1201
|
Lee KW, Im JY, Woo JM, Grosso H, Kim YS, Cristovao AC, Sonsalla PK, Schuster DS, Jalbut MM, Fernandez JR, Voronkov M, Junn E, Braithwaite SP, Stock JB, Mouradian MM. Neuroprotective and anti-inflammatory properties of a coffee component in the MPTP model of Parkinson's disease. Neurotherapeutics 2013; 10:143-53. [PMID: 23296837 PMCID: PMC3557367 DOI: 10.1007/s13311-012-0165-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Consumption of coffee is associated with reduced risk of Parkinson's disease (PD), an effect that has largely been attributed to caffeine. However, coffee contains numerous components that may also be neuroprotective. One of these compounds is eicosanoyl-5-hydroxytryptamide (EHT), which ameliorates the phenotype of α-synuclein transgenic mice associated with decreased protein aggregation and phosphorylation, improved neuronal integrity and reduced neuroinflammation. Here, we sought to investigate if EHT has an effect in the MPTP model of PD. Mice fed a diet containing EHT for four weeks exhibited dose-dependent preservation of nigral dopaminergic neurons following MPTP challenge compared to animals given control feed. Reductions in striatal dopamine and tyrosine hydroxylase content were also less pronounced with EHT treatment. The neuroinflammatory response to MPTP was markedly attenuated, and indices of oxidative stress and JNK activation were significantly prevented with EHT. In cultured primary microglia and astrocytes, EHT had a direct anti-inflammatory effect demonstrated by repression of lipopolysaccharide-induced NFκB activation, iNOS induction, and nitric oxide production. EHT also exhibited a robust anti-oxidant activity in vitro. Additionally, in SH-SY5Y cells, MPP(+)-induced demethylation of phosphoprotein phosphatase 2A (PP2A), the master regulator of the cellular phosphoregulatory network, and cytotoxicity were ameliorated by EHT. These findings indicate that the neuroprotective effect of EHT against MPTP is through several mechanisms including its anti-inflammatory and antioxidant activities as well as its ability to modulate the methylation and hence activity of PP2A. Our data, therefore, reveal a strong beneficial effect of a novel component of coffee in multiple endpoints relevant to PD.
Collapse
Affiliation(s)
- Kang-Woo Lee
- />Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854 USA
- />Medical Research Division, Acupuncture, Moxibustion & Meridian Research Group, Korea Institute of Oriental Medicine, Daejeon, South Korea 305-811
| | - Joo-Young Im
- />Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854 USA
| | - Jong-Min Woo
- />Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854 USA
| | - Hilary Grosso
- />Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854 USA
| | - Yoon-Seong Kim
- />Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Ana Clara Cristovao
- />Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
- />Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Patricia K. Sonsalla
- />Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854 USA
| | - David S. Schuster
- />Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | - Marla M. Jalbut
- />Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | | | | | - Eunsung Junn
- />Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854 USA
| | - Steven P. Braithwaite
- />Signum Biosciences, Inc., Monmouth Junction, NJ 08852 USA
- />Circuit Therapeutics, Inc., Menlo Park, CA 94025 USA
| | - Jeffry B. Stock
- />Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
- />Signum Biosciences, Inc., Monmouth Junction, NJ 08852 USA
| | - M. Maral Mouradian
- />Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854 USA
| |
Collapse
|
1202
|
Schlachetzki JC, Saliba SW, Oliveira ACPD. Studying neurodegenerative diseases in culture models. BRAZILIAN JOURNAL OF PSYCHIATRY 2013; 35 Suppl 2:S92-100. [DOI: 10.1590/1516-4446-2013-1159] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
1203
|
Pan M, Gao H, Long L, Xu Y, Liu M, Zou J, Wu A, Wei X, Chen X, Tang B, Wang Q. Serum uric acid in patients with Parkinson's disease and vascular parkinsonism: a cross-sectional study. Neuroimmunomodulation 2013; 20:19-28. [PMID: 23154271 DOI: 10.1159/000342483] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/03/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Elevation of serum uric acid (UA) is correlated with a decreased risk of Parkinson's disease (PD); however, the association and clinical relevance of serum UA levels in patients with PD and vascular parkinsonism (VP) are unknown. OBJECTIVE We performed a cross-sectional study of 160 Chinese patients with PD and VP to determine whether UA levels in patients could predict the outcomes. METHODS Serum UA levels were divided into quartiles and the association between UA and the severity of PD or VP was investigated in each quartile. RESULTS The serum levels of UA in PD were significantly lower than those in normal subjects and VP. The serum UA levels in PD patients were significantly correlated with some clinical parameters. Strong correlations were observed in male PD patients, but significant correlations were observed only between UA and the non-motor symptoms (NMS) of burden of sleep/fatigue and mood in female PD patients. PD patients in the lowest quartile of serum UA levels had significant correlations between UA and the unified Parkinson's disease rating scale, the modified Hoehn and Yahr staging scale and NMS burden for attention/memory. CONCLUSION Our findings support the hypothesis that subjects with low serum UA levels may be more prone to developing PD and indicate that the inverse relationship between UA and severity of PD was robust for men but weak for women. Our results strongly imply that either low serum UA level is a deteriorative predictor or that serum UA level serves as an indirect biomarker of prediction in PD but not in VP patients.
