1101
|
Siddiqui F, Tandon PK, Srivastava S. Analysis of arsenic induced physiological and biochemical responses in a medicinal plant, Withania somnifera. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:61-69. [PMID: 25648550 PMCID: PMC4312328 DOI: 10.1007/s12298-014-0278-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/22/2014] [Indexed: 05/29/2023]
Abstract
Withania somnifera has been an important herb in the Ayurvedic and indigenous medical systems for centuries in India. However, these grow as weeds mostly in the wastelands, which receive contaminated water from municipal and industrial sources. In the present investigation, plants of Withania somnifera were exposed to various concentrations of arsenate (AsV) and arsenite (AsIII) (0, 10, 25, 50, 100 μM) for 10 days and analysed for accumulation of arsenic (As) and physiological and biochemical changes. Plants showed more As accumulation upon exposure to AsIII (320 μg g(-1) DW in roots and 161 μg g(-1) DW in leaves) than to AsV (173 μg g(-1) DW in roots and 100 μg g(-1) DW in leaves) after 10 days of treatment. Consequently, AsIII exposure caused more toxicity to plants as compared to that AsV, as evaluated in terms of the level of photosynthetic pigments and oxidative stress parameters (superoxide, hydrogen peroxide and lipid peroxidation), particularly at higher concentrations and on longer durations. Plants could tolerate low concentrations (variable for AsIII and AsV) until longer durations (10 days) and high concentrations for shorter durations (1-5 days) through increase in antioxidant enzymes and by augmented synthesis of thiols. In conclusion, As tolerance potential of Withania plants on one hand advocates its prospective use for remediation under proper supervision and on the other demonstrates possible threat of As entry into humans due to medicinal uses.
Collapse
Affiliation(s)
- Fauzia Siddiqui
- />Department of Botany, University of Lucknow, Lucknow, 226007 U.P. India
| | - P. K. Tandon
- />Department of Botany, University of Lucknow, Lucknow, 226007 U.P. India
| | - Sudhakar Srivastava
- />Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005 U.P. India
| |
Collapse
|
1102
|
Sgobba A, Paradiso A, Dipierro S, De Gara L, de Pinto MC. Changes in antioxidants are critical in determining cell responses to short- and long-term heat stress. PHYSIOLOGIA PLANTARUM 2015; 153:68-78. [PMID: 24796393 DOI: 10.1111/ppl.12220] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 05/23/2023]
Abstract
Heat stress can have deleterious effects on plant growth by impairing several physiological processes. Plants have several defense mechanisms that enable them to cope with high temperatures. The synthesis and accumulation of heat shock proteins (HSPs), as well as the maintenance of an opportune redox balance play key roles in conferring thermotolerance to plants. In this study changes in redox parameters, the activity and/or expression of reactive oxygen species (ROS) scavenging enzymes and the expression of two HSPs were studied in tobacco Bright Yellow-2 (TBY-2) cells subjected to moderate short-term heat stress (SHS) and long-term heat stress (LHS). The results indicate that TBY-2 cells subjected to SHS suddenly and transiently enhance antioxidant systems, thus maintaining redox homeostasis and avoiding oxidative damage. The simultaneous increase in HSPs overcomes the SHS and maintains the metabolic functionality of cells. In contrast the exposure of cells to LHS significantly reduces cell growth and increases cell death. In the first phase of LHS, cells enhance antioxidant systems to prevent the formation of an oxidizing environment. Under prolonged heat stress, the antioxidant systems, and particularly the enzymatic ones, are inactivated. As a consequence, an increase in H2 O2 , lipid peroxidation and protein oxidation occurs. This establishment of oxidative stress could be responsible for the increased cell death. The rescue of cell growth and cell viability, observed when TBY-2 cells were pretreated with galactone-γ-lactone, the last precursor of ascorbate, and glutathione before exposure to LHS, highlights the crucial role of antioxidants in the acquisition of basal thermotolerance.
Collapse
Affiliation(s)
- Alessandra Sgobba
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | | | | | | | | |
Collapse
|
1103
|
Tiew TWY, Sheahan MB, Rose RJ. Peroxisomes contribute to reactive oxygen species homeostasis and cell division induction in Arabidopsis protoplasts. FRONTIERS IN PLANT SCIENCE 2015; 6:658. [PMID: 26379686 PMCID: PMC4549554 DOI: 10.3389/fpls.2015.00658] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/10/2015] [Indexed: 05/18/2023]
Abstract
The ability to induce Arabidopsis protoplasts to dedifferentiate and divide provides a convenient system to analyze organelle dynamics in plant cells acquiring totipotency. Using peroxisome-targeted fluorescent proteins, we show that during protoplast culture, peroxisomes undergo massive proliferation and disperse uniformly around the cell before cell division. Peroxisome dispersion is influenced by the cytoskeleton, ensuring unbiased segregation during cell division. Considering their role in oxidative metabolism, we also investigated how peroxisomes influence homeostasis of reactive oxygen species (ROS). Protoplast isolation induces an oxidative burst, with mitochondria the likely major ROS producers. Subsequently ROS levels in protoplast cultures decline, correlating with the increase in peroxisomes, suggesting that peroxisome proliferation may also aid restoration of ROS homeostasis. Transcriptional profiling showed up-regulation of several peroxisome-localized antioxidant enzymes, most notably catalase (CAT). Analysis of antioxidant levels, CAT activity and CAT isoform 3 mutants (cat3) indicate that peroxisome-localized CAT plays a major role in restoring ROS homeostasis. Furthermore, protoplast cultures of pex11a, a peroxisome division mutant, and cat3 mutants show reduced induction of cell division. Taken together, the data indicate that peroxisome proliferation and CAT contribute to ROS homeostasis and subsequent protoplast division induction.
Collapse
Affiliation(s)
| | | | - Ray J. Rose
- *Correspondence: Ray J. Rose, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australi,
| |
Collapse
|
1104
|
Zhang W, Tan NGJ, Fu B, Li SFY. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress. Metallomics 2015; 7:426-38. [DOI: 10.1039/c4mt00253a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
1105
|
Herrera-Vásquez A, Salinas P, Holuigue L. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. FRONTIERS IN PLANT SCIENCE 2015; 6:171. [PMID: 25852720 PMCID: PMC4365548 DOI: 10.3389/fpls.2015.00171] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/03/2015] [Indexed: 05/18/2023]
Abstract
It is well established that salicylic acid (SA) plays a critical role in the transcriptional reprograming that occurs during the plant defense response against biotic and abiotic stress. In the course of the defense response, the transcription of different sets of defense genes is controlled in a spatio-temporal manner via SA-mediated mechanisms. Interestingly, different lines of evidence indicate that SA interplays with reactive oxygen species (ROS) and glutathione (GSH) in stressed plants. In this review we focus on the evidence that links SA, ROS, and GSH signals to the transcriptional control of defense genes. We discuss how redox modifications of regulators and co-regulators involved in SA-mediated transcriptional responses control the temporal patterns of gene expression in response to stress. Finally, we examine how these redox sensors are coordinated with the dynamics of cellular redox changes occurring in the defense response to biotic and abiotic stress.
Collapse
Affiliation(s)
| | | | - Loreto Holuigue
- *Correspondence: Loreto Holuigue, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8320000, Chile
| |
Collapse
|
1106
|
Herrera-Vásquez A, Carvallo L, Blanco F, Tobar M, Villarroel-Candia E, Vicente-Carbajosa J, Salinas P, Holuigue L. Transcriptional Control of Glutaredoxin GRXC9 Expression by a Salicylic Acid-Dependent and NPR1-Independent Pathway in Arabidopsis. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:624-637. [PMID: 26696694 PMCID: PMC4677692 DOI: 10.1007/s11105-014-0782-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) is a key hormone that mediates gene transcriptional reprogramming in the context of the defense response to stress. GRXC9, coding for a CC-type glutaredoxin from Arabidopsis, is an SA-responsive gene induced early and transiently by an NPR1-independent pathway. Here, we address the mechanism involved in this SA-dependent pathway, using GRXC9 as a model gene. We first established that GRXC9 expression is induced by UVB exposure through this pathway, validating its activation in a physiological stress condition. GRXC9 promoter analyses indicate that SA controls gene transcription through two activating sequence-1 (as-1)-like elements located in its proximal region. TGA2 and TGA3, but not TGA1, are constitutively bound to this promoter region. Accordingly, the transient recruitment of RNA polymerase II to the GRXC9 promoter, as well as the transient accumulation of gene transcripts detected in SA-treated WT plants, was abolished in a knockout mutant for the TGA class II factors. We conclude that constitutive binding of TGA2 is essential for controlling GRXC9 expression, while binding of TGA3 in a lesser extent contributes to this regulation. Finally, overexpression of GRXC9 indicates that the GRXC9 protein negatively controls its own gene expression, forming part of the complex bound to the as-1-containing promoter region. These findings are integrated in a model that explains how SA controls transcription of GRXC9 in the context of the defense response to stress.
Collapse
Affiliation(s)
- Ariel Herrera-Vásquez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Loreto Carvallo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Francisca Blanco
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Mariola Tobar
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Eva Villarroel-Candia
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Paula Salinas
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| |
Collapse
|
1107
|
Thieulin-Pardo G, Remy T, Lignon S, Lebrun R, Gontero B. Phosphoribulokinase from Chlamydomonas reinhardtii: a Benson–Calvin cycle enzyme enslaved to its cysteine residues. MOLECULAR BIOSYSTEMS 2015; 11:1134-45. [DOI: 10.1039/c5mb00035a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, focused on C. reinhardtii phosphoribulokinase, we showed that CP12 catalyses a disulfide bridge between Cys243 and Cys249 on PRK. This disulfide bridge is essential for the GAPDH–CP12–PRK complex formation.
Collapse
Affiliation(s)
- Gabriel Thieulin-Pardo
- Aix-Marseille Université
- CNRS
- UMR 7281 Laboratoire de Bioénergétique et Ingénierie des Protéines
- 13402 Marseille Cedex 20
- France
| | - Thérèse Remy
- Aix-Marseille Université
- CNRS
- UMR 7281 Laboratoire de Bioénergétique et Ingénierie des Protéines
- 13402 Marseille Cedex 20
- France
| | - Sabrina Lignon
- Plate-forme Protéomique
- Marseille Protéomique (MaP)
- Institut de Microbiologie de la Méditerranée
- 13402 Marseille Cedex 20
- France
| | - Régine Lebrun
- Plate-forme Protéomique
- Marseille Protéomique (MaP)
- Institut de Microbiologie de la Méditerranée
- 13402 Marseille Cedex 20
- France
| | - Brigitte Gontero
- Aix-Marseille Université
- CNRS
- UMR 7281 Laboratoire de Bioénergétique et Ingénierie des Protéines
- 13402 Marseille Cedex 20
- France
| |
Collapse
|
1108
|
Marmiroli M, Imperiale D, Pagano L, Villani M, Zappettini A, Marmiroli N. The Proteomic Response of Arabidopsis thaliana to Cadmium Sulfide Quantum Dots, and Its Correlation with the Transcriptomic Response. FRONTIERS IN PLANT SCIENCE 2015; 6:1104. [PMID: 26732871 PMCID: PMC4679877 DOI: 10.3389/fpls.2015.01104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/22/2015] [Indexed: 05/20/2023]
Abstract
A fuller understanding of the interaction between plants and engineered nanomaterials is of topical relevance because the latter are beginning to find applications in agriculture and the food industry. There is a growing need to establish objective safety criteria for their use. The recognition of two independent Arabidopsis thaliana mutants displaying a greater level of tolerance than the wild type plant to exposure to cadmium sulfide quantum dots (CdS QDs) has offered the opportunity to characterize the tolerance response at the physiological, transcriptomic, and proteomic levels. Here, a proteomics-based comparison confirmed the conclusions drawn from an earlier transcriptomic analysis that the two mutants responded to CdS QD exposure differently both to the wild type and to each other. Just over half of the proteomic changes mirrored documented changes at the level of gene transcription, but a substantial number of transcript/gene product pairs were altered in the opposite direction. An interpretation of the discrepancies is given, along with some considerations regarding the use and significance of -omics when monitoring the potential toxicity of ENMs for health and environment.
