1201
|
Park SH, Singh H, Appukuttan D, Jeong S, Choi YJ, Jung JH, Narumi I, Lim S. PprM, a Cold Shock Domain-Containing Protein from Deinococcus radiodurans, Confers Oxidative Stress Tolerance to Escherichia coli. Front Microbiol 2017; 7:2124. [PMID: 28119668 PMCID: PMC5222802 DOI: 10.3389/fmicb.2016.02124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/15/2016] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is a representative microorganism that is frequently used for industrial biotechnology; thus its cellular robustness should be enhanced for the widespread application of E. coli in biotechnology. Stress response genes from the extremely radioresistant bacterium Deinococcus radiodurans have been used to enhance the stress tolerance of E. coli. In the present study, we introduced the cold shock domain-containing protein PprM from D. radiodurans into E. coli and observed that the tolerance to hydrogen peroxide (H2O2) was significantly increased in recombinant strains (Ec-PprM). The overexpression of PprM in E. coli elevated the expression of some OxyR-dependent genes, which play important roles in oxidative stress tolerance. Particularly, mntH (manganese transporter) was activated by 9-fold in Ec-PprM, even in the absence of H2O2 stress, which induced a more than 2-fold increase in the Mn/Fe ratio compared with wild type. The reduced production of highly reactive hydroxyl radicals (·OH) and low protein carbonylation levels (a marker of oxidative damage) in Ec-PprM indicate that the increase in the Mn/Fe ratio contributes to the protection of cells from H2O2 stress. PprM also conferred H2O2 tolerance to E. coli in the absence of OxyR. We confirmed that the H2O2 tolerance of oxyR mutants reflected the activation of the ycgZ-ymgABC operon, whose expression is activated by H2O2 in an OxyR-independent manner. Thus, the results of the present study showed that PprM could be exploited to improve the robustness of E. coli.
Collapse
Affiliation(s)
- Sun-Ha Park
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Harinder Singh
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Deepti Appukuttan
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Sunwook Jeong
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Yong Jun Choi
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Jong-Hyun Jung
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Issay Narumi
- Radiation Microbiology Laboratory, Department of Life Sciences, Faculty of Life Sciences, Toyo University Gunma, Japan
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| |
Collapse
|
1202
|
Biological and Chemical Adaptation to Endogenous Hydrogen Peroxide Production in Streptococcus pneumoniae D39. mSphere 2017; 2:mSphere00291-16. [PMID: 28070562 PMCID: PMC5214746 DOI: 10.1128/msphere.00291-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/04/2016] [Indexed: 12/29/2022] Open
Abstract
Adaptation to endogenous oxidative stress is an integral aspect of Streptococcus pneumoniae colonization and virulence. In this work, we identify key transcriptomic and proteomic features of the pneumococcal endogenous oxidative stress response. The thiol peroxidase TpxD plays a critical role in adaptation to endogenous H2O2 and serves to limit protein sulfenylation of glycolytic, capsule, and nucleotide biosynthesis enzymes in S. pneumoniae. The catalase-negative, facultative anaerobe Streptococcus pneumoniae D39 is naturally resistant to hydrogen peroxide (H2O2) produced endogenously by pyruvate oxidase (SpxB). Here, we investigate the adaptive response to endogenously produced H2O2. We show that lactate oxidase, which converts lactate to pyruvate, positively impacts pyruvate flux through SpxB and that ΔlctO mutants produce significantly lower H2O2. In addition, both the SpxB pathway and a candidate pyruvate dehydrogenase complex (PDHC) pathway contribute to acetyl coenzyme A (acetyl-CoA) production during aerobic growth, and the pyruvate format lyase (PFL) pathway is the major acetyl-CoA pathway during anaerobic growth. Microarray analysis of the D39 strain cultured under aerobic versus strict anaerobic conditions shows upregulation of spxB, a gene encoding a rhodanese-like protein (locus tag spd0091), tpxD, sodA, piuB, piuD, and an Fe-S protein biogenesis operon under H2O2-producing conditions. Proteome profiling of H2O2-induced sulfenylation reveals that sulfenylation levels correlate with cellular H2O2 production, with endogenous sulfenylation of ≈50 proteins. Deletion of tpxD increases cellular sulfenylation 5-fold and has an inhibitory effect on ATP generation. Two major targets of protein sulfenylation are glyceraldehyde-3-phosphate dehydrogenase (GapA) and SpxB itself, but targets also include pyruvate kinase, LctO, AdhE, and acetate kinase (AckA). Sulfenylation of GapA is inhibitory, while the effect on SpxB activity is negligible. Strikingly, four enzymes of capsular polysaccharide biosynthesis are sulfenylated, as are enzymes associated with nucleotide biosynthesis via ribulose-5-phosphate. We propose that LctO/SpxB-generated H2O2 functions as a signaling molecule to downregulate capsule production and drive altered flux through sugar utilization pathways. IMPORTANCE Adaptation to endogenous oxidative stress is an integral aspect of Streptococcus pneumoniae colonization and virulence. In this work, we identify key transcriptomic and proteomic features of the pneumococcal endogenous oxidative stress response. The thiol peroxidase TpxD plays a critical role in adaptation to endogenous H2O2 and serves to limit protein sulfenylation of glycolytic, capsule, and nucleotide biosynthesis enzymes in S. pneumoniae.
Collapse
|
1203
|
Zhang J, Yao J, Peng S, Li X, Fang J. Securinine disturbs redox homeostasis and elicits oxidative stress-mediated apoptosis via targeting thioredoxin reductase. Biochim Biophys Acta Mol Basis Dis 2017; 1863:129-138. [DOI: 10.1016/j.bbadis.2016.10.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/28/2016] [Accepted: 10/20/2016] [Indexed: 12/30/2022]
|
1204
|
Zhu SY, Li XN, Sun XC, Lin J, Li W, Zhang C, Li JL. Biochemical characterization of the selenoproteome in Gallus gallus via bioinformatics analysis: structure–function relationships and interactions of binding molecules. Metallomics 2017; 9:124-131. [DOI: 10.1039/c6mt00254d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
1205
|
Varlamova EG, Cheremushkina IV. Contribution of mammalian selenocysteine-containing proteins to carcinogenesis. J Trace Elem Med Biol 2017; 39:76-85. [PMID: 27908428 DOI: 10.1016/j.jtemb.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Oxidative stress caused by a sharp growth of free radicals in the organism is a major cause underlying the occurrence of all kinds of malignant formations. Selenium is an important essential trace element found in selenoproteins in the form of selenocysteine, an amino acid differing from cysteine for the presence of selenium instead of sulfur and making such proteins highly active. To date the role of selenium has been extensively investigated through studying the functions of selenoproteins in carcinogenesis. Analysis of the obtained results clearly demonstrates that selenoproteins can act as oncosuppressors, but can also, on the contrary, favor the formation of malignant tumors.
Collapse
Affiliation(s)
- Elena Gennadyevna Varlamova
- Federal State Institution of Science Institute of Cell Biophysics, Russian Academy of Sciences, Moscow Region, Institutskaya st. 3, 142290, Pushchino, Russia.
| | - Irina Valentinovna Cheremushkina
- Federal State Educational Institution of Higher Education Voronezh State University of Engineering Technology, Prospect revolution st. 19, 394000, Voronezh, Russia.
| |
Collapse
|
1206
|
Araki K, Ushioda R, Kusano H, Tanaka R, Hatta T, Fukui K, Nagata K, Natsume T. A crosslinker-based identification of redox relay targets. Anal Biochem 2016; 520:22-26. [PMID: 28048978 DOI: 10.1016/j.ab.2016.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/16/2016] [Accepted: 12/30/2016] [Indexed: 12/23/2022]
Abstract
Thiol-based redox control is among the most important mechanisms for maintaining cellular redox homeostasis, with essential participation of cysteine thiols of oxidoreductases. To explore cellular redox regulatory networks, direct interactions among active cysteine thiols of oxidoreductases and their targets must be clarified. We applied a recently described thiol-ene crosslinking-based strategy, named divinyl sulfone (DVSF) method, enabling identification of new potential redox relay partners of the cytosolic oxidoreductases thioredoxin (TXN) and thioredoxin domain containing 17 (TXNDC17). Applying multiple methods, including classical substrate-trapping techniques, will increase understanding of redox regulatory mechanisms in cells.
Collapse
Affiliation(s)
- Kazutaka Araki
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan.
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| | - Hidewo Kusano
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Riko Tanaka
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | | | - Kazuhiko Fukui
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; Robotic Biology Institute, Inc., Tokyo 135-0064, Japan
| |
Collapse
|
1207
|
Sampath C, Rashid MR, Sang S, Ahmedna M. Green tea epigallocatechin 3-gallate alleviates hyperglycemia and reduces advanced glycation end products via nrf2 pathway in mice with high fat diet-induced obesity. Biomed Pharmacother 2016; 87:73-81. [PMID: 28040599 DOI: 10.1016/j.biopha.2016.12.082] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/22/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022] Open
Abstract
Epigallocatechin 3-gallate (EGCG) from green tea may reduce plasma glucose and alleviate complications of diabetes by attenuating advanced glycation end products (AGEs) formation. We hypothesized that EGCG would mitigate AGEs formation via activating the nuclear factor erythroid-2-related-factor-2 (Nrf2) pathway in a mouse model of high fat diet-induced obesity. Dietary EGCG was tested in C57BL/6 mice that were placed on a high-fat diet with or without ECGC for 17 weeks and compared to a control group placed on low-fat diet for the same period. Weight gain and fasting blood glucose were measured throughout the study duration. Supplementation of high fat diet with dietary EGCG significantly reduced weight gain, plasma glucose, insulin level, liver and kidney weight. EGCG administration also decreased the levels of AGEs in both plasma and liver while inhibiting the receptor for AGE (RAGE) expression of, activating Nrf2 and enhancing GSH/GSSG ratio compared to mice on high fat diet without added EGCG. This study demonstrated that EGCG has the potential to help control hyperglycemia, reduce weight, and alleviate diabetes complications.