Collapse
Affiliation(s)
- Mengqiu Pan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1204
|
Hoban DB, Connaughton E, Connaughton C, Hogan G, Thornton C, Mulcahy P, Moloney TC, Dowd E. Further characterisation of the LPS model of Parkinson's disease: a comparison of intra-nigral and intra-striatal lipopolysaccharide administration on motor function, microgliosis and nigrostriatal neurodegeneration in the rat. Brain Behav Immun 2013; 27:91-100. [PMID: 23044176 DOI: 10.1016/j.bbi.2012.10.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/20/2012] [Accepted: 10/01/2012] [Indexed: 01/06/2023] Open
Abstract
Chronic neuroinflammation has been established as one of the many processes involved in the pathogenesis of Parkinson's disease (PD). Because of this, researchers have attempted to replicate this pathogenic feature in animal models using the potent inflammagen, lipopolysaccharide (LPS), in order to gain better understanding of immune-mediated events in PD. However, although the effect of intra-cerebral LPS on neuroinflammation and neurodegeneration has been relatively well characterised, its impact on motor function has been less well studied. Therefore, the aim of this study was to further characterise the neuropathological and behavioural impact of intra-nigral and intra-striatal administration of LPS. To do, LPS (10 μg) or vehicle (sterile saline) were stereotaxically injected into the adult rat substantia nigra or striatum on one side only. The effect of LPS administration on lateralised motor function was assessed using the Corridor, Stepping and Whisker tests for two weeks post-injection, after which, amphetamine-induced rotational asymmetry was completed. Post-mortem, the impact of LPS on nigrostriatal degeneration and microgliosis was assessed using quantitative tyrosine hydroxylase and OX-42 immunohistochemistry respectively. We found that intra-nigral administration of LPS led to localised microgliosis in the substantia nigra and this was accompanied by nigrostriatal neurodegeneration and stable spontaneous motor deficits. In contrast, intra-striatal administration of LPS led to localised microgliosis in the striatum but this did not lead to any nigrostriatal neurodegeneration and only induced transient motor dysfunction. In conclusion, this study reveals the impact of intra-cerebral LPS administration on PD-related neuropathology and motor function, and it indicates that the intra-nigral model may be a highly relevant model as it is associated with stable motor decline underpinned by nigral microgliosis and nigrostriatal neurodegeneration.
Collapse
Affiliation(s)
- Deirdre B Hoban
- The Department of Pharmacology & Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
1205
|
Sharaf A, Krieglstein K, Spittau B. Distribution of microglia in the postnatal murine nigrostriatal system. Cell Tissue Res 2012; 351:373-82. [PMID: 23250575 DOI: 10.1007/s00441-012-1537-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra (SN) and the subsequent loss of striatal target innervation. Neuroinflammatory responses have been described for virtually all PD cases analysed. Microglia are the resident immune cells of the central nervous system and, thus, are the mediators of neuroinflammation. Approximately 12% of all central nervous system cells are microglia but the distribution and density of microglia differ within distinct brain regions. Interestingly, the SN has been shown to contain more microglia than adjacent structures. We have analysed changes in microglia numbers and in microglial morphology in the postnatal murine nigrostriatal system at various stages ranging from postnatal day 0 (P0) up to 24 months of age. We clearly show that the microglia numbers in the SN and in the striatum dramatically increase from P0 to P15 and significantly decrease in both areas in 18-month-old and 24-month-old animals. Moreover, microglia in the nigrostriatal system of aged mice show signs of dystrophy and degeneration, such as cytoplasmic inclusions, deramification of their processes and membrane blebbing. Our results support the hypothesis of microglial dystrophy during aging in the murine nigrostriatal system, accompanied by subsequent impairment of normal microglial functions. Microglial dysfunction during aging might be a potential risk factor for the development and/or progression of PD.
