1151
|
Tucker B, Richards RI, Lardelli M. Contribution of mGluR and Fmr1 functional pathways to neurite morphogenesis, craniofacial development and fragile X syndrome. Hum Mol Genet 2006; 15:3446-58. [PMID: 17065172 DOI: 10.1093/hmg/ddl422] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fragile X Syndrome is a leading heritable cause of mental retardation that results from the loss of FMR1 gene function. Studies in mouse and Drosophila model organisms have been critical in understanding many aspects of the loss of function of the FMR1 gene in the human syndrome. Here, we establish that the zebrafish is a useful model organism for the study of the human fragile X syndrome and can be used to examine phenotypes that are difficult or inaccessible to observation in other model organisms. Using morpholino knockdown of the fmr1 gene, we observed abnormal axonal branching of Rohon-Beard and trigeminal ganglion neurons and guidance and defasciculation defects in the lateral longitudinal fasciculus. We demonstrate that this axonal branching defect can be rescued by treatment with MPEP [2-methyl-6-(phenylethynyl) pyridine]. This is consistent with an interaction between mGluR signalling and fmr1 function in neurite morphogenesis. We also describe novel findings of abnormalities in the abundance of trigeminal ganglion neurons and of craniofacial abnormalities apparently due to dysmorphic cartilage formation. These abnormalities may be related to a role for fmr1 in neural crest cell specification and possibly in migration.
Collapse
Affiliation(s)
- Ben Tucker
- ARC Special Research Center for the Molecular Genetics of Development and Discipline of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, South Australia, Australia.
| | | | | |
Collapse
|
1152
|
Paquet M, Asay MJ, Fam SR, Inuzuka H, Castleberry AM, Oller H, Smith Y, Yun CC, Traynelis SF, Hall RA. The PDZ scaffold NHERF-2 interacts with mGluR5 and regulates receptor activity. J Biol Chem 2006; 281:29949-61. [PMID: 16891310 PMCID: PMC4670778 DOI: 10.1074/jbc.m602262200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The two members of the group I metabotropic glutamate receptor family, mGluR1 and mGluR5, both couple to G(q) to mediate rises in intracellular calcium. The alternatively spliced C termini (CT) of mGluRs1 and 5are known to be critical for regulating receptor activity and to terminate in motifs suggestive of potential interactions with PDZ domains. We therefore screened the CTs of both mGluR1a and mGluR5 against a PDZ domain proteomic array. Out of 96 PDZ domains examined, the domain that bound most strongly to mGluR5-CT was the second PDZ domain of the Na(+)/H(+) exchanger regulatory factor 2 (NHERF-2). This interaction was confirmed by reverse overlay, and a single point mutation to the mGluR5-CT was found to completely disrupt the interaction. Full-length mGluR5 robustly associated with full-length NHERF-2 in cells, as assessed by co-immunoprecipitation and confocal microscopy experiments. In contrast, mGluR1a was found to bind NHERF-2 in vitro with a weaker affinity than mGluR5, and furthermore mGluR1a did not detectably associate with NHERF-2 in a cellular context. Immunohistochemical experiments revealed that NHERF-2 and mGluR5 exhibit overlapping patterns of expression in mouse brain, being found most abundantly in astrocytic processes and postsynaptic neuronal elements. In functional experiments, the interaction of NHERF-2 with mGluR5 in cells was found to prolong mGluR5-mediated calcium mobilization and to also potentiate mGluR5-mediated cell death, whereas coexpression of mGluR1a with NHERF-2 had no evident effects on mGluR1a functional activity. These observations reveal that NHERF-2 can selectively modulate mGluR5 signaling, which may contribute to cell-specific regulation of mGluR5 activity.
Collapse
Affiliation(s)
- Maryse Paquet
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Matthew J. Asay
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Sami R. Fam
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Hiroyuki Inuzuka
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Amanda M. Castleberry
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Heide Oller
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Yoland Smith
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - C. Chris Yun
- Division of Digestive Disease, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Stephen F. Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Randy A. Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
1153
|
Berry-Kravis E, Krause SE, Block SS, Guter S, Wuu J, Leurgans S, Decle P, Potanos K, Cook E, Salt J, Maino D, Weinberg D, Lara R, Jardini T, Cogswell J, Johnson SA, Hagerman R. Effect of CX516, an AMPA-modulating compound, on cognition and behavior in fragile X syndrome: a controlled trial. J Child Adolesc Psychopharmacol 2006; 16:525-40. [PMID: 17069542 DOI: 10.1089/cap.2006.16.525] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A Phase II, 4-week randomized, double-blind, placebo-controlled clinical trial was conducted to evaluate the safety and efficacy of the Ampakine compound CX516 as a potential treatment for the underlying disorder in fragile X syndrome (FXS). After baseline screening, subjects with FXS (n = 49) underwent a 1-week placebo lead-in and then were randomized to study drug or placebo for a 4-week period. Cognitive and behavioral outcome measures were administered prior to treatment, at the end of treatment, and 2 weeks posttreatment. There were minimal side effects, no significant changes in safety parameters, and no serious adverse events. There was a 12.5% frequency of allergic rash in the CX516 group and 1 subject developed a substantial rash. There was also no significant improvement in memory, the primary outcome measure, or in secondary measures of language, attention/executive function, behavior, and overall functioning in CX516-treated subjects compared to placebo. This study did demonstrate that many outcome measures were reproducible in this test-retest setting for the FXS population, yet some were too difficult or variable. Adult subjects with FXS were able to complete an intensive clinical trial, and some valid outcome measures were identified for future FXS trial design. Problems with potency of CX516 in other studies have suggested dosing may have been inadequate for therapeutic effect and thus it remains unclear whether modulation of AMPA-mediated neurotransmission is a viable therapeutic strategy for the treatment of FXS.
Collapse
|
1154
|
Desai NS, Casimiro TM, Gruber SM, Vanderklish PW. Early Postnatal Plasticity in Neocortex of Fmr1 Knockout Mice. J Neurophysiol 2006; 96:1734-45. [PMID: 16823030 DOI: 10.1152/jn.00221.2006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fragile X syndrome is produced by a defect in a single X-linked gene, called Fmr1, and is characterized by abnormal dendritic spine morphologies with spines that are longer and thinner in neocortex than those from age-matched controls. Studies using Fmr1 knockout mice indicate that spine abnormalities are especially pronounced in the first month of life, suggesting that altered developmental plasticity underlies some of the behavioral phenotypes associated with the syndrome. To address this issue, we used intracellular recordings in neocortical slices from early postnatal mice to examine the effects of Fmr1 disruption on two forms of plasticity active during development. One of these, long-term potentiation of intrinsic excitability, is intrinsic in expression and requires mGluR5 activation. The other, spike timing-dependent plasticity, is synaptic in expression and requires N-methyl-d-aspartate receptor activation. While intrinsic plasticity was normal in the knockout mice, synaptic plasticity was altered in an unusual and striking way: long-term depression was robust but long-term potentiation was entirely absent. These findings underscore the ideas that Fmr1 has highly selective effects on plasticity and that abnormal postnatal development is an important component of the disorder.