Collapse
Affiliation(s)
- Chethan Sampath
- Department of Human Nutrition, College of HealthSciences, Qatar University, Doha, 2713, Qatar
| | - Muhammed Raihan Rashid
- Department of Human Nutrition, College of HealthSciences, Qatar University, Doha, 2713, Qatar
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, United States
| | - Mohamed Ahmedna
- Department of Human Nutrition, College of HealthSciences, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
1208
|
Lai T, Wang Y, Fan Y, Zhou Y, Bao Y, Zhou T. The response of growth and patulin production of postharvest pathogen Penicillium expansum to exogenous potassium phosphite treatment. Int J Food Microbiol 2016; 244:1-10. [PMID: 28042969 DOI: 10.1016/j.ijfoodmicro.2016.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/09/2016] [Accepted: 12/26/2016] [Indexed: 11/15/2022]
Abstract
In this study, the effects of exogenous potassium phosphite (Phi) on growth and patulin production of postharvest pathogen Penicillium expansum were assessed. The results indicated that P. expansum under 5mmol/L Phi stress presented obvious development retardation, yield reduction of patulin and lower infectivity to apple fruit. Meanwhile, expression analysis of 15 genes related to patulin biosynthesis suggested that Phi mainly affected the early steps of patulin synthetic route at transcriptional level. Furthermore, a global view of proteome and transcriptome alteration of P. expansum spores during 6h of Phi stress was evaluated by iTRAQ (isobaric tags for relative and absolute quantitation) and RNA-seq (RNA sequencing) approaches. A total of 582 differentially expressed proteins (DEPs) and 177 differentially expressed genes (DEGs) were acquired, most of which participated in carbohydrate metabolism, amino acid metabolism, lipid metabolism, genetic information processing and biosynthesis of secondary metabolites. Finally, 39 overlapped candidates were screened out through correlational analysis between iTRAQ and RNA-seq datasets. These findings will afford more precise and directional clues to explore the inhibitory mechanism of Phi on growth and patulin biosynthesis of P. expansum, and be beneficial to develop effective controlling approaches based on Phi.
Collapse
Affiliation(s)
- Tongfei Lai
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; Research Centre for Plant RNA Signaling, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| | - Ying Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Yaya Fan
- Research Centre for Plant RNA Signaling, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| | - Yingying Zhou
- Research Centre for Plant RNA Signaling, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| | - Ying Bao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| | - Ting Zhou
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
1209
|
High thioredoxin-1 levels in rheumatoid arthritis patients diminish binding and signalling of the monoclonal antibody Tregalizumab. Clin Transl Immunology 2016; 5:e121. [PMID: 28090323 PMCID: PMC5192061 DOI: 10.1038/cti.2016.69] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/21/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022] Open
Abstract
The humanized non-depleting anti-CD4 monoclonal antibody Tregalizumab (BT-061) is able to selectively activate the suppressive function of regulatory T cells and has been investigated up to phase IIb in clinical trials in patients suffering from rheumatoid arthritis (RA). A pharmacokinetic–pharmacodynamic model based on clinical data from RA and healthy volunteers, which used the cell surface CD4 downmodulation as marker of activity, confirmed a stronger effect in healthy volunteers compared with RA patients. We tried to understand this phenomenon and evaluated the influence of the small oxidoreductase thioredoxin-1 (Trx1). To counteract oxidative stress that is strongly associated with RA pathophysiology, the organism employs Trx1. Therefore, increased expression and secretion of Trx1 is found in the synovial fluid and plasma of RA patients. Moreover, the binding site of Tregalizumab is in close proximity to a disulphide bond in domain 2 (D2) of CD4, which is a known target for a reduction by oxidoreductase Trx1. With the experiments reported herein, we demonstrated that specific reduction of the D2 disulphide bond by Trx1 led to diminished binding of Tregalizumab to recombinant human soluble CD4 and membrane-bound CD4 on T cells. Moreover, we showed that this caused changes in the Tregalizumab-induced CD4 signalling pathway via the lymphocyte-specific protein tyrosine kinase p56Lck and CD4 downmodulation. In summary, we provide evidence that high Trx1 levels in RA patients compared with healthy subjects are a potential reason for diminished binding of Tregalizumab to CD4-positive T cells and offer an explanation for the observed decreased CD4 downmodulation in RA patients in comparison to healthy subjects.
Collapse
|
1210
|
Zhang J, Sonnenschein N, Pihl TPB, Pedersen KR, Jensen MK, Keasling JD. Engineering an NADPH/NADP + Redox Biosensor in Yeast. ACS Synth Biol 2016; 5:1546-1556. [PMID: 27419466 DOI: 10.1021/acssynbio.6b00135] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetically encoded biosensors have emerged as powerful tools for timely and precise in vivo evaluation of cellular metabolism. In particular, biosensors that can couple intercellular cues with downstream signaling responses are currently attracting major attention within health science and biotechnology. Still, there is a need for bioprospecting and engineering of more biosensors to enable real-time monitoring of specific cellular states and controlling downstream actuation. In this study, we report the engineering and application of a transcription factor-based NADPH/NADP+ redox biosensor in the budding yeast Saccharomyces cerevisiae. Using the biosensor, we are able to monitor the cause of oxidative stress by chemical induction, and changes in NADPH/NADP+ ratios caused by genetic manipulations. Because of the regulatory potential of the biosensor, we also show that the biosensor can actuate upon NADPH deficiency by activation of NADPH regeneration. Finally, we couple the biosensor with an expression of dosage-sensitive genes (DSGs) and thereby create a novel tunable sensor-selector useful for synthetic selection of cells with higher NADPH/NADP+ ratios from mixed cell populations. We show that the combination of exploitation and rational engineering of native signaling components is applicable for diagnosis, regulation, and selection of cellular redox states.
Collapse
Affiliation(s)
- Jie Zhang
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Nikolaus Sonnenschein
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Thomas P. B. Pihl
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Kasper R. Pedersen
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Michael K. Jensen
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Jay D. Keasling
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
1211
|
MicroRNA-20a negatively regulates expression of NLRP3-inflammasome by targeting TXNIP in adjuvant-induced arthritis fibroblast-like synoviocytes. Joint Bone Spine 2016; 83:695-700. [DOI: 10.1016/j.jbspin.2015.10.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
|
1212
|
Allan KM, Loberg MA, Chepngeno J, Hurtig JE, Tripathi S, Kang MG, Allotey JK, Widdershins AH, Pilat JM, Sizek HJ, Murphy WJ, Naticchia MR, David JB, Morano KA, West JD. Trapping redox partnerships in oxidant-sensitive proteins with a small, thiol-reactive cross-linker. Free Radic Biol Med 2016; 101:356-366. [PMID: 27816612 PMCID: PMC5154803 DOI: 10.1016/j.freeradbiomed.2016.10.506] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/14/2016] [Accepted: 10/27/2016] [Indexed: 12/15/2022]
Abstract
A broad range of redox-regulated proteins undergo reversible disulfide bond formation on oxidation-prone cysteine residues. Heightened reactivity of the thiol groups in these cysteines also increases susceptibility to modification by organic electrophiles, a property that can be exploited in the study of redox networks. Here, we explored whether divinyl sulfone (DVSF), a thiol-reactive bifunctional electrophile, cross-links oxidant-sensitive proteins to their putative redox partners in cells. To test this idea, previously identified oxidant targets involved in oxidant defense (namely, peroxiredoxins, methionine sulfoxide reductases, sulfiredoxin, and glutathione peroxidases), metabolism, and proteostasis were monitored for cross-link formation following treatment of Saccharomyces cerevisiae with DVSF. Several proteins screened, including multiple oxidant defense proteins, underwent intermolecular and/or intramolecular cross-linking in response to DVSF. Specific redox-active cysteines within a subset of DVSF targets were found to influence cross-linking; in addition, DVSF-mediated cross-linking of its targets was impaired in cells first exposed to oxidants. Since cross-linking appeared to involve redox-active cysteines in these proteins, we examined whether potential redox partners became cross-linked to them upon DVSF treatment. Specifically, we found that several substrates of thioredoxins were cross-linked to the cytosolic thioredoxin Trx2 in cells treated with DVSF. However, other DVSF targets, like the peroxiredoxin Ahp1, principally formed intra-protein cross-links upon DVSF treatment. Moreover, additional protein targets, including several known to undergo S-glutathionylation, were conjugated via DVSF to glutathione. Our results indicate that DVSF is of potential use as a chemical tool for irreversibly trapping and discovering thiol-based redox partnerships within cells.
Collapse
Affiliation(s)
- Kristin M Allan
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Matthew A Loberg
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Juliet Chepngeno
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Jennifer E Hurtig
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Susmit Tripathi
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Min Goo Kang
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Jonathan K Allotey
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Afton H Widdershins
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Jennifer M Pilat
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Herbert J Sizek
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Wesley J Murphy
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Matthew R Naticchia
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Joseph B David
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Kevin A Morano
- Department of Microbiology & Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States.
| |
Collapse
|
1213
|
Vegge CS, Jansen van Rensburg MJ, Rasmussen JJ, Maiden MCJ, Johnsen LG, Danielsen M, MacIntyre S, Ingmer H, Kelly DJ. Glucose Metabolism via the Entner-Doudoroff Pathway in Campylobacter: A Rare Trait that Enhances Survival and Promotes Biofilm Formation in Some Isolates. Front Microbiol 2016; 7:1877. [PMID: 27920773 PMCID: PMC5118423 DOI: 10.3389/fmicb.2016.01877] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/08/2016] [Indexed: 01/01/2023] Open
Abstract
Isolates of the zoonotic pathogen Campylobacter are generally considered to be unable to metabolize glucose due to lack of key glycolytic enzymes. However, the Entner-Doudoroff (ED) pathway has been identified in Campylobacter jejuni subsp. doylei and a few C. coli isolates. A systematic search for ED pathway genes in a wide range of Campylobacter isolates and in the C. jejuni/coli PubMLST database revealed that 1.7% of >6,000 genomes encoded a complete ED pathway, including both C. jejuni and C. coli from diverse clinical, environmental and animal sources. In rich media, glucose significantly enhanced stationary phase survival of a set of ED-positive C. coli isolates. Unexpectedly, glucose massively promoted floating biofilm formation in some of these ED-positive isolates. Metabolic profiling by gas chromatography–mass spectrometry revealed distinct responses to glucose in a low biofilm strain (CV1257) compared to a high biofilm strain (B13117), consistent with preferential diversion of hexose-6-phosphate to polysaccharide in B13117. We conclude that while the ED pathway is rare amongst Campylobacter isolates causing human disease (the majority of which would be of agricultural origin), some glucose-utilizing isolates exhibit specific fitness advantages, including stationary-phase survival and biofilm production, highlighting key physiological benefits of this pathway in addition to energy conservation.