Collapse
Affiliation(s)
- Ahmed Sharaf
- Institute of Anatomy & Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-University Freiburg, Albertstrasse 17, 79104, Freiburg, Germany
| | | | | |
Collapse
|
1206
|
Lee HJ, Chung KC. PINK1 positively regulates IL-1β-mediated signaling through Tollip and IRAK1 modulation. J Neuroinflammation 2012; 9:271. [PMID: 23244239 PMCID: PMC3533909 DOI: 10.1186/1742-2094-9-271] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 11/16/2012] [Indexed: 12/29/2022] Open
Abstract
Background Parkinson disease (PD) is characterized by a slow, progressive degeneration of dopaminergic neurons in the substantianigra. The cause of neuronal loss in PD is not well understood, but several genetic loci, including PTEN-induced putative kinase 1 (PINK1), have been linked to early-onset autosomal recessive forms of familial PD. Neuroinflammation greatly contributes to PD neuronal degeneration and pathogenesis. IL-1 is one of the principal cytokines that regulates various immune and inflammatory responses via the activation of the transcription factors NF-κB and activating protein-1. Despite the close relationship between PD and neuroinflammation, the functional roles of PD-linked genes during inflammatory processes remain poorly understood. Methods To explore the functional roles of PINK1 in response to IL-1β stimulation, HEK293 cells, mouse embryonic fibroblasts derived from PINK1-null (PINK1−/−) and control (PINK1+/+) mice, and 293 IL-1RI cells stably expressing type 1 IL-1 receptor were used. Immunoprecipitation and western blot analysis were performed to detect protein–protein interaction and protein ubiquitination. To confirm the effect of PINK1 on NF-κB activation, NF-κB-dependent firefly luciferase reporter assay was conducted. Results PINK1 specifically binds two components of the IL-1-mediated signaling cascade, Toll-interacting protein (Tollip) and IL-1 receptor-associated kinase 1 (IRAK1). The association of PINK1 with Tollip, a negative regulator of IL-1β signaling, increases upon IL-1β stimulation, which then facilitates the dissociation of Tollip from IRAK1 as well as the assembly of the IRAK1–TNF receptor-associated factor 6 (TRAF6) complex. PINK1 also enhances Lys63-linked polyubiquitination of IRAK1, an essential modification of recruitment of NF-κB essential modulator and subsequent IκB kinase activation, and increases formation of the intermediate signalosome including IRAK1, TRAF6, and transforming growth factor-β activated kinase 1. Furthermore, PINK1 stimulates IL-1β-induced NF-κB activity via suppression of Tollip inhibitory action. Conclusions These results suggest that PINK1 upregulates IL-1β-mediated signaling through the functional modulation of Tollip and IRAK1. These results further suggest that PINK1 stimulates the ubiquitination of proximal molecules and increases signalosome formation in the IL-1β-mediated signaling pathway. The present study therefore supports the idea of the close relationship between neuroinflammation and PD.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 120-749, Korea
| | | |
Collapse
|
1207
|
Kanno T, Tanaka K, Yanagisawa Y, Yasutake K, Hadano S, Yoshii F, Hirayama N, Ikeda JE. A novel small molecule, N-(4-(2-pyridyl)(1,3-thiazol-2-yl))-2-(2,4,6-trimethylphenoxy) acetamide, selectively protects against oxidative stress-induced cell death by activating the Nrf2-ARE pathway: therapeutic implications for ALS. Free Radic Biol Med 2012; 53:2028-42. [PMID: 23000247 DOI: 10.1016/j.freeradbiomed.2012.09.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/04/2012] [Accepted: 09/13/2012] [Indexed: 12/30/2022]
Abstract
Antioxidant defense is crucial in restoring cellular redox homeostasis. Recent findings have suggested that oxidative stress plays pivotal roles in the pathogenesis of many neurodegenerative diseases. Thus, an anti-oxidative stress remedy might be a promising means for the treatment of such disorders. In this study, we employed a novel ligand-based virtual screening system and identified a novel small molecule, N-(4-(2-pyridyl)(1,3-thiazol-2-yl))-2-(2,4,6-trimethylphenoxy) acetamide (CPN-9), which selectively suppressed oxidative stress-induced cell death in a cell-type-independent manner. CPN-9 upregulates NF-E2-related factor 2 (Nrf2), a key transcriptional regulator of the expression of phase II detoxification enzymes and antioxidant proteins, and Nrf2-regulated factors such as heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), and glutamate-cysteine ligase modifier subunit (GCLM). The CPN-9-mediated upregulation of HO-1, NQO1, and GCLM was abolished by Nrf2 knockdown. Moreover, the antioxidant N-acetylcysteine reduced the protective effect of CPN-9 against oxidative stress-induced cell death with concomitant diminishing of Nrf2 nuclear translocation. These results indicate that CPN-9 exerts its activity via the reactive oxygen species-dependent activation of the Nrf2 signaling pathway in cultured cells. It is noteworthy that the postonset systemic administration of CPN-9 to a transgenic ALS mouse model carrying the H46R mutation in the human Cu/Zn superoxide dismutase (SOD1) gene sustained motor functions and delayed disease progression after onset. Collectively, CPN-9 is a novel Nrf2 activator and a neuroprotective candidate for the treatment of neurodegenerative diseases, including ALS.
Collapse
Affiliation(s)
- Takuya Kanno
- NGP Biomedical Research Institute, Neugen Pharma Inc., Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | | | | | | | | | | | | | | |
Collapse
|
1208
|
Neto SC, Salti A, Puschban Z, Stefanova N, Nat R, Dechant G, Wenning GK. Cell fate analysis of embryonic ventral mesencephalic grafts in the 6-OHDA model of Parkinson's disease. PLoS One 2012; 7:e50178. [PMID: 23209667 PMCID: PMC3510255 DOI: 10.1371/journal.pone.0050178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/22/2012] [Indexed: 11/19/2022] Open
Abstract
Evidence from carefully conducted open label clinical trials suggested that therapeutic benefit can be achieved by grafting fetal dopaminergic (DAergic) neurons derived from ventral mesencephalon (VM) into the denervated striatum of Parkinson's disease (PD) patients. However, two double-blind trials generated negative results reporting deleterious side effects such as prominent dyskinesias. Heterogeneous composition of VM grafts is likely to account for suboptimal clinical efficacy.We consider that gene expression patterns of the VM tissue needs to be better understood by comparing the genetic signature of the surviving and functioning grafts with the cell suspensions used for transplantation. In addition, it is crucial to assess whether the grafted cells exhibit the DAergic phenotype of adult substantia nigra pars compacta (SNpc). To investigate this further, we used a GFP reporter mouse as source of VM tissue that enabled the detection and dissection of the grafts 6 weeks post implantation. A comparative gene expression analysis of the VM cell suspension and grafts revealed that VM grafts continue to differentiate post-implantation. In addition, implanted grafts showed a mature SNpc-like molecular DAergic phenotype with similar expression levels of TH, Vmat2 and Dat. However, by comparing gene expression of the adult SNpc with dissected grafts we detected a higher expression of progenitor markers in the grafts. Finally, when compared to the VM cell suspension, post-grafting there was a higher expression of markers inherent to glia and other neuronal populations.In summary, our data highlight the dynamic development of distinctive DAergic and non-DAergic gene expression markers associated with the maturation of VM grafts in vivo. The molecular signature of VM grafts and its functional relevance should be further explored in future studies aimed at the optimization of DAergic cell therapy approaches in PD.
