1201
|
Decker LL, Klaman LD, Thorley-Lawson DA. Detection of the latent form of Epstein-Barr virus DNA in the peripheral blood of healthy individuals. J Virol 1996; 70:3286-9. [PMID: 8627812 PMCID: PMC190195 DOI: 10.1128/jvi.70.5.3286-3289.1996] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Epstein-Barr virus infects resting B cells in vitro and activates them to continuously proliferating lymphoblasts. Activation is essential for the virus to convert its linear genome to the covalently closed circular episomal form in which it persists in proliferating cells. However, in vivo, Epstein-Barr virus persists in resting B cells. We found that in these cells also the virus is present as an episome, suggesting that the cells must, at some time, have been activated and then returned to a resting state. This is the first direct demonstration, for any herpesvirus, of this form of the viral genome in normal persistently infected tissue. Since no linear viral DNA was detected, we estimate that fewer than 1 in 40 cells replicates the virus in the peripheral blood of healthy donors.
Collapse
Affiliation(s)
- L L Decker
- Department of Pathology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
1202
|
Abstract
Recent experiments demonstrate that a much broader range of B cells harbor Epstein-Barr virus (EBV) in vivo than was previously expected from in vitro studies. In this review it is argued that EBV persists in vivo by integrating its biology with that of the normal B cells within which it resides, and that the B cell provides all the environments necessary for EBV to maintain its life cycle.
Collapse
Affiliation(s)
- D A Thorley-Lawson
- Dept of Pathology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | |
Collapse
|
1203
|
Norimura T, Nomoto S, Katsuki M, Gondo Y, Kondo S. p53-dependent apoptosis suppresses radiation-induced teratogenesis. Nat Med 1996; 2:577-80. [PMID: 8616719 DOI: 10.1038/nm0596-577] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
About half of human conceptions are estimated not to be implanted in the uterus, resulting in unrecognizable spontaneous abortions, and about 5% of human births have a recognizable malformation. In order to find clues to the mechanisms of malformation and abortion, we compared the incidences of radiation-induced malformations and abortions in p53 null (p53-/-) and wild-type (p53+/+) mice. After X-irradiation with 2 Gy on day 9.5 of gestation, p53-/- mice showed a 70% incidence of anomalies and a 7% incidence of deaths, whereas p53+/+ mice had a 20% incidence of anomalies and a 60% incidence of deaths. Similar results were obtained after irradiation on day 3.5 of gestation. This reciprocal relationship of radiosensitivity to anomalies and to embryonic or fetal lethality supports the notion that embryonic or fetal tissues have a p53-dependent "guardian" of the tissue that aborts cells bearing radiation-induced teratogenic DNA damage. In fact, after X-irradiation, the number of cells with apoptotic DNA fragments was greatly increased in tissues of the p53+/+ fetuses but not in those of the p53-/- fetuses.
Collapse
Affiliation(s)
- T Norimura
- Department of Radiation Biology & Health, School of Medicine, University of Occupational & Environmental Health, Kitakyushu, Japan
| | | | | | | | | |
Collapse
|
1204
|
Desdouets C, Ory C, Matesic G, Soussi T, Bréchot C, Sobczak-Thépot J. ATF/CREB site mediated transcriptional activation and p53 dependent repression of the cyclin A promoter. FEBS Lett 1996; 385:34-8. [PMID: 8641461 DOI: 10.1016/0014-5793(96)00330-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cyclin A is a pivotal regulatory protein which, in mammalian cells, is involved in the S phase of the cell cycle. Transcription of the human cyclin A gene is cell cycle regulated through tight control of its promoter. We have previously shown that the ATF/CREB site, present in the cyclin A promoter, mediates transcriptional regulation by cAMP responsive element binding proteins. The main goal of the present study was to investigate whether this site is involved in transcriptional regulation of the gene. We have constructed stable NIH-3T3 cell lines that express the luciferase reporter gene under the control of normal or mutated versions of the cyclin A promoter. We show that the ATF/CREB is required to achieve maximal levels of transcription from the cyclin A promoter starting in late G1. We also show that down-regulation of the cyclin A promoter by p53 does not implicate a direct binding of p53 to its cognate consensus sequence but occurs probably by interference with trans-activating factors. This result suggests that p53 can interfere with transcription of the cyclin A gene, in the absence of a TATA sequence in the promoter.