Collapse
Affiliation(s)
- Marta Marmiroli
- Department of Life Sciences, University of ParmaParma, Italy
- *Correspondence: Marta Marmiroli
| | | | - Luca Pagano
- Department of Life Sciences, University of ParmaParma, Italy
| | - Marco Villani
- Institute of Materials for Electronics and Magnetism (IMEM-CNR)Parma, Italy
| | - Andrea Zappettini
- Institute of Materials for Electronics and Magnetism (IMEM-CNR)Parma, Italy
| | | |
Collapse
|
1109
|
Chin DC, Shen CH, SenthilKumar R, Yeh KW. Prolonged Exposure to Elevated Temperature Induces Floral Transition via Up-Regulation of Cytosolic Ascorbate Peroxidase 1 and Subsequent Reduction of the Ascorbate Redox Ratio in Oncidium Hybrid Orchid. ACTA ACUST UNITED AC 2014; 55:2164-76. [DOI: 10.1093/pcp/pcu146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
1110
|
Takáč T, Šamajová O, Vadovič P, Pechan T, Košútová P, Ovečka M, Husičková A, Komis G, Šamaj J. Proteomic and biochemical analyses show a functional network of proteins involved in antioxidant defense of the Arabidopsis anp2anp3 double mutant. J Proteome Res 2014; 13:5347-61. [PMID: 25325904 PMCID: PMC4423761 DOI: 10.1021/pr500588c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Disentanglement of functional complexity associated with plant mitogen-activated protein kinase (MAPK) signaling has benefited from transcriptomic, proteomic, phosphoproteomic, and genetic studies. Published transcriptomic analysis of a double homozygous recessive anp2anp3 mutant of two MAPK kinase kinase (MAPKKK) genes called Arabidopsis thaliana Homologues of Nucleus- and Phragmoplast-localized Kinase 2 (ANP2) and 3 (ANP3) showed the upregulation of stress-related genes. In this study, a comparative proteomic analysis of anp2anp3 mutant against its respective Wassilevskaja ecotype (Ws) wild type background is provided. Such differential proteomic analysis revealed overabundance of core enzymes such as FeSOD1, MnSOD, DHAR1, and FeSOD1-associated regulatory protein CPN20, which are involved in the detoxification of reactive oxygen species in the anp2anp3 mutant. The proteomic results were validated at the level of single protein abundance by Western blot analyses and by quantitative biochemical determination of antioxidant enzymatic activities. Finally, the functional network of proteins involved in antioxidant defense in the anp2anp3 mutant was physiologically linked with the increased resistance of mutant seedlings against paraquat treatment.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Pavol Vadovič
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Tibor Pechan
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Petra Košútová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Alexandra Husičková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
1111
|
Andorf CM, Kopylov M, Dobbs D, Koch KE, Stroupe ME, Lawrence CJ, Bass HW. G-Quadruplex (G4) Motifs in the Maize (Zea mays L.) Genome Are Enriched at Specific Locations in Thousands of Genes Coupled to Energy Status, Hypoxia, Low Sugar, and Nutrient Deprivation. J Genet Genomics 2014; 41:627-47. [DOI: 10.1016/j.jgg.2014.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/16/2014] [Accepted: 10/24/2014] [Indexed: 02/07/2023]
|
1112
|
Krueger T, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Fisher PL, Davy SK. Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. JOURNAL OF PHYCOLOGY 2014; 50:1035-47. [PMID: 26988785 DOI: 10.1111/jpy.12232] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 08/02/2014] [Indexed: 05/10/2023]
Abstract
Warmer than average summer sea surface temperature is one of the main drivers for coral bleaching, which describes the loss of endosymbiotic dinoflagellates (genus: Symbiodinium) in reef-building corals. Past research has established that oxidative stress in the symbiont plays an important part in the bleaching cascade. Corals hosting different genotypes of Symbiodinium may have varying thermal bleaching thresholds, but changes in the symbiont's antioxidant system that may accompany these differences have received less attention. This study shows that constitutive activity and up-regulation of different parts of the antioxidant network under thermal stress differs between four Symbiodinium types in culture and that thermal susceptibility can be linked to glutathione redox homeostasis. In Symbiodinium B1, C1 and E, declining maximum quantum yield of PSII (Fv /Fm ) and death at 33°C were generally associated with elevated superoxide dismutase (SOD) activity and a more oxidized glutathione pool. Symbiodinium F1 exhibited no decline in Fv /Fm or growth, but showed proportionally larger increases in ascorbate peroxidase (APX) activity and glutathione content (GSx), while maintaining GSx in a reduced state. Depressed growth in Symbiodinium B1 at a sublethal temperature of 29°C was associated with transiently increased APX activity and glutathione pool size, and an overall increase in glutathione reductase (GR) activity. The collapse of GR activity at 33°C, together with increased SOD, APX and glutathione S-transferase activity, contributed to a strong oxidation of the glutathione pool with subsequent death. Integrating responses of multiple components of the antioxidant network highlights the importance of antioxidant plasticity in explaining type-specific temperature responses in Symbiodinium.
Collapse
Affiliation(s)
- Thomas Krueger
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
- Laboratory for Biological Geochemistry, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Susanne Becker
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Stefanie Pontasch
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Sophie Dove
- School of Biological Sciences & ARC Centre of Excellence for Coral Reef Studies, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ove Hoegh-Guldberg
- Global Change Institute, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - William Leggat
- Comparative Genomics Centre, School of Pharmacy and Molecular Sciences & ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Paul L Fisher
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| |
Collapse
|
1113
|
Viczián O, Künstler A, Hafez Y, Király L. Catalases may play different roles in influencing resistance to virus-induced hypersensitive necrosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1556/aphyt.49.2014.2.5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
1114
|
Santa-Cruz DM, Pacienza NA, Zilli CG, Tomaro ML, Balestrasse KB, Yannarelli GG. Nitric oxide induces specific isoforms of antioxidant enzymes in soybean leaves subjected to enhanced ultraviolet-B radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2014; 141:202-9. [PMID: 25463668 DOI: 10.1016/j.jphotobiol.2014.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 01/03/2023]
Abstract
Antioxidant enzymes play a key role in plant tolerance to different types of stress, including ultraviolet-B (UV-B) radiation. Here we report that nitric oxide (NO) enhances antioxidant enzymes gene expression and increases the activity of specific isoforms protecting against UV-B radiation. Pre-treatments with sodium nitroprussiate (SNP), a NO-donor, prevented lipid peroxidation, ion leakage and H2O2 and superoxide anion accumulation in leaves of UV-B-treated soybean plants. Transcripts levels of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were significantly induced by SNP. These data correlated with the enhancement of particular antioxidant enzyme isoforms, such as one CAT isoform and two APX isoforms. Moreover, SNP induced the expression of three new isoforms of SOD, identified as Mn-SOD subclass. Further results showed that total activities of SOD, CAT and APX significantly increased by 2.2-, 1.8- and 2.1-fold in SNP-treated plants compared to controls, respectively. The protective effect of SNP against UV-B radiation was negated by addition of the specific NO scavenger cPTIO, indicating that NO released by SNP mediates the enhancement of antioxidant enzymes activities. In conclusion, NO is involved in the signaling pathway that up-regulates specific isoforms of antioxidant enzymes protecting against UV-B-induced oxidative stress.
Collapse
Affiliation(s)
- Diego M Santa-Cruz
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Área de Investigación y Desarrollo, Universidad Favaloro/CONICET, Buenos Aires, Argentina
| | - Natalia A Pacienza
- Área de Investigación y Desarrollo, Universidad Favaloro/CONICET, Buenos Aires, Argentina
| | - Carla G Zilli
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Buenos Aires, Argentina
| | - Maria L Tomaro
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina B Balestrasse
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Buenos Aires, Argentina
| | - Gustavo G Yannarelli
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Área de Investigación y Desarrollo, Universidad Favaloro/CONICET, Buenos Aires, Argentina.
| |
Collapse
|
1115
|
Ribeiro CW, Alloing G, Mandon K, Frendo P. Redox regulation of differentiation in symbiotic nitrogen fixation. Biochim Biophys Acta Gen Subj 2014; 1850:1469-78. [PMID: 25433163 DOI: 10.1016/j.bbagen.2014.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/30/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Nitrogen-fixing symbiosis between Rhizobium bacteria and legumes leads to the formation of a new organ, the root nodule. The development of the nodule requires the differentiation of plant root cells to welcome the endosymbiotic bacterial partner. This development includes the formation of an efficient vascular tissue which allows metabolic exchanges between the root and the nodule, the formation of a barrier to oxygen diffusion necessary for the bacterial nitrogenase activity and the enlargement of cells in the infection zone to support the large bacterial population. Inside the plant cell, the bacteria differentiate into bacteroids which are able to reduce atmospheric nitrogen to ammonia needed for plant growth in exchange for carbon sources. Nodule functioning requires a tight regulation of the development of plant cells and bacteria. SCOPE OF THE REVIEW Nodule functioning requires a tight regulation of the development of plant cells and bacteria. The importance of redox control in nodule development and N-fixation is discussed in this review. The involvement of reactive oxygen and nitrogen species and the importance of the antioxidant defense are analyzed. MAJOR CONCLUSIONS Plant differentiation and bacterial differentiation are controlled by reactive oxygen and nitrogen species, enzymes involved in the antioxidant defense and antioxidant compounds. GENERAL SIGNIFICANCE The establishment and functioning of nitrogen-fixing symbiosis involve a redox control important for both the plant-bacteria crosstalk and the consideration of environmental parameters. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Carolina Werner Ribeiro
- Institut Sophia Agrobiotech, Université de Nice-Sophia Antipolis, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, INRA UMR 1355, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, CNRS UMR 7254, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France
| | - Geneviève Alloing
- Institut Sophia Agrobiotech, Université de Nice-Sophia Antipolis, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, INRA UMR 1355, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, CNRS UMR 7254, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France
| | - Karine Mandon
- Institut Sophia Agrobiotech, Université de Nice-Sophia Antipolis, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, INRA UMR 1355, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, CNRS UMR 7254, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France
| | - Pierre Frendo
- Institut Sophia Agrobiotech, Université de Nice-Sophia Antipolis, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, INRA UMR 1355, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, CNRS UMR 7254, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France.