Collapse
Affiliation(s)
- Sonya Carvalho Neto
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
1209
|
Chantong B, Kratschmar DV, Nashev LG, Balazs Z, Odermatt A. Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells. J Neuroinflammation 2012. [PMID: 23190711 PMCID: PMC3526453 DOI: 10.1186/1742-2094-9-260] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Microglia, the resident macrophage-like cells in the brain, regulate innate immune responses in the CNS to protect neurons. However, excessive activation of microglia contributes to neurodegenerative diseases. Corticosteroids are potent modulators of inflammation and mediate their effects by binding to mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Here, the coordinated activities of GR and MR on the modulation of the nuclear factor-κB (NF-κB) pathway in murine BV-2 microglial cells were studied. Methods BV-2 cells were treated with different corticosteroids in the presence or absence of MR and GR antagonists. The impact of the glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) was determined by incubating cells with 11-dehydrocorticosterone, with or without selective inhibitors. Expression of interleukin-6 (IL-6), tumor necrosis factor receptor 2 (TNFR2), and 11β-HSD1 mRNA was analyzed by RT-PCR and IL-6 protein expression by ELISA. NF-κB activation and translocation upon treatment with various corticosteroids were visualized by western blotting, immunofluorescence microscopy, and translocation assays. Results GR and MR differentially regulate NF-κB activation and neuroinflammatory parameters in BV-2 cells. By converting inactive 11-dehydrocorticosterone to active corticosterone, 11β-HSD1 essentially modulates the coordinated action of GR and MR. Biphasic effects were observed for 11-dehydrocorticosterone and corticosterone, with an MR-dependent potentiation of IL-6 and tumor necrosis factor-α (TNF-α) expression and NF-κB activation at low/moderate concentrations and a GR-dependent suppression at high concentrations. The respective effects were confirmed using the MR ligand aldosterone and the antagonist spironolactone as well as the GR ligand dexamethasone and the antagonist RU-486. NF-κB activation could be blocked by spironolactone and the inhibitor of NF-κB translocation Cay-10512. Moreover, an increased expression of TNFR2 was observed upon treatment with 11-dehydrocorticosterone and aldosterone, which was reversed by 11β-HSD1 inhibitors and/or spironolactone and Cay-10512. Conclusions A tightly coordinated GR and MR activity regulates the NF-κB pathway and the control of inflammatory mediators in microglia cells. The balance of GR and MR activity is locally modulated by the action of 11β-HSD1, which is upregulated by pro-inflammatory mediators and may represent an important feedback mechanism involved in resolution of inflammation.
Collapse
Affiliation(s)
- Boonrat Chantong
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
1210
|
Cao S, Standaert DG, Harms AS. The gamma chain subunit of Fc receptors is required for alpha-synuclein-induced pro-inflammatory signaling in microglia. J Neuroinflammation 2012. [PMID: 23186369 PMCID: PMC3526448 DOI: 10.1186/1742-2094-9-259] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background The protein alpha-synuclein (α-SYN), which is found in the Lewy bodies of dopamine-producing (DA) neurons in the substantia nigra (SN), has an important role in the pathogenesis of Parkinson’s disease (PD). Previous studies have shown that neuroinflammation plays a key role in PD pathogenesis. In an AAV-synuclein mouse model of PD, we have found that over-abundance of α-SYN triggers the expression of NF-κB p65, and leads to microglial activation and DA neurodegeneration. We also have observed that Fcγ receptors (FcγR), proteins present on the surface of microglia that bind immunoglobulin G (IgG) and other ligands, are key modulators of α-SYN-induced neurodegeneration. Methods In order to study the role of FcγRs in the interactions of α-SYN and microglia, we treated the primary microglial cultures from wild-type (WT) and FcγR−/− mice with aggregated human α-SYN in vitro. Results Using immunocytochemistry, we found that α-SYN was taken up by both WT and FcγR−/− microglia, however, their patterns of internalization were different, with aggregation in autophagosomes in WT cells and more diffuse localization in FcγR−/− microglia. In WT microglia, α-SYN induced the nuclear accumulation of NF-κB p65 protein and downstream chemokine expression while in FcγR−/− mouse microglia, α-SYN failed to trigger the enhancement of nuclear NF-κB p65, and the pro-inflammatory signaling was reduced. Conclusions Our results suggest that α-SYN can interact directly with microglia and can be internalized and trafficked to autophagosomes. FcγRs mediate this interaction, and in the absence of the gamma chain, there is altered intracellular trafficking and attenuation of pro-inflammatory NF-κB signaling. Therefore, blocking either FcγR signaling or downstream NF-κB activation may be viable therapeutic strategies in PD.