Collapse
|
1205
|
Sadoul R, Quiquerez AL, Martinou I, Fernandez PA, Martinou JC. p53 protein in sympathetic neurons: cytoplasmic localization and no apparent function in apoptosis. J Neurosci Res 1996; 43:594-601. [PMID: 8833094 DOI: 10.1002/(sici)1097-4547(19960301)43:5<594::aid-jnr9>3.0.co;2-d] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The p53 tumour suppressor gene plays a major role in controlling cell cycle and apoptosis in many different cell types. Here we have examined the status and the potential apoptosis inducing activity of p53 in sympathetic neurons. The p53 protein is expressed in rat sympathetic neurons cultured in the presence of NGF. The protein is not upregulated when these neurons are induced to die upon NGF deprivation. Over-expression of wild-type human p53 in neurons cultured in the presence of NGF does not trigger apoptosis nor does it accelerate apoptosis when the neurons are deprived of NGF. Finally endogenous p53 expression is not necessary for neuronal cell death triggered by NGF deprivation since neurons prepared from p53 knockout mice undergo normal cell death upon NGF deprivation. Our results suggest that p53 may have an unknown function in post-mitotic neurons which is distinct from its well described roles in apoptosis or cell cycle control.
Collapse
Affiliation(s)
- R Sadoul
- Department of Neurobiology, Glaxo Institute for Molecular Biology, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
1206
|
Hale AJ, Smith CA, Sutherland LC, Stoneman VE, Longthorne VL, Culhane AC, Williams GT. Apoptosis: molecular regulation of cell death. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:1-26. [PMID: 8617251 DOI: 10.1111/j.1432-1033.1996.00001.x] [Citation(s) in RCA: 425] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The field of apoptosis is unusual in several respects. Firstly, its general importance has been widely recognised only in the past few years and its surprising significance is still being evaluated in a number of areas of biology. Secondly, although apoptosis is now accepted as a critical element in the repertoire of potential cellular responses, the picture of the intra-cellular processes involved is probably still incomplete, not just in its details, but also in the basic outline of the process as a whole. It is therefore a very interesting and active area at present and is likely to progress rapidly in the next two or three years. This review emphasises recent work on the molecular mechanisms of apoptosis and, in particular, on the intracellular interactions which control this process. This latter area is of crucial importance since dysfunction of the normal control machinery is likely to have serious pathological consequences, probably including oncogenesis, autoimmunity and degenerative disease. The genetic analysis of programmed cell death during the development of the nematode Caenorhabditis elegans has proved very useful in identifying important events in the cell death programme. Recently defined genetic connections between C. elegans cell death and mammalian apoptosis have emphasised the value of this system as a model for cell death in mammalian cells, which, inevitably, is more complex. The signals inducing apoptosis are very varied and the same signals can induce differentiation and proliferation in other situations. However, some pathways appear to be of particular significance in the control of cell death; recent analysis of the apoptosis induced through the cell-surface Fas receptor has been especially important for immunology. Two gene families are dealt with in particular detail because of their likely importance in apoptosis control. These are, first, the genes encoding the interleukin-1 beta-converting enzyme family of cysteine proteases and, second, those related to the proto-oncogene bcl-2. Both of these families are homologous to cell death genes in C. elegans. In mammalian cells the number of members of both families which have been identified is growing rapidly and considerable effort is being directed towards establishing the roles played by each member and the ways in which they interact to regulate apoptosis. Other genes with established roles in the regulation of proliferation and differentiation are also important in controlling apoptosis. Several of these are known proto-oncogenes, e.g. c-myc, or tumour suppressors, e.g. p53, an observation which is consistent with the importance of defective apoptosis in the development of cancer. Viral manipulation of the apoptosis of host cells frequently involves interactions with these cellular proteins. Finally, the biochemistry of the closely controlled cellular self-destruction which ensues when the apoptosis programme has been engaged is also very important. The biochemical changes involved in inducing phagocytosis of the apoptotic cell, for example, allow the process to be neatly integrated within the tissues, under physiological conditions. Molecular defects in this area too may have important pathological consequences.