Collapse
Affiliation(s)
- Christina S Vegge
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Melissa J Jansen van Rensburg
- Department of Zoology, University of OxfordOxford, UK; NIHR Health Protection Research Unit in Gastrointestinal InfectionsOxford, UK
| | - Janus J Rasmussen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Martin C J Maiden
- Department of Zoology, University of OxfordOxford, UK; NIHR Health Protection Research Unit in Gastrointestinal InfectionsOxford, UK
| | | | | | - Sheila MacIntyre
- School of Biological Sciences, University of Reading Reading, UK
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield Sheffield, UK
| |
Collapse
|
1214
|
p53R2 regulates thioredoxin reductase activity through interaction with TrxR2. Biochem Biophys Res Commun 2016; 482:706-712. [PMID: 27866984 DOI: 10.1016/j.bbrc.2016.11.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/17/2016] [Indexed: 01/20/2023]
Abstract
Ribonucleotide reductase small subunit p53R2 is a member of the ribonucleotide reductase family that supplies dNTPs for nuclear and mitochondrial DNA replication and repair. Here, we have identified a mitochondrial thioredoxin reductase 2 (TrxR2) as a novel p53R2-binding protein. We demonstrated a direct interaction between the two, and observed that p53R2 stimulated the enzymatic activity of TrxR in vitro. Moreover, TrxR2 activity was significantly lower in p53R2 knockdown cells, and increased when p53R2 was overexpressed, effects that were independent of p53. Furthermore, p53R2 knockdown suppressed UV-induced TrxR activity. These findings suggest that p53R2 acts as a positive regulator of TrxR2 activity in mitochondria both under normal physiological conditions and during the cellular response to DNA damage.
Collapse
|
1215
|
Xiaobo C, Majidi M, Feng M, Shao R, Wang J, Zhao Y, Baladandayuthapani V, Song J, Fang B, Ji L, Mehran R, Roth JA. TUSC2(FUS1)-erlotinib Induced Vulnerabilities in Epidermal Growth Factor Receptor(EGFR) Wildtype Non-small Cell Lung Cancer(NSCLC) Targeted by the Repurposed Drug Auranofin. Sci Rep 2016; 6:35741. [PMID: 27845352 PMCID: PMC5109231 DOI: 10.1038/srep35741] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/30/2016] [Indexed: 12/30/2022] Open
Abstract
Expression of the TUSC2/FUS1 tumor suppressor gene in TUSC2 deficient EGFR wildtype lung cancer cells increased sensitivity to erlotinib. Microarray mRNA expression analysis of TUSC2 inducible lung cancer cells treated with erlotinib uncovered defects in the response to oxidative stress suggesting that increasing reactive oxygen species (ROS) would enhance therapeutic efficacy. Addition of the thioredoxin reductase 1 inhibitor (TXNRD1) auranofin (AF) to NSCLC cells treated with combination of TUSC2 forced expression with erlotinib increased tumor cell apoptosis and inhibited colony formation. TXNRD1 overexpression rescued tumors from AF-TUSC2-erlotinib induced apoptosis. Neutralizing ROS with nordihydroguaiaretic acid (NDGA) abrogated cell death induced by AF-TUSC2-erlotinib, indicating a regulatory role for ROS in the efficacy of the three drug combination. Isobologram-based statistical analysis of this combination demonstrated superior synergism, compared with each individual treatment at lower concentrations. In NSCLC tumor xenografts, tumor growth was markedly inhibited and animal survival was prolonged over controls by AF-TUSC2-erlotinib. Microarray mRNA expression analysis uncovered oxidative stress and DNA damage gene signatures significantly upregulated by AF-TUSC2-erlotinib compared to TUSC2-erlotinib. Pathway analysis showed the highest positive z-score for the NRF2-mediated oxidative stress response. Taken together these findings show that the combination of TUSC2-erlotinib induces additional novel vulnerabilities that can be targeted with AF.
Collapse
Affiliation(s)
- Cao Xiaobo
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA
| | - Mourad Majidi
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA
| | - Meng Feng
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA
| | - Ruping Shao
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinfomatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Zhao
- Department of Bioinfomatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Juhee Song
- Department of Biostatistics, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Bingliang Fang
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Ji
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA
| | - Reza Mehran
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA
| | - Jack A Roth
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
1216
|
Blacker TS, Duchen MR. Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med 2016; 100:53-65. [PMID: 27519271 PMCID: PMC5145803 DOI: 10.1016/j.freeradbiomed.2016.08.010] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 11/27/2022]
Abstract
The redox states of the NAD and NADP pyridine nucleotide pools play critical roles in defining the activity of energy producing pathways, in driving oxidative stress and in maintaining antioxidant defences. Broadly speaking, NAD is primarily engaged in regulating energy-producing catabolic processes, whilst NADP may be involved in both antioxidant defence and free radical generation. Defects in the balance of these pathways are associated with numerous diseases, from diabetes and neurodegenerative disease to heart disease and cancer. As such, a method to assess the abundance and redox state of these separate pools in living tissues would provide invaluable insight into the underlying pathophysiology. Experimentally, the intrinsic fluorescence of the reduced forms of both redox cofactors, NADH and NADPH, has been used for this purpose since the mid-twentieth century. In this review, we outline the modern implementation of these techniques for studying mitochondrial redox state in complex tissue preparations. As the fluorescence spectra of NADH and NADPH are indistinguishable, interpreting the signals resulting from their combined fluorescence, often labelled NAD(P)H, can be complex. We therefore discuss recent studies using fluorescence lifetime imaging microscopy (FLIM) which offer the potential to discriminate between the two separate pools. This technique provides increased metabolic information from cellular autofluorescence in biomedical investigations, offering biochemical insights into the changes in time-resolved NAD(P)H fluorescence signals observed in diseased tissues.
Collapse
Affiliation(s)
- Thomas S Blacker
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK; Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
1217
|
Song Z, Chen CP, Liu J, Wen X, Sun H, Yuan H. Design, synthesis, and biological evaluation of (2E)-(2-oxo-1, 2-dihydro-3 H -indol-3-ylidene)acetate derivatives as anti-proliferative agents through ROS-induced cell apoptosis. Eur J Med Chem 2016; 124:809-819. [DOI: 10.1016/j.ejmech.2016.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 02/05/2023]
|
1218
|
Dong R, Wang D, Wang X, Zhang K, Chen P, Yang CS, Zhang J. Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice. Redox Biol 2016; 10:221-232. [PMID: 27810737 PMCID: PMC5094413 DOI: 10.1016/j.redox.2016.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/16/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022] Open
Abstract
Selenium participates in the antioxidant defense mainly through a class of selenoproteins, including thioredoxin reductase. Epigallocatechin-3-gallate (EGCG) is the most abundant and biologically active catechin in green tea. Depending upon the dose and biological systems, EGCG may function either as an antioxidant or as an inducer of antioxidant defense via its pro-oxidant action or other unidentified mechanisms. By manipulating the selenium status, the present study investigated the interactions of EGCG with antioxidant defense systems including the thioredoxin system comprising of thioredoxin and thioredoxin reductase, the glutathione system comprising of glutathione and glutathione reductase coupled with glutaredoxin, and the Nrf2 system. In selenium-optimal mice, EGCG increased hepatic activities of thioredoxin reductase, glutathione reductase and glutaredoxin. These effects of EGCG appeared to be not due to overt pro-oxidant action because melatonin, a powerful antioxidant, did not influence the increase. However, in selenium-deficient mice, with low basal levels of thioredoxin reductase 1, the same dose of EGCG did not elevate the above-mentioned enzymes; intriguingly EGCG in turn activated hepatic Nrf2 response, leading to increased heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1 protein levels and thioredoxin activity. Overall, the present work reveals that EGCG is a robust inducer of the Nrf2 system only in selenium-deficient conditions. Under normal physiological conditions, in selenium-optimal mice, thioredoxin and glutathione systems serve as the first line defense systems against the stress induced by high doses of EGCG, sparing the activation of the Nrf2 system. EGCG increases hepatic activities of TrxR, GR and Grx in selenium-optimal mice. EGCG fails to manipulate the above-mentioned enzymes in selenium-deficient mice. EGCG in turn activates hepatic Nrf2 response in selenium-deficient mice. Selenium deficiency does not increase EGCG toxicity due to potent Nrf2 response.
Collapse
Affiliation(s)
- Ruixia Dong
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China; Department of Forestry and Technology, Lishui Vocational and Technical College, Lishui, Zhejiang, China
| | - Dongxu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China; International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaoxiao Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Ke Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Pingping Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China; International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
1219
|
Varlamova EG. The role of selenium and selenocysteine-containing proteins in the mammalian male reproductive system. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916040266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
1220
|
Gene bb0318 Is Critical for the Oxidative Stress Response and Infectivity of Borrelia burgdorferi. Infect Immun 2016; 84:3141-3151. [PMID: 27550932 DOI: 10.1128/iai.00430-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022] Open
Abstract
A greater understanding of the molecular mechanisms that Borrelia burgdorferi uses to survive during mammalian infection is critical for the development of novel diagnostic and therapeutic tools to improve the clinical management of Lyme disease. By use of an in vivo expression technology (IVET)-based approach to identify B. burgdorferi genes expressed in vivo, we discovered the bb0318 gene, which is thought to encode the ATPase component of a putative riboflavin ABC transport system. Riboflavin is a critical metabolite enabling all organisms to maintain redox homeostasis. B. burgdorferi appears to lack the metabolic capacity for de novo synthesis of riboflavin and so likely relies on scavenging riboflavin from the host environment. In this study, we sought to investigate the role of bb0318 in B. burgdorferi pathogenesis. No in vitro growth defect was observed for the Δbb0318 clone. However, the mutant spirochetes displayed reduced levels of survival when exposed to exogenous hydrogen peroxide or murine macrophages. Spirochetes lacking bb0318 were found to have a 100-fold-higher 50% infectious dose than spirochetes containing bb0318 In addition, at a high inoculum dose, bb0318 was found to be important for effective spirochete dissemination to deep tissues for as long as 3 weeks postinoculation and to be critical for B. burgdorferi infection of mouse hearts. Together, these data implicate bb0318 in the oxidative stress response of B. burgdorferi and indicate the contribution of bb0318 to B. burgdorferi mammalian infectivity.
Collapse
|
1221
|
Erol-Demirbilek M, Kilic N, Komurcu HF. Investigation of Epidermal Growth Factor, Tumor Necrosis Factor-alpha and Thioredoxin System in Rats Exposed to Cerebral Ischemia. REV ROMANA MED LAB 2016. [DOI: 10.1515/rrlm-2016-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background: Thioredoxin reductase (TrxR), epidermal growth factor (EGF) and tumor necrosis factor-α (TNF-α) have neuroprotective/neurotoxic effects in cerebral ischemia. We aimed to investigate the TrxR activity, EGF and TNF-α levels in cerebral ischemic, sham-operated and non-ischemic rat brains.