Collapse
Affiliation(s)
- Shuwen Cao
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, 1719 6th Ave. South, CIRC 516, Birmingham, AL 35294-0021, USA
| | | | | |
Collapse
|
1211
|
MFGE8 does not orchestrate clearance of apoptotic neurons in a mouse model of Parkinson's disease. Neurobiol Dis 2012. [PMID: 23194669 DOI: 10.1016/j.nbd.2012.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by a loss of dopaminergic neurons (DN) in the substantia nigra (SN). Several lines of evidence suggest that apoptotic cell death of DN is driven in part by non-cell autonomous mechanisms implicating microglial cells and inflammatory processes. Yet, how apoptotic DNs get removed by professional phagocytes and how this process modulates inflammatory processes are still unresolved issues. In this study, we investigated the role of MFGE8, a soluble factor involved in phagocytic recognition, in apoptotic DN clearance and neuroinflammation in PD. We report that glial expression of MFGE8 is enhanced in post-mortem PD brains compared to control individuals. Then, in vivo functional analysis of Mfge8 was assessed in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mouse model of PD using wild-type (WT) and Mfge8-deficient mice. Neuropathological analysis consisted in evaluating (i) the loss of nigral DN and striatal DN terminals, (ii) the extent of glial cell activation and (iii) the number of apoptotic profiles. In vivo microglial phagocytic activity was further assessed by measuring the engulfment of apoptotic DN preloaded with fluorescent latex beads. Here we show that Mfge8 deficiency neither impact the phagocytic clearance of apoptotic bodies nor change the overall neuropathological parameters (DN cell loss and glial cell activation). In summary, our data argue that MFGE8 is not likely involved in the phagocytic clearance of neuronal debris associated with nigrostriatal pathway injury.
Collapse
|
1212
|
Abstract
New concepts on potassium channel function in neuroinflammation suggest that they regulate mechanisms of microglial activation, including intracellular calcium homeostasis, morphological alterations, pro-inflammatory cytokine release, antigen presentation, and phagocytosis. Although little is known about voltage independent potassium channels in microglia, special attention emerges on small (SK/KCNN1-3/K(Ca)2) and intermediate (IK/KCNN4/K(Ca)3.1)-conductance calcium-activated potassium channels as regulators of microglial activation in the field of research on neuroinflammation and neurodegeneration. In particular, recent findings suggested that SK/K(Ca)2 channels, by regulating calcium homeostasis, may elicit a dual mechanism of action with protective properties in neurons and inhibition of inflammatory responses in microglia. Thus, modulating SK/K(Ca)2 channels and calcium signaling may provide novel therapeutic strategies in neurological disorders, where neuronal cell death and inflammatory responses concomitantly contribute to disease progression. Here, we review the particular role of SK/K(Ca)2 channels for [Ca(2+)](i) regulation in microglia and neurons, and we discuss the potential impact for further experimental approaches addressing novel therapeutic strategies in neurological diseases, where neuronal cell death and neuroinflammatory processes are prominent.
Collapse
Affiliation(s)
- Amalia M Dolga
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg Marburg, Germany
| | | |
Collapse
|
1213
|
Barnum CJ, Tansey MG. Neuroinflammation and non-motor symptoms: the dark passenger of Parkinson's disease? Curr Neurol Neurosci Rep 2012; 12:350-8. [PMID: 22580742 DOI: 10.1007/s11910-012-0283-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Generally speaking, inflammation as a key piece to the Parkinson's disease (PD) puzzle is a relatively new concept. Acceptance of this concept has gained ground as studies by various researchers have demonstrated the potential of mitigating nigral cell death by curtailing inflammation in animal models of PD. We propose that the significance of inflammation in PD pathology may extend beyond the nigrostriatal region. In the current review, we present an argument for this based on the Braak staging and discuss how inflammation might contribute to the development of non-motor PD symptoms.
Collapse
Affiliation(s)
- Christopher J Barnum
- Department of Physiology, School of Medicine at Emory University, 615 Michael Street, Atlanta, GA 30324, USA
| | | |
Collapse
|
1214
|
ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo. Sci Rep 2012; 2:809. [PMID: 23139861 PMCID: PMC3492875 DOI: 10.1038/srep00809] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/18/2012] [Indexed: 01/17/2023] Open
Abstract
The role of microglial motility in the context of adult neurodegeneration is poorly understood. In the present work, we investigated the microanatomical details of microglia-neuron interactions in an experimental mouse model of Parkinson's disease following the intraperitoneal injection of MPTP. The specific intoxication of dopaminergic neurons induces the cellular polarization of microglia, leading to the formation of body-to-body neuron-glia contacts, called gliapses, which precede neuron elimination. Inhibiting ROCK/Cdc42-mediated microglial motility in vivo blocks the activating features of microglia, such as increased cell size and number of filopodia and diminishes their phagocyting/secreting domains, as the reduction of the Golgi apparatus and the number of microglia-neuron contacts has shown. High-resolution confocal images and three-dimensional rendering demonstrate that microglia engulf entire neurons at one-to-one ratio, and the microglial cell body participates in the formation of the phagocytic cup, engulfing and eliminating neurons in areas of dopaminergic degeneration in adult mammals.
