1101
|
Luo ZQ, Su S, Farrand SK. In situ activation of the quorum-sensing transcription factor TraR by cognate and noncognate acyl-homoserine lactone ligands: kinetics and consequences. J Bacteriol 2003; 185:5665-72. [PMID: 13129937 PMCID: PMC193949 DOI: 10.1128/jb.185.19.5665-5672.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Accepted: 07/16/2003] [Indexed: 11/20/2022] Open
Abstract
Conjugal transfer of Ti plasmids of Agrobacterium tumefaciens is controlled by a quorum-sensing system composed of the transcriptional activator TraR and its acyl-homoserine lactone quormone N-(3-oxo-octanoyl)-L-homoserine lactone (3-oxo-C8-HSL). The population density dependence of quorum-sensing systems can often be circumvented by addition of the quormone to cultures at low cell numbers. However, the quorum-dependent activation of Ti plasmid conjugal transfer exhibited a lag of almost 8 h when the quormone was added to donor cells at low population densities (Piper and Farrand, J. Bacteriol. 182:1080-1088, 2000). As measured by activation of a TraR-dependent traG::lacZ reporter fusion, TraR in cells exposed to the cognate signal for 5 min showed detectable activity, while exposure for 15 min resulted in full activity. Thus, the lag in activation is not due to some intrinsic property of TraR. Cells exposed to the agonistic analog N-(3-oxo-hexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) exhibited similar induction kinetics. However, activation of the reporter in cells exposed to the poorly effective alkanoyl acyl-HSL N-hexanoyl-L-homoserine lactone (C6-HSL) required the continued presence of the signal. As measured by an in vivo repressor assay, TraR activated by 3-oxo-C6-HSL or by 3-oxo-C8-HSL remained active for as long as 8 h after removal of exogenous signal. However, TraR activated by the alkanoyl quormone C6-HSL rapidly lost activity following removal of the signal. In quormone retention assays, which measure signal binding by TraR, cells grown with either of the two 3-oxo-acyl-HSL quormones retained the ligand after washing, while cells grown with C6-HSL lost the alkanoyl-HSL concomitant with the rapid loss of TraR activity. We conclude that TraR rapidly binds its quormone and that, once bound, the cognate signal and its close homologs are tightly retained. Moreover, in the absence of other regulatory factors, activated TraR remains functional after removal of the signal. On the other hand, poorly active signals are not tightly bound, and their removal by washing leads to rapid loss of TraR activity.
Collapse
Affiliation(s)
- Zhao-Qing Luo
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
1102
|
The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc Natl Acad Sci U S A 2003; 100:11660-5. [PMID: 14500782 PMCID: PMC208814 DOI: 10.1073/pnas.1832124100] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Indexed: 11/18/2022] Open
Abstract
Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) approximately 500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) widespread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.
Collapse
|
1103
|
Gao M, Teplitski M, Robinson JB, Bauer WD. Production of substances by Medicago truncatula that affect bacterial quorum sensing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:827-34. [PMID: 12971606 DOI: 10.1094/mpmi.2003.16.9.827] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Earlier work showed that higher plants produce unidentified compounds that specifically stimulate or inhibit quorum sensing (QS) regulated responses in bacteria. The ability of plants to produce substances that affect QS regulation may provide plants with important tools to manipulate gene expression and behavior in the bacteria they encounter. In order to examine the kinds of QS active substances produced by the model legume M. truncatula, young seedlings and seedling exudates were systematically extracted with various organic solvents, and the extracts were fractionated by reverse phase C18 high-performance liquid chromatography. M. truncatula appears to produce at least 15 to 20 separable substances capable of specifically stimulating or inhibiting responses in QS reporter bacteria, primarily substances that affect QS regulation dependent on N-acyl homoserine lactone (AHL) signals. The secretion of AHL QS mimic activities by germinating seeds and seedlings was found to change substantially with developmental age. The secretion of some mimic activities may be dependent upon prior exposure of the plants to bacteria.
Collapse
Affiliation(s)
- Mengsheng Gao
- Department of Horticulture and Crop Science, 2021 Coffey Rd., Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
1104
|
Danino VE, Wilkinson A, Edwards A, Downie JA. Recipient-induced transfer of the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae is regulated by a quorum-sensing relay. Mol Microbiol 2003; 50:511-25. [PMID: 14617175 DOI: 10.1046/j.1365-2958.2003.03699.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Analysis of the regulation of plasmid transfer genes on the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae has revealed a novel regulatory relay that is specifically poised to detect an N-acyl-homoserine lactone (AHL) made by different cells (potential recipients of pRL1JI). Adjacent to the traI-trbBCDEJKLFGHI plasmid transfer operon on pRL1JI are two regulatory genes, bisR and traR, which encode LuxR-type quorum-sensing regulators required for conjugation. Potential recipients of pRL1JI induce the traI-trb operon and plasmid transfer via a quorum-sensing relay involving BisR, TraR and the traI-trb operon in donor cells. BisR induces expression of traR in response to N-(3-hydroxy-7-cis-tetradecenoyl)-l-homoserine lactone (3-OH-C14:1-HSL), which is produced by CinI in potential recipient strains. In donor strains (carrying pRL1JI), BisR represses the expression of the chromosomal gene cinI; this repression results in a very low level of formation of 3-OH-C14:1-HSL and hence relatively low levels of expression of traR and the traI-trb operon in strains carrying pRL1JI. However, if 3-OH-C14:1-HSL from potential recipients is present, then traR and plasmid transfer are induced. The induction of traR occurs at very low concentrations of 3-OH-C14:1-HSL (around 1 nm). TraR then induces the traI-trb operon in a quorum-sensing dependent manner in re-sponse to the TraI-made AHLs, N-(3-oxo-octanoyl)-l-homoserine lactone and N-(octanoyl)-l-homoserine lactone. The resulting autoinduction results in high levels of expression of the traI-trb operon. Premature expression of the traI-trb operon is reduced by TraM, which probably titres out TraR preventing expression of traI when there are low levels of traR expression. Expression of traR in stationary phase cells is limited by feedback inhibition mediated by TraI-made AHLs.
Collapse
|
1105
|
Carlier A, Uroz S, Smadja B, Fray R, Latour X, Dessaux Y, Faure D. The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-Acyl homoserine lactonase activity. Appl Environ Microbiol 2003; 69:4989-93. [PMID: 12902298 PMCID: PMC169067 DOI: 10.1128/aem.69.8.4989-4993.2003] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Agrobacterium tumefaciens C58 genome contains three putative N-acyl homoserine lactone (acyl-HSL) hydrolases, which are closely related to the lactonase AiiA of Bacillus. When expressed in Escherichia coli, two of the putative acyl-HSL hydrolases, AttM and AiiB, conferred the ability to degrade acyl-HSLs on the host. In Erwinia strain 6276, the lactonases reduced the endogenous acyl-HSL level and the bacterial virulence in planta.
Collapse
Affiliation(s)
- A Carlier
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
1106
|
Uroz S, D'Angelo-Picard C, Carlier A, Elasri M, Sicot C, Petit A, Oger P, Faure D, Dessaux Y. Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1981-1989. [PMID: 12904538 DOI: 10.1099/mic.0.26375-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteria degrading the quorum-sensing (QS) signal molecule N-hexanoylhomoserine lactone were isolated from a tobacco rhizosphere. Twenty-five isolates degrading this homoserine lactone fell into six groups according to their genomic REP-PCR and rrs PCR-RFLP profiles. Representative strains from each group were identified as members of the genera Pseudomonas, Comamonas, Variovorax and Rhodococcus: all these isolates degraded N-acylhomoserine lactones other than the hexanoic acid derivative, albeit with different specificity and kinetics. One of these isolates, Rhodococcus erythropolis strain W2, was used to quench QS-regulated functions of other microbes. In vitro, W2 strongly interfered with violacein production by Chromobacterium violaceum, and transfer of pathogenicity in Agrobacterium tumefaciens. In planta, R. erythropolis W2 markedly reduced the pathogenicity of Pectobacterium carotovorum subsp. carotovorum in potato tubers. These series of results reveal the diversity of the QS-interfering bacteria in the rhizosphere and demonstrate the validity of targeting QS signal molecules to control pathogens with natural bacterial isolates.
Collapse
Affiliation(s)
- Stéphane Uroz
- Interactions plantes et micro-organismes de la rhizosphère, Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Cathy D'Angelo-Picard
- Interactions plantes et micro-organismes de la rhizosphère, Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Aurélien Carlier
- Interactions plantes et micro-organismes de la rhizosphère, Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Miena Elasri
- Interactions plantes et micro-organismes de la rhizosphère, Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Carine Sicot
- Interactions plantes et micro-organismes de la rhizosphère, Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Annik Petit
- Interactions plantes et micro-organismes de la rhizosphère, Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Phil Oger
- Laboratoire de Sciences de la Terre, Ecole Normale Supérieure, 43 allée d'Italie, 6364 Lyon Cedex, France
- Interactions plantes et micro-organismes de la rhizosphère, Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Denis Faure
- Interactions plantes et micro-organismes de la rhizosphère, Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Yves Dessaux
- Interactions plantes et micro-organismes de la rhizosphère, Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
1107
|
Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol 2003; 45:71-81. [DOI: 10.1016/s0168-6496(03)00125-9] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
1108
|
Morin D, Grasland B, Vallée-Réhel K, Dufau C, Haras D. On-line high-performance liquid chromatography-mass spectrometric detection and quantification of N-acylhomoserine lactones, quorum sensing signal molecules, in the presence of biological matrices. J Chromatogr A 2003; 1002:79-92. [PMID: 12885081 DOI: 10.1016/s0021-9673(03)00730-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A protocol using reversed-phase liquid chromatography coupled with positive-ion electrospray ionization and ion trap mass spectrometry is described for the identification and quantification of N-acylhomoserine lactones (HSLs) in crude cell-free supernatants of bacterial cultures. The HSLs are produced by gram-negative bacteria and act as intercellular signals inducing density-dependent gene expression. Compared with the multi-step procedures previously reported, which included chemical extraction, purification and the use of Escherichia coli HSL biosensors, this on-line LC-MS-MS method is fast and detects 11 HSLs. Its speed and robustness allow the analysis of a large number of samples without loss of performance (no signal variation for a control sample after 90 chromatographic injections). The selectivity is based on the MS-MS fragment ions of the molecular [M+H]- ions and on their relative intensities. For quantification, the m/z 102 ion, specific for the lactone ring and detected with a good signal-to-noise ratio, allows low detection limits even in complex matrix samples (0.28 up to 9.3 pmol). Moreover, this method allows the quantification of 11 HSLs whatever their chemical structure, substituted or not. The protocol was applied to Vibrio vulnificus, a marine bacterium. Six HSLs were detected and quantified with relative standard deviations for repeatability of < 10%.
