel curcumin-related compound EF24 is a potent antitumor agent that induces caspase-mediated apoptosis during mitosis and has significant therapeutic potential for gastrointestinal cancers.
Collapse
Affiliation(s)
- Dharmalingam Subramaniam
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1100
|
Somers-Edgar TJ, Scandlyn MJ, Stuart EC, Le Nedelec MJ, Valentine SP, Rosengren RJ. The combination of epigallocatechin gallate and curcumin suppresses ER alpha-breast cancer cell growth in vitro and in vivo. Int J Cancer 2008; 122:1966-71. [PMID: 18098290 DOI: 10.1002/ijc.23328] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Both epigallocatechin gallate (EGCG) and curcumin have shown efficacy in various in vivo and in vitro models of cancer. This study was designed to determine the efficacy of these naturally derived polyphenolic compounds in vitro and in vivo, when given in combination. Studies in MDA-MB-231 cells demonstrated that EGCG + curcumin was synergistically cytotoxic and that this correlated with G(2)/M-phase cell cycle arrest. After 12 hr, EGCG (25 microM) + curcumin (3 microM) increased the proportion of cells in G(2)/M-phase to 263 +/- 16% of control and this correlated with a 50 +/- 4% decrease in cell number compared to control. To determine if this in vitro result would translate in vivo, athymic nude female mice were implanted with MDA-MB-231 cells and treated with curcumin (200 mg/kg/day, po), EGCG (25 mg/kg/day, ip), EGCG + curcumin, or vehicle control (5 ml/kg/day, po) for 10 weeks. Tumor volume in the EGCG + curcumin treated mice decreased 49% compared to vehicle control mice (p < 0.05), which correlated with a 78 +/- 6% decrease in levels of VEGFR-1 protein expression in the tumors. Curcumin treatment significantly decreased tumor protein levels of EGFR and Akt, however the expression of these proteins was not further decreased following combination treatment. Therefore, these results demonstrate that the combination of EGCG and curcumin is efficacious in both in vitro and in vivo models of ER alpha-breast cancer and that regulation of VEGFR-1 may play a key role in this effect.
Collapse
|