Collapse
|
1215
|
Transient receptor potential vanilloid subtype 1 contributes to mesencephalic dopaminergic neuronal survival by inhibiting microglia-originated oxidative stress. Brain Res Bull 2012; 89:92-6. [DOI: 10.1016/j.brainresbull.2012.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/26/2012] [Accepted: 07/03/2012] [Indexed: 11/23/2022]
|
1216
|
Targeting phosphatases as the next generation of disease modifying therapeutics for Parkinson’s disease. Neurochem Int 2012; 61:899-906. [DOI: 10.1016/j.neuint.2012.01.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 01/26/2012] [Accepted: 01/28/2012] [Indexed: 12/15/2022]
|
1217
|
Surmeier DJ, Schumacker PT. Calcium, bioenergetics, and neuronal vulnerability in Parkinson's disease. J Biol Chem 2012; 288:10736-41. [PMID: 23086948 DOI: 10.1074/jbc.r112.410530] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The most distinguishing feature of neurons is their capacity for regenerative electrical activity. This activity imposes a significant mitochondrial burden, especially in neurons that are autonomously active, have broad action potentials, and exhibit prominent Ca(2+) entry. Many of the genetic mutations and toxins associated with Parkinson's disease compromise mitochondrial function, providing a mechanistic explanation for the pattern of neuronal pathology in this disease. Because much of the neuronal mitochondrial burden can be traced to L-type voltage-dependent channels (channels for which there are brain-penetrant antagonists approved for human use), a neuroprotective strategy to reduce this burden is available.
Collapse
Affiliation(s)
- D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
1218
|
Noyce AJ, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Giovannoni G, Lees AJ, Schrag A. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol 2012; 72:893-901. [PMID: 23071076 PMCID: PMC3556649 DOI: 10.1002/ana.23687] [Citation(s) in RCA: 512] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/19/2012] [Accepted: 07/06/2012] [Indexed: 11/21/2022]
Abstract
Objective To evaluate the association between diagnosis of Parkinson disease (PD) and risk factors or early symptoms amenable to population-based screening. Methods A systematic review and meta-analysis of risk factors for PD. Results The strongest associations with later diagnosis of PD were found for having a first-degree or any relative with PD (odds ratio [OR], 3.23; 95% confidence interval [CI], 2.65–3.93 and OR, 4.45; 95% CI, 3.39–5.83) or any relative with tremor (OR, 2.74; 95% CI, 2.10–3.57), constipation (relative risk [RR], 2.34; 95% CI, 1.55–3.53), or lack of smoking history (current vs never: RR, 0.44; 95% CI, 0.39–0.50), each at least doubling the risk of PD. Further positive significant associations were found for history of anxiety or depression, pesticide exposure, head injury, rural living, beta-blockers, farming occupation, and well-water drinking, and negative significant associations were found for coffee drinking, hypertension, nonsteroidal anti-inflammatory drugs, calcium channel blockers, and alcohol, but not for diabetes mellitus, cancer, oral contraceptive pill use, surgical menopause, hormone replacement therapy, statins, acetaminophen/paracetamol, aspirin, tea drinking, history of general anesthesia, or gastric ulcers. In the systematic review, additional associations included negative associations with raised serum urate, and single studies or studies with conflicting results. Interpretation The strongest risk factors associated with later PD diagnosis are having a family history of PD or tremor, a history of constipation, and lack of smoking history. Further factors also but less strongly contribute to risk of PD diagnosis or, as some premotor symptoms, require further standardized studies to demonstrate the magnitude of risk associated with them. ANN NEUROL 2012
Collapse
Affiliation(s)
- Alastair J Noyce
- Institute of Neurology, University College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
1219
|
Goldberg JA, Guzman JN, Estep CM, Ilijic E, Kondapalli J, Sanchez-Padilla J, Surmeier DJ. Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson's disease. Nat Neurosci 2012; 15:1414-21. [PMID: 22941107 PMCID: PMC3461271 DOI: 10.1038/nn.3209] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/08/2012] [Indexed: 12/21/2022]
Abstract
Mitochondrial oxidant stress is widely viewed as being critical to pathogenesis in Parkinson's disease. But the origins of this stress are poorly defined. One possibility is that it arises from the metabolic demands associated with regenerative activity. To test this hypothesis, we characterized neurons in the dorsal motor nucleus of the vagus (DMV), a population of cholinergic neurons that show signs of pathology in the early stages of Parkinson's disease, in mouse brain slices. DMV neurons were slow, autonomous pacemakers with broad spikes, leading to calcium entry that was weakly buffered. Using a transgenic mouse expressing a redox-sensitive optical probe targeted to the mitochondrial matrix, we found that calcium entry during pacemaking created a basal mitochondrial oxidant stress. Knocking out DJ-1 (also known as PARK7), a gene associated with early-onset Parkinson's disease, exacerbated this stress. These results point to a common mechanism underlying mitochondrial oxidant stress in Parkinson's disease and a therapeutic strategy to ameliorate it.