| |
Collapse
|
1116
|
Glutathione reductase a unique enzyme: molecular cloning, expression and biochemical characterization from the stress adapted C4 plant, Pennisetum glaucum (L.) R. Br. Mol Biol Rep 2014; 42:947-62. [PMID: 25403332 DOI: 10.1007/s11033-014-3832-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023]
Abstract
The generation of excess reactive oxygen species (ROS) is one of the most common consequences of abiotic stress on plants. Glutathione reductase (GR, E.C. 1.6.4.2) and allied enzymes of the ascorbate-glutathione cycle play a crucial role to maintain the homeostatic redox balance in the cellular environment. GR plays an essential role in upholding the reduced glutathione pool under stress conditions. In the present study, a full-length GR cDNA and corresponding genomic clone was isolated from Pennisetum glaucum (L.) R. Br. The PgGR cDNA, encodes a 497-amino acid peptide with an estimated molecular mass of ~53.5 kDa. The PgGR peptide exhibits 54-89% sequence homology with GR from other plants and is cytoplasmic in nature. The PgGR enzyme was purified to near homogeneity, the recombinant protein being relatively thermostable and displaying activity in a broad range of temperature, pH and substrate concentrations. The PgGR transcript level was differentially regulated by heat, cold, salinity and methyl viologen-induced oxidative stress. The heterologously expressed PgGR protein in E. coli showed an improved protection against metal- and methyl viologen-induced oxidative stress. Our overall finding underscores the role of PgGR gene that responds to multiple abiotic stresses and provides stress tolerance in the experimental model (E. coli) which can be potentially used for the improvement of crops under abiotic stress conditions.
Collapse
|
1117
|
Tsaniklidis G, Delis C, Nikoloudakis N, Katinakis P, Aivalakis G. Low temperature storage affects the ascorbic acid metabolism of cherry tomato fruits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:149-157. [PMID: 25282013 DOI: 10.1016/j.plaphy.2014.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/22/2014] [Indexed: 06/03/2023]
Abstract
Tomato fruits are an important source of l-Ascorbic acid, which is an essential compound of human diet. The effect of the widespread practice of cold storing (5-10 °C) tomato fruits was monitored to determine its impact on the concentration and redox status of l-Ascorbic acid. Total l-Ascorbic acid levels were well maintained in both attached fruits and cold treated fruits, while in other treatments its levels were considerably reduced. However, low temperature storage conditions enhanced the expression of most genes coding for enzymes involved in l-Ascorbic acid biosynthesis and redox reactions. The findings suggest that the transcriptional up-regulation under chilling stress conditions of most genes coding for l-Ascorbic acid biosynthetic genes galactono-1,4-lactone dehydrogenase, GDP-d-mannose 3,5-epimerase but also for the isoenzymes of ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase enzyme, glutathione reductase that are strongly correlated to the l-Ascorbic redox status. Moreover, fruits stored at 10 °C exhibited higher levels of transcript accumulation of MDHAR2, DHAR1, DHAR2, GR1 and GR2 genes, pointing to a better ability to manage chilling stress in comparison to fruits stored at 5 °C.
Collapse
Affiliation(s)
- Georgios Tsaniklidis
- Agricultural University of Athens, Dept. Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Botanikos, Athens, Greece.
| | - Costas Delis
- Technological Educational Institute of Peloponnese, School of Agricultural Technology and Food Technology and Nutrition, Dept. of Agricultural Technology, 24100 Antikalamos, Kalamata, Greece.
| | - Nikolaos Nikoloudakis
- Vegetative Propagation Material Control Station, Hellenic Ministry of Rural Development and Food, Greece.
| | - Panagiotis Katinakis
- Agricultural University of Athens, Dept. Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Botanikos, Athens, Greece.
| | - Georgios Aivalakis
- Agricultural University of Athens, Dept. Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Botanikos, Athens, Greece.
| |
Collapse
|
1118
|
Becker MG, Chan A, Mao X, Girard IJ, Lee S, Elhiti M, Stasolla C, Belmonte MF. Vitamin C deficiency improves somatic embryo development through distinct gene regulatory networks in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5903-18. [PMID: 25151615 PMCID: PMC4203126 DOI: 10.1093/jxb/eru330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Changes in the endogenous ascorbate redox status through genetic manipulation of cellular ascorbate levels were shown to accelerate cell proliferation during the induction phase and improve maturation of somatic embryos in Arabidopsis. Mutants defective in ascorbate biosynthesis such as vtc2-5 contained ~70 % less cellular ascorbate compared with their wild-type (WT; Columbia-0) counterparts. Depletion of cellular ascorbate accelerated cell division processes and cellular reorganization and improved the number and quality of mature somatic embryos grown in culture by 6-fold compared with WT tissues. To gain insight into the molecular mechanisms underlying somatic embryogenesis (SE), we profiled dynamic changes in the transcriptome and analysed dominant patterns of gene activity in the WT and vtc2-5 lines across the somatic embryo culturing process. Our results provide insight into the gene regulatory networks controlling SE in Arabidopsis based on the association of transcription factors with DNA sequence motifs enriched in biological processes of large co-expressed gene sets. These data provide the first detailed account of temporal changes in the somatic embryo transcriptome starting with the zygotic embryo, through tissue dedifferentiation, and ending with the mature somatic embryo, and impart insight into possible mechanisms for the improved culture of somatic embryos in the vtc2-5 mutant line.
Collapse
Affiliation(s)
- Michael G Becker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
| | - Ainsley Chan
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
| | - Xingyu Mao
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
| | - Ian J Girard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
| | - Samantha Lee
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
| | - Mohamed Elhiti
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
| |
Collapse
|
1119
|
Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, Pereira E, Ahmad I, Tuteja R, Tuteja N. Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. PROTOPLASMA 2014; 251:1265-83. [PMID: 24682425 DOI: 10.1007/s00709-014-0636-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/11/2014] [Indexed: 05/23/2023]
Abstract
The enhanced generation of reactive oxygen species (ROS) under metal/metalloid stress is most common in plants, and the elevated ROS must be successfully metabolized in order to maintain plant growth, development, and productivity. Ascorbate (AsA) is a highly abundant metabolite and a water-soluble antioxidant, which besides positively influencing various aspects in plants acts also as an enigmatic component of plant defense armory. As a significant component of the ascorbate-glutathione (AsA-GSH) pathway, it performs multiple vital functions in plants including growth and development by either directly or indirectly metabolizing ROS and its products. Enzymes such as monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) and dehydroascorbate reductase (DHAR, EC 1.8.5.1) maintain the reduced form of AsA pool besides metabolically controlling the ratio of AsA with its oxidized form (dehydroascorbate, DHA). Ascorbate peroxidase (APX, EC 1.11.1.11) utilizes the reduced AsA pool as the specific electron donor during ROS metabolism. Thus, AsA, its redox couple (AsA/DHA), and related enzymes (MDHAR, DHAR, and APX) cumulatively form an AsA redox system to efficiently protect plants particularly against potential anomalies caused by ROS and its products. Here we present a critical assessment of the recent research reports available on metal/metalloid-accrued modulation of reduced AsA pool, AsA/DHA redox couple and AsA-related major enzymes, and the cumulative significance of these antioxidant system components in plant metal/metalloid stress tolerance.
Collapse
Affiliation(s)
- Naser A Anjum
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal,
| | | | | | | | | | | | | | | | | |
Collapse
|
1120
|
Madadkar Haghjou M, Colville L, Smirnoff N. The induction of menadione stress tolerance in the marine microalga, Dunaliella viridis, through cold pretreatment and modulation of the ascorbate and glutathione pools. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:96-104. [PMID: 25240268 DOI: 10.1016/j.plaphy.2014.08.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/27/2014] [Indexed: 06/03/2023]
Abstract
The effect of cold pretreatment on menadione tolerance was investigated in the cells of the marine microalga, Dunaliella viridis. In addition, the involvement of ascorbate and glutathione in the response to menadione stress was tested by treating cell suspensions with l-galactono-1,4-lactone, an ascorbate precursor, and buthionine sulfoximine, an inhibitor of glutathione synthesis. Menadione was highly toxic to non cold-pretreated cells, and caused a large decrease in cell number. Cold pretreatment alleviated menadione toxicity and cold pretreated cells accumulated lower levels of reactive oxygen species, and had enhanced antioxidant capacity due to increased levels of β-carotene, reduced ascorbate and total glutathione compared to non cold-pretreated cells. Cold pretreatment also altered the response to l-galactono-1,4-lactone and buthionine sulfoximine treatments. Combined l-galactono-1,4-lactone and menadione treatment was lethal in non-cold pretreated cells, but in cold-pretreated cells it had a positive effect on cell numbers compared to menadione alone. Overall, exposure of Dunaliella cells to cold stress enhanced tolerance to subsequent oxidative stress induced by menadione.
Collapse
Affiliation(s)
| | - Louise Colville
- Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
| | - Nicholas Smirnoff
- University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter EX4 4QD, UK
| |
Collapse
|
1121
|
Trubitsin BV, Mamedov MD, Semenov AY, Tikhonov AN. Interaction of ascorbate with photosystem I. PHOTOSYNTHESIS RESEARCH 2014; 122:215-231. [PMID: 24965848 DOI: 10.1007/s11120-014-0023-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
Ascorbate is one of the key participants of the antioxidant defense in plants. In this work, we have investigated the interaction of ascorbate with the chloroplast electron transport chain and isolated photosystem I (PSI), using the EPR method for monitoring the oxidized centers [Formula: see text] and ascorbate free radicals. Inhibitor analysis of the light-induced redox transients of P700 in spinach thylakoids has demonstrated that ascorbate efficiently donates electrons to [Formula: see text] via plastocyanin. Inhibitors (DCMU and stigmatellin), which block electron transport between photosystem II and Pc, did not disturb the ascorbate capacity for electron donation to [Formula: see text]. Otherwise, inactivation of Pc with CN(-) ions inhibited electron flow from ascorbate to [Formula: see text]. This proves that the main route of electron flow from ascorbate to [Formula: see text] runs through Pc, bypassing the plastoquinone (PQ) pool and the cytochrome b 6 f complex. In contrast to Pc-mediated pathway, direct donation of electrons from ascorbate to [Formula: see text] is a rather slow process. Oxidized ascorbate species act as alternative oxidants for PSI, which intercept electrons directly from the terminal electron acceptors of PSI, thereby stimulating photooxidation of P700. We investigated the interaction of ascorbate with PSI complexes isolated from the wild type cells and the MenB deletion strain of cyanobacterium Synechocystis sp. PCC 6803. In the MenB mutant, PSI contains PQ in the quinone-binding A1-site, which can be substituted by high-potential electron carrier 2,3-dichloro-1,4-naphthoquinone (Cl2NQ). In PSI from the MenB mutant with Cl2NQ in the A1-site, the outflow of electrons from PSI is impeded due to the uphill electron transfer from A1 to the iron-sulfur cluster FX and further to the terminal clusters FA/FB, which manifests itself as a decrease in a steady-state level of [Formula: see text]. The addition of ascorbate promoted photooxidation of P700 due to stimulation of electron outflow from PSI to oxidized ascorbate species. Thus, accepting electrons from PSI and donating them to [Formula: see text], ascorbate can mediate cyclic electron transport around PSI. The physiological significance of ascorbate-mediated electron transport is discussed.