Collapse
MESH Headings
- Action Potentials/genetics
- Action Potentials/physiology
- Animals
- Animals, Newborn/genetics
- Animals, Newborn/physiology
- Fragile X Mental Retardation Protein/genetics
- Fragile X Mental Retardation Protein/physiology
- Fragile X Syndrome/genetics
- Fragile X Syndrome/physiopathology
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Developmental/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neocortex/growth & development
- Neocortex/physiology
- Neuronal Plasticity/genetics
- Neuronal Plasticity/physiology
- Receptor, Metabotropic Glutamate 5
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/physiology
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/physiology
- Synapses/genetics
- Synapses/physiology
- Synaptic Transmission/genetics
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Niraj S Desai
- The Neurosciences Fine Institute, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
1155
|
|
1156
|
Hou L, Antion MD, Hu D, Spencer CM, Paylor R, Klann E. Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron 2006; 51:441-54. [PMID: 16908410 DOI: 10.1016/j.neuron.2006.07.005] [Citation(s) in RCA: 363] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 01/23/2006] [Accepted: 07/07/2006] [Indexed: 11/18/2022]
Abstract
Genetic deletion of fragile X mental retardation protein (FMRP) has been shown to enhance mGluR-dependent long-term depression (LTD). Herein, we demonstrate that mGluR-LTD induces a transient, translation-dependent increase in FMRP that is rapidly degraded by the ubiquitin-proteasome pathway. Moreover, proteasome inhibitors abolished mGluR-LTD, and LTD was absent in mice that overexpress human FMRP. Neither translation nor proteasome inhibitors blocked the augmentation of mGluR-LTD in FMRP-deficient mice. In addition, mGluR-LTD is associated with rapid increases in the protein levels of FMRP target mRNAs in wild-type mice. Interestingly, the basal levels of these proteins were elevated and their synthesis was improperly regulated during mGluR-LTD in FMRP-deficient mice. Our findings indicate that hippocampal mGluR-LTD requires the rapid synthesis and degradation of FMRP and that mGluR-LTD triggers the synthesis of FMRP binding mRNAs. These findings indicate that the translation, ubiquitination, and proteolysis of FMRP functions as a dynamic regulatory system for controlling synaptic plasticity.
Collapse
Affiliation(s)
- Lingfei Hou
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
1157
|
Abstract
Local or dendritic protein synthesis is required for long-term functional synaptic change, such as long-term potentiation (LTP) and long-term depression (LTD). LTP and LTD both rely on similar signal transduction cascades, which regulate translation initiation. Current research indicates that the specificity by which new proteins participate in either LTP or LTD may be determined in part by specific RNA-binding proteins as well as activity-dependent capture.
Collapse
|
1158
|
Ferraguti F, Shigemoto R. Metabotropic glutamate receptors. Cell Tissue Res 2006; 326:483-504. [PMID: 16847639 DOI: 10.1007/s00441-006-0266-5] [Citation(s) in RCA: 402] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Accepted: 05/31/2006] [Indexed: 12/22/2022]
Abstract
Metabotropic glutamate receptors (mGlus) are a family of G-protein-coupled receptors activated by the neurotransmitter glutamate. Molecular cloning has revealed eight different subtypes (mGlu1-8) with distinct molecular and pharmacological properties. Multiplicity in this receptor family is further generated through alternative splicing. mGlus activate a multitude of signalling pathways important for modulating neuronal excitability, synaptic plasticity and feedback regulation of neurotransmitter release. In this review, we summarize anatomical findings (from our work and that of other laboratories) describing their distribution in the central nervous system. Recent evidence regarding the localization of these receptors in peripheral tissues will also be examined. The distinct regional, cellular and subcellular distribution of mGlus in the brain will be discussed in view of their relationship to neurotransmitter release sites and of possible functional implications.
Collapse
Affiliation(s)
- Francesco Ferraguti
- Department of Pharmacology, Innsbruck Medical University, Peter Mayr Strasse 1a, A-6020, Innsbruck, Austria
| | | |
Collapse
|
1159
|
Affiliation(s)
- Steven O Moldin
- Department of Psychiatry and Office of the Vice Provost for Research Advancement, University of Southern California, Los Angeles, California 90089, USA.
| | | | | |
Collapse
|
1160
|
Neuroanatomical, molecular genetic, and behavioral correlates of fragile X syndrome. ACTA ACUST UNITED AC 2006; 53:27-38. [PMID: 16844227 DOI: 10.1016/j.brainresrev.2006.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 06/08/2006] [Accepted: 06/13/2006] [Indexed: 12/26/2022]
Abstract
Fragile X syndrome (FXS) is a leading cause of inherited mental retardation. In the vast majority of cases, this X-linked disorder is due to a CGG expansion in the 5' untranslated region of the fmr-1 gene and the resulting decreased expression of its associated protein, FMRP. FXS is characterized by a number of cognitive, behavioral, anatomical, and biological abnormalities. FXS provides a unique opportunity to study the consequence of mutation in a single gene on the development and proper functioning of the CNS. The current focus on the role of FMRP in neuronal maturation makes it timely to assemble the extant information on how reduced expression of the fmr-1 gene leads to neuronal dysmorphology. The purpose of this review is to summarize recent genetic, neuroanatomical, and behavioral studies of fragile X syndrome and to offer potential mechanisms to account for the pleiotropic phenotype of this disorder.
Collapse
|
1161
|
Price TJ, Flores CM, Cervero F, Hargreaves KM. The RNA binding and transport proteins staufen and fragile X mental retardation protein are expressed by rat primary afferent neurons and localize to peripheral and central axons. Neuroscience 2006; 141:2107-16. [PMID: 16809002 PMCID: PMC1899160 DOI: 10.1016/j.neuroscience.2006.05.047] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 05/14/2006] [Accepted: 05/16/2006] [Indexed: 12/21/2022]
Abstract
Neuronal proteins have been traditionally viewed as being derived solely from the soma; however, accumulating evidence indicates that dendritic and axonal sites are capable of a more autonomous role in terms of new protein synthesis. Such extra-somal translation allows for more rapid, on-demand regulation of neuronal structure and function than would otherwise be possible. While mechanisms of dendritic RNA transport have been elucidated, it remains unclear how RNA is trafficked into the axon for this purpose. Primary afferent neurons of the dorsal root (DRG) and trigeminal (TG) ganglia have among the longest axons in the neuraxis and such axonal protein synthesis would be advantageous, given the greater time involved for protein trafficking to occur via axonal transport. Therefore, we hypothesized that these primary sensory neurons might express proteins involved in RNA transport. Rat DRG and TG neurons expressed staufen (stau) 1 and 2 (detected at the mRNA level) and stau2 and fragile x mental retardation protein (FMRP; detected at the protein level). Stau2 mRNA was also detected in human TG neurons. Stau2 and FMRP protein were localized to the sciatic nerve and dorsal roots by immunohistochemistry and to dorsal roots by Western blot. Stau2 and FMRP immunoreactivities colocalized with transient receptor potential channel type 1 immunoreactivity in sensory axons of the sciatic nerve and dorsal root, suggesting that these proteins are being transported into the peripheral and central terminals of nociceptive sensory axons. Based on these findings, we propose that stau2 and FMRP proteins are attractive candidates to subserve RNA transport in sensory neurons, linking somal transcriptional events to axonal translation.
Collapse
Affiliation(s)
- T J Price
- Departments of Endodontics and Pharmacology, The University of Texas Health Science Center at San Antonio, TX, USA.
| | | | | | | |
Collapse
|
1162
|
Zalfa F, Achsel T, Bagni C. mRNPs, polysomes or granules: FMRP in neuronal protein synthesis. Curr Opin Neurobiol 2006; 16:265-9. [PMID: 16707258 DOI: 10.1016/j.conb.2006.05.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 05/08/2006] [Indexed: 11/23/2022]
Abstract
mRNA localization and regulated translation play central roles in neurite outgrowth and synaptic plasticity. A key molecule in these processes is the Fragile X mental retardation protein, FMRP, which is involved in the metabolism of neuronal mRNAs. Absence or mutation of FMRP leads to spine dysmorphogenesis and impairs synaptic plasticity. Studies that have mainly been performed on the mouse and Drosophila models for Fragile X Syndrome showed that FMRP is involved in translational regulation at synapses, but even 15 years after discovery of the FMR1 gene, the precise working mechanisms remain elusive.
Collapse
Affiliation(s)
- Francesca Zalfa
- Dipartimento di Biologia, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy
| | | | | |
Collapse
|
1163
|
Garber K, Smith KT, Reines D, Warren ST. Transcription, translation and fragile X syndrome. Curr Opin Genet Dev 2006; 16:270-5. [PMID: 16647847 DOI: 10.1016/j.gde.2006.04.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
The fragile X mental retardation protein (FMRP) plays a role in the control of local protein synthesis in the dendrites. Loss of its production in fragile X syndrome is associated with transcriptional dysregulation of the gene. Recent work demonstrates that Sp1 and NRF1 transcriptionally control this gene. Other studies reveal how the microRNA pathway and signaling are related to FMRP function through the metabotropic glutamate receptor. These studies provide new insights through which we can better understand the inactivation of the FMR1 gene and, in turn, the consequence of FMRP loss.