Methods: Sprague-Dawley rats divided into three groups. Rats in control group were not subjected to any of treatments and their brains were removed under anesthesia. Middle cerebral arters were exposed but not occluded for the sham-operated rats. Animals were subjected to permanent middle cerebral arter occlusion (MCAO) in MCAO-operated group. The rats were decapitated at 16 hours (h), 48 h and 96 h after sham operation and focal cerebral ischemia. TrxR activities, EGF and TNF-α levels were measured in ischemic and non-ischemic hemispheres for all groups.
Results: In group MCAO, TrxR activities were significantly low at 48 h in ischemic hemisphere in comparison to control. After the 48 h, a remarkable increase was observed at 96 h. EGF and TNF-α levels were substantially high at 96 h in group MCAO of ischemic brain.
Conclusion: TrxR activity was reduced by oxidative stress which was formed by ischemia. EGF levels increased to exhibit neurotrophic and neuroprotective effects. After ischemia, TNF-α levels increased as a response to the tissue damage. Further studies with a higher number of experimental subjects and shorter or longer periods such as from first 30 minutes up to 3 months may be more informative to show the time-dependent variations in TrxR, EGF and TNF-α in cerebral ischemic injury.
Collapse
Affiliation(s)
- Melike Erol-Demirbilek
- Department of Medical Biochemistry, Medical Faculty, Gazi University, 06500 Besevler, Ankara, Turkey Turkey
- Biotechnology Research Center, The Ministry of Food, Agriculture and Livestock, Field Crops Research Institute, Istanbul Yolu 5.km, Yenimahalle, Ankara, Turkey
| | - Nedret Kilic
- Department of Medical Biochemistry, Medical Faculty, Gazi University, 06500 Besevler, Ankara, Turkey
| | - Hatice Ferhan Komurcu
- Department of Neurology, Ankara Ataturk Training and Research Hospital, 06800 Bilkent, Ankara, Turkey
| |
Collapse
|
1222
|
Metcalfe C, Ramasubramoni A, Pula G, Harper MT, Mundell SJ, Coxon CH. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation. PLoS One 2016; 11:e0163006. [PMID: 27716777 PMCID: PMC5055343 DOI: 10.1371/journal.pone.0163006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/31/2016] [Indexed: 12/14/2022] Open
Abstract
Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents.
Collapse
Affiliation(s)
- Clive Metcalfe
- Oxford Molecular and Pathology Institute, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | - Anjana Ramasubramoni
- Oxford Molecular and Pathology Institute, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | - Giordano Pula
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Matthew T. Harper
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom
| | - Stuart J. Mundell
- Department of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
- * E-mail:
| | - Carmen H. Coxon
- Department of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| |
Collapse
|
1223
|
Apocynin and Nox2 regulate NF-κB by modifying thioredoxin-1 redox-state. Sci Rep 2016; 6:34581. [PMID: 27698473 PMCID: PMC5048297 DOI: 10.1038/srep34581] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/16/2016] [Indexed: 01/08/2023] Open
Abstract
The reactive-oxygen-species-(ROS)-generating-enzyme Nox2 is essential for leukocyte anti-microbial activity. However its role in cellular redox homeostasis and, consequently, in modulating intracellular signaling pathways remains unclear. Herein, we show Nox2 activation favors thioredoxin-1 (TRX-1)/p40phox interaction, which leads to exclusion of TRX-1 from the nucleus. In contrast, the genetic deficiency of Nox2 or its pharmacological inhibition with apocynin (APO) results in reductive stress after lipopolysaccharide-(LPS)-cell stimulation, which causes nuclear accumulation of TRX-1 and enhanced transcription of inflammatory mediators through nuclear-factor-(NF)-κB. The NF-κB overactivation is prevented by TRX-1 oxidation using inhibitors of thioredoxin reductase-1 (TrxR-1). The Nox2/TRX-1/NF-κB intracellular signaling pathway is involved in the pathophysiology of chronic granulomatous disease (CGD) and sepsis. In fact, TrxR-1 inhibition prevents nuclear accumulation of TRX-1 and LPS-stimulated hyperproduction of tumor-necrosis-factor-(TNF)-α by monocytes and neutrophils purified from blood of CGD patients, who have deficient Nox2 activity. TrxR-1 inhibitors, either lanthanum chloride (LaCl3) or auranofin (AUR), also increase survival rates of mice undergoing cecal-ligation-and-puncture-(CLP). Therefore, our results identify a hitherto unrecognized Nox2-mediated intracellular signaling pathway that contributes to hyperinflammation in CGD and in septic patients. Additionally, we suggest that TrxR-1 inhibitors could be potential drugs to treat patients with sepsis, particularly in those with CGD.
Collapse
|
1224
|
Abdel-Aleem GA, Khaleel EF, Mostafa DG, Elberier LK. Neuroprotective effect of resveratrol against brain ischemia reperfusion injury in rats entails reduction of DJ-1 protein expression and activation of PI3K/Akt/GSK3b survival pathway. Arch Physiol Biochem 2016; 122:200-213. [PMID: 27109835 DOI: 10.1080/13813455.2016.1182190] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the current study, we aimed to investigate the mechanistic role of DJ-1/PI3K/Akt survival pathway in ischemia/reperfusion (I/R) induced cerebral damage and to investigate if the resveratrol (RES) mediates its ischemic neuroptotection through this pathway. RES administration to Sham rats boosted glutathione level and superoxide dismutase activity and downregulated inducible nitric oxide synthase expression without affecting redox levels of DJ-1 forms or components of PI3K/Akt pathway including PTEN, p-Akt or p/p-GSK3b. However, RES pre-administration to I/R rats reduced infarction area, oxidative stress, inflammation and apoptosis. Concomitantly, RES ameliorated the decreased levels of oxidized forms of DJ-1 and enhancing its reduction, increased the nuclear protein expression of Nfr-2 and led to activation of PI3K/Akt survival pathway. In conclusion, overoxidation of DJ-1 is a major factor that contributes to post-I/R cerebral damage and its reduction by RES could explain the neuroprotection offered by RES.
Collapse
Affiliation(s)
- Ghada A Abdel-Aleem
- a Department of Medical Biochemistry , Faculty of Medicine, Tanta University , Tanta , Egypt
- b Department of Medical Biochemistry , College of Medicine, King Khalid University , Abha , Saudi Arabia
| | - Eman F Khaleel
- c Department of Medical Physiology , Faculty of Medicine, Cairo University , Cairo , Egypt
- d Department of Medical Physiology , College of Medicine, King Khalid University , Abha , Saudi Arabia
| | - Dalia G Mostafa
- d Department of Medical Physiology , College of Medicine, King Khalid University , Abha , Saudi Arabia
- e Department of Medical Physiology , Faculty of Medicine, Assiut University , Assiut , Egypt
| | - Lydia K Elberier
- f Department of Histopathology , College of Medical Laboratory Technology, University of Science and Technology , Khartoum , Sudan , and
- g Department of Pathology , College of Medicine, King Khalid University , Abha , Saudi Arabia
| |
Collapse
|
1225
|
Zhang L, Cheng Q, Zhang L, Wang Y, Merrill GF, Ilani T, Fass D, Arnér ESJ, Zhang J. Serum thioredoxin reductase is highly increased in mice with hepatocellular carcinoma and its activity is restrained by several mechanisms. Free Radic Biol Med 2016; 99:426-435. [PMID: 27581528 DOI: 10.1016/j.freeradbiomed.2016.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 02/02/2023]
Abstract
Increased thioredoxin reductase (TrxR) levels in serum were recently identified as possible prognostic markers for human prostate cancer or hepatocellular carcinoma. We had earlier shown that serum levels of TrxR protein are very low in healthy mice, but can in close correlation to alanine aminotransferase (ALT) increase more than 200-fold upon chemically induced liver damage. We also found that enzymatic TrxR activity in serum is counteracted by a yet unidentified oxidase activity in serum. In the present study we found that mice carrying H22 hepatocellular carcinoma tumors present highly increased levels of TrxR in serum, similarly to that reported in human patients. In this case ALT levels did not parallel those of TrxR. We also discovered here that the TrxR-antagonistic oxidase activity in serum is due to the presence of quiescin Q6 sulfhydryl oxidase 1 (QSOX1). We furthermore found that the chemotherapeutic agents cisplatin or auranofin, when given systemically to H22 tumor bearing mice, can further inhibit TrxR activities in serum. The TrxR serum activity was also inhibited by endogenous electrophilic inhibitors, found to increase in tumor-bearing mice and to include protoporphyrin IX (PpIX) and 4-hydroxynonenal (HNE). Thus, hepatocellular carcinoma triggers high levels of serum TrxR that are not paralleled by ALT, and TrxR enzyme activity in serum is counteracted by several different mechanisms. The physiological role of TrxR in serum, if any, as well as its potential value as a prognostic marker for tumor progression, needs to be studied further.
Collapse
Affiliation(s)
- Le Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Longjie Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Gary F Merrill
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| |
Collapse
|
1226
|
Thioredoxin interacting protein mediates lipid-induced impairment of glucose uptake in skeletal muscle. Biochem Biophys Res Commun 2016; 479:933-939. [DOI: 10.1016/j.bbrc.2016.09.168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/30/2016] [Indexed: 01/08/2023]
|
1227
|
Maura D, Hazan R, Kitao T, Ballok AE, Rahme LG. Evidence for Direct Control of Virulence and Defense Gene Circuits by the Pseudomonas aeruginosa Quorum Sensing Regulator, MvfR. Sci Rep 2016; 6:34083. [PMID: 27678057 PMCID: PMC5039717 DOI: 10.1038/srep34083] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/01/2016] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa defies eradication by antibiotics and is responsible for acute and chronic human infections due to a wide variety of virulence factors. Currently, it is believed that MvfR (PqsR) controls the expression of many of these factors indirectly via the pqs and phnAB operons. Here we provide strong evidence that MvfR may also bind and directly regulate the expression of additional 35 loci across the P. aeruginosa genome, including major regulators and virulence factors, such as the quorum sensing (QS) regulators lasR and rhlR, and genes involved in protein secretion, translation, and response to oxidative stress. We show that these anti-oxidant systems, AhpC-F, AhpB-TrxB2 and Dps, are critical for P. aeruginosa survival to reactive oxygen species and antibiotic tolerance. Considering that MvfR regulated compounds generate reactive oxygen species, this indicates a tightly regulated QS self-defense anti-poisoning system. These findings also challenge the current hierarchical regulation model of P. aeruginosa QS systems by revealing new interconnections between them that suggest a circular model. Moreover, they uncover a novel role for MvfR in self-defense that favors antibiotic tolerance and cell survival, further demonstrating MvfR as a highly desirable anti-virulence target.