Collapse
Affiliation(s)
- Boris V Trubitsin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | | | | |
Collapse
|
1122
|
Zechmann B. Compartment-specific importance of glutathione during abiotic and biotic stress. FRONTIERS IN PLANT SCIENCE 2014; 5:566. [PMID: 25368627 PMCID: PMC4202713 DOI: 10.3389/fpls.2014.00566] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/01/2014] [Indexed: 05/19/2023]
Abstract
The tripeptide thiol glutathione (γ-L-glutamyl-L-cysteinyl-glycine) is the most important sulfur containing antioxidant in plants and essential for plant defense against abiotic and biotic stress conditions. It is involved in the detoxification of reactive oxygen species (ROS), redox signaling, the modulation of defense gene expression, and the regulation of enzymatic activities. Even though changes in glutathione contents are well documented in plants and its roles in plant defense are well established, still too little is known about its compartment-specific importance during abiotic and biotic stress conditions. Due to technical advances in the visualization of glutathione and the redox state through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants. This review summarizes the data available on compartment-specific importance of glutathione in the protection against abiotic and biotic stress conditions such as high light stress, exposure to cadmium, drought, and pathogen attack (Pseudomonas, Botrytis, tobacco mosaic virus). The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g., glutathione synthesis takes place in chloroplasts and the cytosol). Thus this review will reveal the compartment-specific importance of glutathione during abiotic and biotic stress conditions.
Collapse
Affiliation(s)
- Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| |
Collapse
|
1123
|
Rejeb IB, Pastor V, Mauch-Mani B. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. PLANTS (BASEL, SWITZERLAND) 2014; 3:458-75. [PMID: 27135514 PMCID: PMC4844285 DOI: 10.3390/plants3040458] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/29/2014] [Accepted: 10/08/2014] [Indexed: 01/19/2023]
Abstract
Plants are constantly confronted to both abiotic and biotic stresses that seriously reduce their productivity. Plant responses to these stresses are complex and involve numerous physiological, molecular, and cellular adaptations. Recent evidence shows that a combination of abiotic and biotic stress can have a positive effect on plant performance by reducing the susceptibility to biotic stress. Such an interaction between both types of stress points to a crosstalk between their respective signaling pathways. This crosstalk may be synergistic and/or antagonistic and include among others the involvement of phytohormones, transcription factors, kinase cascades, and reactive oxygen species (ROS). In certain cases, such crosstalk can lead to a cross-tolerance and enhancement of a plant's resistance against pathogens. This review aims at giving an insight into cross-tolerance between abiotic and biotic stress, focusing on the molecular level and regulatory pathways.
Collapse
Affiliation(s)
- Ines Ben Rejeb
- Faculty of Sciences, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland.
| | - Victoria Pastor
- Faculty of Sciences, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland.
| | - Brigitte Mauch-Mani
- Faculty of Sciences, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
1124
|
Lopez-Huertas E, del Río LA. Characterization of antioxidant enzymes and peroxisomes of olive (Olea europaea L.) fruits. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1463-71. [PMID: 25105232 DOI: 10.1016/j.jplph.2014.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/04/2014] [Accepted: 06/19/2014] [Indexed: 05/21/2023]
Abstract
The presence of peroxisomes in olive (Olea europaea L.) fruits and different antioxidant enzymes occurring in this plant tissue is reported for the first time. Ultrastructural analysis showed that olive cells were characterized by the presence of large vacuoles and lipid drops. Plastids, mitochondria and peroxisomes were placed near the cell wall, showing some type of association with it. Olive fruit peroxisomes were purified by sucrose density-gradient centrifugation, and catalase, glutathione reductase and ascorbate peroxidase were found in peroxisomes. In olive fruit tissue the presence of a battery of antioxidant enzymes was demonstrated, including catalase, four superoxide dismutase isozymes (mainly an Fe-SOD plus 2 Cu,Zn-SOD and a Mn-SOD), all the enzymes of the ascorbate-glutathione cycle, reduced and oxidized glutathione, ascorbate, and four NADPH-recycling dehydrogenases. The knowledge of the full composition of antioxidants (enzymatic and non-enzymatic) in olive fruits is crucial to be able to understand the processes regulating the antioxidant composition of olive oil.
Collapse
Affiliation(s)
- Eduardo Lopez-Huertas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, Granada 18008, Spain.
| | - Luis A del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, Granada 18008, Spain
| |
Collapse
|
1125
|
González A, Moenne F, Gómez M, Sáez CA, Contreras RA, Moenne A. Oligo-carrageenan kappa increases NADPH, ascorbate and glutathione syntheses and TRR/TRX activities enhancing photosynthesis, basal metabolism, and growth in Eucalyptus trees. FRONTIERS IN PLANT SCIENCE 2014; 5:512. [PMID: 25352851 PMCID: PMC4195311 DOI: 10.3389/fpls.2014.00512] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/12/2014] [Indexed: 05/27/2023]
Abstract
In order to analyze the effect of OC kappa in redox status, photosynthesis, basal metabolism and growth in Eucalyptus globulus, trees were treated with water (control), with OC kappa at 1 mg mL(-1), or treated with inhibitors of NAD(P)H, ascorbate (ASC), and glutathione (GSH) syntheses and thioredoxin reductase (TRR) activity, CHS-828, lycorine, buthionine sulfoximine (BSO), and auranofin, respectively, and with OC kappa, and cultivated for 4 months. Treatment with OC kappa induced an increase in NADPH, ASC, and GSH syntheses, TRR and thioredoxin (TRX) activities, photosynthesis, growth and activities of basal metabolism enzymes such as rubisco, glutamine synthetase (GlnS), adenosine 5'-phosphosulfate reductase (APR), involved in C, N, and S assimilation, respectively, Krebs cycle and purine/pyrimidine synthesis enzymes. Treatment with inhibitors and OC kappa showed that increases in ASC, GSH, and TRR/TRX enhanced NADPH synthesis, increases in NADPH and TRR/TRX enhanced ASC and GSH syntheses, and only the increase in NADPH enhanced TRR/TRX activities. In addition, the increase in NADPH, ASC, GSH, and TRR/TRX enhanced photosynthesis and growth. Moreover, the increase in NADPH, ASC and TRR/TRX enhanced activities of rubisco, Krebs cycle, and purine/pyrimidine synthesis enzymes, the increase in GSH, NADPH, and TRR/TRX enhanced APR activity, and the increase in NADPH and TRR/TRX enhanced GlnS activity. Thus, OC kappa increases NADPH, ASC, and GSH syntheses leading to a more reducing redox status, the increase in NADPH, ASC, GSH syntheses, and TRR/TRX activities are cross-talking events leading to activation of photosynthesis, basal metabolism, and growth in Eucalyptus trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Alejandra Moenne
- *Correspondence: Alejandra Moenne, Faculty of Chemistry and Biology, University of Santiago of Chile, 9170022 Santiago, Chile e-mail:
| |
Collapse
|
1126
|
Cui W, Chen H, Zhu K, Jin Q, Xie Y, Cui J, Xia Y, Zhang J, Shen W. Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced (homo)glutathione and reactive oxygen species homeostases. PLoS One 2014; 9:e109669. [PMID: 25275379 PMCID: PMC4183592 DOI: 10.1371/journal.pone.0109669] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/31/2014] [Indexed: 12/28/2022] Open
Abstract
Until now, physiological mechanisms and downstream targets responsible for the cadmium (Cd) tolerance mediated by endogenous hydrogen sulfide (H2S) have been elusive. To address this gap, a combination of pharmacological, histochemical, biochemical and molecular approaches was applied. The perturbation of reduced (homo)glutathione homeostasis and increased H2S production as well as the activation of two H2S-synthetic enzymes activities, including L-cysteine desulfhydrase (LCD) and D-cysteine desulfhydrase (DCD), in alfalfa seedling roots were early responses to the exposure of Cd. The application of H2S donor sodium hydrosulfide (NaHS), not only mimicked intracellular H2S production triggered by Cd, but also alleviated Cd toxicity in a H2S-dependent fashion. By contrast, the inhibition of H2S production caused by the application of its synthetic inhibitor blocked NaHS-induced Cd tolerance, and destroyed reduced (homo)glutathione and reactive oxygen species (ROS) homeostases. Above mentioned inhibitory responses were further rescued by exogenously applied glutathione (GSH). Meanwhile, NaHS responses were sensitive to a (homo)glutathione synthetic inhibitor, but reversed by the cotreatment with GSH. The possible involvement of cyclic AMP (cAMP) signaling in NaHS responses was also suggested. In summary, LCD/DCD-mediated H2S might be an important signaling molecule in the enhancement of Cd toxicity in alfalfa seedlings mainly by governing reduced (homo)glutathione and ROS homeostases.
Collapse
Affiliation(s)
- Weiti Cui
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Jiangsu Province, Nanjing, China
| | - Huiping Chen
- Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources, Hainan University, Haikou, China
| | - Kaikai Zhu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Jiangsu Province, Nanjing, China
| | - Qijiang Jin
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Jiangsu Province, Nanjing, China
| | - Yanjie Xie
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Jiangsu Province, Nanjing, China
| | - Jin Cui
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Jiangsu Province, Nanjing, China
| | - Yan Xia
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Jiangsu Province, Nanjing, China
| | - Jing Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Jiangsu Province, Nanjing, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Jiangsu Province, Nanjing, China
- * E-mail:
| |
Collapse
|
1127
|
Pérez-Martín M, Pérez-Pérez ME, Lemaire SD, Crespo JL. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2014; 166:997-1008. [PMID: 25143584 PMCID: PMC4213124 DOI: 10.1104/pp.114.243659] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes.