Collapse
Affiliation(s)
- Kathryn Garber
- Department of Human Genetics, 615 Michael Street, Room 300, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
1164
|
von der Brelie C, Waltereit R, Zhang L, Beck H, Kirschstein T. Impaired synaptic plasticity in a rat model of tuberous sclerosis. Eur J Neurosci 2006; 23:686-92. [PMID: 16487150 DOI: 10.1111/j.1460-9568.2006.04594.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tuberous sclerosis complex (TSC) is a common hereditary disorder caused by mutations in either the TSC1 or TSC2 genes, and characterized by severe epilepsy, cerebral hamartomas and mental retardation. We have used rats that are heterozygous for an autosomal-dominant germline mutation in the TSC2 gene (TSC2+/- rats) to examine the consequences of TSC2 mutations for hippocampal synaptic plasticity. While basal synaptic transmission in the Schaffer collateral-CA1 synapse was not altered, paired-pulse plasticity was significantly enhanced in TSC2+/- rats (interpulse intervals 20-200 ms). Moreover, TSC2+/- rats exhibited a marked reduction of different forms of synaptic plasticity. Long-term potentiation (LTP) elicited following high-frequency tetanization of Schaffer collaterals was significantly decreased from 1.45 +/- 0.05-fold potentiation to 1.15 +/- 0.04 (measured after 60 min). This difference in LTP levels between TSC2+/- and wild-type rats also persisted in the presence of the gamma-aminobutyric acid (GABA)(A) receptor antagonist bicuculline. In addition to changed LTP, the level of long-term depression (LTD) elicited by different forms of low-frequency stimulation was significantly less in TSC2+/- rats. These results suggest that TSC2 mutations may cause hippocampal synapses to lose much of their potential for activity-dependent synaptic modification. An understanding of the underlying molecular pathways may suggest new therapeutic approaches aimed at inhibiting the development of the profound mental retardation in TSC.
Collapse
Affiliation(s)
- Christian von der Brelie
- Department of Epileptology, University of Bonn Medical Center, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | | | | | | | | |
Collapse
|
1165
|
Antar LN, Li C, Zhang H, Carroll RC, Bassell GJ. Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses. Mol Cell Neurosci 2006; 32:37-48. [PMID: 16631377 DOI: 10.1016/j.mcn.2006.02.001] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 01/31/2006] [Accepted: 02/14/2006] [Indexed: 12/01/2022] Open
Abstract
Genetic deficiency of the mRNA binding protein FMRP results in the most common inherited form of mental retardation, Fragile X syndrome. We investigated the localization and function of FMRP during development of hippocampal neurons in culture. FMRP was distributed within granules that extended into developing axons and growth cones, detectable at distances over 300 microm from the cell body. In mature cultures, FMRP granules were present in both axons and dendrites, with pockets of higher concentrations appearing intermittently, along distal axon segments and near synapses. MAP1b mRNA, a known FMRP target, was also localized to axon growth cones. Morphometric analysis of growth cones from the FMR1 KO revealed both excess filopodia and reduced motility. At later stages during synapse formation, FMR1 KO neurons exhibited excessive filopodia and long spines along dendrites, yet there was a marked decrease in the density of spine-like protrusions juxtaposed to presynaptic terminals. In contrast, there was no difference in the density of shaft synapses between FMR1 KO and WT. Brief depolarization of WT neurons resulted in increased numbers of filopodia and spine synapses, whereas no additional morphologic changes were observable in dendrites of FMR1 KO neurons that already had increased density of filopodia-spines. These findings suggest that alterations in the regulation of axonal growth and innervation in FMR1 KO neurons may contribute to the dendritic and spine pathology in Fragile X syndrome. This work has broader implications for understanding the role of mRNA binding proteins in developmental and protein-synthesis-dependent plasticity.
Collapse
Affiliation(s)
- Laura N Antar
- Department of Neuroscience, Rose F. Kennedy Center for Mental Retardation, Albert Einstein College of Medicine, 1410 Pelham Parkway, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
1166
|
Kim SH, Dong WK, Weiler IJ, Greenough WT. Fragile X mental retardation protein shifts between polyribosomes and stress granules after neuronal injury by arsenite stress or in vivo hippocampal electrode insertion. J Neurosci 2006; 26:2413-8. [PMID: 16510718 PMCID: PMC6793656 DOI: 10.1523/jneurosci.3680-05.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fragile X mental retardation protein (FMRP), the lack of which causes fragile X syndrome, is an RNA-binding protein encoded by the FMR1 gene. FMRP accompanies mRNAs from the nucleus to dendritic regions and is thought to regulate their translation at synapses. It has been shown that FMRP moves into nontranslating stress granules (SGs) during heat stress of cultured fibroblasts (Mazroui et al., 2002). We used a novel method to isolate SGs from neurons by virtue of their TIA-1 (T-cell intracellular antigen 1) protein component, and found that FMRP moved out of polyribosomes and into SGs subsequent to oxidative stress. We then examined FMRP changes in subcellular localization resulting from mechanically induced neuronal injury by placement of electrodes into the dentate gyrus and the perforant path of the hippocampus in vivo. During the first 10 min after electrode insertion into one hippocampus, FMRP shifted into SGs and away from polyribosomes, in both hippocampi. Although the injury discharge subsided beyond 10 s, FMRP levels in polyribosomes and stress granules did not return to basal levels until 30 min after electrode penetration. Our findings suggest that procedures for in vivo induction of long-term potentiation or long-term depression should incorporate a 30 min rest period after electrode insertion, and indicate that the contralateral hippocampus cannot be considered an unstimulated control tissue.
Collapse
Affiliation(s)
- Soong Ho Kim
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
1167
|
Stein JM, Bergman W, Fang Y, Davison L, Brensinger C, Robinson MB, Hecht NB, Abel T. Behavioral and neurochemical alterations in mice lacking the RNA-binding protein translin. J Neurosci 2006; 26:2184-96. [PMID: 16495445 PMCID: PMC6674824 DOI: 10.1523/jneurosci.4437-05.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synapse-specific local protein synthesis is thought to be important for neurodevelopment and plasticity and involves neuronal RNA-binding proteins that regulate the transport and translation of dendritically localized transcripts. The best characterized of these RNA-binding proteins is the fragile X mental retardation protein (FMRP). Mutations affecting the expression or function of FMRP cause fragile X syndrome in humans, and targeted deletion of the gene encoding FMRP results in developmental and behavioral alterations in mice. Translin is an RNA-binding protein that regulates mRNA transport and translation in mouse male germ cells and is proposed to play a similar role in neurons. Like FMRP, translin is present in neuronal dendrites, binds dendritically localized RNA, and associates with microtubules and motor proteins. We reported previously the production of viable homozygous translin knock-out mice, which demonstrate altered expression of multiple mRNA transcripts in the brain and mild motor impairments. Here, we report that translin knock-out mice also exhibit sex-specific differences in tests of learning and memory, locomotor activity, anxiety-related behavior, and sensorimotor gating, as well as handling-induced seizures and alterations in monoamine neurotransmitter levels in several forebrain regions. Similar behavioral and neurochemical alterations have been observed in mice lacking FMRP, suggesting that both proteins may act within the same neuronal systems and signaling pathways. Our results in mice indicate that mutations in translin may contribute to fragile X-like syndromes, mental retardation, attention deficit hyperactivity disorder, epilepsy, and autism spectrum disorders in humans.