Collapse
Affiliation(s)
- Danièle Morin
- Laboratoire de Biologie et Chimie Moléculaires, Université de Bretagne-Sud, B.P. 92116, F-56321 Lorient Cedex, France.
| | | | | | | | | |
Collapse
|
1109
|
Luo ZQ, Smyth AJ, Gao P, Qin Y, Farrand SK. Mutational analysis of TraR. Correlating function with molecular structure of a quorum-sensing transcriptional activator. J Biol Chem 2003; 278:13173-82. [PMID: 12569101 DOI: 10.1074/jbc.m210035200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TraR, the quorum-sensing activator of the Agrobacterium tumefaciens Ti plasmid conjugation system, induces gene expression in response to its quormone, N-(3-oxooctanoyl)-L-homoserine lactone. Ligand binding results in dimerization of TraR and is required for its activity. Analysis of N- and C-terminal deletion mutants of TraR localized the quormone-binding domain to a region between residues 39 and 140 and the primary dimerization domain to a region between residues 119 and 156. The dominant-negative properties of these mutants predicted a second dimerization domain at the C terminus of the protein. Analysis of fusions of N-terminal fragments of TraR to lambda cI' confirmed the dimerization activity of these two domains. Fifteen single amino acid substitution mutants of TraR defective in dimerization were isolated. According to the analysis of these mutants, Asp-70 and Gly-113 are essential for quormone binding, whereas Ala-38 and Ala-105 are important, but not essential. Additional residues located within the N-terminal half of TraR, including three located in alpha-helix 9, contribute to dimerization, but are not required for ligand binding. These results and the recently reported crystal structure of TraR are consistent with and complement each other and together define some of the structural and functional relationships of this quorum-sensing activator.
Collapse
Affiliation(s)
- Zhao-Qing Luo
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
1110
|
Heurlier K, Dénervaud V, Pessi G, Reimmann C, Haas D. Negative control of quorum sensing by RpoN (sigma54) in Pseudomonas aeruginosa PAO1. J Bacteriol 2003; 185:2227-35. [PMID: 12644493 PMCID: PMC151487 DOI: 10.1128/jb.185.7.2227-2235.2003] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Pseudomonas aeruginosa PAO1, the expression of several virulence factors such as elastase, rhamnolipids, and hydrogen cyanide depends on quorum-sensing regulation, which involves the lasRI and rhlRI systems controlled by N-(3-oxododecanoyl)-L-homoserine lactone and N-butyryl-L-homoserine lactone, respectively, as signal molecules. In rpoN mutants lacking the transcription factor sigma(54), the expression of the lasR and lasI genes was elevated at low cell densities, whereas expression of the rhlR and rhlI genes was markedly enhanced throughout growth by comparison with the wild type and the complemented mutant strains. As a consequence, the rpoN mutants had elevated levels of both signal molecules and overexpressed the biosynthetic genes for elastase, rhamnolipids, and hydrogen cyanide. The quorum-sensing regulatory protein QscR was not involved in the negative control exerted by RpoN. By contrast, in an rpoN mutant, the expression of the gacA global regulatory gene was significantly increased during the entire growth cycle, whereas another global regulatory gene, vfr, was downregulated at high cell densities. In conclusion, it appears that GacA levels play an important role, probably indirectly, in the RpoN-dependent modulation of the quorum-sensing machinery of P. aeruginosa.
Collapse
Affiliation(s)
- Karin Heurlier
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
1111
|
Bioactive butenolides from Streptomyces antibioticus TÜ 99: absolute configurations and synthesis of analogs. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)00483-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
1112
|
Thompson LS, Webb JS, Rice SA, Kjelleberg S. The alternative sigma factor RpoN regulates the quorum sensing gene rhlI in Pseudomonas aeruginosa. FEMS Microbiol Lett 2003; 220:187-95. [PMID: 12670680 DOI: 10.1016/s0378-1097(03)00097-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The rhl quorum sensing (QS) circuit of Pseudomonas aeruginosa is known to regulate the expression of a number of virulence factors. This study investigates the regulation of rhlI, encoding the auto-inducer synthase RhlI responsible for the synthesis of N-butryl-L-homoserine lactone (BHL). A putative RpoN binding site was located upstream, in the promoter region of rhlI. Utilising a rhlI-lacZ transcriptional reporter, we demonstrate that under certain media conditions RpoN is a positive regulator of rhlI transcription. Measurements of BHL in extracted supernatant showed that the transcriptional patterns were reflected in the BHL levels, which were reduced in the rpoN mutant. Elastase and pyocyanin, known to be regulated by the rhl QS circuit, were shown to be reduced in a RpoN deficient strain. However, exogenous addition of BHL to the rpoN mutant did not restore these phenotypes suggesting that other regulatory factors apart from BHL are involved. Consistent with other rhl regulated phenotypes, we found that a rpoN mutant strain forms a biofilm that is different from that of the wild-type but similar to that displayed by a rhlI mutant.
Collapse
Affiliation(s)
- Lyndal S Thompson
- School of Bio-technology and Bio-molecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
1113
|
Aguilar C, Bertani I, Venturi V. Quorum-sensing system and stationary-phase sigma factor (rpoS) of the onion pathogen Burkholderia cepacia genomovar I type strain, ATCC 25416. Appl Environ Microbiol 2003; 69:1739-47. [PMID: 12620866 PMCID: PMC150111 DOI: 10.1128/aem.69.3.1739-1747.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial strains belonging to Burkholderia cepacia can be human opportunistic pathogens, plant pathogens, and plant growth promoting and have remarkable catabolic activity. B. cepacia consists of several genomovars comprising what is now known as the B. cepacia complex. Here we report the quorum-sensing system of a genomovar I onion rot type strain ATCC 25416. Quorum sensing is a cell-density-dependent regulatory response which involves the production of N-acyl homoserine lactone (HSL) signal molecules. The cep locus has been inactivated in the chromosome, and it has been shown that CepI is responsible for the biosynthesis of an N-hexanoyl HSL (C(6)-HSL) and an N-octanoyl HSL (C(8)-HSL) and that the cep locus regulates protease production as well as onion pathogenicity via the expression of a secreted polygalacturonase. A cep-lacZ-based sensor plasmid has been constructed and used to demonstrate that CepR responded to C(6)-HSL with only 15% of the molar efficiency of C(8)-HSL, that a cepR knockout mutant synthesized 70% less HSLs, and that CepR responded best towards long-chain HSLs. In addition, we also report the cloning and characterization of the stationary-phase sigma factor gene rpoS of B. cepacia ATCC 25416. It was established that quorum sensing in B. cepacia has a negative effect on rpoS expression as determined by using an rpoS-lacZ transcriptional fusion; on the other hand, rpoS-null mutants displayed no difference in the accumulation of HSL signal molecules.
Collapse
Affiliation(s)
- Claudio Aguilar
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy
| | | | | |
Collapse
|
1114
|
Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ. Phenazines and their role in biocontrol by Pseudomonas bacteria. THE NEW PHYTOLOGIST 2003; 157:503-523. [PMID: 33873412 DOI: 10.1046/j.1469-8137.2003.00686.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Various rhizosphere bacteria are potential (micro)biological pesticides which are able to protect plants against diseases and improve plant yield. Knowledge of the molecular mechanisms that govern these beneficial plant-microbe interactions enables optimization, enhancement and identification of potential synergistic effects in plant protection. The production of antifungal metabolites, induction of systemic resistance, and the ability to compete efficiently with other resident rhizobacteria are considered to be important prerequisites for the optimal performance of biocontrol agents. Intriguing aspects in the molecular mechanisms of these processes have been discovered recently. Phenazines and phloroglucinols are major determinants of biological control of soilborne plant pathogens by various strains of fluorescent Pseudomonas spp. This review focuses on the current state of knowledge on biocontrol by phenazine-producing Pseudomonas strains and the action, biosynthesis, and regulation mechanisms of the production of microbial phenazines.
Collapse
Affiliation(s)
| | - Guido V Bloemberg
- Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| | - Ben J J Lugtenberg
- Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| |
Collapse
|
1115
|
Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR, Zhang LH. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 2003; 47:849-60. [PMID: 12535081 DOI: 10.1046/j.1365-2958.2003.03351.x] [Citation(s) in RCA: 352] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N-acylhomoserine lactones (AHLs) are used as signal molecules by many quorum-sensing Proteobacteria. Diverse plant and animal pathogens use AHLs to regulate infection and virulence functions. These signals are subject to biological inactivation by AHL-lactonases and AHL-acylases. Previously, little was known about the molecular details underlying the latter mechanism. An AHL signal-inactivating bacterium, identified as a Ralstonia sp., was isolated from a mixed-species biofilm. The signal inactivation encoding gene from this organism, which we call aiiD, was cloned and successfully expressed in Escherichia coli and inactivated three AHLs tested. The predicted 794-amino-acid polypeptide was most similar to the aculeacin A acylase (AAC) from Actinoplanes utahensis and also shared significant similarities with cephalosporin acylases and other N-terminal (Ntn) hydrolases. However, the most similar homologues of AiiD are deduced proteins of undemonstrated function from available Ralstonia, Deinococcus and Pseudomonas genomes. LC-MS analyses demonstrated that AiiD hydrolyses the AHL amide, releasing homoserine lactone and the corresponding fatty acid. Expression of AiiD in Pseudomonas aeruginosa PAO1 quenched quorum sensing by this bacterium, decreasing its ability to swarm, produce elastase and pyocyanin and to paralyze nematodes. Thus, AHL-acylases have fundamental implications and hold biotechnological promise in quenching quorum sensing.