Collapse
Affiliation(s)
- Joshua A Goldberg
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
1220
|
Molecular imaging of cell death in an experimental model of Parkinson's disease with a novel apoptosis-targeting peptide. Mol Imaging Biol 2012; 14:147-55. [PMID: 21567253 DOI: 10.1007/s11307-011-0497-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE We used a novel apoptosis-targeting peptide called ApoPep-1 in order to evaluate whether ApoPep-1 can be used as a diagnostic indicator in a model of Parkinson's disease (PD). PROCEDURES 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was given to mice to produce the PD model. Cy7.5-labeled ApoPep-1 was given intravenously and optical imaging was taken at 1, 2, and 3 weeks after MPTP treatment. Immunohistochemical study was performed with brain sections. RESULTS Increased ApoPep-1 signal was observed in the brain of MPTP-treated mice by in vivo and ex vivo imaging study. With histological evaluation, ApoPep-1 signal demonstrated a strong correlation with loss of dopaminergic neurons or increase of apoptotic cells. Moreover, the neuroprotective effect of amantadine in the MPTP model was effectively evaluated using optical imaging of ApoPep-1. CONCLUSIONS We conclude that ApoPep-1 is the effective probe for imaging of apoptosis in the MPTP model and can be applied in brain diseases with apoptosis.
Collapse
|
1221
|
Gruden MA, Yanamandra K, Kucheryanu VG, Bocharova OR, Sherstnev VV, Morozova-Roche LA, Sewell RDE. Correlation between protective immunity to α-synuclein aggregates, oxidative stress and inflammation. Neuroimmunomodulation 2012; 19:334-342. [PMID: 22986484 DOI: 10.1159/000341400] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/15/2012] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Protein aggregation leading to central amyloid deposition is implicated in Parkinson's disease (PD). During disease progression, inflammation and oxidative stress may well invoke humoral immunity against pathological aggregates of PD-associated α-synuclein. The aim was to investigate any possible concurrence between autoimmune responses to α-synuclein monomers, oligomers or fibrils with oxidative stress and inflammation. METHODS The formation of α-synuclein amyloid species was assessed by thioflavin-T assay and atomic force microscopy was employed to confirm their morphology. Serum autoantibody titers to α-synuclein conformations were determined by ELISA. Enzyme activity and concentrations of oxidative stress/inflammatory indicators were evaluated by enzyme and ELISA protocols. RESULTS In PD patient sera, a differential increase in autoantibody titers to α-synuclein monomers, toxic oligomers or fibrils was associated with boosted levels of the pro-inflammatory cytokine interleukin-6 and tumour necrosis factor-α, but a decrease in interferon-γ concentration. In addition, levels of malondialdehyde were elevated whilst those of glutathione were reduced along with decrements in the activity of the antioxidants: superoxide dismutase, catalase and glutathione transferase. CONCLUSIONS It is hypothesized that the generation of α-synuclein amyloid aggregates allied with oxidative stress and inflammatory reactions may invoke humoral immunity protecting against dopaminergic neuronal death. Hence, humoral immunity is a common integrative factor throughout PD progression which is directed towards prevention of further neurodegeneration, so potential treatment strategies should attempt to maintain PD patient immune status.
Collapse
|
1222
|
Depboylu C, Stricker S, Ghobril JP, Oertel WH, Priller J, Höglinger GU. Brain-resident microglia predominate over infiltrating myeloid cells in activation, phagocytosis and interaction with T-lymphocytes in the MPTP mouse model of Parkinson disease. Exp Neurol 2012; 238:183-91. [PMID: 22964486 DOI: 10.1016/j.expneurol.2012.08.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/17/2012] [Accepted: 08/21/2012] [Indexed: 11/16/2022]
Abstract
Parkinson disease (PD) is characterized by dopaminergic neurodegeneration in the substantia nigra (SN). Recent evidence suggests that innate and adaptive immune responses can influence dopaminergic cell death in animal models of PD. However, the precise role of mononuclear phagocytes, key players in damaged tissue clearance and cross-talk with cells of adaptive immune system, remains open in PD. Mononuclear phagocytes in the brain occur as brain-resident microglia and as brain-infiltrating myeloid cells. To elucidate their differential contribution in the uptake of dopaminergic cell debris and antigen presentation capacity, we labeled nigral dopaminergic neurons retrogradely with inert rhodamine-conjugated latex retrobeads before inducing their degeneration by subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration. We used green fluorescent protein (GFP)-expressing bone marrow chimeric mice to differentiate brain-infiltrating from brain-resident myeloid cells. We found that half of both endogenous (GFP-) and exogenous (GFP+) microglia (Iba1+) in the SN incorporated the tracer from degenerating dopaminergic neurons 1d after MPTP intoxication. In absolute numbers, endogenous microglia were much more activated to macrophages compared to exogenous myeloid cells at 1d after MPTP. Mainly the endogenous, tracer-phagocytosing microglia expressed the major histocompatibility complex (MHC) class II molecule for antigen presentation. Additionally, T-lymphocytes (Iba1-/GFP+/CD3+), which infiltrate the MPTP-lesioned SN, were mainly in direct contact with MHCII+ endogenous microglia. Our data suggest that brain-resident microglia are predominantly implicated in the removal of dopaminergic cell debris and the cross-talk with infiltrating T-lymphocytes in the SN in the MPTP mouse model of PD.