Collapse
Affiliation(s)
- Marta Pérez-Martín
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Seville, Spain (M.P.-M., J.L.C.); andCentre National de la Recherche Scientifique (M.E.P.-P.; S.D.L.) andSorbonne Universités, Université Pierre et Marie Curie, University of Paris 06 (M.E.P.-P.; S.D.L.), Unité Mixte de Recherche 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Seville, Spain (M.P.-M., J.L.C.); andCentre National de la Recherche Scientifique (M.E.P.-P.; S.D.L.) andSorbonne Universités, Université Pierre et Marie Curie, University of Paris 06 (M.E.P.-P.; S.D.L.), Unité Mixte de Recherche 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Stéphane D Lemaire
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Seville, Spain (M.P.-M., J.L.C.); andCentre National de la Recherche Scientifique (M.E.P.-P.; S.D.L.) andSorbonne Universités, Université Pierre et Marie Curie, University of Paris 06 (M.E.P.-P.; S.D.L.), Unité Mixte de Recherche 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Seville, Spain (M.P.-M., J.L.C.); andCentre National de la Recherche Scientifique (M.E.P.-P.; S.D.L.) andSorbonne Universités, Université Pierre et Marie Curie, University of Paris 06 (M.E.P.-P.; S.D.L.), Unité Mixte de Recherche 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| |
Collapse
|
1128
|
Takahashi H, Imamura T, Konno N, Takeda T, Fujita K, Konishi T, Nishihara M, Uchimiya H. The gentio-oligosaccharide gentiobiose functions in the modulation of bud dormancy in the herbaceous perennial Gentiana. THE PLANT CELL 2014; 26:3949-63. [PMID: 25326293 PMCID: PMC4247589 DOI: 10.1105/tpc.114.131631] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/04/2014] [Accepted: 09/30/2014] [Indexed: 05/19/2023]
Abstract
Bud dormancy is an adaptive strategy that perennials use to survive unfavorable conditions. Gentians (Gentiana), popular alpine flowers and ornamentals, produce overwintering buds (OWBs) that can persist through the winter, but the mechanisms regulating dormancy are currently unclear. In this study, we conducted targeted metabolome analysis to obtain clues about the metabolic mechanisms involved in regulating OWB dormancy. Multivariate analysis of metabolite profiles revealed metabolite patterns characteristic of dormant states. The concentrations of gentiobiose [β-D-Glcp-(1→6)-D-Glc] and gentianose [β-D-Glcp-(1→6)-D-Glc-(1→2)-d-Fru] significantly varied depending on the stage of OWB dormancy, and the gentiobiose concentration increased prior to budbreak. Both activation of invertase and inactivation of β-glucosidase resulted in gentiobiose accumulation in ecodormant OWBs, suggesting that gentiobiose is seldom used as an energy source but is involved in signaling pathways. Furthermore, treatment with exogenous gentiobiose induced budbreak in OWBs cultured in vitro, with increased concentrations of sulfur-containing amino acids, GSH, and ascorbate (AsA), as well as increased expression levels of the corresponding genes. Inhibition of GSH synthesis suppressed gentiobiose-induced budbreak accompanied by decreases in GSH and AsA concentrations and redox status. These results indicate that gentiobiose, a rare disaccharide, acts as a signal for dormancy release of gentian OWBs through the AsA-GSH cycle.
Collapse
Affiliation(s)
| | - Tomohiro Imamura
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Naotake Konno
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Takumi Takeda
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Kohei Fujita
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Teruko Konishi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan
| | | | - Hirofumi Uchimiya
- Institute of Environmental Science and Technology, Saitama University, Sakura-Ku, Saitama City, Saitama 338-8570, Japan
| |
Collapse
|
1129
|
Barrameda-Medina Y, Montesinos-Pereira D, Romero L, Blasco B, Ruiz JM. Role of GSH homeostasis under Zn toxicity in plants with different Zn tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 227:110-21. [PMID: 25219313 DOI: 10.1016/j.plantsci.2014.07.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 05/27/2023]
Abstract
Tripepthide glutathione (GSH) is a pivotal molecule in tolerance to heavy metals, including Zinc (Zn). The aim of our work is to examine the role of GSH metabolism in two different horticultural plants under Zn toxicity in order to select and/or generate plants tolerant to Zn toxicity. We show a comparative analysis of the toxic effect of 0.5mM Zn between Lactuca sativa cv. Phillipus and Brassica oleracea cv. Bronco. In L. sativa the accumulation of Zn resulted in an increase in reactive oxygen species (ROS), while enzymes of GSH metabolism and the activities of the antioxidant enzymes were negatively affected. On the contrary, B. oleracea showed the existence of a detoxification mechanism of these ROS. Moreover, while in L. sativa increased the oxidized GSH (GSSG) and phytochelatins (PCs) concentration with the reduction of leaves biomass, in B. oleracea the higher concentration of reduced GSH and its use in the detoxification of ROS seems to be a major mechanism to provide tolerance to Zn toxicity without reducing leaf biomass. Our results suggested that under Zn toxicity, B. oleracea is more efficient and tolerant than L. sativa through the detoxification of lipid peroxidation products due to the reduced GSH.
Collapse
Affiliation(s)
- Yurena Barrameda-Medina
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - David Montesinos-Pereira
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Luis Romero
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Begoña Blasco
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Juan M Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
1130
|
Dietz KJ. Redox regulation of transcription factors in plant stress acclimation and development. Antioxid Redox Signal 2014; 21:1356-72. [PMID: 24182193 DOI: 10.1089/ars.2013.5672] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE The redox regulatory signaling network of the plant cell controls and co-regulates transcriptional activities, thereby enabling adjustment of metabolism and development in response to environmental cues, including abiotic stress. RECENT ADVANCES Our rapidly expanding knowledge on redox regulation of plant transcription is driven by methodological advancements such as sensitive redox proteomics and in silico predictions in combination with classical targeted genetic and molecular approaches, often in Arabidopsis thaliana. Thus, transcription factors (TFs) are both direct and indirect targets of redox-dependent activity modulation. Redox control of TF activity involves conformational switching, nucleo-cytosolic partitioning, assembly with coregulators, metal-S-cluster regulation, redox control of upstream signaling elements, and proteolysis. CRITICAL ISSUES While the significance of redox regulation of transcription is well established for prokaryotes and non-plant eukaryotes, the momentousness of redox-dependent control of transcription in plants still receives insufficient awareness and, therefore, is discussed in detail in this review. FUTURE DIRECTIONS Improved proteome sensitivity will enable characterization of low abundant proteins and to simultaneously address the various post-translational modifications such as nitrosylation, hydroxylation, and glutathionylation. Combining such approaches by gradually increasing biotic and abiotic stress strength is expected to result in a systematic understanding of redox regulation. In the end, only the combination of in vivo, ex vivo, and in vitro results will provide conclusive pictures on the rather complex mechanism of redox regulation of transcription.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University , Bielefeld, Germany
| |
Collapse
|
1131
|
Geigenberger P, Fernie AR. Metabolic control of redox and redox control of metabolism in plants. Antioxid Redox Signal 2014; 21:1389-421. [PMID: 24960279 PMCID: PMC4158967 DOI: 10.1089/ars.2014.6018] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Reduction-oxidation (Redox) status operates as a major integrator of subcellular and extracellular metabolism and is simultaneously itself regulated by metabolic processes. Redox status not only dominates cellular metabolism due to the prominence of NAD(H) and NADP(H) couples in myriad metabolic reactions but also acts as an effective signal that informs the cell of the prevailing environmental conditions. After relay of this information, the cell is able to appropriately respond via a range of mechanisms, including directly affecting cellular functioning and reprogramming nuclear gene expression. RECENT ADVANCES The facile accession of Arabidopsis knockout mutants alongside the adoption of broad-scale post-genomic approaches, which are able to provide transcriptomic-, proteomic-, and metabolomic-level information alongside traditional biochemical and emerging cell biological techniques, has dramatically advanced our understanding of redox status control. This review summarizes redox status control of metabolism and the metabolic control of redox status at both cellular and subcellular levels. CRITICAL ISSUES It is becoming apparent that plastid, mitochondria, and peroxisome functions influence a wide range of processes outside of the organelles themselves. While knowledge of the network of metabolic pathways and their intraorganellar redox status regulation has increased in the last years, little is known about the interorganellar redox signals coordinating these networks. A current challenge is, therefore, synthesizing our knowledge and planning experiments that tackle redox status regulation at both inter- and intracellular levels. FUTURE DIRECTIONS Emerging tools are enabling ever-increasing spatiotemporal resolution of metabolism and imaging of redox status components. Broader application of these tools will likely greatly enhance our understanding of the interplay of redox status and metabolism as well as elucidating and characterizing signaling features thereof. We propose that such information will enable us to dissect the regulatory hierarchies that mediate the strict coupling of metabolism and redox status which, ultimately, determine plant growth and development.
Collapse
Affiliation(s)
- Peter Geigenberger
- 1 Department of Biology I, Ludwig Maximilian University Munich , Planegg-Martinsried, Germany
| | | |
Collapse
|
1132
|
Chardonnet S, Sakr S, Cassier-Chauvat C, Le Maréchal P, Chauvat F, Lemaire SD, Decottignies P. First proteomic study of S-glutathionylation in cyanobacteria. J Proteome Res 2014; 14:59-71. [PMID: 25208982 DOI: 10.1021/pr500625a] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glutathionylation, the reversible post-translational formation of a mixed disulfide between a cysteine residue and glutathione (GSH), is a crucial mechanism for signal transduction and regulation of protein function. Until now this reversible redox modification was studied mainly in eukaryotic cells. Here we report a large-scale proteomic analysis of glutathionylation in a photosynthetic prokaryote, the model cyanobacterium Synechocystis sp. PCC6803. Treatment of acellular extracts with N,N-biotinyl glutathione disulfide (BioGSSG) induced glutathionylation of numerous proteins, which were subsequently isolated by affinity chromatography on streptavidin columns and identified by nano LC-MS/MS analysis. Potential sites of glutathionylation were also determined for 125 proteins following tryptic cleavage, streptavidin-affinity purification, and mass spectrometry analysis. Taken together the two approaches allowed the identification of 383 glutathionylatable proteins that participate in a wide range of cellular processes and metabolic pathways such as carbon and nitrogen metabolisms, cell division, stress responses, and H2 production. In addition, the glutathionylation of two putative targets, namely, peroxiredoxin (Sll1621) involved in oxidative stress tolerance and 3-phosphoglycerate dehydrogenase (Sll1908) acting on amino acids metabolism, was confirmed by biochemical studies on the purified recombinant proteins. These results suggest that glutathionylation constitutes a major mechanism of global regulation of the cyanobacterial metabolism under oxidative stress conditions.