Collapse
Affiliation(s)
- Yi-Han Lin
- Laboratory of Biosignals and Bioengineering, Institute of Molecular and Cell Biology, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
1116
|
Christensen AB, Riedel K, Eberl L, Flodgaard LR, Molin S, Gram L, Givskov M. Quorum-sensing-directed protein expression in Serratia proteamaculans B5a. MICROBIOLOGY (READING, ENGLAND) 2003; 149:471-483. [PMID: 12624209 DOI: 10.1099/mic.0.25575-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
N-Acyl-L-homoserine-lactone-producing Serratia species are frequently encountered in spoiling foods of vegetable and protein origin. The role of quorum sensing in the food spoiling properties of these bacteria is currently being investigated. A set of luxR luxI homologous genes encoding a putative quorum sensor was identified in the N-(3-oxo-hexanoyl)-L-homoserine lactone (3-oxo-C6-HSL)-producing Serratia proteamaculans strain B5a. The 3-oxo-C6-HSL synthase SprI showed 79 % similarity with EsaI from Pantoea stewartii and the putative regulatory protein SprR was 86 % similar to the SpnR of Serratia marcescens. Proteome analysis suggested that the presence of at least 39 intracellular proteins was affected by the 3-oxo-C6-HSL-based quorum sensing system. The lipB-encoded secretion system was identified as one target gene of the quorum sensing system. LipB was required for the production of extracellular lipolytic and proteolytic activities, thus rendering the production of food-deterioration-relevant exoenzymes indirectly under the control of quorum sensing. Strain B5a caused quorum-sensing-controlled spoilage of milk. Furthermore, chitinolytic activity was controlled by quorum sensing. This control appeared to be direct and not mediated via LipB. The data presented here demonstrate that quorum-sensing-controlled exoenzymic activities affect food quality.
Collapse
Affiliation(s)
- Allan B Christensen
- Section of Molecular Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Kathrin Riedel
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, D-85350 Freising, Germany
| | - Leo Eberl
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, D-85350 Freising, Germany
| | - Lars R Flodgaard
- Danish Institute for Fisheries Research, Department of Seafood Research, Building 221, c/o Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Søren Molin
- Section of Molecular Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Lone Gram
- Danish Institute for Fisheries Research, Department of Seafood Research, Building 221, c/o Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Michael Givskov
- Section of Molecular Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
1117
|
He X, Chang W, Pierce DL, Seib LO, Wagner J, Fuqua C. Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J Bacteriol 2003; 185:809-22. [PMID: 12533456 PMCID: PMC142814 DOI: 10.1128/jb.185.3.809-822.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Accepted: 10/31/2002] [Indexed: 11/20/2022] Open
Abstract
Rhizobium sp. strain NGR234 forms symbiotic, nitrogen-fixing nodules on a wide range of legumes via functions largely encoded by the plasmid pNGR234a. The pNGR234a sequence revealed a region encoding plasmid replication (rep) and conjugal transfer (tra) functions similar to those encoded by the rep and tra genes from the tumor-inducing (Ti) plasmids of Agrobacterium tumefaciens, including homologues of the Ti plasmid quorum-sensing regulators TraI, TraR, and TraM. In A. tumefaciens, TraI, a LuxI-type protein, catalyzes synthesis of the acylated homoserine lactone (acyl-HSL) N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8-HSL). TraR binds 3-oxo-C8-HSL and activates expression of Ti plasmid tra and rep genes, increasing conjugation and copy number at high population densities. TraM prevents this activation under noninducing conditions. Although the pNGR234a TraR, TraI, and TraM appear to function similarly to their A. tumefaciens counterparts, the TraR and TraM orthologues are not cross-functional, and the quorum-sensing systems have differences. NGR234 TraI synthesizes an acyl-HSL likely to be 3-oxo-C8-HSL, but traI mutants and a pNGR234a-cured derivative produce low levels of a similar acyl-HSL and another, more hydrophobic signal molecule. TraR activates expression of several pNGR234a tra operons in response to 3-oxo-C8-HSL and is inhibited by TraM. However, one of the pNGR234a tra operons is not activated by TraR, and conjugal efficiency is not affected by TraR and 3-oxo-C8-HSL. The growth rate of NGR234 is significantly decreased by TraR and 3-oxo-C8-HSL through functions encoded elsewhere in the NGR234 genome.
Collapse
Affiliation(s)
- Xuesong He
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|
1118
|
Slater H, Crow M, Everson L, Salmond GPC. Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol Microbiol 2003; 47:303-20. [PMID: 12519208 DOI: 10.1046/j.1365-2958.2003.03295.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serratia sp. ATCC 39006 produces two secondary metabolite antibiotics, 1-carbapen-2-em-3-carboxylic acid (Car) and the red pigment, prodigiosin (Pig). We have previously reported that production of Pig and Car is controlled by N-acyl homoserine lactone (N-AHL) quorum sensing, with synthesis of N-AHLs directed by the LuxI homologue SmaI, and is also regulated by Rap, a member of the SlyA family. We now describe further characterization of the SmaI quorum-sensing system and its connection with other regulatory mechanisms. We show that the genes responsible for biosynthesis of Pig, pigA-O, are transcribed as a single polycistronic message in an N-AHL-dependent manner. The smaR gene, transcribed convergently with smaI and predicted to encode the LuxR homologue partner of SmaI, was shown to possess a negative regulatory function, which is uncommon among the LuxR-type transcriptional regulators. SmaR represses transcription of both the pig and car gene clusters in the absence of N-AHLs. Specifically, we show that SmaIR exerts its effect on car gene expression via transcriptional control of carR, encoding a pheromone-independent LuxR homologue. Transcriptional activation of the pig and car gene clusters also requires a functional Rap protein, but Rap dependency can be bypassed by secondary mutations. Transduction of these suppressor mutations into wild-type backgrounds confers a hyper-Pig phenotype. Multiple mutations cluster in a region upstream of the pigA gene, suggesting this region may represent a repressor target site. Two mutations mapped to genes encoding pstS and pstA homologues, which are parts of a high-affinity phosphate transport system (Pst) in Escherichia coli. Disruption of pstS mimicked phosphate limitation and caused concomitant hyper-production of Pig and Car, which was mediated, in part, through increased transcription of the smaI gene. The Pst and SmaIR systems define distinct, yet overlapping, regulatory circuits which form part of a complex regulatory network controlling the production of secondary metabolites in Serratia ATCC 39006.
Collapse
Affiliation(s)
- Holly Slater
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | | | | | | |
Collapse
|
1119
|
Zhu H, Thuruthyil SJ, Willcox MDP. Determination of quorum-sensing signal molecules and virulence factors of Pseudomonas aeruginosa isolates from contact lens-induced microbial keratitis. J Med Microbiol 2002; 51:1063-1070. [PMID: 12466404 DOI: 10.1099/0022-1317-51-12-1063] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The virulence of Pseudomonas aeruginosa in contact lens-induced microbial keratitis has been linked to various extracellular and cell-associated bacterial products, such as proteases and toxins. Recently, a group of bacterial signal molecules, N-acyl-homoserine lactones (AHLs), has been reported to play an important role in the regulation of the production of several bacterial virulence factors in P. aeruginosa. The aim of this study was to determine the signal molecules produced by P. aeruginosa keratitis strains, and to elucidate any possible correlation between the production of signal molecules and the expression of phenotypic characteristics, including protease production, bacterial invasion and acute cytotoxic activity. The presence and profiles of AHLs in ocular P. aeruginosa isolates were analysed by a combination of thin-layer chromatography and bioassay. All 17 keratitis isolates produced AHLs. There were differences both in the amounts and the types of AHL production in the various phenotypes of isolates. High levels of AHLs were found among the isolates with high protease activity and invasiveness. Acutely cytotoxic isolates displayed low AHL and protease activities. Invasive strains were more common than cytotoxic strains from keratitis patients. These results suggest that quorum-sensing systems of P. aeruginosa display a complexity even within the same species, and the production of certain AHL signal molecules may be associated with certain phenotypes in P. aeruginosa.
Collapse
Affiliation(s)
- Hua Zhu
- Cooperative Research Center for Eye Research and Technology, University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| | - Sophy J Thuruthyil
- Cooperative Research Center for Eye Research and Technology, University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| | - Mark D P Willcox
- Cooperative Research Center for Eye Research and Technology, University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
1120
|
Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Cámara M, Smith H, Williams P. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 2002; 70:5635-46. [PMID: 12228292 PMCID: PMC128322 DOI: 10.1128/iai.70.10.5635-5646.2002] [Citation(s) in RCA: 434] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-negative bacterial pathogens, such as Pseudomonas aeruginosa and Yersinia pseudotuberculosis, cell-to-cell communication via the N-acylhomoserine lactone (AHL) signal molecules is involved in the cell population density-dependent control of genes associated with virulence. This phenomenon, termed quorum sensing, relies upon the accumulation of AHLs to a threshold concentration at which target structural genes are activated. By using biosensors capable of detecting a range of AHLs we observed that, in cultures of Y. pseudotuberculosis and P. aeruginosa, AHLs accumulate during the exponential phase but largely disappear during the stationary phase. When added to late-stationary-phase, cell-free culture supernatants of the respective pathogen, the major P. aeruginosa [N-butanoylhomoserine lactone (C4-HSL) and N-(3-oxododecanoyl)homoserine lactone (3-oxo-C12-HSL)] and Y. pseudotuberculosis [N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) and N-hexanoylhomoserine lactone (C6-HSL)] AHLs were inactivated. Short-acyl-chain compounds (e.g., C4-HSL) were turned over more extensively than long-chain molecules (e.g., 3-oxo-C12-HSL). Little AHL inactivation occurred with cell extracts, and no evidence for inactivation by specific enzymes was apparent. This AHL turnover was discovered to be due to pH-dependent lactonolysis. By acidifying the growth media to pH 2.0, lactonolysis could be reversed. By using carbon-13 nuclear magnetic resonance spectroscopy, we found that the ring opening of homoserine lactone (HSL), N-propionyl HSL (C3-HSL), and C4-HSL increased as pH increased but diminished as the N-acyl chain was lengthened. At low pH levels, the lactone rings closed but not via a simple reversal of the ring opening reaction mechanism. Ring opening of C4-HSL, C6-HSL, 3-oxo-C6-HSL, and N-octanoylhomoserine lactone (C8-HSL), as determined by the reduction of pH in aqueous solutions with time, was also less rapid for AHLs with more electron-donating longer side chains. Raising the temperature from 22 to 37 degrees C increased the rate of ring opening. Taken together, these data show that (i) to be functional under physiological conditions in mammalian tissue fluids, AHLs require an N-acyl side chain of at least four carbons in length and (ii) that the longer the acyl side chain the more stable the AHL signal molecule.