Collapse
Affiliation(s)
- Damien Maura
- Department of Surgery, Massachusetts General Hospital, Boston MA 02114, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA 02115, USA.,Shriners Hospitals for Children Boston, Boston, 02114, Massachusetts, USA
| | - Ronen Hazan
- Department of Surgery, Massachusetts General Hospital, Boston MA 02114, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA 02115, USA.,Shriners Hospitals for Children Boston, Boston, 02114, Massachusetts, USA.,Institute of Dental Sciences and School of Dental Medicine, Hebrew University, Jerusalem P.O.B 12272, 91120, Israel
| | - Tomoe Kitao
- Department of Surgery, Massachusetts General Hospital, Boston MA 02114, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA 02115, USA.,Shriners Hospitals for Children Boston, Boston, 02114, Massachusetts, USA
| | - Alicia E Ballok
- Department of Surgery, Massachusetts General Hospital, Boston MA 02114, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA 02115, USA.,Shriners Hospitals for Children Boston, Boston, 02114, Massachusetts, USA
| | - Laurence G Rahme
- Department of Surgery, Massachusetts General Hospital, Boston MA 02114, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA 02115, USA.,Shriners Hospitals for Children Boston, Boston, 02114, Massachusetts, USA
| |
Collapse
|
1228
|
Discovering Antioxidant Molecules in the Archaea Domain: Peroxiredoxin Bcp1 from Sulfolobus solfataricus Protects H9c2 Cardiomyoblasts from Oxidative Stress. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:7424870. [PMID: 27752237 PMCID: PMC5056240 DOI: 10.1155/2016/7424870] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/29/2016] [Accepted: 07/31/2016] [Indexed: 12/15/2022]
Abstract
Peroxiredoxins (Prxs) are ubiquitous thiol peroxidases that are involved in the reduction of peroxides. It has been reported that prokaryotic Prxs generally show greater structural robustness than their eukaryotic counterparts, making them less prone to inactivation by overoxidation. This difference has inspired the search for new antioxidants from prokaryotic sources that can be used as possible therapeutic biodrugs. Bacterioferritin comigratory proteins (Bcps) of the hyperthermophilic archaeon Sulfolobus solfataricus that belong to the Prx family have recently been characterized. One of these proteins, Bcp1, was chosen to determine its antioxidant effects in H9c2 rat cardiomyoblast cells. Bcp1 activity was measured in vitro under physiological temperature and pH conditions that are typical of mammalian cells; the yeast thioredoxin reductase (yTrxR)/thioredoxin (yTrx) reducing system was used to evaluate enzyme activity. A TAT-Bcp1 fusion protein was constructed to allow its internalization and verify the effect of Bcp1 on H9c2 rat cardiomyoblasts subjected to oxidative stress. The results reveal that TAT-Bcp1 is not cytotoxic and inhibits H2O2-induced apoptosis in H9c2 cells by reducing the H2O2 content inside these cells.
Collapse
|
1229
|
Mathieu C, Duval R, Cocaign A, Petit E, Bui LC, Haddad I, Vinh J, Etchebest C, Dupret JM, Rodrigues-Lima F. An Isozyme-specific Redox Switch in Human Brain Glycogen Phosphorylase Modulates Its Allosteric Activation by AMP. J Biol Chem 2016; 291:23842-23853. [PMID: 27660393 DOI: 10.1074/jbc.m116.757062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/21/2016] [Indexed: 12/22/2022] Open
Abstract
Brain glycogen and its metabolism are increasingly recognized as major players in brain functions. Moreover, alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. In the brain, both muscle and brain glycogen phosphorylase isozymes regulate glycogen mobilization. However, given their distinct regulatory features, these two isozymes could confer distinct metabolic functions of glycogen in brain. Interestingly, recent proteomics studies have identified isozyme-specific reactive cysteine residues in brain glycogen phosphorylase (bGP). In this study, we show that the activity of human bGP is redox-regulated through the formation of a disulfide bond involving a highly reactive cysteine unique to the bGP isozyme. We found that this disulfide bond acts as a redox switch that precludes the allosteric activation of the enzyme by AMP without affecting its activation by phosphorylation. This unique regulatory feature of bGP sheds new light on the isoform-specific regulation of glycogen phosphorylase and glycogen metabolism.
Collapse
Affiliation(s)
- Cécile Mathieu
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris
| | - Romain Duval
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris
| | - Angélique Cocaign
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris
| | - Emile Petit
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris
| | - Linh-Chi Bui
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris
| | - Iman Haddad
- ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMPB), CNRS USR 3149, 10 rue Vauquelin, F75231 Paris cedex 05, France
| | - Joelle Vinh
- ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMPB), CNRS USR 3149, 10 rue Vauquelin, F75231 Paris cedex 05, France
| | - Catherine Etchebest
- INSERM, UMR S1134, Université Paris Diderot, F-75015 Paris.,Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris.,Institut National de la Transfusion Sanguine (INTS), 75015 Paris.,GR-Ex, Laboratoire d'excellence, 75015 Paris, and.,UFR Sciences du Vivant, Université Paris Diderot, 75013 Paris, France
| | - Jean-Marie Dupret
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris.,UFR Sciences du Vivant, Université Paris Diderot, 75013 Paris, France
| | - Fernando Rodrigues-Lima
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris, .,UFR Sciences du Vivant, Université Paris Diderot, 75013 Paris, France
| |
Collapse
|
1230
|
Jung SH, Kim SM, Lee CE. Mechanism of suppressors of cytokine signaling 1 inhibition of epithelial-mesenchymal transition signaling through ROS regulation in colon cancer cells: suppression of Src leading to thioredoxin up-regulation. Oncotarget 2016; 7:62559-62571. [PMID: 27613835 PMCID: PMC5308746 DOI: 10.18632/oncotarget.11537] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/09/2016] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) participate in malignant progression of cancers including epithelial-mesenchymal transition (EMT). We have investigated the role of suppressors of cytokine signaling (SOCS)1 as an inhibitor of ROS-induced EMT using colon cancer cell lines transduced with SOCS1 and shSOCS1. Hydrogen peroxide treatment induced EMT features such as elevation of vimentin and Snail with a corresponding reduction of E-cadherin. The EMT markers are significantly decreased upon SOCS1 over-expression while increased under SOCS1 knock-down. SOCS1 inhibited ROS signaling pathways associated with EMT such as Src, Jak, and p65. Of note, strong up-regulation of Src activity in SOCS1-ablated cells was responsible for the elevated signaling leading to EMT, as shSrc or Src inhibitor abolished the shSOCS1-induced promotion of EMT response. Suppression of ROS-inducible EMT markers and invasion in SOCS1 over-expressing cells correlated with significantly low intracellular ROS levels in these cells. Analysis of antioxidant enzymes in SOCS1-transduced cells revealed a selective up-regulation of thioredoxin (Trx1), while thioredoxin ablation restored ROS levels and the associated EMT markers. As a mechanism of thioredoxin up-regulation by SOCS1, inhibition of Src activity promoting nuclear translocation of Nrf-2 is proposed. Taken together, our data strongly indicate that SOCS1 antagonizes EMT by suppressing Src activity, leading to thioredoxin expression and down-regulation of ROS levels in colon cancer cells.
Collapse
Affiliation(s)
- Sung-Hoon Jung
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, Korea
| | - Su-Min Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, Korea
| | - Choong-Eun Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
1231
|
Yoshino A, Polouliakh N, Meguro A, Takeuchi M, Kawagoe T, Mizuki N. Chum salmon egg extracts induce upregulation of collagen type I and exert antioxidative effects on human dermal fibroblast cultures. Clin Interv Aging 2016; 11:1159-68. [PMID: 27621603 PMCID: PMC5010078 DOI: 10.2147/cia.s102092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Components of fish roe possess antioxidant and antiaging activities, making them potentially very beneficial natural resources. Here, we investigated chum salmon eggs (CSEs) as a source of active ingredients, including vitamins, unsaturated fatty acids, and proteins. We incubated human dermal fibroblast cultures for 48 hours with high and low concentrations of CSE extracts and analyzed changes in gene expression. Cells treated with CSE extract showed concentration-dependent upregulation of collagen type I genes and of multiple antioxidative genes, including OXR1, TXNRD1, and PRDX family genes. We further conducted in silico phylogenetic footprinting analysis of promoter regions. These results suggested that transcription factors such as acute myeloid leukemia-1a and cyclic adenosine monophosphate response element-binding protein may be involved in the observed upregulation of antioxidative genes. Our results support the idea that CSEs are strong candidate sources of antioxidant materials and cosmeceutically effective ingredients.
Collapse
Affiliation(s)
- Atsushi Yoshino
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa
| | - Natalia Polouliakh
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa; Sony Computer Science Laboratories Inc., Fundamental Research Laboratories; Systems Biology Institute, Tokyo, Japan
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa
| | - Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa; Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tatsukata Kawagoe
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa
| |
Collapse
|
1232
|
Characteristics of Three Thioredoxin Genes and Their Role in Chilling Tolerance of Harvested Banana Fruit. Int J Mol Sci 2016; 17:ijms17091526. [PMID: 27618038 PMCID: PMC5037801 DOI: 10.3390/ijms17091526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/20/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022] Open
Abstract
Thioredoxins (Trxs) are small proteins with a conserved redox active site WCGPC and are involved in a wide range of cellular redox processes. However, little information on the role of Trx in regulating low-temperature stress of harvested fruit is available. In this study, three full-length Trx cDNAs, designated MaTrx6, MaTrx9 and MaTrx12, were cloned from banana (Musa acuminata) fruit. Phylogenetic analysis and protein sequence alignments showed that MaTrx6 was grouped to h2 type with a typical active site of WCGPC, whereas MaTrx9 and MaTrx12 were assigned to atypical cys his-rich Trxs (ACHT) and h3 type with atypical active sites of GCAGC and WCSPC, respectively. Subcellular localization indicated that MaTrx6 and MaTrx12 were located in the plasma membrane and cytoplasm, respectively, whereas MaTrx9 showed a dual cytoplasmic and chloroplast localization. Application of ethylene induced chilling tolerance of harvested banana fruit, whereas 1-MCP, an inhibitor of ethylene perception, aggravated the development of chilling injury. RT-qPCR analysis showed that expression of MaTrx12 was up-regulated and down-regulated in ethylene- and 1-MCP-treated banana fruit at low temperature, respectively. Furthermore, heterologous expression of MaTrx12 in cytoplasmic Trx-deficient Saccharomyces cerevisiae strain increased the viability of the strain under H₂O₂. These results suggest that MaTrx12 plays an important role in the chilling tolerance of harvested banana fruit, possibly by regulating redox homeostasis.