Collapse
|
1168
|
Herbert MR, Russo JP, Yang S, Roohi J, Blaxill M, Kahler SG, Cremer L, Hatchwell E. Autism and environmental genomics. Neurotoxicology 2006; 27:671-84. [PMID: 16644012 DOI: 10.1016/j.neuro.2006.03.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Revised: 03/07/2006] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
Autism spectrum disorders (ASD) are defined by behavior and diagnosed by clinical history and observation but have no biomarkers and are presumably, etiologically and biologically heterogeneous. Given brain abnormalities and high monozygotic concordance, ASDs have been framed as neurobiologically based and highly genetic, which has shaped the research agenda and in particular criteria for choosing candidate ASD genes. Genetic studies to date have not uncovered genes of strong effect, but a move toward "genetic complexity" at the neurobiological level may not suffice, as evidence of systemic abnormalities (e.g. gastrointestinal and immune), increasing rates and less than 100% monozygotic concordance support a more inclusive reframing of autism as a multisystem disorder with genetic influence and environmental contributors. We review this evidence and also use a bioinformatic approach to explore the possibility that "environmentally responsive genes" not specifically associated with the nervous system, but potentially associated with systemic changes in autism, have not hitherto received sufficient attention in autism genetics investigations. We overlapped genes from NIEHS Environmental Genome Project, the Comparative Toxicogenomics Database, and the SeattleSNPs database of genes relevant to the human immune and inflammatory response with linkage regions identified in published autism genome scans. We identified 135 genes in overlap regions, of which 56 had never previously been studied in relation to autism and 47 had functional SNPs (in coding regions). Both our review and the bioinformatics exercise support the expansion of criteria for evaluating the relevance of genes to autism risk to include genes related to systemic impact and environmental responsiveness. This review also suggests the utility of environmental genomic resources in highlighting the potential relevance of particular genes within linkage regions. Environmental responsiveness and systems impacts consistent with system-wide findings in autism are thus supported as important considerations in identifying the numerous and complex modes of gene-environment interaction in autism.
Collapse
Affiliation(s)
- M R Herbert
- Pediatric Neurology, Massachusetts General Hospital, Harvard Medical School, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1169
|
Qin M, Kang J, Burlin TV, Jiang C, Smith CB. Postadolescent changes in regional cerebral protein synthesis: an in vivo study in the FMR1 null mouse. J Neurosci 2006; 25:5087-95. [PMID: 15901791 PMCID: PMC6724856 DOI: 10.1523/jneurosci.0093-05.2005] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Methylation-induced transcriptional silencing of the fragile X mental retardation-1 (Fmr1) gene leads to absence of the gene product, fragile X mental retardation protein (FMRP), and consequently fragile X syndrome (FrX), an X-linked inherited form of mental retardation. Absence of FMRP in Fmr1 null mice imparts some characteristics of the FrX phenotype, but the precise role of FMRP in neuronal function remains unknown. FMRP is an RNA-binding protein that has been shown to suppress translation of certain mRNAs in vitro. We applied the quantitative autoradiographic L-[1-14C]leucine method to the in vivo determination of regional rates of cerebral protein synthesis (rCPS) in adult wild-type (WT) and Fmr1 null mice at 4 and 6 months of age. Our results show a substantial decrease in rCPS in all brain regions examined between the ages of 4 and 6 months in both WT and Fmr1 null mice. Superimposed on the age-dependent decline in rCPS, we demonstrate a regionally selective elevation in rCPS in Fmr1 null mice. Our results suggest that the process of synaptic pruning during young adulthood may be reflected in decreased rCPS. Our findings support the hypothesis that FMRP is a suppressor of translation in brain in vivo.
Collapse
Affiliation(s)
- Mei Qin
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, United States Public Health Service, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
1170
|
Restifo LL. Mental retardation genes in drosophila: New approaches to understanding and treating developmental brain disorders. ACTA ACUST UNITED AC 2006; 11:286-94. [PMID: 16240406 DOI: 10.1002/mrdd.20083] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Drosophila melanogaster is emerging as a valuable genetic model system for the study of mental retardation (MR). MR genes are remarkably similar between humans and fruit flies. Cognitive behavioral assays can detect reductions in learning and memory in flies with mutations in MR genes. Neuroanatomical methods, including some at single-neuron resolution, are helping to reveal the cellular bases of faulty brain development caused by MR gene mutations. Drosophila fragile X mental retardation 1 (dfmr1) is the fly counterpart of the human gene whose malfunction causes fragile X syndrome. Research on the fly gene is leading the field in molecular mechanisms of the gene product's biological function and in pharmacological rescue of brain and behavioral phenotypes. Future work holds the promise of using genetic pathway analysis and primary neuronal culture methods in Drosophila as tools for drug discovery for a wide range of MR and related disorders.
Collapse
Affiliation(s)
- Linda L Restifo
- ARL Division of Neurobiology, University of Arizona, and Department of Neurology, Arizona Health Sciences Center, Tucson Arizona 85721-0077, USA.
| |
Collapse
|
1171
|
Chuang SC, Zhao W, Bauchwitz R, Yan Q, Bianchi R, Wong RKS. Prolonged epileptiform discharges induced by altered group I metabotropic glutamate receptor-mediated synaptic responses in hippocampal slices of a fragile X mouse model. J Neurosci 2006; 25:8048-55. [PMID: 16135762 PMCID: PMC6725444 DOI: 10.1523/jneurosci.1777-05.2005] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in FMR1, which encodes the fragile X mental retardation protein (FMRP), are the cause of fragile X syndrome (FXS), an X-linked mental retardation disorder. Inactivation of the mouse gene Fmr1 confers a number of FXS-like phenotypes including an enhanced susceptibility to epileptogenesis during development. We find that in a FXS mouse model, in which the function of FMRP is suppressed, synaptically released glutamate induced prolonged epileptiform discharges resulting from enhanced group I metabotropic glutamate receptor (mGluR)-mediated responses in hippocampal slices. The induction of the group I mGluR-mediated, prolonged epileptiform discharges was inhibited in preparations that were pretreated with inhibitors of ERK1/2 (extracellular signal-regulated kinase 1/2) phosphorylation or of mRNA translation, and their maintenance was suppressed by group I mGluR antagonists. The results suggest that FMRP plays a key role in the control of signaling at the recurrent glutamatergic synapses in the hippocampus. The absence of this control causes the synaptically activated group I mGluRs to elicit translation-dependent epileptogenic activities.
Collapse
Affiliation(s)
- Shih-Chieh Chuang
- Department of Physiology and Pharmacology, State University of New York Health Science Center, Brooklyn, New York 11203, USA
| | | | | | | | | | | |
Collapse
|
1172
|
Huber KM. The fragile X-cerebellum connection. Trends Neurosci 2006; 29:183-5. [PMID: 16500716 DOI: 10.1016/j.tins.2006.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 01/20/2006] [Accepted: 02/03/2006] [Indexed: 10/25/2022]
Abstract
Fragile X syndrome (FXS) is an inherited form of mental retardation that results from the loss of function of the fragile X mental retardation protein (FMRP). A recent report demonstrated alterations in the structure and plasticity of synapses on cerebellar Purkinje cells in Fmr1 knockout mice, which are a model of FXS. These synaptic alterations are associated with deficits in the cerebellar learning both in the mice and humans with FXS. This work forges an important link between the FMR1 gene, altered synaptic plasticity in the cerebellum and mental retardation.
Collapse
Affiliation(s)
- Kimberly M Huber
- Center for Basic Neuroscience, Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
1173
|
Giuffrida R, Musumeci S, D'Antoni S, Bonaccorso CM, Giuffrida-Stella AM, Oostra BA, Catania MV. A reduced number of metabotropic glutamate subtype 5 receptors are associated with constitutive homer proteins in a mouse model of fragile X syndrome. J Neurosci 2006; 25:8908-16. [PMID: 16192381 PMCID: PMC6725593 DOI: 10.1523/jneurosci.0932-05.2005] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fragile X (FRAX) syndrome is a common inherited form of mental retardation resulting from the lack of fragile X mental retardation protein (FMRP) expression. The consequences of FMRP absence in the mechanism underlying mental retardation are unknown. Here, we tested the hypothesis that glutamate receptor (GluR) expression might be altered in FRAX syndrome. Initial in situ hybridization and Western blotting experiments did not reveal differences in mRNA levels and protein expression of AMPA and NMDA subunits and metabotropic glutamate subtype 5 (mGlu5) receptors between control and Fmr1 knock-out (KO) mice during postnatal development. However, a detergent treatment (1% Triton X-100) revealed a selective reduction of mGlu5 receptor expression in the detergent-insoluble fraction of synaptic plasma membranes (SPMs) from KO mice, with no difference in the expression of NR2A, GluR1, GluR2/3, GluR4, and Homer proteins. mGlu5 receptor expression was also lower in Homer immunoprecipitates from Fmr1 KO SPMs. Homer, but not NR2A, mGlu5, and GluR1, was found to be less tyrosine phosphorylated in Fmr1 KO than control mice. Our data indicate that, in FRAX syndrome, a reduced number of mGlu5 receptors are tightly linked to the constituents of postsynaptic density and, in particular, to the constitutive forms of Homer proteins, with possible consequent alterations in synaptic plasticity.