Collapse
Affiliation(s)
- Edwin A Yates
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1121
|
Gram L, Ravn L, Rasch M, Bruhn JB, Christensen AB, Givskov M. Food spoilage--interactions between food spoilage bacteria. Int J Food Microbiol 2002; 78:79-97. [PMID: 12222639 DOI: 10.1016/s0168-1605(02)00233-7] [Citation(s) in RCA: 586] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food spoilage is a complex process and excessive amounts of foods are lost due to microbial spoilage even with modern day preservation techniques. Despite the heterogeneity in raw materials and processing conditions, the microflora that develops during storage and in spoiling foods can be predicted based on knowledge of the origin of the food, the substrate base and a few central preservation parameters such as temperature, atmosphere, a(w) and pH. Based on such knowledge, more detailed sensory, chemical and microbiological analysis can be carried out on the individual products to determine the actual specific spoilage organism. Whilst the chemical and physical parameters are the main determining factors for selection of spoilage microorganisms, a level of refinement may be found in some products in which the interactive behavior of microorganisms may contribute to their growth and/or spoilage activity. This review gives three such examples. We describe the competitive advantage of Pseudomonas spp. due to the production of iron-chelating siderophores, the generation of substrates for spoilage reactions by one organism from another microorganism (so-called metabiosis) and the up-regulation of phenotypes potentially involved in spoilage through cell-to-cell communication. In particular, we report for the first time the widespread occurrence of N-acyl homoserine lactones (AHL) in stored and spoiling fresh foods and we discuss the potential implications for spoilage and food preservation.
Collapse
Affiliation(s)
- Lone Gram
- Department of Seafood Research, Danish Institute for Fisheries Research, Lyngby.
| | | | | | | | | | | |
Collapse
|
1122
|
Pellock BJ, Teplitski M, Boinay RP, Bauer WD, Walker GC. A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J Bacteriol 2002; 184:5067-76. [PMID: 12193623 PMCID: PMC135333 DOI: 10.1128/jb.184.18.5067-5076.2002] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of complex extracellular polysaccharides (EPSs) by the nitrogen-fixing soil bacterium Sinorhizobium meliloti is required for efficient invasion of root nodules on the host plant alfalfa. Any one of three S. meliloti polysaccharides, succinoglycan, EPS II, or K antigen, can mediate infection thread initiation and extension (root nodule invasion) on alfalfa. Of these three polysaccharides, the only symbiotically active polysaccharide produced by S. meliloti wild-type strain Rm1021 is succinoglycan. The expR101 mutation is required to turn on production of symbiotically active forms of EPS II in strain Rm1021. In this study, we have determined the nature of the expR101 mutation in S. meliloti. The expR101 mutation, a spontaneous dominant mutation, results from precise, reading frame-restoring excision of an insertion sequence from the coding region of expR, a gene whose predicted protein product is highly homologous to the Rhizobium leguminosarum bv. viciae RhiR protein and a number of other homologs of Vibrio fischeri LuxR that function as receptors for N-acylhomoserine lactones (AHLs) in quorum-sensing regulation of gene expression. S. meliloti ExpR activates transcription of genes involved in EPS II production in a density-dependent fashion, and it does so at much lower cell densities than many quorum-sensing systems. High-pressure liquid chromatographic fractionation of S. meliloti culture filtrate extracts revealed at least three peaks with AHL activity, one of which activated ExpR-dependent expression of the expE operon.
Collapse
Affiliation(s)
- Brett J Pellock
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
1123
|
Horng YT, Deng SC, Daykin M, Soo PC, Wei JR, Luh KT, Ho SW, Swift S, Lai HC, Williams P. The LuxR family protein SpnR functions as a negative regulator of N-acylhomoserine lactone-dependent quorum sensing in Serratia marcescens. Mol Microbiol 2002; 45:1655-71. [PMID: 12354232 DOI: 10.1046/j.1365-2958.2002.03117.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serratia marcescens SS-1 produces at least four N-acylhomoserine lactones (AHLs) which were identified using high-resolution mass spectrometry and chemical synthesis, as N-(3-oxohexanoyl) homo-serine lactone (3-oxo-C6-HSL), N-hexanoyl- (C6-HSL), N-heptanoyl (C7-HSL) and N-octanoyl- (C8-HSL) homoserine lactone. These AHLs are synthesized via the LuxI homologue SpnI, and regulate via the LuxR homologue SpnR, the production of the red pigment, prodigiosin, the nuclease, NucA, and a biosurfactant which facilitates surface translocation. spnR overexpression and spnR gene deletion show that SpnR, in contrast to most LuxR homologues, acts as a negative regulator. spnI overexpression, the provision of exogenous AHLs and spnI gene deletion suggest that SpnR is de-repressed by 3-oxo-C6-HSL. In addition, long chain AHLs antagonize the biosurfactant-mediated surface translocation of S. marcescens SS-1. Upstream of spnI there is a gene which we have termed spnT. spnI and spnT form an operon and although database searches failed to reveal any spnT homologues, overexpression of this novel gene negatively affected both sliding motility and prodigiosin production.
Collapse
Affiliation(s)
- Yu-Tze Horng
- School and Graduate Institute of Medical Technology, College of Medicine, National Taiwan University, Taipei, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1124
|
Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 2002; 110:303-14. [PMID: 12176318 DOI: 10.1016/s0092-8674(02)00829-2] [Citation(s) in RCA: 481] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The marine bacterium Vibrio harveyi possesses two quorum sensing systems (System 1 and System 2) that regulate bioluminescence. Although the Vibrio cholerae genome sequence reveals that a V. harveyi-like System 2 exists, it does not predict the existence of a V. harveyi-like System 1 or any obvious quorum sensing-controlled target genes. In this report we identify and characterize the genes encoding an additional V. cholerae autoinducer synthase and its cognate sensor. Analysis of double mutants indicates that a third as yet unidentified sensory circuit exists in V. cholerae. This quorum sensing apparatus is unusually complex, as it is composed of at least three parallel signaling channels. We show that in V. cholerae these communication systems converge to control virulence.
Collapse
Affiliation(s)
- Melissa B Miller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
1125
|
Aendekerk S, Ghysels B, Cornelis P, Baysse C. Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2371-2381. [PMID: 12177331 DOI: 10.1099/00221287-148-8-2371] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vanadium has an antibacterial activity against Pseudomonas aeruginosa, especially under conditions of iron limitation. Some degree of resistance to V is inducible by prior exposure to the metal. One mutant (VS1) with a higher sensitivity to V was obtained by transposon mutagenesis of P. aeruginosa PA 59.20, a clinical isolate. This mutant had an insertion in a non-coding region, upstream of a cluster of four genes. Three of them show similarities to genes corresponding to known P. aeruginosa antibiotic efflux systems, including an efflux protein, a membrane fusion protein and an outer-membrane porin. This cluster was named mexGHI-opmD. By allelic exchange, three mutants, ncr (for non-coding region), mexI and opmD were constructed in P. aeruginosa PAO1. Next to V sensitivity, the ncr, mexI and opmD mutants also showed reduced production of elastase, rhamnolipids, pyocyanine, pyoverdine and had reduced swarming motility, phenotypes that are known to be regulated by quorum sensing. All wild-type phenotypes, including growth in the presence of V, were restored by complementation with the complete cluster. The production of N-acyl-homoserine lactones (AHLs) was detected using the Chromobacter violaceum bioassay. Total extracts from the three mutants failed to induce the production of violacein by C. violaceum, although AHLs were detected by TLC and C. violaceum overlay. Violacein production was restored by complementation with mexGHI-opmD. The opmD mutant grew very slowly in LB or CAA medium, indicating that OpmD has an important physiological function for the cell. In conclusion, it is believed that the MexGHI-OpmD pump is probably involved in AHL homeostasis in P. aeruginosa.
Collapse
Affiliation(s)
- Séverine Aendekerk
- Laboratory of Microbial Interactions, Department of Immunology, Parasitology and Ultrastructure, Flanders Interuniversity Institute of Biotechnology, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint Genesius Rode, Belgium1
| | - Bart Ghysels
- Laboratory of Microbial Interactions, Department of Immunology, Parasitology and Ultrastructure, Flanders Interuniversity Institute of Biotechnology, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint Genesius Rode, Belgium1
| | - Pierre Cornelis
- Laboratory of Microbial Interactions, Department of Immunology, Parasitology and Ultrastructure, Flanders Interuniversity Institute of Biotechnology, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint Genesius Rode, Belgium1
| | - Christine Baysse
- Laboratory of Microbial Interactions, Department of Immunology, Parasitology and Ultrastructure, Flanders Interuniversity Institute of Biotechnology, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint Genesius Rode, Belgium1
| |
Collapse
|
1126
|
Gram L, Grossart HP, Schlingloff A, Kiørboe T. Possible quorum sensing in marine snow bacteria: production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl Environ Microbiol 2002; 68:4111-6. [PMID: 12147515 PMCID: PMC123997 DOI: 10.1128/aem.68.8.4111-4116.2002] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here, for the first time, that bacteria associated with marine snow produce communication signals involved in quorum sensing in gram-negative bacteria. Four of 43 marine microorganisms isolated from marine snow were found to produce acylated homoserine lactones (AHLs) in well diffusion and thin-layer chromatographic assays based on the Agrobacterium tumefaciens reporter system. Three of the AHL-producing strains were identified by 16S ribosomal DNA gene sequence analysis as Roseobacter spp., and this is the first report of AHL production by these alpha-PROTEOBACTERIA: It is likely that AHLs in Roseobacter species and other marine snow bacteria govern phenotypic traits (biofilm formation, exoenzyme production, and antibiotic production) which are required mainly when the population reaches high densities, e.g., in the marine snow community.