Collapse
|
1133
|
Amaya I, Osorio S, Martinez-Ferri E, Lima-Silva V, Doblas VG, Fernández-Muñoz R, Fernie AR, Botella MA, Valpuesta V. Increased antioxidant capacity in tomato by ectopic expression of the strawberry D-galacturonate reductase gene. Biotechnol J 2014; 10:490-500. [PMID: 25143316 DOI: 10.1002/biot.201400279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/13/2014] [Accepted: 08/21/2014] [Indexed: 12/31/2022]
Abstract
Increasing L-ascorbic acid (AsA, vitamin C) content in fruits is a common goal in current breeding programs due to its beneficial effect on human health. Attempts to increase AsA content by genetic engineering have resulted in variable success likely due to AsA's complex regulation. Here, we report the effect of ectopically expressing in tomato the D-galacturonate reductase (FaGalUR) gene from strawberry, involved in AsA biosynthesis, either under the control of the constitutive 35S or the tomato fruit-specific polygalucturonase (PG) promoters. Although transgenic lines showed a moderate increase on AsA content, complex changes in metabolites were found in transgenic fruits. Metabolomic analyses of ripe fruits identified a decrease in citrate, glutamate, asparagine, glucose, and fructose, accompanied by an increase of sucrose, galactinol, and chlorogenic acid. Significant metabolic changes also occurred in leaves of 35S-FaGalUR lines, which showed higher non-photochemical fluorescence quenching (NPQ), indicative of a higher constitutive photo-protective capacity. Overall, overexpression of FaGalUR increased total antioxidant capacity in fruits and the results suggest a tight control of AsA content, probably linked to a complex regulation of cellular redox state and metabolic adjustment.
Collapse
Affiliation(s)
- Iraida Amaya
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Centro de Churriana, Málaga, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
1134
|
Hacham Y, Koussevitzky S, Kirma M, Amir R. Glutathione application affects the transcript profile of genes in Arabidopsis seedling. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1444-51. [PMID: 25077999 DOI: 10.1016/j.jplph.2014.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 05/21/2023]
Abstract
Glutathione (GSH), a tripeptide thiol compound has multiple functions in plants. Recent works suggested that GSH plays a regulatory role in signaling in plants as part of their adaptation to stress. To better understand the role of GSH as a regulatory molecule, 14 days old Arabidopsis thaliana seedlings were treated with 5mM of GSH for 4h. Changes in gene expression patterns were studied by cDNA microarray analysis. The expression of 453 genes was significantly changed compared to the untreated control, of which 261 genes were up-regulated and 192 genes were down-regulated. Genes from several groups were affected, including those of sulfur metabolism, degradation and synthesis of macromolecules and transcription factors. Up-regulation of genes involved in responses to biotic stresses, or in jasmonate or salicylic acid synthesis and their signaling, suggests that GSH triggers genes that help protect the plants during stresses. In addition, GSH down regulated genes involved in plant growth and development, like those involved in cell wall synthesis and its extension, and genes associated with auxin and cytokinins response, which are related to growth and development of the plants. The results suggest that GSH might have a role in response to biotic stress by initiating defense responses and modifying plants' growth and development in an effort to tune their sessile lifestyle of plants to environmental constraints.
Collapse
Affiliation(s)
- Yael Hacham
- Laboratory of Plant Science, Migal Galilee Research Institute, P.O. Box 831, Kiryat Shmona 12100, Israel
| | - Shai Koussevitzky
- Laboratory of Plant Science, Migal Galilee Research Institute, P.O. Box 831, Kiryat Shmona 12100, Israel
| | - Menny Kirma
- Department of Plant Science, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rachel Amir
- Laboratory of Plant Science, Migal Galilee Research Institute, P.O. Box 831, Kiryat Shmona 12100, Israel; Tel Hai College, Upper Galilee, Israel.
| |
Collapse
|
1135
|
Bulbovas P, Souza SR, Esposito JBN, Moraes RM, Alves ES, Domingos M, Azevedo RA. Assessment of the ozone tolerance of two soybean cultivars (Glycine max cv. Sambaíba and Tracajá) cultivated in Amazonian areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:10514-24. [PMID: 24781331 DOI: 10.1007/s11356-014-2934-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/15/2014] [Indexed: 05/23/2023]
Abstract
Brazilian soybean cultivars (Glycine max Sambaíba and Tracajá) routinely grown in Amazonian areas were exposed to filtered air (FA) and filtered air enriched with ozone (40 and 80 ppb, 6 h/day for 5 days) to assess their level of tolerance to this pollutant by measuring changes in key biochemical, physiological, and morphological indicators of injury and in enzymatic and non-enzymatic antioxidants. Sambaíba plants were more sensitive to ozone than Tracajá plants, as revealed by comparing indicator injury responses and antioxidant stimulations. Sambaíba exhibited higher visible leaf injury, higher stomatal conductance, and a severe decrease in the carbon assimilation rate. Higher ozone level (80 ppb) caused an increase in cell death in both cultivars. Levels of malondialdehyde and hydrogen peroxide also increased in Tracajá exposed under 80 ppb. Sambaíba plants exhibited decreases in ascorbate and glutathione levels and in enzymatic activities associated with these antioxidants. The higher tolerance of the Tracajá soybean appeared to be indicated by reduced physiological injuries and lower stomatal conductance, which might decrease the influx of ozone and enhance oxidation-reduction reactions involving catalase, ascorbate peroxidase, ascorbate, and glutathione, most likely stimulated by higher hydrogen peroxide.
Collapse
Affiliation(s)
- P Bulbovas
- Núcleo de Pesquisa em Ecologia, Instituto de Botânica, São Paulo, SP, CEP 04045-972, Brazil,
| | | | | | | | | | | | | |
Collapse
|
1136
|
Dai JJ, Cheng JS, Liang YQ, Jiang T, Yuan YJ. Regulation of extracellular oxidoreduction potential enhanced (R,R)-2,3-butanediol production by Paenibacillus polymyxa CJX518. BIORESOURCE TECHNOLOGY 2014; 167:433-40. [PMID: 25006018 DOI: 10.1016/j.biortech.2014.06.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 05/23/2023]
Abstract
Cellular redox status and oxygen availability influence the product formation. Herein, decreasing agitation speed or adding vitamin C (Vc) achieved the 2,3-BDL yield of 0.40 g g(-1) or 0.39 g g(-1)glucose under batch fermentation, respectively. To our knowledge, this is the highest 2,3-BDL yield reported so far for Paenibacillus polymyxa without adding acetic acid. The NADH/NAD(+) ratio and 2,3-BDL titer could be increased significantly by reducing the agitation speed or adding Vc, indicating that the enhancement of 2,3-BDL is closely associated with the adjustment of NADH/NAD(+) ratio. Especially, Vc addition elevated the 2,3-BDL titer from 43.66 g L(-1) to 71.71 g L(-1) within 54 h under fed-batch fermentation. This is the highest titer of 2,3-BDL so far reported for P. polymyxa from glucose fermentation. This work provides a new strategy to improve 2,3-BDL production and helps us to understand the responses of P. polymyxa to extracellular oxidoreduction potential.
Collapse
Affiliation(s)
- Jun-Jun Dai
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, People's Republic of China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Jing-Sheng Cheng
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, People's Republic of China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China.
| | - Ying-Quan Liang
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, People's Republic of China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Tong Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, People's Republic of China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| |
Collapse
|
1137
|
Gomes MP, Smedbol E, Chalifour A, Hénault-Ethier L, Labrecque M, Lepage L, Lucotte M, Juneau P. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4691-703. [PMID: 25039071 DOI: 10.1093/jxb/eru269] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
It is generally claimed that glyphosate kills undesired plants by affecting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme, disturbing the shikimate pathway. However, the mechanisms leading to plant death may also be related to secondary or indirect effects of glyphosate on plant physiology. Moreover, some plants can metabolize glyphosate to aminomethylphosphonic acid (AMPA) or be exposed to AMPA from different environmental matrices. AMPA is a recognized phytotoxin, and its co-occurrence with glyphosate could modify the effects of glyphosate on plant physiology. The present review provides an overall picture of alterations of plant physiology caused by environmental exposure to glyphosate and its metabolite AMPA, and summarizes their effects on several physiological processes. It particularly focuses on photosynthesis, from photochemical events to C assimilation and translocation, as well as oxidative stress. The effects of glyphosate and AMPA on several plant physiological processes have been linked, with the aim of better understanding their phytotoxicity and glyphosate herbicidal effects.
Collapse
Affiliation(s)
- Marcelo P Gomes
- Université du Québec à Montréal, Département des sciences biologiques, Centre de recherche interinstitutionnel en toxicologie de l'environnement (TOXEN), Ecotoxicology of Aquatic Microorganisms Laboratory, Succ. Centre-Ville, H3C 3P8, Montréal, Québec, Canada Université du Québec à Montréal, Institut des Sciences de l'environnement, Succ. Centre-Ville, C.p. 8888, H3C 3P8, Montréal, Québec, Canada
| | - Elise Smedbol
- Université du Québec à Montréal, Département des sciences biologiques, Centre de recherche interinstitutionnel en toxicologie de l'environnement (TOXEN), Ecotoxicology of Aquatic Microorganisms Laboratory, Succ. Centre-Ville, H3C 3P8, Montréal, Québec, Canada Université du Québec à Montréal, Institut des Sciences de l'environnement, Succ. Centre-Ville, C.p. 8888, H3C 3P8, Montréal, Québec, Canada
| | - Annie Chalifour
- Université du Québec à Montréal, Département des sciences biologiques, Centre de recherche interinstitutionnel en toxicologie de l'environnement (TOXEN), Ecotoxicology of Aquatic Microorganisms Laboratory, Succ. Centre-Ville, H3C 3P8, Montréal, Québec, Canada
| | - Louise Hénault-Ethier
- Université du Québec à Montréal, Institut des Sciences de l'environnement, Succ. Centre-Ville, C.p. 8888, H3C 3P8, Montréal, Québec, Canada
| | - Michel Labrecque
- Université de Montréal, Institut de Recherche en Biologie Végétale, 4101 Sherbrooke East, H1X 2B2, Montréal, Québec, Canada
| | - Laurent Lepage
- Université du Québec à Montréal, Institut des Sciences de l'environnement, Succ. Centre-Ville, C.p. 8888, H3C 3P8, Montréal, Québec, Canada
| | - Marc Lucotte
- Université du Québec à Montréal, Institut des Sciences de l'environnement, Succ. Centre-Ville, C.p. 8888, H3C 3P8, Montréal, Québec, Canada
| | - Philippe Juneau
- Université du Québec à Montréal, Département des sciences biologiques, Centre de recherche interinstitutionnel en toxicologie de l'environnement (TOXEN), Ecotoxicology of Aquatic Microorganisms Laboratory, Succ. Centre-Ville, H3C 3P8, Montréal, Québec, Canada Université du Québec à Montréal, Institut des Sciences de l'environnement, Succ. Centre-Ville, C.p. 8888, H3C 3P8, Montréal, Québec, Canada
| |
Collapse
|
1138
|
Ma L, Sun X, Kong X, Galvan JV, Li X, Yang S, Yang Y, Yang Y, Hu X. Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the Northwestern Tibetan Plateau. J Proteomics 2014; 112:63-82. [PMID: 25181701 DOI: 10.1016/j.jprot.2014.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/12/2014] [Accepted: 08/17/2014] [Indexed: 12/25/2022]
Abstract
UNLABELLED This study presents an analysis of leave and rood morphology, biochemical and proteomics approach as adaptation strategies of the alpine plant Potentilla saundersiana in an altitude gradient. Several plant physiological parameter, including root and leaf architecture, leaf photosynthesis capacity, specific leaf area (SLA) and leaf nitrogen concentration, histology and microscopy, anthocyanin and proline contents, antioxidant enzyme activity assay, in-gel enzyme activity staining, H2O2 and O2(-) content, immunoblotting, auxin and strigolactone content and proteomics analysis were evaluated at five different altitudes. P. saundersiana modulated the root architecture and leaf phenotype to enhance adaptation to alpine environmental stress through mechanisms that involved hormone synthesis and signal transduction, particularly the cross-talk between auxin and strigolactone. Furthermore, an increase of antioxidant proteins and primary metabolites as a response to the alpine environment in P. saundersiana was observed. Proteins associated with the epigenetic regulation of DNA stability and post-translational protein degradation was also involved in this process. Based on these findings, P. saundersiana uses multiple strategies to adapt to the high-altitude environment of the Alpine region. BIOLOGICAL SIGNIFICANCE The alpine environment, which is characterized by sharp temperature shifts, high levels of ultraviolet radiation exposure, and low oxygen content, limits plant growth and distribution. Alpine plants have evolved strategies to survive the extremely harsh conditions prevailing at high altitudes; however, the underlying mechanisms remain poorly understood. The alpine plant Potentilla saundersiana is widespread in the Northwestern Tibetan Plateau. Here we adopted a comparative proteomics approach to investigate the mechanisms by which P. saundersiana withstands the alpine environment by examining plants located at five different altitudes. We detected and functionally characterized 118 proteins spots with variable abundance. Proteins involved in antioxidant activity, primary metabolites, epigenetic regulation, and protein post-translational modification play important roles in conferring tolerance to alpine environments. Furthermore, our results indicate that P. saundersiana modulates the root architecture and leaf phenotype to enhance adaptation to alpine environmental stress. These results provide novel insight into the multiple strategies underlying P. saundersiana adaptation to the high-altitude environment of the Northwestern Tibetan Plateau.