Collapse
|
1233
|
Susanti D, Loganathan U, Mukhopadhyay B. A Novel F420-dependent Thioredoxin Reductase Gated by Low Potential FAD: A TOOL FOR REDOX REGULATION IN AN ANAEROBE. J Biol Chem 2016; 291:23084-23100. [PMID: 27590343 DOI: 10.1074/jbc.m116.750208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Indexed: 12/18/2022] Open
Abstract
A recent report suggested that the thioredoxin-dependent metabolic regulation, which is widespread in all domains of life, existed in methanogenic archaea about 3.5 billion years ago. We now show that the respective electron delivery enzyme (thioredoxin reductase, TrxR), although structurally similar to flavin-containing NADPH-dependent TrxRs (NTR), lacked an NADPH-binding site and was dependent on reduced coenzyme F420 (F420H2), a stronger reductant with a mid-point redox potential (E'0) of -360 mV; E'0 of NAD(P)H is -320 mV. Because F420 is a deazaflavin, this enzyme was named deazaflavin-dependent flavin-containing thioredoxin reductase (DFTR). It transferred electrons from F420H2 to thioredoxin via protein-bound flavin; Km values for thioredoxin and F420H2 were 6.3 and 28.6 μm, respectively. The E'0 of DFTR-bound flavin was approximately -389 mV, making electron transfer from NAD(P)H or F420H2 to flavin endergonic. However, under high partial pressures of hydrogen prevailing on early Earth and present day deep-sea volcanoes, the potential for the F420/F420H2 pair could be as low as -425 mV, making DFTR efficient. The presence of DFTR exclusively in ancient methanogens and mostly in the early Earth environment of deep-sea volcanoes and DFTR's characteristics suggest that the enzyme developed on early Earth and gave rise to NTR. A phylogenetic analysis revealed six more novel-type TrxR groups and suggested that the broader flavin-containing disulfide oxidoreductase family is more diverse than previously considered. The unprecedented structural similarities between an F420-dependent enzyme (DFTR) and an NADPH-dependent enzyme (NTR) brought new thoughts to investigations on F420 systems involved in microbial pathogenesis and antibiotic production.
Collapse
Affiliation(s)
| | | | - Biswarup Mukhopadhyay
- From the Department of Biochemistry, .,Biocomplexity Institute, and.,Virginia Tech Carilion School of Medicine, Virginia Tech, Blacksburg, Virginia 24061
| |
Collapse
|
1234
|
Nephrotoxicity in rabbits after long-term nandrolone decanoate administration. Toxicol Lett 2016; 259:21-27. [DOI: 10.1016/j.toxlet.2016.06.1122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/23/2022]
|
1235
|
Jin XL, Wang K, Liu L, Liu HY, Zhao FQ, Liu JX. Nuclear factor-like factor 2-antioxidant response element signaling activation by tert-butylhydroquinone attenuates acute heat stress in bovine mammary epithelial cells. J Dairy Sci 2016; 99:9094-9103. [PMID: 27592432 DOI: 10.3168/jds.2016-11031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/16/2016] [Indexed: 12/21/2022]
Abstract
Nuclear factor (erythroid-derived 2)-like factor 2 (Nrf2) is a transcription factor that binds to the antioxidant response element (ARE) in the upstream promoter region of many antioxidative genes. The Nrf2-ARE signaling plays a key role in the cellular antioxidant-defense system, but whether Nrf2 activation has protective effects against heat shock (HS) stress in mammary epithelial cells (MEC) remains unclear. The objective of this study was to determine whether tert-butylhydroquinone (tBHQ), a well-known Nrf2 activator, could attenuate heat stress-induced cell damage in MAC-T cells of the bovine MEC line. The MAC-T cells were exposed to HS (42.5°C for 1h) followed by recovery at 37°C to mimic HS. Compared with cells that were consistently cultured at normothermia (37°C), the cell viability levels significantly decreased after HS stress. In parallel, heat stress increased the reactive oxygen species levels and induced cellular apoptosis and endoplasmic reticulum stress. The MAC-T cells that were pretreated with tBHQ (10μM) for 2h followed by HS had a reduction in the loss of cell viability. The tBHQ pretreatment significantly decreased cellular reactive oxygen species levels and stress-related marker gene expression. The tBHQ-treated MAC-T cells showed strong Nrf2-ARE signaling activation and a nuclear accumulation of Nrf2 and upregulated expression of Nrf2-ARE downstream genes. Small interfering RNA silencing of Nrf2 in HS-treated MAC-T cells almost completely abolished the cytoprotective effects by tBHQ. Overall, our results demonstrated that HS could cause cell damage in cultured bovine MEC, and that activation of Nrf2 by tBHQ could attenuate HS-induced cell damage.
Collapse
Affiliation(s)
- X L Jin
- Institute of Dairy Science, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, P.R. China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - K Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - L Liu
- Institute of Dairy Science, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, P.R. China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - H Y Liu
- Institute of Dairy Science, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, P.R. China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| | - F-Q Zhao
- Institute of Dairy Science, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, P.R. China; Laboratory of Lactation and Metabolic Physiology, Department of Animal and Veterinary Sciences, University of Vermont, Burlington 05405
| | - J X Liu
- Institute of Dairy Science, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, P.R. China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| |
Collapse
|
1236
|
Thioredoxin Binding Protein-2 Regulates Autophagy of Human Lens Epithelial Cells under Oxidative Stress via Inhibition of Akt Phosphorylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4856431. [PMID: 27656263 PMCID: PMC5021881 DOI: 10.1155/2016/4856431] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/03/2016] [Indexed: 12/21/2022]
Abstract
Oxidative stress plays an essential role in the development of age-related cataract. Thioredoxin binding protein-2 (TBP-2) is a negative regulator of thioredoxin (Trx), which deteriorates cellular antioxidant system. Our study focused on the autophagy-regulating effect of TBP-2 under oxidative stress in human lens epithelial cells (LECs). Human lens epithelial cells were used for cell culture and treatment. Lentiviral-based transfection system was used for overexpression of TBP-2. Cytotoxicity assay, western blot analysis, GFP/mCherry-fused LC3 plasmid, immunofluorescence, and transmission electronic microscopy were performed. The results showed that autophagic response of LECs with increased LC3-II, p62, and GFP/mCherry-LC3 puncta (P < 0.01) was induced by oxidative stress. Overexpression of TBP-2 further strengthens this response and worsens the cell viability (P < 0.01). Knockdown of TBP-2 attenuates the autophagic response and cell viability loss induced by oxidative stress. TBP-2 mainly regulates autophagy in the initiation stage, which is mTOR-independent and probably caused by the dephosphorylation of Akt under oxidative stress. These findings suggest a novel role of TBP-2 in human LECs under oxidative stress. Oxidative stress can cause cell injury and autophagy in LECs, and TBP-2 regulates this response. Hence, this study provides evidence regarding the role of TBP-2 in lens and the possible mechanism of cataract development.
Collapse
|
1237
|
2-Cys peroxiredoxin is required in successful blood-feeding, reproduction, and antioxidant response in the hard tick Haemaphysalis longicornis. Parasit Vectors 2016; 9:457. [PMID: 27542835 PMCID: PMC4992251 DOI: 10.1186/s13071-016-1748-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/11/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Ticks are obligate hematophagous arthropods that feed on vertebrate blood that contains iron. Ticks also concentrate host blood with iron; this concentration of the blood leads to high levels of iron in ticks. The host-derived iron reacts with oxygen in the tick body and this may generate high levels of reactive oxygen species, including hydrogen peroxide (H2O2). High levels of H2O2 cause oxidative stress in organisms and therefore, antioxidant responses are necessary to regulate H2O2. Here, we focused on peroxiredoxin (Prx), an H2O2-scavenging enzyme in the hard tick Haemaphysalis longicornis. METHODS The mRNA and protein expression profiles of 2-Cys peroxiredoxin (HlPrx2) in H. longicornis were investigated in whole ticks and internal organs, and developmental stages, using real-time PCR and Western blot analysis during blood-feeding. The localization of HlPrx2 proteins in tick tissues was also observed by immunostaining. Moreover, knockdown experiments of HlPrx2 were performed using RNA interference to evaluate its function in ticks. RESULTS Real-time PCR showed that HlPrx2 gene expression in whole ticks and internal organs was significantly upregulated by blood-feeding. However, protein expression, except in the midgut, was constant throughout blood-feeding. Knockdown of the HlPrx2 gene caused significant differences in the engorged body weight, egg weight and hatching rate for larvae as compared to the control group. Finally, detection of H2O2 after knockdown of HlPrxs in ticks showed that the concentration of H2O2 significantly increased before and after blood-feeding. CONCLUSION Therefore, HlPrx2 can be considered important for successful blood-feeding and reproduction through the regulation of H2O2 concentrations in ticks before and after blood-feeding. This study contributes to the search for a candidate target for tick control and further understanding of the tick's oxidative stress coping mechanism during blood-feeding.
Collapse
|
1238
|
Levring TB, Kongsbak M, Rode AKO, Woetmann A, Ødum N, Bonefeld CM, Geisler C. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis. Oncotarget 2016; 6:21853-64. [PMID: 26392411 PMCID: PMC4673131 DOI: 10.18632/oncotarget.5213] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/24/2015] [Indexed: 12/15/2022] Open
Abstract
Adaptive immune responses require activation and expansion of antigen-specific T cells. Whereas early T cell activation is independent of exogenous cystine (Cys2), T cell proliferation is dependent of Cys2. However, the exact roles of Cys2 in T cell proliferation still need to be determined. The aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys2. Vice-versa, the GSH synthesis inhibitor L-buthionine-sulfoximine (BSO) and inhibition of Cys2 uptake with glutamate inhibited GSH and DNA synthesis in parallel. We further found that thioredoxin (Trx) can partly substitute for GSH during DNA synthesis. Finally, we show that GSH or Trx is required for the activity of ribonucleotide reductase (RNR), the enzyme responsible for generation of the deoxyribonucleotide DNA building blocks. In conclusion, we show that activated human T cells require exogenous Cys2 to proliferate and that this is partly explained by the fact that Cys2 is required for production of GSH, which in turn is required for optimal RNR-mediated deoxyribonucleotide synthesis and DNA replication.