Collapse
Affiliation(s)
- Lone Gram
- Department of Seafood Research, Danish Institute for Fisheries Research, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | |
Collapse
|
1127
|
Wilkinson A, Danino V, Wisniewski-Dyé F, Lithgow JK, Downie JA. N-acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer. J Bacteriol 2002; 184:4510-9. [PMID: 12142421 PMCID: PMC135255 DOI: 10.1128/jb.184.16.4510-4519.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth of some strains of Rhizobium leguminosarum bv. viciae is inhibited by N-(3-hydroxy-7-cis tetradecenoyl)-L-homoserine lactone (3OH-C(14:1)-HSL), which was previously known as the small bacteriocin before its characterization as an N-acyl homoserine lactone (AHL). Tn5-induced mutants of R. leguminosarum bv. viciae resistant to 3OH-C(14:1)-HSL were isolated, and mutations in two genes were identified. These genes, bisR and triR, which both encode LuxR-type regulators required for plasmid transfer, were found downstream of an operon containing trb genes involved in the transfer of the symbiotic plasmid pRL1JI. The first gene in this operon is traI, which encodes an AHL synthase, and the trbBCDEJKLFGHI genes were found between traI and bisR. Mutations in bisR, triR, traI, or trbL blocked plasmid transfer. Using gene fusions, it was demonstrated that bisR regulates triR in response to the presence of 3OH-C(14:1)-HSL. In turn, triR is then required for the induction of the traI-trb operon required for plasmid transfer. bisR also represses expression of cinI, which is chromosomally located and determines the level of production of 3OH-C(14:1)-HSL. The cloned bisR and triR genes conferred 3OH-C(14:1)-HSL sensitivity to strains of R. leguminosarum bv. viciae normally resistant to this AHL. Furthermore, bisR and triR made Agrobacterium tumefaciens sensitive to R. leguminosarum bv. viciae strains producing 3OH-C(14:1)-HSL. Analysis of patterns of growth inhibition using mutant strains and synthetic AHLs revealed that maximal growth inhibition required, in addition to 3OH-C(14:1)-HSL, the presence of other AHLs such as N-octanoyl-L-homoserine lactone and/or N-(3-oxo-octanoyl)-L-homoserine lactone. In an attempt to identify the causes of growth inhibition, a strain of R. leguminosarum bv. viciae carrying cloned bisR and triR was treated with an AHL extract containing 3OH-C(14:1)-HSL. N-terminal sequencing of induced proteins revealed one with significant similarity to the protein translation factor Ef-Ts.
Collapse
Affiliation(s)
- A Wilkinson
- John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | |
Collapse
|
1128
|
Lewenza S, Visser MB, Sokol PA. Interspecies communication between Burkholderia cepacia and Pseudomonas aeruginosa. Can J Microbiol 2002; 48:707-16. [PMID: 12381027 DOI: 10.1139/w02-068] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Burkholderia cepacia and Pseudomonas aeruginosa are opportunistic pathogens that commonly cause pulmonary infections in cystic fibrosis patients and occasionally co-infect patients' lungs. Both organisms possess quorum-sensing systems dependent on N-acyl homoserine lactone (N-acyl-HSL). Cross-feeding assays demonstrated that P. aeruginosa and B. cepacia were able to utilize heterologous N-acyl-HSL signaling molecules. The ability of quorum-sensing genes from one species to complement the respective quorum-sensing mutations in the heterologous species was also examined. These studies suggest that B. cepacia CepR can use N-acyl-HSLs synthesized by RhlI and LasI and that P. aeruginosa LasR and RhlR can use N-acyl-HSLs synthesized by CepI. It is possible that a mixed bacterial population of B. cepacia and P. aeruginosa can coordinately regulate some of their virulence factors and influence the progression of lung disease due to infection with these organisms.
Collapse
Affiliation(s)
- Shawn Lewenza
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, AB, Canada
| | | | | |
Collapse
|
1129
|
Loh J, Pierson EA, Pierson LS, Stacey G, Chatterjee A. Quorum sensing in plant-associated bacteria. CURRENT OPINION IN PLANT BIOLOGY 2002; 5:285-290. [PMID: 12179960 DOI: 10.1016/s1369-5266(02)00274-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
N-acyl homoserine lactone (AHL)-mediated quorum sensing by bacteria regulates traits that are involved in symbiotic, pathogenic and surface-associated relationships between microbial populations and their plant hosts. Recent advances demonstrate deviations from the classic LuxR/LuxI paradigm, which was first developed in Vibrio. For example, LuxR homologs can repress as well as activate gene expression, and non-AHL signals and signal mimics can affect the expression of genes that are controlled by quorum sensing. Many bacteria utilize multiple quorum-sensing systems, and these may be modulated via post-transcriptional and other global regulatory mechanisms. Microbes inhabiting plant surfaces also produce and respond to a diverse mixture of AHL signals. The production of AHL mimics by plants and the identification of AHL degradative pathways suggest that bacteria and plants utilize this method of bacterial communication as a key control point for influencing the outcome of their interactions.
Collapse
Affiliation(s)
- John Loh
- Department of Plant Microbiology and Pathology, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | |
Collapse
|
1130
|
Belhaj A, Desnoues N, Elmerich C. Alkane biodegradation in Pseudomonas aeruginosa strains isolated from a polluted zone: identification of alkB and alkB-related genes. Res Microbiol 2002; 153:339-44. [PMID: 12234007 DOI: 10.1016/s0923-2508(02)01333-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pseudomonas aeruginosa strains that grow on crude oil as the sole source of carbon and energy were isolated from an environment in Morocco polluted by petroleum refinery effluents. The twenty isolates grew on saturated alkanes from C12 to C22. Three of the isolates were also able to grow on low molecular weight C6 to C10 n-alkanes, but the other 17 strains were not. The strains were tested for alkB and a/kB-related genes encoding alkane-1-monooxygenase (alkane hydroxylase). Oligonucleotide primers specific for the alkB gene of strain P. putida (GPo1 ) and for the alkB1 and alkB2 genes of P. aeruginosa strain PAO1 allowed amplification from the P. aeruginosa isolates of fragments similar to alkB1 and alkB2 genes of strain PAO1. Only 3 strains carried an alkB gene very similar to that of strain GPo1, and these strains were the same ones that could utilise C6 to C10 n-alkanes.
Collapse
Affiliation(s)
- Abdelhaq Belhaj
- Département de Biologie, Faculté des Sciences, Université Moulay Ismail, Beni M'Hamed, Meknès, Morocco
| | | | | |
Collapse
|
1131
|
Abstract
The emergence of bacterial strains exhibiting resistance to multiple antibiotic classes poses a major threat to medicine and public health. This has been compounded over the last few decades by the failure of drug discovery programmes to provide new broad spectrum antibacterials with novel modes of action. As a consequence, there is renewed interest in antibacterial targets which disrupt the capacity of pathogenic bacteria to cause infection by attenuating virulence. In this respect, one crucial feature of almost all bacterial infections is that the pathogen must attain a critical cell population density sufficient to overwhelm the host defences. Many pathogens are now known to regulate diverse physiological processes, including virulence, in a cell density dependent manner through cell-cell communication. This phenomenon, which relies upon the interaction of a diffusible signal molecule with a sensor kinase or response regulator, has become known as 'quorum sensing'. This review considers the molecular basis of quorum sensing and whether it constitutes a potential therapeutic target for the design of small molecule antagonists capable of controlling infection by attenuating adaptation to the host environment.
Collapse
Affiliation(s)
- Paul Williams
- Institute of Infections and Immunity, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH UK.
| |
Collapse
|
1132
|
Taminiau B, Daykin M, Swift S, Boschiroli ML, Tibor A, Lestrate P, De Bolle X, O'Callaghan D, Williams P, Letesson JJ. Identification of a quorum-sensing signal molecule in the facultative intracellular pathogen Brucella melitensis. Infect Immun 2002; 70:3004-11. [PMID: 12010991 PMCID: PMC128001 DOI: 10.1128/iai.70.6.3004-3011.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2001] [Revised: 01/15/2002] [Accepted: 03/21/2002] [Indexed: 11/20/2022] Open
Abstract
Brucella melitensis is a gram-negative alpha2-proteobacterium responsible for abortion in goats and for Malta fever in humans. This facultative intracellular pathogen invades and survives within both professional and nonprofessional phagocytes. A dichloromethane extract of spent culture supernatant from B. melitensis induces bioluminescence in an Escherichia coli acyl-homoserine lactone (acyl-HSL) biosensor strain based upon the activity of the LasR protein of Pseudomonas aeruginosa. HPLC fractionation of the extract, followed by mass spectrometry, identified the major active molecule as N-dodecanoylhomoserine lactone (C12-HSL). This is the first report of the production of an acyl-HSL by an intracellular pathogen. The addition of synthetic C12-HSL to an early log phase culture of either B. melitensis or Brucella suis 1330 reduces the transcription of the virB operon, which contains virulence genes known to be required for intracellular survival. This mimics events seen during the stationary phase of growth and suggests that quorum sensing may play a role in the control of virulence in Brucella.