Collapse
Affiliation(s)
- A J Hale
- Biological Sciences Department, Keele University, Staffordshire, UK
| | | | | | | | | | | | | |
Collapse
|
1207
|
Abstract
The capacity for malignant growth is acquired by the stepwise accumulation of defects in specific genes regulating cell growth and tissue homeostasis. Although several hundred genes are known to control growth, molecular genetic studies in cancer show that few of these are consistently involved in the natural history of human cancer, and those typically in only certain types of malignancy. Prospects for development of molecular-based diagnostic and therapeutic strategies with widespread application did not look promising, until it was realized that the p53 tumor suppressor gene was defective in approximately half of all malignancies. This discovery generated research efforts of unparalleled intensity to determine how p53 functions at the molecular level, and how to apply this knowledge to clinical ends.
Collapse
Affiliation(s)
- D Sidransky
- Johns Hopkins University School of Medicine, Department of Otolaryngology, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|
1208
|
Affiliation(s)
- D S Latchman
- Department of Molecular Pathology, University College London Medical School, United Kingdom
| |
Collapse
|
1209
|
Abstract
Carcinogenesis is considered to require an initiating event that results in an irreversible genetic change in a subpopulation of cells. Based on the available evidence, it seems likely that apoptosis may act to attenuate this process by causing the deletion of genetically damaged cells from the host organism. Nevertheless, the existence of an active pathway leading to apoptotic cell death may be a double-edged sword, simply because it can be overcome. Some cells may exhibit preexisting genetic or epigenetic insensitivity to induction of apoptosis. Surviving cells may contain sub- lethal levels of DNA damage and be induced to proliferate as an indirect result of the carcinogen-induced apoptotic cell death of surrounding tissue. This process would facilitate the acquisition mutations in the genome, possibly resulting in further insensitivity to apoptosis through activation of the bcl-2 oncogene or inactivation of the p53 tumor suppressor gene. In this context, the propensity of a cell to undergo apoptosis could be viewed as a selection pressure that a tumor cell must overcome. For neoplastic growth to occur, an imbalance between proliferation and apoptosis must be established such that cell growth predominates. Genetic mutations or epigenetic factors that diminish the propensity of a cell to undergo apoptosis may therefore confer on that cell a growth advantage.
Collapse
Affiliation(s)
- F C Manning
- Department of Pharmacology, George Washington University Medical Center, Washington, D.C. 20037, USA
| | | |
Collapse
|
1210
|
Reed JC, Miyashita T, Krajewski S, Takayama S, Aime-Sempe C, Kitada S, Sato T, Wang HG, Harigai M, Hanada M, Krajewska M, Kochel K, Millan J, Kobayashi H. Bcl-2 family proteins and the regulation of programmed cell death in leukemia and lymphoma. Cancer Treat Res 1996; 84:31-72. [PMID: 8724625 DOI: 10.1007/978-1-4613-1261-1_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- J C Reed
- La Jolla Cancer Research Foundation, Oncogene & Tumor Suppressor Gene Program, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1211
|
Holbrook NJ, Liu Y, Fornace AJ. Signaling events controlling the molecular response to genotoxic stress. EXS 1996; 77:273-88. [PMID: 8856980 DOI: 10.1007/978-3-0348-9088-5_18] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recently, much progress has been made in defining the signal transduction pathways mediating the cellular response to genotoxic stress. Multiple pathways involving several distinct MAP kinases (ERK, JNK/SAPK, and p38/HOG1) as well as the tumor suppressor protein p53 contribute to the response; the various pathways being differentially activated by particular genotoxic agents. Although both DNA damage and extranuclear events are important in initiating the response, recent evidence suggests the response is controlled primarily through events occurring at the plasma membrane, overlapping significantly with those important in initiating mitogenic responses. Attenuation of the responses appears to be largely controlled through feedback mechanisms involving gene products produced during the activation process.