Collapse
Affiliation(s)
- Raffaella Giuffrida
- Department of Chemical Sciences, University of Catania, 95125 Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
1174
|
McConkie-Rosell A, Finucane B, Cronister A, Abrams L, Bennett RL, Pettersen BJ. Genetic counseling for fragile x syndrome: updated recommendations of the national society of genetic counselors. J Genet Couns 2006; 14:249-70. [PMID: 16047089 DOI: 10.1007/s10897-005-4802-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
These recommendations describe the minimum standard criteria for genetic counseling and testing of individuals and families with fragile X syndrome, as well as carriers and potential carriers of a fragile X mutation. The original guidelines (published in 2000) have been revised, replacing a stratified pre- and full mutation model of fragile X syndrome with one based on a continuum of gene effects across the full spectrum of FMR1 CGG trinucleotide repeat expansion. This document reviews the molecular genetics of fragile X syndrome, clinical phenotype (including the spectrum of premature ovarian failure and fragile X-associated tremor-ataxia syndrome), indications for genetic testing and interpretation of results, risks of transmission, family planning options, psychosocial issues, and references for professional and patient resources. These recommendations are the opinions of a multicenter working group of genetic counselors with expertise in fragile X syndrome genetic counseling, and they are based on clinical experience, review of pertinent English language articles, and reports of expert committees. These recommendations should not be construed as dictating an exclusive course of management, nor does use of such recommendations guarantee a particular outcome. The professional judgment of a health care provider, familiar with the facts and circumstances of a specific case, will always supersede these recommendations.
Collapse
|
1175
|
Abstract
The fragile X mental retardation 1 gene (FMR1) mutation causes two disorders: fragile X syndrome (FXS) in those with the full mutation and the fragile X-associated tremor/ataxia syndrome (FXTAS) in some older individuals with the premutation. FXS is caused by a deficiency of the FMR1 protein (FMRP) leading to dysregulation of many genes that create a phenotype with ADHD, anxiety, and autism. FXTAS is caused by the elevation of FMR1-mRNA to levels 2 to 8 times normal in the premutation. This causes an RNA gain of function toxicity leading to brain atrophy, white matter disease, neuronal and astrocytic inclusion formation, and subsequent ataxia, intention tremor, peripheral neuropathy, and cognitive decline. The neurobiology and pathophysiology of FXS and FXTAS are described in detail.
Collapse
Affiliation(s)
- Randi J Hagerman
- Department of Pediatrics, M.I.N.D. Institute, University of California Davis Health System, Sacramento, California 95817, USA.
| |
Collapse
|
1176
|
Nosyreva ED, Huber KM. Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome. J Neurophysiol 2006; 95:3291-5. [PMID: 16452252 DOI: 10.1152/jn.01316.2005] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fragile X syndrome (FXS), a form of human mental retardation, is caused by loss of function mutations in the fragile X mental retardation gene (FMR1). The protein product of FMR1, fragile X mental retardation protein (FMRP) is an RNA-binding protein and may function as a translational suppressor. Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) in hippocampal area CA1 is a form of synaptic plasticity that relies on dendritic protein synthesis. mGluR-LTD is enhanced in the mouse model of FXS, Fmr1 knockout (KO) mice, suggesting that FMRP negatively regulates translation of proteins required for LTD. Here we examine the synaptic and cellular mechanisms of mGluR-LTD in KO mice and find that mGluR-LTD no longer requires new protein synthesis, in contrast to wild-type (WT) mice. We further show that mGluR-LTD in KO and WT mice is associated with decreases in AMPA receptor (AMPAR) surface expression, indicating a similar postsynaptic expression mechanism. However, like LTD, mGluR-induced decreases in AMPAR surface expression in KO mice persist in protein synthesis inhibitors. These results are consistent with recent findings of elevated protein synthesis rates and synaptic protein levels in Fmr1 KO mice and suggest that these elevated levels of synaptic proteins are available to increase the persistence of LTD without de novo protein synthesis.
Collapse
Affiliation(s)
- Elena D Nosyreva
- Center for Basic Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | | |
Collapse
|
1177
|
Volk LJ, Daly CA, Huber KM. Differential roles for group 1 mGluR subtypes in induction and expression of chemically induced hippocampal long-term depression. J Neurophysiol 2006; 95:2427-38. [PMID: 16421200 DOI: 10.1152/jn.00383.2005] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although metabotropic glutamate receptors (mGluRs) mGluR1 and mGluR5 are often found to have similar functions, there is considerable evidence that the two receptors also serve distinct functions in neurons. In hippocampal area CA1, mGluR5 has been most strongly implicated in long-term synaptic depression (LTD), whereas mGluR1 has been thought to have little or no role. Here we show that simultaneous pharmacological blockade of mGluR1 and mGluR5 is required to block induction of LTD by the group 1 mGluR agonist, (RS)-3,5-dihydroxyphenylglycine (DHPG). Blockade of mGluR1 or mGluR5 alone has no effect on LTD induction, suggesting that activation of either receptor can fully induce LTD. Consistent with this conclusion, mGluR1 and mGluR5 both contribute to activation of extracellular signal-regulated kinase (ERK), which has previously been shown to be required for LTD induction. In contrast, selective blockade of mGluR1, but not mGluR5, reduces the expression of LTD and the associated decreases in AMPA surface expression. LTD is also reduced in mGluR1 knockout mice confirming the involvement of mGluR1. This shows a novel role for mGluR1 in long-term synaptic plasticity in CA1 pyramidal neurons. In contrast to DHPG-induced LTD, synaptically induced LTD with paired-pulse low-frequency stimulation persists in the pharmacological blockade of group 1 mGluRs and in mGluR1 or mGluR5 knockout mice. This suggests different receptors and/or upstream mechanisms for chemically and synaptically induced LTD.
Collapse
Affiliation(s)
- Lenora J Volk
- Center for Basic Neuroscience, Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | | | | |
Collapse
|
1178
|
Castrén M, Tervonen T, Kärkkäinen V, Heinonen S, Castrén E, Larsson K, Bakker CE, Oostra BA, Akerman K. Altered differentiation of neural stem cells in fragile X syndrome. Proc Natl Acad Sci U S A 2005; 102:17834-9. [PMID: 16314562 PMCID: PMC1308923 DOI: 10.1073/pnas.0508995102] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Indexed: 11/18/2022] Open
Abstract
Fragile X syndrome, a common form of inherited mental retardation, is caused by the absence of the fragile X mental retardation protein (FMRP) due to a mutation in the FMR1 gene. We investigated the differentiation of neural stem cells generated from the brains of fmr1-knockout (KO) mice and from postmortem tissue of a fragile X fetus. Mouse and human FMRP-deficient neurospheres generated more TuJ1-positive cells (3-fold and 5-fold, respectively) than the control neurospheres generated from normal mouse and human brains, and these cells showed morphological alterations with fewer and shorter neurites and a smaller cell body volume. The number of cells expressing glial fibrillary acidic protein and generated by these neurospheres was reduced because of increased apoptotic cell death. Furthermore, there was an increase in a population of cells with intense oscillatory Ca2+ responses to neurotransmitters in differentiated cells lacking FMRP. In addition, the number of cells in a cohort of bromodeoxyuridine-labeled newborn cells was increased in the subventricular zone of the telencephalon of the fmr1-KO mouse in vivo. These results demonstrate substantial alterations in the early maturation of FMRP-deficient neural stem cells in fragile X syndrome and in the fmr1-KO mice.