Collapse
Affiliation(s)
- Bernard Taminiau
- Unité de Recherche en Biologie Moléculaire (URBM), Laboratoire d'Immunologie et Microbiologie, Facultés Universitaires Notre-Dame de la Paix, 5000 Namur, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1133
|
Erickson DL, Nsereko VL, Morgavi DP, Selinger LB, Rode LM, Beauchemin KA. Evidence of quorum sensing in the rumen ecosystem: detection of N-acyl homoserine lactone autoinducers in ruminal contents. Can J Microbiol 2002; 48:374-8. [PMID: 12030712 DOI: 10.1139/w02-022] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acyl-homoserine lactone (AHL) based quorum-sensing systems are widespread among gram-negative bacteria, particularly in association with plants and animals. As yet, there have been no reports of AHL signaling in the anaerobic rumen environment, an ecosystem of great complexity in which cell-cell signaling is likely to occur. We detected multiple AHL autoinducers in the rumen contents of 6 out of 8 cattle fed a representative selection of diets. The signals were not associated with feed. Surprisingly, no pure cultures produced AHLs in vitro when grown under the laboratory conditions we tested. Our observations suggest that either (a) a factor specific to the rumen ecosystem is required for the rumen isolates we tested to produce AHLs or (b) a strain (or strains) that we were not able to culture but which grows to a high cell density in the rumen produces the AHLs we detected.
Collapse
Affiliation(s)
- D L Erickson
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, AB
| | | | | | | | | | | |
Collapse
|
1134
|
Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1119-1127. [PMID: 11932456 DOI: 10.1099/00221287-148-4-1119] [Citation(s) in RCA: 378] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
N-acyl-L-homoserine lactones (AHLs) are co-regulatory ligands required for control of the expression of genes encoding virulence traits in many Gram-negative bacterial species. Recent studies have indicated that AHLs modulate the cellular concentrations of LuxR-type regulatory proteins by binding and fortifying these proteins against proteolytic degradation (Zhu & Winans, 2001 ). Halogenated furanones produced by the macroalga Delisea pulchra inhibit AHL-dependent gene expression. This study assayed for an in vivo interaction between a tritiated halogenated furanone and the LuxR protein of Vibrio fischeri overproduced in Escherichia coli. Whilst a stable interaction between the algal metabolite and the bacterial protein was not found, it was noted by Western analysis that the half-life of the protein is reduced up to 100-fold in the presence of halogenated furanones. This suggests that halogenated furanones modulate LuxR activity but act to destabilize, rather than protect, the AHL-dependent transcriptional activator. The furanone-dependent reduction in the cellular concentration of the LuxR protein was associated with a reduction in expression of a plasmid encoded P(luxI)-gfp(ASV) fusion suggesting that the reduction in LuxR concentration is the mechanism by which furanones control expression of AHL-dependent phenotypes. The mode of action by which halogenated furanones reduce cellular concentrations of the LuxR protein remains to be characterized.
Collapse
Affiliation(s)
- Michael Manefield
- Department of Microbiology, Technical University of Denmark, 2800 Lyngby, Denmark2
- School of Microbiology and Immunology, University of New South Wales, Sydney, Australia1
| | | | - Morten Henzter
- Department of Microbiology, Technical University of Denmark, 2800 Lyngby, Denmark2
| | - Jens Bo Andersen
- Department of Microbiology, Technical University of Denmark, 2800 Lyngby, Denmark2
| | - Peter Steinberg
- Centre for Marine Biofouling and Bio-Innovation, University of New South Wales, Sydney, Australia3
| | - Staffan Kjelleberg
- Centre for Marine Biofouling and Bio-Innovation, University of New South Wales, Sydney, Australia3
- School of Microbiology and Immunology, University of New South Wales, Sydney, Australia1
| | - Michael Givskov
- Department of Microbiology, Technical University of Denmark, 2800 Lyngby, Denmark2
| |
Collapse
|
1135
|
Reimmann C, Ginet N, Michel L, Keel C, Michaux P, Krishnapillai V, Zala M, Heurlier K, Triandafillu K, Harms H, Défago G, Haas D. Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. MICROBIOLOGY (READING, ENGLAND) 2002; 148:923-932. [PMID: 11932439 DOI: 10.1099/00221287-148-4-923] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Virulence in the opportunistic human pathogen Pseudomonas aeruginosa is controlled by cell density via diffusible signalling molecules ('autoinducers') of the N-acylhomoserine lactone (AHL) type. Two Bacillus sp. isolates (A23 and A24) with AHL-degrading activity were identified among a large collection of rhizosphere bacteria. From isolate A24 a gene was cloned which was similar to the aiiA gene, encoding an AHL lactonase in another Bacillus strain. Expression of the aiiA homologue from isolate A24 in P. aeruginosa PAO1 reduced the amount of the quorum sensing signal N-oxododecanoyl-L-homoserine lactone and completely prevented the accumulation of the second AHL signal, N-butyryl-L-homoserine lactone. This strongly reduced AHL content correlated with a markedly decreased expression and production of several virulence factors and cytotoxic compounds such as elastase, rhamnolipids, hydrogen cyanide and pyocyanin, and strongly reduced swarming. However, no effect was observed on flagellar swimming or on twitching motility, and aiiA expression did not affect bacterial adhesion to a polyvinylchloride surface. In conclusion, introduction of an AHL degradation gene into P. aeruginosa could block cell-cell communication and exoproduct formation, but failed to interfere with surface colonization.
Collapse
Affiliation(s)
- Cornelia Reimmann
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland1
| | - Nathalie Ginet
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland1
| | - Laurent Michel
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland1
| | - Christoph Keel
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland1
| | - Patrick Michaux
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland1
| | - Viji Krishnapillai
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland1
| | - Marcello Zala
- Institut für Pflanzenwissenschaften/Phytopathologie, ETH Zürich, CH-8092 Zürich, Switzerland2
| | - Karin Heurlier
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland1
| | | | - Hauke Harms
- IATE-Pédologie, EPFL, CH 1015 Lausanne, Switzerland3
| | - Geneviève Défago
- Institut für Pflanzenwissenschaften/Phytopathologie, ETH Zürich, CH-8092 Zürich, Switzerland2
| | - Dieter Haas
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland1
| |
Collapse
|
1136
|
Hentzer M, Givskov M, Parsek MR. Targeting Quorum Sensing for Treatment of Chronic Bacterial Biofilm Infections. Lab Med 2002. [DOI: 10.1309/eyev-wt6t-gkhe-c8lm] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Morten Hentzer
- Molecular Microbiology, Technical University of Denmark, Lyngby, Denmark
| | - Michael Givskov
- Molecular Microbiology, Technical University of Denmark, Lyngby, Denmark
| | - Matthew R. Parsek
- Department of Civil Engineering, Northwestern University, Evanston, IL
| |
Collapse
|
1137
|
Watson WT, Minogue TD, Val DL, von Bodman SB, Churchill MEA. Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol Cell 2002; 9:685-94. [PMID: 11931774 DOI: 10.1016/s1097-2765(02)00480-x] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Synthesis and detection of acyl-homoserine lactones (AHLs) enables many gram-negative bacteria to engage in quorum sensing, an intercellular signaling mechanism that activates differentiation to virulent and biofilm lifestyles. The AHL synthases catalyze acylation of S-adenosyl-L-methionine by acyl-acyl carrier protein and lactonization of the methionine moiety to give AHLs. The crystal structure of the AHL synthase, EsaI, determined at 1.8 A resolution, reveals a remarkable structural similarity to the N-acetyltransferases and defines a common phosphopantetheine binding fold as the catalytic core. Critical residues responsible for catalysis and acyl chain specificity have been identified from a modeled substrate complex and verified through functional analysis in vivo. A mechanism for the N-acylation of S-adenosyl-L-methionine by 3-oxo-hexanoyl-acyl carrier protein is proposed.
Collapse
Affiliation(s)
- William T Watson
- Department of Pharmacology, The University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
1138
|
Croxatto A, Chalker VJ, Lauritz J, Jass J, Hardman A, Williams P, Cámara M, Milton DL. VanT, a homologue of Vibrio harveyi LuxR, regulates serine, metalloprotease, pigment, and biofilm production in Vibrio anguillarum. J Bacteriol 2002; 184:1617-29. [PMID: 11872713 PMCID: PMC134878 DOI: 10.1128/jb.184.6.1617-1629.2002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio anguillarum possesses at least two N-acylhomoserine lactone (AHL) quorum-sensing circuits, one of which is related to the luxMN system of Vibrio harveyi. In this study, we have cloned an additional gene of this circuit, vanT, encoding a V. harveyi LuxR-like transcriptional regulator. A V. anguillarum Delta vanT null mutation resulted in a significant decrease in total protease activity due to loss of expression of the metalloprotease EmpA, but no changes in either AHL production or virulence. Additional genes positively regulated by VanT were identified from a plasmid-based gene library fused to a promoterless lacZ. Three lacZ fusions (serA::lacZ, hpdA-hgdA::lacZ, and sat-vps73::lacZ) were identified which exhibited decreased expression in the Delta vanT strain. SerA is similar to 3-phosphoglycerate dehydrogenases and catalyzes the first step in the serine-glycine biosynthesis pathway. HgdA has identity with homogentisate dioxygenases, and HpdA is homologous to 4-hydroxyphenylpyruvate dioxygenases (HPPDs) involved in pigment production. V. anguillarum strains require an active VanT to produce high levels of an L-tyrosine-induced brown color via HPPD, suggesting that VanT controls pigment production. Vps73 and Sat are related to Vibrio cholerae proteins encoded within a DNA locus required for biofilm formation. A V. anguillarum Delta vanT mutant and a mutant carrying a polar mutation in the sat-vps73 DNA locus were shown to produce defective biofilms. Hence, a new member of the V. harveyi LuxR transcriptional activator family has been characterized in V. anguillarum that positively regulates serine, metalloprotease, pigment, and biofilm production.