Collapse
Affiliation(s)
- Lan Ma
- Key Laboratory of Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xudong Sun
- Key Laboratory of Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Key Laboratory of Alpine Ecology and Biodiversity, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiangxiang Kong
- Key Laboratory of Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jose Valero Galvan
- Department of Chemistry-Biology, Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Ciudad Juárez, Chihuahua, Mexico.
| | - Xiong Li
- Key Laboratory of Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shihai Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Alpine Ecology and Biodiversity, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yunqiang Yang
- Key Laboratory of Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yongping Yang
- Key Laboratory of Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Key Laboratory of Alpine Ecology and Biodiversity, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiangyang Hu
- Key Laboratory of Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Key Laboratory of Alpine Ecology and Biodiversity, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
1139
|
González A, Contreras RA, Zúiga G, Moenne A. Oligo-carrageenan kappa-induced reducing redox status and activation of TRR/TRX system increase the level of indole-3-acetic acid, gibberellin A3 and trans-zeatin in Eucalyptus globulus trees. Molecules 2014; 19:12690-8. [PMID: 25140447 PMCID: PMC6272046 DOI: 10.3390/molecules190812690] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 12/17/2022] Open
Abstract
Eucalyptus globulus trees treated with oligo-carrageenan (OC) kappa showed an increase in NADPH, ascorbate and glutathione levels and activation of the thioredoxin reductase (TRR)/thioredoxin (TRX) system which enhance photosynthesis, basal metabolism and growth. In order to analyze whether the reducing redox status and the activation of thioredoxin reductase (TRR)/thioredoxin (TRX) increased the level of growth-promoting hormones, trees were treated with water (control), with OC kappa, or with inhibitors of ascorbate synthesis, lycorine, glutathione synthesis, buthionine sulfoximine (BSO), NADPH synthesis, CHS-828, and thioredoxin reductase activity, auranofine, and with OC kappa, and cultivated for four additional months. Eucalyptus trees treated with OC kappa showed an increase in the levels of the auxin indole 3-acetic acid (IAA), gibberellin A3 (GA3) and the cytokinin trans-zeatin (t-Z) as well as a decrease in the level of the brassinosteroid epi-brassinolide (EB). In addition, treatment with lycorine, BSO, CHS-828 and auranofine inhibited the increase in IAA, GA3 and t-Z as well as the decrease in EB levels. Thus, the reducing redox status and the activation of TRR/TRX system induced by OC kappa increased the levels of IAA, GA3 and t-Z levels determining, at least in part, the stimulation of growth in Eucalyptus trees.
Collapse
Affiliation(s)
- Alberto González
- Marine Biotechnology Laboratory, Faculty of Chemistry and Biology, University of Santiago of Chile, 9170022 Santiago, Chile.
| | - Rodrigo A Contreras
- Plant Physiology and Biotechnology Laboratory, Faculty of Chemistry and Biology, University of Santiago of Chile, 9170022 Santiago, Chile.
| | - Gustavo Zúiga
- Plant Physiology and Biotechnology Laboratory, Faculty of Chemistry and Biology, University of Santiago of Chile, 9170022 Santiago, Chile.
| | - Alejandra Moenne
- Marine Biotechnology Laboratory, Faculty of Chemistry and Biology, University of Santiago of Chile, 9170022 Santiago, Chile.
| |
Collapse
|
1140
|
Effect of pretreatment with hydrogen sulfide donor sodium hydrosulfide on heat tolerance in relation to antioxidant system in maize (Zea mays) seedlings. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0396-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
1141
|
Early perturbation in mitochondria redox homeostasis in response to environmental stress predicts cell fate in diatoms. ISME JOURNAL 2014; 9:385-95. [PMID: 25083933 PMCID: PMC4303632 DOI: 10.1038/ismej.2014.136] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 06/12/2014] [Accepted: 06/18/2014] [Indexed: 01/01/2023]
Abstract
Diatoms are ubiquitous marine photosynthetic eukaryotes that are responsible for about 20% of global photosynthesis. Nevertheless, little is known about the redox-based mechanisms that mediate diatom sensing and acclimation to environmental stress. Here we used a redox-sensitive green fluorescent protein sensor targeted to various subcellular organelles in the marine diatom Phaeodactylum tricornutum, to map the spatial and temporal oxidation patterns in response to environmental stresses. Specific organelle oxidation patterns were found in response to various stress conditions such as oxidative stress, nutrient limitation and exposure to diatom-derived infochemicals. We found a strong correlation between the mitochondrial glutathione (GSH) redox potential (EGSH) and subsequent induction of cell death in response to the diatom-derived unsaturated aldehyde 2E,4E/Z-decadienal (DD), and a volatile halocarbon (BrCN) that mediate trophic-level interactions in marine diatoms. Induction of cell death in response to DD was mediated by oxidation of mitochondrial EGSH and was reversible by application of GSH only within a narrow time frame. We found that cell fate can be accurately predicted by a distinct life-death threshold of mitochondrial EGSH (−335 mV). We propose that compartmentalized redox-based signaling can integrate the input of diverse environmental cues and will determine cell fate decisions as part of algal acclimation to stress conditions.
Collapse
|
1142
|
Finiti I, de la O Leyva M, Vicedo B, Gómez-Pastor R, López-Cruz J, García-Agustín P, Real MD, González-Bosch C. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress. MOLECULAR PLANT PATHOLOGY 2014; 15:550-62. [PMID: 24320938 PMCID: PMC6638872 DOI: 10.1111/mpp.12112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Treatment with the resistance priming inducer hexanoic acid (Hx) protects tomato plants from Botrytis cinerea by activating defence responses. To investigate the molecular mechanisms underlying hexanoic acid-induced resistance (Hx-IR), we compared the expression profiles of three different conditions: Botrytis-infected plants (Inf), Hx-treated plants (Hx) and Hx-treated + infected plants (Hx+Inf). The microarray analysis at 24 h post-inoculation showed that Hx and Hx+Inf plants exhibited the differential expression and priming of many Botrytis-induced genes. Interestingly, we found that the activation by Hx of other genes was not altered by the fungus at this time point. These genes may be considered to be specific targets of the Hx priming effect and may help to elucidate its mechanisms of action. It is noteworthy that, in Hx and Hx+Inf plants, there was up-regulation of proteinase inhibitor genes, DNA-binding factors, enzymes involved in plant hormone signalling and synthesis, and, remarkably, the genes involved in oxidative stress. Given the relevance of the oxidative burst occurring in plant-pathogen interactions, the effect of Hx on this process was studied in depth. We showed by specific staining that reactive oxygen species (ROS) accumulation in Hx+Inf plants was reduced and more restricted around infection sites. In addition, these plants showed higher ratios of reduced to oxidized glutathione and ascorbate, and normal levels of antioxidant activities. The results obtained indicate that Hx protects tomato plants from B. cinerea by regulating and priming Botrytis-specific and non-specific genes, preventing the harmful effects of oxidative stress produced by infection.
Collapse
Affiliation(s)
- Ivan Finiti
- Departamento de Bioquímica y Biología Molecular, Instituto de Agroquímica y Tecnología de los Alimentos (IATA, CSIC), Universidad de Valencia, Avda. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
1143
|
Interaction of Interferon gamma-induced reactive oxygen species with ceftazidime leads to synergistic killing of intracellular Burkholderia pseudomallei. Antimicrob Agents Chemother 2014; 58:5954-63. [PMID: 25070108 DOI: 10.1128/aac.02781-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Burkholderia pseudomallei, a facultative intracellular pathogen, causes severe infections and is inherently refractory to many antibiotics. Previous studies from our group have shown that interferon gamma (IFN-γ) interacts synergistically with the antibiotic ceftazidime to kill bacteria in infected macrophages. The present study aimed to identify the underlying mechanism of that interaction. We first showed that blocking reactive oxygen species (ROS) pathways reversed IFN-γ- and ceftazidime-mediated killing, which led to our hypothesis that IFN-γ-induced ROS interacted with ceftazidime to synergistically kill Burkholderia bacteria. Consistent with this hypothesis, we also observed that buthionine sulfoximine (BSO), another inducer of ROS, could substitute for IFN-γ to similarly potentiate the effect of ceftazidime on intracellular killing. Next, we observed that IFN-γ induced ROS-mediated killing of intracellular but not extracellular bacteria. On the other hand, ceftazidime effectively reduced extracellular bacteria but was not capable of intracellular killing when applied at 10 μg/ml. We investigated the exact role of IFN-γ-induced ROS responses on intracellular bacteria and notably observed a lack of actin polymerization associated with Burkholderia bacteria in IFN-γ-treated macrophages, which led to our finding that IFN-γ-induced ROS blocks vacuolar escape. Based on these results, we propose a model in which synergistically reduced bacterial burden is achieved primarily through separate and compartmentalized killing: intracellular killing by IFN-γ-induced ROS responses and extracellular killing by ceftazidime. Our findings suggest a means of enhancing antibiotic activity against Burkholderia bacteria through combination with drugs that induce ROS pathways or otherwise target intracellular spread and/or replication of bacteria.