Collapse
Affiliation(s)
- Maija Castrén
- Neuroscience Center, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
1179
|
Abstract
PURPOSE OF REVIEW Mutations in genes on the X chromosome rival chromosome aberrations as a cause of mental retardation. Progress in the clinical and molecular delineation of X-linked mental retardation has outpaced progress in understanding autosomal mental retardation. This is a result in large part of the identification of large families in which mental retardation has segregated in an X-linked pattern and the greater ease with which molecular technologies can be applied to hemizygosity in males. RECENT FINDINGS About one-third of the estimated 165 genes associated with syndromal mutations of genes on the X chromosome and one-fourth of the estimated 100 genes associated with nonsyndromal mutations of genes on the X chromosome have been identified. In a number of instances, the same gene is responsible for syndromal and nonsyndromal mutations of genes on the X chromosome. The molecular delineation of mutations of genes on the X chromosome has allowed certain conditions to be lumped together on the basis of allelism and has caused others that appear clinical similar to remain separate. SUMMARY The clinical and molecular advances have allowed X-linked mental retardation to be more clearly delineated, have provided the means of confirmatory laboratory testing, and have ushered in an era of carrier testing, prenatal diagnosis, and prevention strategies.
Collapse
|
1180
|
Gatchel JR, Zoghbi HY. Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 2005; 6:743-55. [PMID: 16205714 DOI: 10.1038/nrg1691] [Citation(s) in RCA: 569] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The list of developmental and degenerative diseases that are caused by expansion of unstable repeats continues to grow, and is now approaching 20 disorders. The pathogenic mechanisms that underlie these disorders involve either loss of protein function or gain of function at the protein or RNA level. Common themes have emerged within and between these different classes of disease; for example, among disorders that are caused by gain-of-function mechanisms, altered protein conformations are central to pathogenesis, leading to changes in protein activity or abundance. In all these diseases, the context of the expanded repeat and the abundance, subcellular localization and interactions of the proteins and RNAs that are affected have key roles in disease-specific phenotypes.
Collapse
Affiliation(s)
- Jennifer R Gatchel
- Department of Neuroscience, Medical Scientist Training Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
1181
|
Di Prospero NA, Fischbeck KH. Therapeutics development for triplet repeat expansion diseases. Nat Rev Genet 2005; 6:756-65. [PMID: 16205715 DOI: 10.1038/nrg1690] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The underlying genetic mutations for many inherited neurodegenerative disorders have been identified in recent years. One frequent type of mutation is trinucleotide repeat expansion. Depending on the location of the repeat expansion, the mutation might result in a loss of function of the disease gene, a toxic gain of function or both. Disease gene identification has led to the development of model systems for investigating disease mechanisms and evaluating treatments. Examination of experimental findings reveals similarities in disease mechanisms as well as possibilities for treatment.
Collapse
Affiliation(s)
- Nicholas A Di Prospero
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3705, USA.
| | | |
Collapse
|
1182
|
Abstract
Fragile X syndrome (FXS) is caused by the transcriptional silencing of the Fmr1 gene, which encodes a protein (FMRP) that can act as a translational suppressor in dendrites, and is characterized by a preponderance of abnormally long, thin and tortuous dendritic spines. According to a current theory of FXS, the loss of FMRP expression leads to an exaggeration of translation responses linked to group I metabotropic glutamate receptors. Such responses are involved in the consolidation of a form of long-term depression that is enhanced in Fmr1 knockout mice and in the elongation of dendritic spines, resembling synaptic phenotypes over-represented in fragile X brain. These observations place fragile X research at the heart of a long-standing issue in neuroscience. The consolidation of memory, and several distinct forms of synaptic plasticity considered to be substrates of memory, requires mRNA translation and is associated with changes in spine morphology. A recent convergence of research on FXS and on the involvement of translation in various forms of synaptic plasticity has been very informative on this issue and on mechanisms underlying FXS. Evidence suggests a general relationship in which the receptors that induce distinct forms of efficacy change differentially regulate translation to produce unique spine shapes involved in their consolidation. We discuss several potential mechanisms for differential translation and the notion that FXS represents an exaggeration of one 'channel' in a set of translation-dependent consolidation responses.
Collapse
Affiliation(s)
- P W Vanderklish
- Department of Neurobiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
1183
|
Bear MF. Therapeutic implications of the mGluR theory of fragile X mental retardation. GENES BRAIN AND BEHAVIOR 2005; 4:393-8. [PMID: 16098137 DOI: 10.1111/j.1601-183x.2005.00135.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Evidence is reviewed that the consequences of group 1 metabotropic glutamate receptor (Gp1 mGluR) activation are exaggerated in the absence of the fragile X mental retardation protein, likely reflecting altered dendritic protein synthesis. Abnormal mGluR signaling could be responsible for remarkably diverse psychiatric and neurological symptoms in fragile X syndrome, including delayed cognitive development, seizures, anxiety, movement disorders and obesity.
Collapse
Affiliation(s)
- M F Bear
- The Picower Center for Learning and Memory, Howard Hughes Medical Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, 02139, USA.
| |
Collapse
|
1184
|
Moldin SO. Understanding Fragile X syndrome: molecular, cellular and genomic neuroscience at the crossroads. GENES BRAIN AND BEHAVIOR 2005; 4:337-40. [PMID: 16098132 DOI: 10.1111/j.1601-183x.2005.00150.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
1185
|
Gantois I, Vandesompele J, Speleman F, Reyniers E, D'Hooge R, Severijnen LA, Willemsen R, Tassone F, Kooy RF. Expression profiling suggests underexpression of the GABA(A) receptor subunit delta in the fragile X knockout mouse model. Neurobiol Dis 2005; 21:346-57. [PMID: 16199166 DOI: 10.1016/j.nbd.2005.07.017] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 07/05/2005] [Accepted: 07/28/2005] [Indexed: 11/29/2022] Open
Abstract
It is still unclear why absence of the fragile X protein (FMRP) leads to mental retardation and specific behavioral problems. In neurons, the protein transports specific mRNAs towards the actively translating ribosomes near the synapses. To unravel the mechanism leading to the disorder, we performed global gene expression analysis by means of the differential display method using the fragile X mouse model. To verify differential expression, we used microarray technology and real-time PCR. Three differentially expressed cDNAs showed consistent underexpression in the fragile X knockout mouse, including a GABA(A) receptor subunit delta, a Rho guanine exchange factor 12 and an EST BU563433. In addition, we identified 5 genes that showed differential expression dependent on the sample of RNA analysis. We consider their differential expression as provisional. It is possible that these differentially expressed genes play an important role in the cognitive and behavioral problems observed in the fragile X syndrome.
Collapse
Affiliation(s)
- Ilse Gantois
- Department of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
1186
|
Terracciano A, Chiurazzi P, Neri G. Fragile X syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2005; 137C:32-7. [PMID: 16010677 DOI: 10.1002/ajmg.c.30062] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fragile X syndrome, the most common genetic disorder associated with mental retardation is caused by an expansion of the unstable CGG repeat within the FMR1 gene. Although overgrowth is not the main hallmark of this condition, the fragile X syndrome is usually included in the differential diagnosis of children with mental retardation and excess growth. This review highlights the most recent advances in the field of fragile X research.
Collapse
|
1187
|
Abstract
PURPOSE OF REVIEW This review will describe recent developments in the neurobiology of fragile X syndrome (FXS), the association between FXS and autism, and involvement in premutation carriers. RECENT FINDINGS Metabotropic glutamate receptor 5 (mGluR5)-coupled pathways are dysregulated in individuals with FXS and this is thought to relate to the FXS phenotype. The mGluR5 model suggests that mGluR5 antagonists, including downstream effectors such as lithium, could be useful for treating FXS. Two forms of clinical involvement associated with the fragile X mental retardation 1 (FMR1) gene, autism and fragile X-associated tremor/ataxia syndrome (FXTAS), have received additional attention during the past year. One study has found that approximately 30% of individuals with FXS have autism; those with autism have lowered cognitive abilities, language problems, and behavioral difficulties compared to those with FXS alone. Furthermore, evidence is mounting that autism also occurs in some young males who have premutation alleles. Finally, males and occasional females with premutation alleles may develop a neurological syndrome with aging that consists of tremor, ataxia, peripheral neuropathy, and cognitive deficits. Significant brain atrophy and white-matter disease is usually seen. This new disorder (FXTAS) is thought to be related to elevated levels of abnormal FMR1 mRNA. SUMMARY Full-mutation forms of the gene (> 200 repeats) can cause autism, learning disabilities, anxiety disorders, and mental retardation. Disorders associated with premutation forms of the gene (55-200 repeats) include, in addition to autism, FXTAS in older males and females, and premature ovarian failure.