Collapse
Affiliation(s)
- Antony Croxatto
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
1139
|
Wisniewski-Dyé F, Jones J, Chhabra SR, Downie JA. raiIR genes are part of a quorum-sensing network controlled by cinI and cinR in Rhizobium leguminosarum. J Bacteriol 2002; 184:1597-606. [PMID: 11872711 PMCID: PMC134902 DOI: 10.1128/jb.184.6.1597-1606.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of N-acyl-L-homoserine lactones (AHLs) produced by Rhizobium leguminosarum bv. viciae indicated that there may be a network of quorum-sensing regulatory systems producing multiple AHLs in this species. Using a strain lacking a symbiosis plasmid, which carries some of the quorum-sensing genes, we isolated mutations in two genes (raiI and raiR) that are required for production of AHLs. The raiIR genes are located adjacent to dad genes (involved in D-alanine catabolism) on a large indigenous plasmid. RaiR is predicted to be a typical LuxR-type quorum-sensing regulator and is required for raiI expression. The raiR gene was expressed at a low level, possibly from a constitutive promoter, and its expression was increased under the influence of the upstream raiI promoter. Using gene fusions and analysis of AHLs produced, we showed that expression of raiI is strongly reduced in strains carrying mutations in cinI or cinR, genes which determine a higher-level quorum-sensing system that is required for normal expression of raiIR. The product of CinI, N-(3-hydroxy-7-cis tetradecenoyl) homoserine lactone, can induce raiR-dependent raiI expression, although higher levels of expression are induced by other AHLs. Expression of raiI in a strain of Agrobacterium that makes no AHLs resulted in the identification of N-(3-hydroxyoctanoyl)-L-homoserine lactone (3OH,C(8)-HSL) as the major product of RaiI, although other AHLs that comigrate with N-hexanoyl-, N-heptanoyl-, and N-octanoyl-homoserine lactones were also made at low levels. The raiI gene was strongly induced by 3OH,C(8)-HSL (the product of RaiI) but could also be induced by other AHLs, suggesting that the raiI promoter can be activated by other quorum-sensing systems within a network of regulation which also involves AHLs determined by genes on the symbiotic plasmid. Thus, the raiIR and cinIR genes are part of a complex regulatory network that influences AHL biosynthesis in R. leguminosarum.
Collapse
|
1140
|
Burgess NA, Kirke DF, Williams P, Winzer K, Hardie KR, Meyers NL, Aduse-Opoku J, Curtis MA, Cámara M. LuxS-dependent quorum sensing in Porphyromonas gingivalis modulates protease and haemagglutinin activities but is not essential for virulence. MICROBIOLOGY (READING, ENGLAND) 2002; 148:763-772. [PMID: 11882711 DOI: 10.1099/00221287-148-3-763] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyromonas gingivalis is a Gram-negative black-pigmented obligate anaerobe implicated in the aetiology of human periodontal disease. The virulence of P. gingivalis is associated with the elaboration of the cysteine proteases Arg-gingipain (Rgp) and Lys-gingipain (Kgp), which are produced at high bacterial cell densities. To determine whether quorum sensing plays a role in the regulation of Rgp and Kgp, biosensors capable of detecting either N-acylhomoserine lactone (AHLs) or the luxS-dependent autoinducer (AI-2) quorum-sensing signalling molecules in spent culture supernatants were first employed. While no AHLs could be detected, the Vibrio harveyi BB170 biosensor was activated by spent P. gingivalis W50 culture supernatants. The P. gingivalis luxS gene was cloned and demonstrated to restore AI-2 production in the Escherichia coli luxS mutant DH5alpha. Mutation of luxS abolished AI-2 production in P. gingivalis. Western blotting using antibodies raised against the recombinant protein revealed that LuxS levels increased throughout growth even though AI-2 activity was only maximally detected at the mid-exponential phase of growth and disappeared by the onset of stationary phase. Similar results were obtained with E. coli DH5alpha transformed with luxS, suggesting that AI-2 production is not limited by a lack of LuxS protein. Analysis of Rgp and Kgp protease activities revealed that the P. gingivalis luxS mutant produced around 45% less Rgp and 30% less Kgp activity than the parent strain. In addition, the luxS mutant exhibited a fourfold reduction in haemagglutinin titre. However, these reductions in virulence determinant levels were insufficient to attenuate the luxS mutant in a murine lesion model of P. gingivalis infection.
Collapse
Affiliation(s)
- Nicola A Burgess
- School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK2
- Institute of Infections and Immunity, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK1
| | - David F Kirke
- Institute of Infections and Immunity, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK1
| | - Paul Williams
- School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK2
- Institute of Infections and Immunity, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK1
| | - Klaus Winzer
- School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK2
| | - Kim R Hardie
- School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK2
- Institute of Infections and Immunity, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK1
| | | | - Joseph Aduse-Opoku
- MRC Molecular Pathogenesis Group, Department of Oral Microbiology, St Bartholomews and the Royal London School of Dentistry, 32 Newark St, London E1 2AA, UK4
| | - Michael A Curtis
- MRC Molecular Pathogenesis Group, Department of Oral Microbiology, St Bartholomews and the Royal London School of Dentistry, 32 Newark St, London E1 2AA, UK4
| | - Miguel Cámara
- School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK2
- Institute of Infections and Immunity, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK1
| |
Collapse
|
1141
|
Heeb S, Blumer C, Haas D. Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 2002; 184:1046-56. [PMID: 11807065 PMCID: PMC134805 DOI: 10.1128/jb.184.4.1046-1056.2002] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Pseudomonas fluorescens CHA0, an antagonist of root-pathogenic fungi, the GacS/GacA two-component system tightly controls the expression of antifungal secondary metabolites and exoenzymes at a posttranscriptional level, involving the RNA-binding protein and global regulator of secondary metabolism RsmA. This protein was purified from P. fluorescens, and RNA bound to it was converted to cDNA, which served as a probe to isolate the corresponding chromosomal locus, rsmZ. This gene encoded a regulatory RNA of 127 nucleotides and a truncated form lacking 35 nucleotides at the 3' end. Expression of rsmZ depended on GacA, increased with increasing population density, and was stimulated by the addition of a solvent-extractable extracellular signal produced by strain CHA0 at the end of exponential growth. This signal appeared to be unrelated to N-acyl-homoserine lactones. A conserved upstream element in the rsmZ promoter, but not the stress sigma factor RpoS, was involved in rsmZ expression. Overexpression of rsmZ effectively suppressed the negative effect of gacS and gacA mutations on target genes, i.e., hcnA (for hydrogen cyanide synthase) and aprA (for the major exoprotease). Mutational inactivation of rsmZ resulted in reduced expression of these target genes in the presence of added signal. Overexpression of rsmA had a similar, albeit stronger negative effect. These results support a model in which GacA upregulates the expression of regulatory RNAs, such as RsmZ of strain CHA0, in response to a bacterial signal. By a titration effect, RsmZ may then alleviate the repressing activity of RsmA on the expression of target mRNAs.
Collapse
Affiliation(s)
- Stephan Heeb
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
1142
|
Byers JT, Lucas C, Salmond GPC, Welch M. Nonenzymatic turnover of an Erwinia carotovora quorum-sensing signaling molecule. J Bacteriol 2002; 184:1163-71. [PMID: 11807077 PMCID: PMC134803 DOI: 10.1128/jb.184.4.1163-1171.2002] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2001] [Accepted: 11/09/2001] [Indexed: 11/20/2022] Open
Abstract
The production of virulence factors and carbapenem antibiotic in the phytopathogen Erwinia carotovora is under the control of quorum sensing. The quorum-sensing signaling molecule, N-(3-oxohexanoyl)-L-homoserine lactone (OHHL), accumulates in log-phase culture supernatants of E. carotovora but diminishes in concentration during the stationary phase. In this study, we show that the diminution in OHHL was not due to sequestration of the ligand by the cells, although some partitioning did occur. Rather, it was caused by degradation of the molecule. The rate of stationary-phase degradation of OHHL was as rapid as the rate of log-phase accumulation of the ligand, but it was nonenzymatic and led to a decrease in the expression of selected genes known to be under the control of quorum sensing. The degradation of OHHL was dependent on the pH of the supernatant, which increased as the growth curve progressed in cultures grown in Luria-Bertani medium from pH 7 to approximately 8.5. OHHL became unstable over a narrow pH range (pH 7 to 8). Instability was increased at high temperatures even at neutral pH but could be prevented at the growth temperature (30 degrees C) by buffering the samples at pH 6.8. These results may provide a rationale for the observation that an early response of plants which are under attack by Erwinia is to activate a proton pump which alkalizes the site of infection to a pH of >8.2.
Collapse
Affiliation(s)
- Joseph T Byers
- Department of Biochemistry, Cambridge University, CB2 1QW, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
1143
|
Middleton B, Rodgers HC, Cámara M, Knox AJ, Williams P, Hardman A. Direct detection of N-acylhomoserine lactones in cystic fibrosis sputum. FEMS Microbiol Lett 2002; 207:1-7. [PMID: 11886742 DOI: 10.1111/j.1574-6968.2002.tb11019.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pseudomonas aeruginosa and Burkholderia cepacia cause destructive lung disease in cystic fibrosis (CF) patients. Both pathogens employ 'quorum sensing', i.e. cell-to-cell communication, via diffusible N-acyl-L-homoserine lactone (AHL) signal molecules, to regulate the production of a number of virulence determinants in vitro. However, to date, evidence that quorum sensing systems are functional and play a role in vivo is lacking. This study presents the first direct evidence for the presence of AHLs in CF sputum. A total of 42 samples from 25 CF patients were analysed using lux-based Escherichia coli AHL biosensors. AHLs were detected in sputum from patients colonised by P. aeruginosa or B. cepacia but not Staphylococcus aureus. Furthermore, using liquid chromatography-mass spectrometry and thin layer chromatography, we confirmed the presence of N-hexanoylhomoserine lactone and N-(3-oxododecanoyl)homoserine lactone respectively in sputum samples from patients colonised by P. aeruginosa.