Collapse
Affiliation(s)
- N J Holbrook
- Gene Expression and Aging Section, National Institute on Aging, Baltimore, MD 21244, USA
| | | | | |
Collapse
|
1212
|
Moss DJ, Schmidt C, Elliott S, Suhrbier A, Burrows S, Khanna R. Strategies involved in developing an effective vaccine for EBV-associated diseases. Adv Cancer Res 1996; 69:213-45. [PMID: 8791683 DOI: 10.1016/s0065-230x(08)60864-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D J Moss
- The Queensland Institute of Medical Research, The Bancroft Centre, Herston, Australia
| | | | | | | | | | | |
Collapse
|
1213
|
Reed JC, Miyashita T, Takayama S, Wang HG, Sato T, Krajewski S, Aimé-Sempé C, Bodrug S, Kitada S, Hanada M. BCL-2 family proteins: Regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J Cell Biochem 1996. [DOI: 10.1002/(sici)1097-4644(19960101)60:1<23::aid-jcb5>3.0.co;2-5] [Citation(s) in RCA: 332] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
1214
|
Reed JC, Miyashita T, Takayama S, Wang HG, Sato T, Krajewski S, Aimé-Sempé C, Bodrug S, Kitada S, Hanada M. BCL-2 family proteins: regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J Cell Biochem 1996; 60:23-32. [PMID: 8825412 DOI: 10.1002/(sici)1097-4644(19960101)60:1%3c23::aid-jcb5%3e3.0.co;2-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The BCL-2 gene was first discovered because of its involvement in the t(14;18) chromosomal translocations commonly found in lymphomas, which result in deregulation of BCL-2 gene expression and cause inappropriately high levels of Bcl-2 protein production. Expression of the BCL-2 gene can also become altered in human cancers through other mechanisms, including loss of the p53 tumor suppressor which normally functions as a repressor of BCL-2 gene expression in some tissues. Bcl-2 is a blocker of programmed cell death and apoptosis that contributes to neoplastic cell expansion by preventing cell turnover caused by physiological cell death mechanisms, as opposed to accelerating rates of cell division. Overproduction of the Bcl-2 protein also prevents cell death induced by nearly all cytotoxic anticancer drugs and radiation, thus contributing to treatment failures in patients with some types of cancer. Several homologs of Bcl-2 have recently been discovered, some of which function as inhibitors of cell death and others as promoters of apoptosis that oppose the actions of the Bcl-2 protein. Many of these Bcl-2 family proteins can interact through formation of homo- and heterotypic dimers. In addition, several nonhomologous proteins have been identified that bind to Bcl-2 and that can modulate apoptosis. These protein-protein interactions may eventual serve as targets for pharmacologically manipulating the physiological cell death pathway for treatment of cancer and several other diseases.
Collapse
Affiliation(s)
- J C Reed
- La Jolla Cancer Research Foundation, Cancer Research Center, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1215
|
Abstract
The retinoblastoma gene (Rb) was the first tumor suppressor gene to be cloned [Dryja et al., 1986; Friend et al., 1986; Lee et al., 1987], and, as a consequence, has been studied intensively within the context of cell cycle regulation and oncogenesis. However, a number of recent findings indicate that the retinoblastoma gene product (pRb) likely plays an essential role not only in controlling entry into the cell cycle, but also in the terminal differentiation of a number of different cell types [Lee et al., 1994; Gu et al., 1993]. In particular, the phenotype of the Rb nullizygous mice, created by a number of groups using homologous recombination [Jacks et al., 1992: Clarke et al., 1992; Lee et al., 1992], indicates that pRb is essential for normal development of the nervous and hematopoietic systems and may even function to regulate apoptosis [Haas-Kogan et al., 1995]. Although this paper briefly reviews the traditional role of pRB in regulation of cellular proliferation, we focus on the role of pRB in neuronal development and apoptosis. Recent reviews have been published on the role of pRb in cell cycle and transcriptional regulation [Hamel et al., 1992; Cobrinik et al., 1992; Kouzarides, 1993; Hollingsworth et al., 1993; Helin and Harlow, 1993; Sherr, 1994], as well as the relationship between pRb and p53 [Picksley and Lane, 1994; White, 1994].