Collapse
Affiliation(s)
- Trine B Levring
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Kongsbak
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna K O Rode
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Menné Bonefeld
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
1239
|
de Moraes G, Layton CJ. Therapeutic targeting of diabetic retinal neuropathy as a strategy in preventing diabetic retinopathy. Clin Exp Ophthalmol 2016; 44:838-852. [PMID: 27334889 DOI: 10.1111/ceo.12795] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/22/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022]
Abstract
Diabetes causes a panretinal neurodegeneration herein termed diabetic retinal neuropathy, which manifests in the retina early and progresses throughout the disease. Clinical manifestations include changes in the ERG, perimetry, dark adaptation, contrast sensitivity and colour vision which correlate with laboratory findings of thinning of the retinal neuronal layers, increased apoptosis in neurons and activation of glial cells. Possible mechanisms include oxidative stress, neuronal AGE accumulation, altered balance of neurotrophic factors and loss of mitohormesis. Retinal neural damage precedes and is a biologically plausible cause of retinal vasculopathy later in diabetes, and this review suggests that strategies to target it directly could prevent diabetes induced blindness. The efficacy of fenofibrate in reducing retinopathy progression provides a possible proof of concept for this approach. Strategies which may target diabetic retinal neuropathy include reducing retinal metabolic demand, improving mitochondrial function with AMPK and Sirt1 activators or providing neurotrophic support with neurotrophic supplementation.
Collapse
Affiliation(s)
| | - Christopher J Layton
- Gallipoli Medical Research Foundation, Brisbane, Queensland, Australia.,University of Queensland School of Medicine, Brisbane, Queensland, Australia.,Greenslopes Private Hospital Ophthalmology Department, Greenslopes Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
1240
|
Sirokmány G, Pató A, Zana M, Donkó Á, Bíró A, Nagy P, Geiszt M. Epidermal growth factor-induced hydrogen peroxide production is mediated by dual oxidase 1. Free Radic Biol Med 2016; 97:204-211. [PMID: 27262981 DOI: 10.1016/j.freeradbiomed.2016.05.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/28/2016] [Accepted: 05/31/2016] [Indexed: 12/13/2022]
Abstract
Stimulation of mammalian cells by epidermal growth factor (EGF) elicits complex signaling events, including an increase in hydrogen peroxide (H2O2) production. Understanding the significance of this response is limited by the fact that the source of EGF-induced H2O2 production is unknown. Here we show that EGF-induced H2O2 production in epidermal cell lines is dependent on the agonist-induced calcium signal. We analyzed the expression of NADPH oxidase isoforms and found both A431 and HaCaT cells to express the calcium-sensitive NADPH oxidase, Dual oxidase 1 (Duox1) and its protein partner Duox activator 1 (DuoxA1). Inhibition of Duox1 expression by small interfering RNAs eliminated EGF-induced H2O2 production in both cell lines. We also demonstrate that H2O2 production by Duox1 leads to the oxidation of thioredoxin-1 and the cytosolic peroxiredoxins. Our observations provide evidence for a new signaling paradigm in which changes of intracellular calcium concentration are transformed into redox signals through the calcium-dependent activation of Duox1.
Collapse
Affiliation(s)
- Gábor Sirokmány
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary; "Momentum" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest 1094, Hungary
| | - Anna Pató
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary; "Momentum" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest 1094, Hungary
| | - Melinda Zana
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary; "Momentum" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest 1094, Hungary
| | - Ágnes Donkó
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary; "Momentum" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest 1094, Hungary
| | - Adrienn Bíró
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest 1122, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest 1122, Hungary
| | - Miklós Geiszt
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary; "Momentum" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest 1094, Hungary.
| |
Collapse
|
1241
|
Sasoni N, Iglesias AA, Guerrero SA, Arias DG. Functional thioredoxin reductase from pathogenic and free-living Leptospira spp. Free Radic Biol Med 2016; 97:1-13. [PMID: 27178006 DOI: 10.1016/j.freeradbiomed.2016.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 01/23/2023]
Abstract
Low molecular mass thiols and antioxidant enzymes have essential functions to detoxify reactive oxygen and nitrogen species maintaining cellular redox balance. The metabolic pathways for redox homeostasis in pathogenic (Leptospira interrogans) and free-living (Leptospira biflexa) leptospires species were not functionally characterized. We performed biochemical studies on recombinantly produced proteins to in depth analyze kinetic and structural properties of thioredoxin reductase (LinTrxR) and thioredoxin (LinTrx) from L. interrogans, and two TrxRs (LbiTrxR1 and LbiTrxR2) from L. biflexa. All the TrxRs were characterized as homodimeric flavoproteins, with LinTrxR and LbiTrxR1 catalyzing the NADPH dependent reduction of LinTrx and DTNB. The thioredoxin system from L. interrogans was able to use glutathione disulfide, lipoamide disulfide, cystine and bis-γ-glutamyl cysteine and homologous peroxiredoxin as substrates. Classic TrxR activity of LinTrxR2 had not been evidenced in vitro, but recombinant Escherichia coli cells overexpressing LbiTrxR2 showed high tolerance to oxidative stress. The enzymatic systems herein characterized could play a key role for the maintenance of redox homeostasis and the function of defense mechanisms against reactive oxidant species in Leptospira spp. Our results contribute to the general knowledge about redox biochemistry in these bacteria, positioning TrxR as a critical molecular target for the development of new anti-leptospiral drugs.
Collapse
Affiliation(s)
- Natalia Sasoni
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nac. N°168, km. 0, 3000 Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nac. N°168, km. 0, 3000 Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Sergio A Guerrero
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nac. N°168, km. 0, 3000 Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, 3000 Santa Fe, Argentina.
| | - Diego G Arias
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nac. N°168, km. 0, 3000 Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, 3000 Santa Fe, Argentina.
| |
Collapse
|
1242
|
Kumar A, Balakrishna AM, Nartey W, Manimekalai MSS, Grüber G. Redox chemistry of Mycobacterium tuberculosis alkylhydroperoxide reductase E (AhpE): Structural and mechanistic insight into a mycoredoxin-1 independent reductive pathway of AhpE via mycothiol. Free Radic Biol Med 2016; 97:588-601. [PMID: 27417938 DOI: 10.1016/j.freeradbiomed.2016.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis (Mtb) has the ability to persist within the human host for a long time in a dormant stage and re-merges when the immune system is compromised. The pathogenic bacterium employs an elaborate antioxidant defence machinery composed of the mycothiol- and thioredoxin system in addition to a superoxide dismutase, a catalase, and peroxiredoxins (Prxs). Among the family of Peroxiredoxins, Mtb expresses a 1-cysteine peroxiredoxin, known as alkylhydroperoxide reductase E (MtAhpE), and defined as a potential tuberculosis drug target. The reduced MtAhpE (MtAhpE-SH) scavenges peroxides to become converted to MtAhpE-SOH. To provide continuous availability of MtAhpE-SH, MtAhpE-SOH has to become reduced. Here, we used NMR spectroscopy to delineate the reduced (MtAhpE-SH), sulphenic (MtAhpE-SOH) and sulphinic (MtAhpE-SO2H) states of MtAhpE through cysteinyl-labelling, and provide for the first time evidence of a mycothiol-dependent mechanism of MtAhpE reduction. This is confirmed by crystallographic studies, wherein MtAhpE was crystallized in the presence of mycothiol and the structure was solved at 2.43Å resolution. Combined with NMR-studies, the crystallographic structures reveal conformational changes of important residues during the catalytic cycle of MtAhpE. In addition, alterations of the overall protein in solution due to redox modulation are observed by small angle X-ray scattering (SAXS) studies. Finally, by employing SAXS and dynamic light scattering, insight is provided into the most probable physiological oligomeric state of MtAhpE necessary for activity, being also discussed in the context of concerted substrate binding inside the dimeric MtAhpE.
Collapse
Affiliation(s)
- Arvind Kumar
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Asha Manikkoth Balakrishna
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Wilson Nartey
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | | | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
1243
|
Yan J, Fei Y, Han Y, Lu S. Selenoprotein O deficiencies suppress chondrogenic differentiation of ATDC5 cells. Cell Biol Int 2016; 40:1033-40. [PMID: 27425444 DOI: 10.1002/cbin.10644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/07/2016] [Indexed: 01/16/2023]
Abstract
Selenoprotein O (Sel O) is a selenium-containing protein, but its function is still unclear. In the present study, we observed that the mRNA and protein expression levels of Sel O increased during chondrogenic induction of ATDC5 cells. The effects of Sel O on chondrocyte differentiation were then examined through shRNA-mediated gene silencing technique. The expression of Sel O was significantly suppressed at both mRNA and protein levels in a stable cell line transfected with a Sel O-specific target shRNA construct. Thereafter, we demonstrated that Sel O deficiencies suppress chondrogenic differentiation of ATDC5 cells. Sel O deficiencies inhibited expression of chondrogenic gene Sox9, Col II, and aggrecan. Sel O-deficient cells also accumulated a few cartilage glycosaminoglycans (GAGs) and decreased the activity of alkaline phosphatase (ALP). In addition, Sel O deficiencies inhibited chondrocyte proliferation through delayed cell cycle progression by suppression of cyclin D1 expression. Moreover, Sel O deficiencies induced chondrocyte death through cell apoptosis. In summary, we describe the expression patterns and the essential roles of Sel O in chondrocyte viability, proliferation, and chondrogenic differentiation. Additionally, Sel O deficiency-mediated impaired chondrogenesis may illustrate the mechanisms of Se deficiency in the pathophysiological process of the endemic osteoarthropathy.