Collapse
Affiliation(s)
- Barry Middleton
- School of Pharmaceutical Sciences, University of Nottingham, University Park, NG7 2RD, UK
| | | | | | | | | | | |
Collapse
|
1144
|
Yao F, Zhou H, Lessie TG. Characterization of N-acyl homoserine lactone overproducing mutants of Burkholderia multivorans ATCC 17616. FEMS Microbiol Lett 2002; 206:201-7. [PMID: 11814664 DOI: 10.1111/j.1574-6968.2002.tb11010.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Burkholderia multivorans ATCC 17616 ordinarily produces insufficient amounts of N-acyl homoserine lactones (AHLs) to promote AHL-dependent formation of the pigment violacein by the reporter strain Chromobacterium violaceum CV026. We have isolated AHL-overproducing mutants of strain 17616 by screening for variants which do cross-feed AHLs to strain CV026. Nucleotide-sequence analysis of the bmuIR locus which specifies AHL synthase (BmuI) and AHL-binding transcriptional activator protein (BmuR) indicated that the increased capacity to produce AHLs was not a consequence of changes upstream or internal to the bmuI or bmuR genes. We conclude that the mutations leading to AHL overproduction lie outside the bmuI/bmuR locus.
Collapse
Affiliation(s)
- Fude Yao
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003 USA
| | | | | |
Collapse
|
1145
|
Abstract
Quorum sensing is the regulation of gene expression in response to fluctuations in cell-population density. Quorum sensing bacteria produce and release chemical signal molecules called autoinducers that increase in concentration as a function of cell density. The detection of a minimal threshold stimulatory concentration of an autoinducer leads to an alteration in gene expression. Gram-positive and Gram-negative bacteria use quorum sensing communication circuits to regulate a diverse array of physiological activities. These processes include symbiosis, virulence, competence, conjugation, antibiotic production, motility, sporulation, and biofilm formation. In general, Gram-negative bacteria use acylated homoserine lactones as autoinducers, and Gram-positive bacteria use processed oligo-peptides to communicate. Recent advances in the field indicate that cell-cell communication via autoinducers occurs both within and between bacterial species. Furthermore, there is mounting data suggesting that bacterial autoinducers elicit specific responses from host organisms. Although the nature of the chemical signals, the signal relay mechanisms, and the target genes controlled by bacterial quorum sensing systems differ, in every case the ability to communicate with one another allows bacteria to coordinate the gene expression, and therefore the behavior, of the entire community. Presumably, this process bestows upon bacteria some of the qualities of higher organisms. The evolution of quorum sensing systems in bacteria could, therefore, have been one of the early steps in the development of multicellularity.
Collapse
Affiliation(s)
- M B Miller
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA.
| | | |
Collapse
|
1146
|
Swift S, Downie JA, Whitehead NA, Barnard AM, Salmond GP, Williams P. Quorum sensing as a population-density-dependent determinant of bacterial physiology. Adv Microb Physiol 2002; 45:199-270. [PMID: 11450110 DOI: 10.1016/s0065-2911(01)45005-3] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The discovery that bacterial cells can communicate with each other has led to the realization that bacteria are capable of exhibiting much more complex patterns of co-operative behaviour than would be expected for simple unicellular microorganisms. Now generically termed 'quorum sensing', bacterial cell-to-cell communication enables a bacterial population to mount a unified response that is advantageous to its survival by improving access to complex nutrients or environmental niches, collective defence against other competitive microorganisms or eukaryotic host defence mechanisms and optimization of population survival by differentiation into morphological forms better adapted to combating environmental threats. The principle of quorum sensing encompasses the production and release of signal molecules by bacterial cells within a population. Such molecules are released into the environment and, as cell numbers increase, so does the extracellular level of signal molecule, until the bacteria sense that a threshold has been reached and gene activation, or in some cases depression or repression, occurs via the activity of sensor-regulator systems. In this review, we will describe the biochemistry and molecular biology of a number of well-characterized N-acylhomoserine lactone quorum sensing systems to illustrate how bacteria employ cell-to-cell signalling to adjust their physiology in accordance with the prevailing high-population-density environment.
Collapse
Affiliation(s)
- S Swift
- Institute of Infections and Immunity, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD UK
| | | | | | | | | | | |
Collapse
|
1147
|
Lynch MJ, Swift S, Kirke DF, Keevil CW, Dodd CER, Williams P. The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ Microbiol 2002; 4:18-28. [PMID: 11966822 DOI: 10.1046/j.1462-2920.2002.00264.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aeromonas hydrophila is an opportunistic Gram-negative pathogen that readily attaches to stainless steel to produce a thin biofilm with a complex 3D structure covering 40-50% of the available surface and producing large microcolonies. As A. hydrophila possesses an N-acylhomoserine lactone (AHL)-dependent quorum-sensing system based on the ahyRI locus, the presence of the AhyI protein and C4-HSL within the biofilm phase was first established by Western blot and AHL biosensor analysis respectively. The ability of the A. hydrophila AH-1 N strain to form biofilms in a continuous-flow chamber was compared with isogenic ahyI and ahyR mutants. The ahyI mutant, which cannot produce C4-HSL, failed to form a mature biofilm. In addition, the viable count of biofilm, but not planktonic phase ahyI mutants, was significantly lower that the parent or ahyR mutant. This defect in the differentiation of the ahyI mutant biofilm could be partially restored by the addition of exogenous C4-HSL. A mutation in ahyR increased coverage of the available surface to around 80% with no obvious effect upon biofilm microcolony formation. These data support a role for AHL-dependent quorum sensing in A. hydrophila biofilm development. Exposure of the A. hydrophila AH-1N biofilm to N-(3-oxodecanoyl)homoserine lactone, which inhibits exoprotease production in planktonic cells, however, had no effect on biofilm formation or architecture within the continuous-flow chamber.
Collapse
Affiliation(s)
- Martin J Lynch
- Institute of Infections and Immunity, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | | | | | | | |
Collapse
|
1148
|
Riedel K, Hentzer M, Geisenberger O, Huber B, Steidle A, Wu H, Høiby N, Givskov M, Molin S, Eberl L. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. MICROBIOLOGY (READING, ENGLAND) 2001; 147:3249-62. [PMID: 11739757 DOI: 10.1099/00221287-147-12-3249] [Citation(s) in RCA: 287] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa and Burkholderia cepacia are capable of forming mixed biofilms in the lungs of cystic fibrosis patients. Both bacteria employ quorum-sensing systems, which rely on N-acylhomoserine lactone (AHL) signal molecules, to co-ordinate expression of virulence factors with the formation of biofilms. As both bacteria utilize the same class of signal molecules the authors investigated whether communication between the species occurs. To address this issue, novel Gfp-based biosensors for non-destructive, in situ detection of AHLs were constructed and characterized. These sensors were used to visualize AHL-mediated communication in mixed biofilms, which were cultivated either in artificial flow chambers or in alginate beads in mouse lung tissue. In both model systems B. cepacia was capable of perceiving the AHL signals produced by P. aeruginosa, while the latter strain did not respond to the molecules produced by B. cepacia. Measurements of extracellular proteolytic activities of defined quorum-sensing mutants grown in media complemented with AHL extracts prepared from culture supernatants of various wild-type and mutant strains supported the view of unidirectional signalling between the two strains.
Collapse
Affiliation(s)
- K Riedel
- Department of Microbiology, TUM, Am Hochanger 4, D-85350 Freising, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1149
|
Velkov VV. Stress-induced evolution and the biosafety of genetically modified microorganisms released into the environment. J Biosci 2001; 26:667-83. [PMID: 11807296 DOI: 10.1007/bf02704764] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article is focused on the problems of reduction of the risk associated with the deliberate release of genetically modified microorganisms (GMMs) into the environment. Special attention is given to overview the most probable physiological and genetic processes which could be induced in the released GMMs by adverse environmental conditions, namely: (i) activation of quorum sensing and the functions associated with it, (ii) entering into a state of general resistance, (iii) activation of adaptive mutagenesis, adaptive amplifications and transpositions and (iv) stimulation of inter-species gene transfer. To reduce the risks associated with GMMs, the inactivation of their key genes responsible for stress-stimulated increase of viability and evolvability is proposed.
Collapse
Affiliation(s)
- V V Velkov
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia.
| |
Collapse
|
1150
|
Pessi G, Williams F, Hindle Z, Heurlier K, Holden MT, Cámara M, Haas D, Williams P. The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J Bacteriol 2001; 183:6676-83. [PMID: 11673439 PMCID: PMC95500 DOI: 10.1128/jb.183.22.6676-6683.2001] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranscriptional control is known to contribute to the regulation of secondary metabolism and virulence determinants in certain gram-negative bacteria. Here we report the isolation of a Pseudomonas aeruginosa gene which encodes a global translational regulatory protein, RsmA (regulator of secondary metabolites). Overexpression of rsmA resulted in a substantial reduction in the levels of extracellular products, including protease, elastase, and staphylolytic (LasA protease) activity as well as the PA-IL lectin, hydrogen cyanide (HCN), and the phenazine pigment pyocyanin. While inactivation of rsmA in P. aeruginosa had only minor effects on the extracellular enzymes and the PA-IL lectin, the production of HCN and pyocyanin was enhanced during the exponential phase. The influence of RsmA on N-acylhomoserine lactone-mediated quorum sensing was determined by assaying the levels of N-(3-oxododecanoyl)homoserine lactone (3-oxo-C12-HSL) and N-butanoylhomoserine lactone (C4-HSL) produced by the rsmA mutant and the rsmA-overexpressing strain. RsmA exerted a negative effect on the synthesis of both 3-oxo-C12-HSL and C4-HSL, which was confirmed by using lasI and rhlI translational fusions. These data also highlighted the temporal expression control of the lasI gene, which was induced much earlier and to a higher level during the exponential growth phase in an rsmA mutant. To investigate whether RsmA modulates HCN production solely via quorum-sensing control, hcn translational fusions were employed to monitor the regulation of the cyanide biosynthesis genes (hcnABC). RsmA was shown to exert an additional negative effect on cyanogenesis posttranscriptionally by acting on a region surrounding the hcnA ribosome-binding site. This suggests that, in P. aeruginosa, RsmA functions as a pleiotropic posttranscriptional regulator of secondary metabolites directly and also indirectly by modulating the quorum-sensing circuitry.
Collapse
Affiliation(s)
- G Pessi
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|