Collapse
|
1144
|
Zou HX, Pang QY, Lin LD, Zhang AQ, Li N, Lin YQ, Li LM, Wu QQ, Yan XF. Behavior of the edible seaweed Sargassum fusiforme to copper pollution: short-term acclimation and long-term adaptation. PLoS One 2014; 9:e101960. [PMID: 25025229 PMCID: PMC4098904 DOI: 10.1371/journal.pone.0101960] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/12/2014] [Indexed: 12/31/2022] Open
Abstract
Aquatic agriculture in heavy-metal-polluted coastal areas faces major problems due to heavy metal transfer into aquatic organisms, leading to various unexpected changes in nutrition and primary and/or secondary metabolism. In the present study, the dual role of heavy metal copper (Cu) played in the metabolism of photosynthetic organism, the edible seaweed Sargassum fusiforme, was evaluated by characterization of biochemical and metabolic responses using both 1H NMR and GC-MS techniques under acute (47 µM, 1 day) and chronic stress (8 µM, 7 days). Consequently, photosynthesis may be seriously inhibited by acute Cu exposure, resulting in decreasing levels of carbohydrates, e.g., mannitol, the main products of photosynthesis. Ascorbate may play important roles in the antioxidant system, whose content was much more seriously decreased under acute than that under chronic Cu stress. Overall, these results showed differential toxicological responses on metabolite profiles of S. fusiforme subjected to acute and chronic Cu exposures that allowed assessment of impact of Cu on marine organisms.
Collapse
Affiliation(s)
- Hui-Xi Zou
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Qiu-Ying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Northeast Forest University, Harbin, People's Republic of China
| | - Li-Dong Lin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Northeast Forest University, Harbin, People's Republic of China
| | - Ai-Qin Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Northeast Forest University, Harbin, People's Republic of China
| | - Nan Li
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Yan-Qing Lin
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Lu-Min Li
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Qin-Qin Wu
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Xiu-Feng Yan
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| |
Collapse
|
1145
|
Manai J, Gouia H, Corpas FJ. Redox and nitric oxide homeostasis are affected in tomato (Solanum lycopersicum) roots under salinity-induced oxidative stress. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1028-35. [PMID: 24974329 DOI: 10.1016/j.jplph.2014.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 05/04/2023]
Abstract
The nicotinamide adenine dinucleotide phosphate (NADPH) and reduced glutathione (GSH) molecules play important roles in the redox homeostasis of plant cells. Using tomato (Solanum lycopersicum) plants grown with 120mM NaCl, we studied the redox state of NADPH and GSH as well as ascorbate, nitric oxide (NO) and S-nitrosoglutathione (GSNO) content and the activity of the principal enzymes involved in the metabolism of these molecules in roots. Salinity caused a significant reduction in growth parameters and an increase in oxidative parameters such as lipid peroxidation and protein oxidation. Salinity also led to an overall decrease in the content of these redox molecules and in the enzymatic activities of the main NADPH-generating dehydrogenases, S-nitrosoglutathione reductase and catalase. However, NO content as well as gluthahione reductase and glutathione peroxidase activity increased under salinity stress. These findings indicate that salinity drastically affects redox and NO homeostasis in tomato roots. In our view, these molecules, which show the interaction between ROS and RNS metabolisms, could be excellent parameters for evaluating the physiological conditions of plants under adverse stress conditions.
Collapse
Affiliation(s)
- Jamel Manai
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain; Faculty of Sciences of Tunisia, University Tunis El Manar, Tunis, Tunisia
| | - Houda Gouia
- Faculty of Sciences of Tunisia, University Tunis El Manar, Tunis, Tunisia
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain.
| |
Collapse
|
1146
|
Leaf rolling and stem fasciation in grass pea (Lathyrus sativus L.) mutant are mediated through glutathione-dependent cellular and metabolic changes and associated with a metabolic diversion through cysteine during phenotypic reversal. BIOMED RESEARCH INTERNATIONAL 2014; 2014:479180. [PMID: 24987684 PMCID: PMC4058490 DOI: 10.1155/2014/479180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/24/2014] [Indexed: 11/17/2022]
Abstract
A Lathyrus sativus L. mutant isolated in ethylmethane sulfonate-treated M2 progeny of mother variety BioL-212 and designated as rlfL-1 was characterized by inwardly rolled-leaf and stem and bud fasciations. The mutant exhibited karyomorphological peculiarities in both mitosis and meiosis with origin of aneuploidy. The mitosis was vigorous with high frequency of divisional cells and their quick turnover presumably steered cell proliferations. Significant transcriptional upregulations of cysteine and glutathione synthesis and concomitant stimulations of glutathione-mediated antioxidant defense helped rlfL-1 mutant to maintain balanced reactive oxygen species (ROS) metabolisms, as deduced by ROS-imaging study. Glutathione synthesis was shut down in buthionine sulfoximine- (BSO-) treated mother plant and mutant, and leaf-rolling and stems/buds fasciations in the mutant were reversed, accompanied by normalization of mitotic cell division process. Antioxidant defense was downregulated under low glutathione-redox but cysteine-desulfurations and photorespiratory glycolate oxidase transcripts were markedly overexpressed, preventing cysteine overaccumulation but resulted in excess H2O2 in BSO-treated mutant. This led to oxidative damage in proliferating cells, manifested by severe necrosis in rolled-leaf and fasciated stems. Results indicated vital role of glutathione in maintaining abnormal proliferations in plant organs, and its deficiency triggered phenotypic reversal through metabolic diversions of cysteine and concomitant cellular and metabolic modulations.
Collapse
|
1147
|
Signaling in the plant cytosol: cysteine or sulfide? Amino Acids 2014; 47:2155-64. [DOI: 10.1007/s00726-014-1786-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
1148
|
Pintó-Marijuan M, Munné-Bosch S. Photo-oxidative stress markers as a measure of abiotic stress-induced leaf senescence: advantages and limitations. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3845-57. [PMID: 24683180 DOI: 10.1093/jxb/eru086] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Inside chloroplasts, several abiotic stresses (including drought, high light, salinity, or extreme temperatures) induce a reduction in CO2 assimilation rates with a consequent increase in reactive oxygen species (ROS) production, ultimately leading to leaf senescence and yield loss. Photo-oxidation processes should therefore be mitigated to prevent leaf senescence, and plants have evolved several mechanisms to either prevent the formation of ROS or eliminate them. Technology evolution during the past decade has brought faster and more precise methodologies to quantify ROS production effects and damage, and the capacities of plants to withstand oxidative stress. Nevertheless, it is very difficult to disentangle photo-oxidative processes that bring leaf defence and acclimation, from those leading to leaf senescence (and consequently death). It is important to avoid the mistake of discussing results on leaf extracts as being equivalent to chloroplast extracts without taking into account that other organelles, such as peroxisomes, mitochondria, or the apoplast also significantly contribute to the overall ROS production within the cell. Another important aspect is that studies on abiotic stress-induced leaf senescence in crops do not always include a time-course evolution of studied processes, which limits our knowledge about what photo-oxidative stress processes are required to irreversibly induce the senescence programme. This review will summarize the current technologies used to evaluate the extent of photo-oxidative stress in plants, and discuss their advantages and limitations in characterizing abiotic stress-induced leaf senescence in crops.
Collapse
Affiliation(s)
- Marta Pintó-Marijuan
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
1149
|
Cui W, Fang P, Zhu K, Mao Y, Gao C, Xie Y, Wang J, Shen W. Hydrogen-rich water confers plant tolerance to mercury toxicity in alfalfa seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 105:103-11. [PMID: 24793520 DOI: 10.1016/j.ecoenv.2014.04.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/06/2014] [Accepted: 04/09/2014] [Indexed: 05/20/2023]
Abstract
In this report, the effect of hydrogen-rich water (HRW), which was used to investigate the physiological roles of hydrogen gas (H2) in plants recently, on the regulation of plant adaptation to mercury (Hg) toxicity was studied. Firstly, we observed that the exposure of alfalfa seedlings to HgCl2 triggered production of reactive oxygen species (ROS), growth stunt and increased lipid peroxidation. However, such effects could be obviously blocked by HRW. Meanwhile, significant decreases in the relative ion leakage and Hg accumulation were observed. Hg-induced increases in total and isozymatic activities of superoxide dismutase (SOD) were significantly reversed by HRW. Further results suggested that HRW-induced the activities of guaiacol peroxidase (POD) and ascorbate peroxidase (APX), two hydrogen peroxide-scavenging enzymes, was at transcriptional levels. Meanwhile, obvious increases of the ratios of reduced/oxidized glutathione (GSH), homoglutathione (hGSH), and ascorbic acid (AsA) and corresponding gene expression were consistent with the decreased oxidative damage in seedling roots. In summary, the results of this investigation indicated that HRW was able to alleviate Hg toxicity in alfalfa seedlings by (i) alleviating growth stunt and reducing Hg accumulation, and (ii) avoidance of oxidative stress and reestablishment of redox homeostasis.
Collapse
Affiliation(s)
- Weiti Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Fang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaikai Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Mao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Cunyi Gao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanjie Xie
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Wang
- Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
1150
|
Koffler BE, Polanschütz L, Zechmann B. Higher sensitivity of pad2-1 and vtc2-1 mutants to cadmium is related to lower subcellular glutathione rather than ascorbate contents. PROTOPLASMA 2014; 251:755-69. [PMID: 24281833 PMCID: PMC4059996 DOI: 10.1007/s00709-013-0576-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/25/2013] [Indexed: 05/02/2023]
Abstract
Cadmium (Cd) interferes with ascorbate and glutathione metabolism as it induces the production of reactive oxygen species (ROS), binds to glutathione due to its high affinity to thiol groups, and induces the production of phytochelatins (PCs) which use glutathione as a precursor. In this study, changes in the compartment specific distribution of ascorbate and glutathione were monitored over a time period of 14 days in Cd-treated (50 and 100 μM) Arabidopsis Col-0 plants, and two mutant lines deficient in glutathione (pad2-1) and ascorbate (vtc2-1). Both mutants showed higher sensitivity to Cd than Col-0 plants. Strongly reduced compartment specific glutathione, rather than decreased ascorbate contents, could be correlated with the development of symptoms in these mutants suggesting that higher sensitivity to Cd is related to low glutathione contents rather than low ascorbate contents. On the subcellular level it became obvious that long-term treatment of wildtype plants with Cd induced the depletion of glutathione and ascorbate contents in all cell compartments except chloroplasts indicating an important protective role for antioxidants in chloroplasts against Cd. Additionally, we could observe an immediate decrease of glutathione and ascorbate in all cell compartments 12 h after Cd treatment indicating that glutathione and ascorbate are either withdrawn from or not redistributed into other organelles after their production in chloroplasts, cytosol (production centers for glutathione) and mitochondria (production center for ascorbate). The obtained data is discussed in respect to recently proposed stress models involving antioxidants in the protection of plants against environmental stress conditions.
Collapse
Affiliation(s)
- Barbara Eva Koffler
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Lisa Polanschütz
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Bernd Zechmann
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, 8010 Graz, Austria
| |
Collapse
|