Collapse
Affiliation(s)
- R S Slack
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
1216
|
Hurd C, Khattree N, Alban P, Nag K, Jhanwar SC, Dinda S, Moudgil VK. Hormonal regulation of the p53 tumor suppressor protein in T47D human breast carcinoma cell line. J Biol Chem 1995; 270:28507-10. [PMID: 7499360 DOI: 10.1074/jbc.270.48.28507] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Under normal culturing conditions, the T47D human breast cancer cell line expresses progesterone receptor constitutively and is responsive to estrogen. Because the tumor suppressor protein p53 plays a central role in determining genetic stability and cell proliferation, we have examined the effects of 17 beta-estradiol, the synthetic progestin R5020, and the antiprogestin RU486 on the levels of this protein in T47D cells. Western blot analysis of cellular extracts, performed with a monoclonal antibody capable of quantitatively supershifting a specific p53-p53 response element complex in a gel mobility shift assay, detected a single immunoreactive band representing p53. When cells were grown for 4-5 days in culture medium containing charcoal-treated fetal calf serum, p53 levels declined to 10% of the level seen in the control (no charcoal treatment) group. Supplementation of culture medium containing charcoal-treated calf serum with 0.1-1 nM 17 beta-estradiol restored p53 to its normal levels. A 4-day treatment of cells with R5020 or RU486 lowered the p53 levels in cells grown in normal culturing conditions to 15 and 30% of control levels, respectively. R5020 and RU486 treatments also caused down-regulation and/or hyperphosphorylation of the progesterone receptor, which correlated with the down-regulation of p53. These observations by estradiol while R5020 down-regulates this protein. Since estradiol is known to promote cell proliferation, the induction of p53 observed in this study leads us to propose that estradiol stimulates p53 to regulate proliferation of T47D cells in culture.
Collapse
Affiliation(s)
- C Hurd
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309-4401, USA
| | | | | | | | | | | | | |
Collapse
|
1217
|
Abstract
Apoptosis is a mode of cell death in which the cell plays an active role in its own demise. The study of neural apoptosis, the identification of genes controlling apoptosis, and the examination of the mechanisms by which these genes achieve their effects have assumed increasing importance over the past few years. This is because (1) neural apoptosis occurs not only in development, but also in pathophysiological states such as stroke, glutamate toxicity, and beta-amyloid peptide toxicity; (2) genes that control apoptotic cell death, such as bcl-2, p35, p53, and p75NTR, also modulate necrotic neural death in some cases; (3) the emerging mechanisms by which these genes control apoptosis may be relevant for understanding neurodegenerative processes, and for the design of therapeutic agents; and (4) the findings that the cell plays an active role in its own demise, and that specific gene products are involved, suggest that therapeutic intervention may be feasible.
Collapse
Affiliation(s)
- D E Bredesen
- Program on Aging, La Jolla Cancer Research Foundation, CA 92037, USA
| |
Collapse
|
1218
|
Banerjee S, Livanos E, Vos JM. Therapeutic gene delivery in human B-lymphoblastoid cells by engineered non-transforming infectious Epstein-Barr virus. Nat Med 1995; 1:1303-8. [PMID: 7489413 DOI: 10.1038/nm1295-1303] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The B-lymphotrophic human herpes Epstein-Barr virus (EBV) is a 160-kilobase double-stranded DNA episomal virus carried in a persistent asymptomatic state by more than 90% of the worldwide adult population. We engineered a helper-dependent mini-EBV, with the minimal cis-EBV elements for episomal replication, viral amplification and packaging, for use as a gene delivery system. The therapeutic potential of this system was established by stably transducing B-lymphoblastoid cells from a Fanconi anaemia group C (FA-C) patient with a mini-EBV constitutively expressing the normal FACC cDNA and showing in vitro correction of the FA phenotype. In the absence of selective pressure, episomal expression persisted with a half-life of 30 days in actively growing transduced cells, indicating a retention rate of 98% expression per cell doubling. This work demonstrates the generation of an infectious non-transforming viral vector that can potentially deliver large therapeutic genes efficiently and selectively into human B cells.