Collapse
Affiliation(s)
- Randi J Hagerman
- Department of Pediatrics, University of California at Davis Medical Center, M.I.N.D. Institute, Sacramento, CA 95817, USA.
| | | | | |
Collapse
|
1188
|
Newey SE, Velamoor V, Govek EE, Van Aelst L. Rho GTPases, dendritic structure, and mental retardation. ACTA ACUST UNITED AC 2005; 64:58-74. [PMID: 15884002 DOI: 10.1002/neu.20153] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A consistent feature of neurons in patients with mental retardation is abnormal dendritic structure and/or alterations in dendritic spine morphology. Deficits in the regulation of the dendritic cytoskeleton affect both the structure and function of dendrites and synapses and are believed to underlie mental retardation in some instances. In support of this, there is good evidence that alterations in signaling pathways involving the Rho family of small GTPases, key regulators of the actin and microtubule cytoskeletons, contribute to both syndromic and nonsyndromic mental retardation disorders. Because the Rho GTPases have been shown to play increasingly well-defined roles in determining dendrite and dendritic spine development and morphology, Rho signaling has been suggested to be important for normal cognition. The purpose of this review is to summarize recent data on the Rho GTPases pertaining to dendrite and dendritic spine morphogenesis, as well as to highlight their involvement in mental retardation resulting from a variety of genetic mutations within regulators and effectors of these molecules.
Collapse
|
1189
|
Antar LN, Dictenberg JB, Plociniak M, Afroz R, Bassell GJ. Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. GENES BRAIN AND BEHAVIOR 2005; 4:350-9. [PMID: 16098134 DOI: 10.1111/j.1601-183x.2005.00128.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fragile X syndrome is caused by the absence of the fragile X mental-retardation protein (FMRP), an mRNA-binding protein, which may play important roles in the regulation of dendritic mRNA localization and/or synaptic protein synthesis. We have recently applied high-resolution fluorescence imaging methods to document the presence, motility and activity-dependent regulation of FMRP granule trafficking in dendrites and spines of cultured hippocampal neurons. In this study, we show that FMRP granules distribute to F-actin-rich compartments, including filopodia, spines and growth cones during the staged development of hippocampal neurons in culture. Fragile X mental-retardation protein granules were shown to colocalize with ribosomes, ribosomal RNA and MAP1B mRNA, a known FMRP target, which encodes a protein important for microtubule and actin stabilization. The levels of FMRP within dendrites were reduced by disruption of microtubule dynamics, but not by disruption of F-actin. Direct measurements of FMRP transport kinetics using fluorescence recovery after photobleaching in living neurons showed that microtubules were required to induce the mGluR-dependent translocation into dendrites. This study provides further characterization of the composition and regulated trafficking of FMRP granules in dendrites of hippocampal neurons.
Collapse
Affiliation(s)
- L N Antar
- Department of Neuroscience, Rose F. Kennedy Center for Mental Retardation, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
1190
|
Zarnescu DC, Shan G, Warren ST, Jin P. Come FLY with us: toward understanding fragile X syndrome. GENES BRAIN AND BEHAVIOR 2005; 4:385-92. [PMID: 16098136 DOI: 10.1111/j.1601-183x.2005.00136.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The past few years have seen an increased number of articles using Drosophila as a model system to study fragile X syndrome. Phenotypic analyses have demonstrated an array of neuronal and behavioral defects similar to the phenotypes reported in mouse models as well as human patients. The availability of both cellular and molecular tools along with the power of genetics makes the tiny fruit fly a premiere model in elucidating the molecular basis of fragile X syndrome. Here, we summarize the advances made in recent years in the characterization of fragile X Drosophila models and the identification of new molecular partners in neural development.
Collapse
Affiliation(s)
- D C Zarnescu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
1191
|
Yan QJ, Rammal M, Tranfaglia M, Bauchwitz RP. Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 2005; 49:1053-66. [PMID: 16054174 DOI: 10.1016/j.neuropharm.2005.06.004] [Citation(s) in RCA: 402] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 05/31/2005] [Accepted: 06/07/2005] [Indexed: 11/18/2022]
Abstract
Fragile X Syndrome is the most common form of inherited mental retardation worldwide. A Fragile X mouse model, fmr1(tm1Cgr), with a disruption in the X-linked Fmr1 gene, has three substantial deficits observed in several strains: (1) sensitivity to audiogenic seizures (AGS), (2) tendency to spend significantly more time in the center of an open field, and (3) enlarged testes. Alterations in metabotropic glutamate receptor group I signaling were previously identified in the fmr1(tm1Cgr) mouse. In this study, we examined the effect of MPEP, an antagonist of the group I metabotropic glutamate receptor mGluR5, on audiogenic seizures and open field activity of fmr1(tm1Cgr) mice. Genetic analysis revealed synergistic reactions between fmr1(tm1Cgr) and inbred AGS alleles. In addition, AGS sensitivity due to the fmr1(tm1Cgr) allele was restricted during development. Examination of phenotypes combining mGluR5 inhibition and Fmr1 mutation indicated that absence of FMRP may affect mGluR5 signaling through indirect as well as direct pathways. All strains of fmr1(tm1Cgr) mice tested (FVB/NJ, C57BL/6J, and an F1 hybrid of the two) had a more excitable AGS pathway than wild-type, and consequently required more MPEP to achieve seizure suppression. At high doses of mGluR5 antagonists, a Fragile X specific tolerance (loss of drug activity) was observed. The tolerance effect could be overcome by a further increase in drug dose. In open field tests, MPEP reduced fmr1(tm1Cgr) center field behavior to one indistinguishable from wild-type. Therefore, mGluR5 antagonists were able to rescue two of the major phenotypes of the FX mouse. Modulation of mGluR5 signaling may allow amelioration of symptoms of Fragile X Syndrome.
Collapse
Affiliation(s)
- Q J Yan
- Department of Neurology, St. Luke's-Roosevelt Institute for Health Sciences, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
1192
|
Bagni C, Greenough WT. From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat Rev Neurosci 2005; 6:376-87. [PMID: 15861180 DOI: 10.1038/nrn1667] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mental retardation protein FMRP is involved in the transport of mRNAs and their translation at synapses. Patients with fragile X syndrome, in whom FMRP is absent or mutated, show deficits in learning and memory that might reflect impairments in the translational regulation of a subset of neuronal mRNAs. The study of FMRP provides important insights into the regulation and functions of local protein synthesis in the neuronal periphery, and increases our understanding of how these functions can produce specific effects at individual synapses.
Collapse
Affiliation(s)
- Claudia Bagni
- Dipartimento di Biologia, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma, Italy.
| | | |
Collapse
|
1193
|
Abstract
Advances in defining mechanisms of cortical development have been paralleled in recent years by an intense interest in translating these findings into greater insight of both childhood- and adult-onset cognitive and mental health disorders of developmental etiology. Successful integration of basic and clinical findings have been applied to monogenic disorders. The greater challenge lies in studying cortical development in the context of gene x environment interactions, which underlie the pathogenesis of the most common neurodevelopmental disorders. This can occur through an improved delineation of pathophysiological characteristics unique to specific complex disorders and the application of this information to the refinement of the most relevant model systems.