Collapse
Affiliation(s)
- Jidong Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Yao Fei
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yan Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Yanta West Road 76, Xi'an, Shaanxi, 710061, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Yanta West Road 76, Xi'an, Shaanxi, 710061, China. .,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China.
| |
Collapse
|
1244
|
Arenas-Salinas M, Vargas-Pérez JI, Morales W, Pinto C, Muñoz-Díaz P, Cornejo FA, Pugin B, Sandoval JM, Díaz-Vásquez WA, Muñoz-Villagrán C, Rodríguez-Rojas F, Morales EH, Vásquez CC, Arenas FA. Flavoprotein-Mediated Tellurite Reduction: Structural Basis and Applications to the Synthesis of Tellurium-Containing Nanostructures. Front Microbiol 2016; 7:1160. [PMID: 27507969 PMCID: PMC4960239 DOI: 10.3389/fmicb.2016.01160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/12/2016] [Indexed: 01/24/2023] Open
Abstract
The tellurium oxyanion tellurite (TeO32-) is extremely harmful for most organisms. It has been suggested that a potential bacterial tellurite resistance mechanism would consist of an enzymatic, NAD(P)H-dependent, reduction to the less toxic form elemental tellurium (Te0). To date, a number of enzymes such as catalase, type II NADH dehydrogenase and terminal oxidases from the electron transport chain, nitrate reductases, and dihydrolipoamide dehydrogenase (E3), among others, have been shown to display tellurite-reducing activity. This activity is generically referred to as tellurite reductase (TR). Bioinformatic data resting on some of the abovementioned enzymes enabled the identification of common structures involved in tellurite reduction including vicinal catalytic cysteine residues and the FAD/NAD(P)+-binding domain, which is characteristic of some flavoproteins. Along this line, thioredoxin reductase (TrxB), alkyl hydroperoxide reductase (AhpF), glutathione reductase (GorA), mercuric reductase (MerA), NADH: flavorubredoxin reductase (NorW), dihydrolipoamide dehydrogenase, and the putative oxidoreductase YkgC from Escherichia coli or environmental bacteria were purified and assessed for TR activity. All of them displayed in vitro TR activity at the expense of NADH or NADPH oxidation. In general, optimal reducing conditions occurred around pH 9–10 and 37°C. Enzymes exhibiting strong TR activity produced Te-containing nanostructures (TeNS). While GorA and AhpF generated TeNS of 75 nm average diameter, E3 and YkgC produced larger structures (>100 nm). Electron-dense structures were observed in cells over-expressing genes encoding TrxB, GorA, and YkgC.
Collapse
Affiliation(s)
| | - Joaquín I Vargas-Pérez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Wladimir Morales
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca Talca, Chile
| | - Camilo Pinto
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Pablo Muñoz-Díaz
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Fabián A Cornejo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Benoit Pugin
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Juan M Sandoval
- Facultad de Ciencias de la Salud e Instituto de Etnofarmacología, Universidad Arturo Prat Iquique, Chile
| | - Waldo A Díaz-Vásquez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de ChileSantiago, Chile; Facultad de Ciencias de la Salud, Universidad San SebastiánSantiago, Chile
| | - Claudia Muñoz-Villagrán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Fernanda Rodríguez-Rojas
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Eduardo H Morales
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Claudio C Vásquez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Felipe A Arenas
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| |
Collapse
|
1245
|
Ruszkiewicz JA, Bowman AB, Farina M, Rocha JBT, Aschner M. Sex- and structure-specific differences in antioxidant responses to methylmercury during early development. Neurotoxicology 2016; 56:118-126. [PMID: 27456245 DOI: 10.1016/j.neuro.2016.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/21/2016] [Accepted: 07/21/2016] [Indexed: 01/02/2023]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental contaminant and neurotoxin, particularly hazardous to developing and young individuals. MeHg neurotoxicity during early development has been shown to be sex-dependent via disturbances in redox homeostasis, a key event mediating MeHg neurotoxicity. Therefore, we investigated if MeHg-induced changes in key systems of antioxidant defense are sex-dependent. C57BL/6J mice were exposed to MeHg during the gestational and lactational periods, modeling human prenatal and neonatal exposure routes. Dams were exposed to 5ppm MeHg via drinking water from early gestational period until postnatal day 21 (PND21). On PND21 a pair of siblings (a female and a male) from multiple (5-6) litters were euthanized and tissue samples were taken for analysis. Cytoplasmic and nuclear extracts were isolated from fresh cerebrum and cerebellum and used to determine thioredoxin (Trx) and glutathione (GSH) levels, as well as thioredoxin reductase (TrxR) and glutathione peroxidase (GPx) activities. The remaining tissue was used for mRNA analysis. MeHg-induced antioxidant response was not uniform for all the analyzed antioxidant molecules, and sexual dimorphism in response to MeHg treatment was evident for TrxR, Trx and GPx. The pattern of response, namely a decrease in males and an increase in females, may impart differential and sex-specific susceptibility to MeHg. GSH levels were unchanged in MeHg treated animals and irrespective of sex. Trx was reduced only in nuclear extracts from male cerebella, exemplifying a structure-specific response. Results from the gene expression analysis suggest posttranscriptional mechanism of sex-specific regulation of the antioxidant response upon MeHg treatment. The study demonstrates for the first time sex-and structure-specific changes in the response of the thioredoxin system to MeHg neurotoxicity and suggests that these differences in antioxidant responses might impart differential susceptibility to developmental MeHg exposure.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Aaron B Bowman
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, SC, Brazil
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105900 Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
1246
|
The anti-sigma factor RsrA responds to oxidative stress by reburying its hydrophobic core. Nat Commun 2016; 7:12194. [PMID: 27432510 PMCID: PMC4960319 DOI: 10.1038/ncomms12194] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/08/2016] [Indexed: 12/22/2022] Open
Abstract
Redox-regulated effector systems that counteract oxidative stress are essential for all forms of life. Here we uncover a new paradigm for sensing oxidative stress centred on the hydrophobic core of a sensor protein. RsrA is an archetypal zinc-binding anti-sigma factor that responds to disulfide stress in the cytoplasm of Actinobacteria. We show that RsrA utilizes its hydrophobic core to bind the sigma factor σR preventing its association with RNA polymerase, and that zinc plays a central role in maintaining this high-affinity complex. Oxidation of RsrA is limited by the rate of zinc release, which weakens the RsrA–σR complex by accelerating its dissociation. The subsequent trigger disulfide, formed between specific combinations of RsrA's three zinc-binding cysteines, precipitates structural collapse to a compact state where all σR-binding residues are sequestered back into its hydrophobic core, releasing σR to activate transcription of anti-oxidant genes. Counteracting oxidative stress is essential in all organisms. Here, the authors outline a mechanism used by actinomycete bacteria in which oxidation of zinc-binding RsrA blocks its interaction with σR by sequestering hydrophobic residues used to bind σR within its own core.
Collapse
|
1247
|
Araki K, Kusano H, Sasaki N, Tanaka R, Hatta T, Fukui K, Natsume T. Redox Sensitivities of Global Cellular Cysteine Residues under Reductive and Oxidative Stress. J Proteome Res 2016; 15:2548-59. [DOI: 10.1021/acs.jproteome.6b00087] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazutaka Araki
- Molecular
Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Hidewo Kusano
- Molecular
Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | | | - Riko Tanaka
- Molecular
Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | | | - Kazuhiko Fukui
- Molecular
Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Tohru Natsume
- Molecular
Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
- Robotic Biology Institute, Inc., Tokyo 135-0064, Japan
| |
Collapse
|
1248
|
Cloning and characterization of selenoprotein thioredoxin reductase gene in Haematococcus pluvialis. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.03.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
1249
|
Selenium supplementation within the periconception period: Influence on maternal liver and renal histoarchitecture. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
1250
|
Martinez-Hervas S, Artero A, Martinez-Ibañez J, Tormos MC, Gonzalez-Navarro H, Priego A, Martinez-Valls JF, Saez GT, Real JT, Carmena R, Ascaso JF. Increased thioredoxin levels are related to insulin resistance in familial combined hyperlipidaemia. Eur J Clin Invest 2016; 46:636-42. [PMID: 27208733 DOI: 10.1111/eci.12642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/18/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Thioredoxins (TRX) are major cellular protein disulphide reductases that are critical for redox regulation. Oxidative stress and inflammation play promoting roles in the genesis and progression of atherosclerosis, but until now scarce data are available considering the influence of TRX activity in familial combined hyperlipidaemia (FCH). Since FCH is associated with high risk of cardiovascular disease, the objective of the present study was to assess oxidative stress status in FCH patients, and evaluate the influence of insulin resistance (IR). MATERIALS AND METHODS A cohort of 35 control subjects and 35 non-related FCH patients were included, all of them nondiabetic, normotensive and nonsmokers. We measured lipid profile, glucose and insulin levels in plasma, and markers of oxidative stress and inflammation such as oxidized glutathione (GSSG), reduced glutathione (GSH) and TRX. RESULTS Familial combined hyperlipidaemia subjects showed significantly higher levels of GSSG, GSSG/GSH ratio and TRX than controls. In addition, FCH individuals with IR showed the worst profile of oxidative stress status compared to controls and FCH patients without IR (P < 0·01). TRX levels correlated with higher insulin resistance. CONCLUSION Familial combined hyperlipidaemia patients showed increased TRX levels. TRX was positively correlated with IR. These data could partially explain the increased risk of cardiovascular events in primary dyslipidemic patients.
Collapse
Affiliation(s)
- Sergio Martinez-Hervas
- Service of Endocrinology and Nutrition, University Clinic Hospital of Valencia, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain.,CIBERDEM, Biomedical Network Research Centre in Diabetes and Metabolic Related Diseases, Madrid, Spain
| | - Ana Artero
- Service of Endocrinology and Nutrition, University Clinic Hospital of Valencia, Valencia, Spain
| | - Juncal Martinez-Ibañez
- Service of Endocrinology and Nutrition, University Clinic Hospital of Valencia, Valencia, Spain
| | | | - Herminia Gonzalez-Navarro
- CIBERDEM, Biomedical Network Research Centre in Diabetes and Metabolic Related Diseases, Madrid, Spain.,Institute of Health Research-INCLIVA, Valencia, Spain
| | - Antonia Priego
- Service of Endocrinology and Nutrition, University Clinic Hospital of Valencia, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| | - Jose F Martinez-Valls
- Service of Endocrinology and Nutrition, University Clinic Hospital of Valencia, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| | - Guillermo T Saez
- Department of Biochemistry and Molecular Biology, University of Valencia-INCLIVA, Valencia, Spain.,Service of Clinical Analysis, Dr. Peset University Hospital, Valencia, Spain
| | - Jose T Real
- Service of Endocrinology and Nutrition, University Clinic Hospital of Valencia, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain.,CIBERDEM, Biomedical Network Research Centre in Diabetes and Metabolic Related Diseases, Madrid, Spain
| | - Rafael Carmena
- Service of Endocrinology and Nutrition, University Clinic Hospital of Valencia, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain.,CIBERDEM, Biomedical Network Research Centre in Diabetes and Metabolic Related Diseases, Madrid, Spain
| | - Juan F Ascaso
- Service of Endocrinology and Nutrition, University Clinic Hospital of Valencia, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain.,CIBERDEM, Biomedical Network Research Centre in Diabetes and Metabolic Related Diseases, Madrid, Spain
| |
Collapse
|