Collapse
Affiliation(s)
- S Banerjee
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 27599-7295, USA
| | | | | |
Collapse
|
1219
|
Abstract
Epstein-Barr virus achieves its ubiquitous and uniform epidemiological distribution by a dual strategy of latency to guarantee lifelong persistence and intermittent replication to guarantee transmission. These two functions appear to dictate residence in different cell types: latency in B lymphocytes and replication in epithelial cells. Both of these cell compartments are potential sites for EBV-associated malignancies.
Collapse
Affiliation(s)
- C W Schmidt
- Queensland Institute of Medical Research, The Bancroft Centre, Brisbane, Australia
| | | |
Collapse
|
1220
|
Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995; 378:203-6. [PMID: 7477326 DOI: 10.1038/378203a0] [Citation(s) in RCA: 1106] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The gene p53 encodes a transcriptional activator of genes involved in growth arrest, DNA repair and apoptosis. Loss of p53 function contributes to tumour development in vivo. The transcriptional activation function of p53 is inactivated by interaction with the mdm2 gene product. Amplification of mdm2 has been observed in 36% of human sarcomas, indicating that it may represent an alternative mechanism of preventing p53 function in tumour development. To study mdm2 function in vivo, we generated an mdm2 null allele by homologous recombination. Mdm2 null mice are not viable, and further analysis revealed embryonic lethality around implantation. To examine the importance of the interaction of MDM2 with p53 in vivo, we crossed mice heterozygous for mdm2 and p53 and obtained progeny homozygous for both p53 and mdm2 null alleles. Rescue of the mdm2-/- lethality in a p53 null background suggests that a critical in vivo function of MDM2 is the negative regulation of p53 activity.
Collapse
Affiliation(s)
- R Montes de Oca Luna
- Department of Molecular Genetics, University of Texas, M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | |
Collapse
|
1221
|
Miyashita T, Kitada S, Krajewski S, Horne WA, Delia D, Reed JC. Overexpression of the Bcl-2 protein increases the half-life of p21Bax. J Biol Chem 1995; 270:26049-52. [PMID: 7592801 DOI: 10.1074/jbc.270.44.26049] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bcl-2 and Bax are homologous proteins which can heterodimerize with each other. These proteins have opposing effects on cell survival when overexpressed in cells, with Bcl-2 blocking and Bax promoting apoptosis. Here we demonstrate that gene transfer-mediated elevations in Bcl-2 protein levels result in a marked increase in the steady-state levels of endogenous p21Bax protein as determined by immunoblotting in the Jurkat T-cell and 697 pre-B-cell leukemia cell lines, but not in several other cell lines including CEM T-cell leukemia, 32D.3 myeloid progenitor, PC12 pheochromocytoma, and NIH-3T3 fibroblasts. Steady-state levels of p21Bax protein were also elevated in the lymph nodes of Bcl-2 transgenic mice in which a BCL-2 transgene is expressed at high levels in B-cells. Northern blot analysis of BCL-2-transfected and control-transfected Jurkat and 697 leukemia cells revealed no Bcl-2-induced alterations in the steady-state levels of BAX mRNAs. In contrast, L-[35S]methionine pulse-chase analysis indicated a marked increase in the half-life (t1/2) of the p21Bax protein in BCL-2-transfected 697 cells compared to control-transfected cells (t1/2 > 24 h versus approximately 4 h), whereas the rate of Bax degradation was unaltered in Bcl-2-transfected CEM cells. The results demonstrate that levels of the proapoptotic p21Bax protein can be post-translationally regulated by Bcl-2, probably in a tissue-specific fashion, and suggest the existence of a feedback mechanism that may help to maintain the ratio of Bcl-2 to Bax protein in physiologically appropriate ranges.