Collapse
Affiliation(s)
- Pat Levitt
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37203, USA.
| |
Collapse
|
1194
|
McBride SMJ, Choi CH, Wang Y, Liebelt D, Braunstein E, Ferreiro D, Sehgal A, Siwicki KK, Dockendorff TC, Nguyen HT, McDonald TV, Jongens TA. Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 2005; 45:753-64. [PMID: 15748850 DOI: 10.1016/j.neuron.2005.01.038] [Citation(s) in RCA: 367] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 12/07/2004] [Accepted: 01/25/2005] [Indexed: 12/19/2022]
Abstract
Fragile X syndrome is a leading heritable cause of mental retardation that results from the loss of FMR1 gene function. A Drosophila model for Fragile X syndrome, based on the loss of dfmr1 activity, exhibits phenotypes that bear similarity to Fragile X-related symptoms. Herein, we demonstrate that treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium can rescue courtship and mushroom body defects observed in these flies. Furthermore, we demonstrate that dfmr1 mutants display cognitive deficits in experience-dependent modification of courtship behavior, and treatment with mGluR antagonists or lithium restores these memory defects. These findings implicate enhanced mGluR signaling as the underlying cause of the cognitive, as well as some of the behavioral and neuronal, phenotypes observed in the Drosophila Fragile X model. They also raise the possibility that compounds having similar effects on metabotropic glutamate receptors may ameliorate cognitive and behavioral defects observed in Fragile X patients.
Collapse
Affiliation(s)
- Sean M J McBride
- Section of Molecular Cardiology, Department of Medicine, Medical Scientist Training Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1195
|
Abstract
Fragile X syndrome is the most common heritable cause of mental retardation. Previous work has suggested that overactive signaling by group I metabotropic glutamate receptors (mGluRs) may be a mechanism underlying many of the disease symptoms. As a test of this theory, McBride et al. show that in a Drosophila model for Fragile X syndrome, treatment with mGluR antagonists can rescue short-term memory, courtship, and mushroom body defects.
Collapse
Affiliation(s)
- Gül Dölen
- Howard Hughes Medical Institute, The Picower Center for Learning and Memory, Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
1196
|
Castets M, Schaeffer C, Bechara E, Schenck A, Khandjian EW, Luche S, Moine H, Rabilloud T, Mandel JL, Bardoni B. FMRP interferes with the Rac1 pathway and controls actin cytoskeleton dynamics in murine fibroblasts. Hum Mol Genet 2005; 14:835-44. [PMID: 15703194 DOI: 10.1093/hmg/ddi077] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fragile X syndrome, the most common form of inherited mental retardation, is caused by absence of FMRP, an RNA-binding protein implicated in regulation of mRNA translation and/or transport. We have previously shown that dFMR1, the Drosophila ortholog of FMRP, is genetically linked to the dRac1 GTPase, a key player in actin cytoskeleton remodeling. Here, we demonstrate that FMRP and the Rac1 pathway are connected in a model of murine fibroblasts. We show that Rac1 activation induces relocalization of four FMRP partners to actin ring areas. Moreover, Rac1-induced actin remodeling is altered in fibroblasts lacking FMRP or carrying a point-mutation in the KH1 or in the KH2 RNA-binding domain. In absence of wild-type FMRP, we found that phospho-ADF/Cofilin (P-Cofilin) level, a major mediator of Rac1 signaling, is lowered, whereas the level of protein phosphatase 2A catalytic subunit (PP2Ac), a P-Cofilin phosphatase, is increased. We show that FMRP binds with high affinity to the 5'-UTR of pp2acbeta mRNA and is thus a likely negative regulator of its translation. The molecular mechanism unraveled here points to a role for FMRP in modulation of actin dynamics, which is a key process in morphogenesis of dendritic spines, synaptic structures abnormally developed in Fragile X syndrome patient's brain.
Collapse
Affiliation(s)
- Marie Castets
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1197
|
Aschrafi A, Cunningham BA, Edelman GM, Vanderklish PW. The fragile X mental retardation protein and group I metabotropic glutamate receptors regulate levels of mRNA granules in brain. Proc Natl Acad Sci U S A 2005; 102:2180-5. [PMID: 15684045 PMCID: PMC548595 DOI: 10.1073/pnas.0409803102] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fragile X syndrome results from the transcriptional silencing of a gene, Fmr1, that codes for an mRNA-binding protein (fragile X mental retardation protein, FMRP) present in neuronal dendrites. FMRP can act as a translational suppressor, and its own translation in dendrites is regulated by group I metabotropic glutamate receptors (mGluRs). Multiple lines of evidence suggest that mGluR-induced translation is exaggerated in Fragile X syndrome because of a lack of translational inhibition normally provided by FMRP. We characterized the role of FMRP in the regulation of mRNA granules, which sediment as a heavy peak after polysomes on sucrose gradients. In WT mouse brain, FMRP distributed with polysomes and granules. EM and biochemical analyses suggested that the granule fraction itself contained clusters of polysomes. In Fmr1 knockout brain, we observed a significant decrease in the amount of mRNA granules relative to WT mice. This difference appeared to be due to a role of FMRP in regulating the activation of granules during mGluR-induced translation; in vivo administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine increased granule content in Fmr1 knockout mouse brain to levels comparable with those seen in WT brain. In accord with a role of mGluR5 in the regulation of ongoing translation in vivo, we observed that the phosphorylation of several initiation factors in response to application of the mGluR1/5 agonist S-3,5-dihydroxyphenylglycine in vitro was blocked by methyl-6-(phenylethynyl)pyridine. Together, these data suggest that although large, polysome-containing granules can form in the absence of FMRP, their use in response to mGluR-induced translation is exaggerated.
Collapse
Affiliation(s)
- Armaz Aschrafi
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, SBR-14, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
1198
|
de Moor CH, Meijer H, Lissenden S. Mechanisms of translational control by the 3' UTR in development and differentiation. Semin Cell Dev Biol 2005; 16:49-58. [PMID: 15659339 DOI: 10.1016/j.semcdb.2004.11.007] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Translational control plays a major role in early development, differentiation and the cell cycle. In this review, we focus on the four main mechanisms of translational control by 3' untranslated regions: 1. Cytoplasmic polyadenylation and deadenylation; 2. Recruitment of 4E binding proteins; 3. Regulation of ribosomal subunit binding; 4. Post-initiation repression by microRNAs. Proteins with conserved functions in translational control during development include cytoplasmic polyadenylation element binding proteins (CPEB/Orb), Pumilio, Bruno, Fragile X mental retardation protein and RNA helicases. The translational regulation of the mRNAs encoding cyclin B1, Oskar, Nanos, Male specific lethal 2 (Msl-2), lipoxygenase and Lin-14 is discussed.
Collapse
Affiliation(s)
- Cornelia H de Moor
- Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | |
Collapse
|
1199
|
Abstract
Fragile X syndrome (FraX) is the most common inherited mental retardation disease. It is caused by mutation of the fragile X mental retardation 1 (fmr1) gene. The FMR1 protein (FMRP) is a widely expressed RNA-binding translational regulator with reportedly hundreds of potential targets. Recent work has focused on putative roles of FMRP in regulating the development and plasticity of neuronal synaptic connections. The newest animal model of FraX, the fruit fly Drosophila, has revealed several novel mechanistic insights into the disease. This review focuses on Drosophila FMRP as (i) a negative regulator of translation via noncoding RNA, including microRNA and adaptor BC1 RNA-mediated silencing mechanisms; (ii) a negative regulator of microtubule cytoskeleton stability; and (iii) a negative regulator of neuronal architectural complexity.
Collapse
Affiliation(s)
- Yong Q Zhang
- Department of Biological Sciences, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | | |
Collapse
|
1200
|
Halpain S, Spencer K, Graber S. Dynamics and pathology of dendritic spines. PROGRESS IN BRAIN RESEARCH 2005; 147:29-37. [PMID: 15581695 DOI: 10.1016/s0079-6123(04)47003-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dendritic spines are key players in information processing in the brain. Changes in spine shape and wholesale spine turnover provide mechanisms for modifying existing synaptic connections and altering neuronal connectivity. Although neuronal cell death in acute and chronic neurodegenerative diseases is clearly an important factor in decline of cognitive or motor function, loss of dendritic spines, in the absence of cell death, may also contribute to impaired brain function in these diseases, as well as in psychiatric disorders and aging. Because spines can function in neuroprotection in vitro, advances toward a molecular understanding of spine maintenance might one day aid in the design of therapies to minimize neurological damage following excitotoxic injury. In addition, progress in defining the biochemical basis of spine development and stabilization may yield insights into mental retardation and psychiatric disorders.
Collapse
Affiliation(s)
- Shelley Halpain
- The Scripps Research Institute, Department of Cell Biology and Institute for Childhood and Neglected Diseases, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|