Collapse
Affiliation(s)
- T Miyashita
- La Jolla Cancer Research Foundation, California 92037, USA
| | | | | | | | | | | |
Collapse
|
1222
|
Nagele A. Poly(ADP-ribosyl)ation as a fail-safe, transcription-independent, suicide mechanism in acutely DNA-damaged cells: a hypothesis. RADIATION AND ENVIRONMENTAL BIOPHYSICS 1995; 34:251-254. [PMID: 8749064 DOI: 10.1007/bf01209751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP, EC 2.4.2.30) is an abundant nuclear protein that is highly conserved and constitutively expressed in all higher eukaryotic cells investigated. Today, after about two decades of intensive research, we have a fairly comprehensive picture of its remarkable enzymatic functions and of its molecular structure. Its physiological role, however, remains controversial. The present hypothesis attempts to reconcile the different findings. By extending an earlier hypothesis, it is proposed that poly(ADP-ribosyl)ation is primarily a mechanism to prevent survival of mutated, possibly apoptosis-incompetent, cells after acute DNA-damage. Recent reviews on PARP may be found in [1-4].
Collapse
Affiliation(s)
- A Nagele
- Strahlenbiologisches Institut, Ludwig-Maximilians-Universitaet Muenchen, Schillerstrasse 42, Muenchen, Germany
| |
Collapse
|
1223
|
Abstract
Mutation of the p53 gene is among the most common lesions in a variety of human tumors, including those of the central nervous system. In most instances, mutation of one p53 allele is followed by loss of the remaining wild-type allele, resulting in cells with a complete absence of functional wild-type p53 protein. However, in some situations, such as at initiation of spontaneously arising gliomas or as the germline configuration of patients with the Li-Fraumeni syndrome, cells clearly carry both wild-type and mutant p53 alleles. These observations lead to the hypothesis that p53 mutations can give rise to loss of tumor suppressor functions as well as to gain of oncogenic transformation capabilities. In this review, we define the types of mutations that occur in the p53 gene in various glial tumors, contrast that with the spectra described in other human tumor types, and discuss the biochemistry and physiology of the p53 protein and its ability to regulate and be regulated by other gene products. We use this information to propose roles for p53 in the initiation and progression of human gliomas.
Collapse
Affiliation(s)
- O Bögler
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla 92093-0660, USA
| | | | | | | |
Collapse
|
1224
|
Enoch T, Norbury C. Cellular responses to DNA damage: cell-cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biochem Sci 1995; 20:426-30. [PMID: 8533157 DOI: 10.1016/s0968-0004(00)89093-3] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
'Checkpoint' controls arrest the cell cycle after DNA damage, allowing repair to take place before mutations can be perpetuated. In multicellular organisms, DNA damage can also induce apoptotic cell death, protecting the organism at the expense of the individual cell. How does a cell 'choose' between cycle arrest and death? Analysis of two human tumour suppressor proteins, p53 and the ATM (ataxia-telangiectasia mutated) gene product, may provide some answers.
Collapse
Affiliation(s)
- T Enoch
- Harvard Medical School, Department of Genetics, Boston, MA 02115, USA
| | | |
Collapse
|
1225
|
Affiliation(s)
- A J Nataraj
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | |
Collapse
|
1226
|
Abstract
The tumor suppressor protein p53 is intimately involved in the cellular response to DNA damage, controlling cell cycle arrest, apoptosis and the transcriptional induction of DNA damage inducible genes. A transcriptional target of p53, Gadd45, was recently found to bind to PCNA, a component of DNA replication/repair complexes, thereby implicating Gadd45 in DNA metabolism. Using biochemical assays, a role for Gadd45 in excision repair in vitro has been demonstrated. Antisense experiments have also indicated an in vivo role for the GADD45 gene in UV-irradiation survival. These discoveries establish a link between p53 and DNA repair through Gadd45.
Collapse
Affiliation(s)
- Y Sanchez
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
1227
|
Stable binding of the eukaryotic acidic phosphoproteins to the ribosome is not an absolute requirement for in vivo protein synthesis. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49806-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|