Collapse
Affiliation(s)
- Candan Depboylu
- Department of Neurology and Laboratory of Experimental Neurology, Philipps University, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
1223
|
Abstract
The resident macrophages of the brain--the microglia--are morphologically activated during the progression of Parkinson's disease. Observational studies in human postmortem material and studies in animal models seek to define the contribution that this innate immune response might make to the pathogenesis and rate of progression of Parkinson's disease. We review here some of the key conceptual issues that need to be considered when performing these studies. We highlight the fact that most postmortem studies have not given due consideration to common comorbidities present in patients with Parkinson's disease and also the limitations of attempting to extrapolate from animal models to a chronic progressive neurodegenerative disease in humans that lasts for many years.
Collapse
Affiliation(s)
- V Hugh Perry
- School of Biological Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
1224
|
Alteration in the progression of dopamine neuron degeneration: May caffeine offer new perspective? Exp Neurol 2012; 237:218-22. [DOI: 10.1016/j.expneurol.2012.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/22/2012] [Accepted: 05/31/2012] [Indexed: 12/16/2022]
|
1225
|
Rocha SM, Cristovão AC, Campos FL, Fonseca CP, Baltazar G. Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol Dis 2012; 47:407-15. [DOI: 10.1016/j.nbd.2012.04.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 03/29/2012] [Accepted: 04/26/2012] [Indexed: 12/14/2022] Open
|
1226
|
Drouin-Ouellet J, Cicchetti F. Inflammation and neurodegeneration: the story 'retolled'. Trends Pharmacol Sci 2012; 33:542-51. [PMID: 22944460 DOI: 10.1016/j.tips.2012.07.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/30/2012] [Accepted: 07/11/2012] [Indexed: 01/18/2023]
Abstract
Toll-like receptors (TLRs) play a crucial role in innate immunity by recognizing conserved motifs predominantly found in microorganisms. Increasing evidence supports a role for TLRs in sterile inflammation as observed in neurodegenerative disorders. This includes work suggesting a contribution for these receptors to the pathophysiology of Alzheimer's disease (AD), Parkinson's disease (PD), and related disorders. In this review, the potential role of TLRs in the context of protein aggregation, neuronal degeneration, and genetic risk factors is addressed. In particular, we discuss the evidence derived from experimental models of both AD and PD which suggests that activation of TLRs can have beneficial and detrimental effects on pathological features such as protein aggregation and neuronal death. A deeper understanding of these dichotomous observations could be used for therapeutic benefit.
Collapse
|
1227
|
Hutter-Saunders JAL, Mosley RL, Gendelman HE. Pathways towards an effective immunotherapy for Parkinson's disease. Expert Rev Neurother 2012; 11:1703-15. [PMID: 22091596 DOI: 10.1586/ern.11.163] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Immunizations that target specific types of immune responses are used commonly to prevent microbial infections. However, a range of immune responses may prove necessary to combat the ravages of neurodegenerative diseases. The goal is to eliminate the 'root' cause of neurodegenerative disorders, misfolded aggregated proteins, while harnessing adaptive immune responses to promote neural repair. However, immunization strategies used to elicit humoral immune responses against aberrant brain proteins have yielded mixed success. While specific proteins can be cleared, the failures in halting disease progression revolve, in measure, around adaptive immune responses that promote autoreactive T cells and, as such, induce a meningoencephalitis, accelerating neurodegeneration. Thus, alternative approaches for protein clearance and neural repair are desired. To this end, our laboratories have sought to transform autoreactive adaptive immune responses into regulatory neuroprotective cells in Parkinson's disease. In this context, induction of immune responses against modified brain proteins serves to break immunological tolerance, while eliciting adaptive immunity to facilitate neuronal repair. How to harness the immune response in the setting of Parkinson's disease requires a thorough understanding of the role of immunity in human disease and the ways to modify such immune responses to elicit therapeutic gain. These are discussed in this review.
Collapse
Affiliation(s)
- Jessica A L Hutter-Saunders
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | |
Collapse
|
1228
|
Abstract
Both epidemiological and genetic studies support a role of neuroinflammation in the pathophysiology of Parkinson's disease (PD). Furthermore, post mortem studies confirm the involvement of innate as well as adaptive immunity in the affected brain regions in patients with PD. Indeed, activated microglial cells and T lymphocytes have been detected in the substantia nigra of patients concomitantly with an increased expression of pro-inflammatory mediators. Preclinical investigations conducted in various animal models of PD indicate that inflammatory processes are instrumental in neuronal cell death even though they are unlikely to be a primary cause for neuronal loss. Neuroinflammatory processes in PD are rather involved in self-perpetuating deleterious events that lead to protracted neuronal degeneration. In line with this, recent data indicate that glucocorticoid receptors are important in curtailing microglial reactivity, and deregulation in their activity in PD could lead to sustained inflammation-mediated degeneration. Altogether, neuroinflammatory processes might represent a target for neuroprotection in PD.
Collapse
Affiliation(s)
- Etienne C Hirsch
- INSERM, UMR_S975, CRicm, Experimental Therapeutics of neurodegeneration, F-75013, Paris, France.
| | | | | |
Collapse
|
1229
|
Hirsch EC, Jenner P, Przedborski S. Pathogenesis of Parkinson's disease. Mov Disord 2012; 28:24-30. [PMID: 22927094 DOI: 10.1002/mds.25032] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/03/2012] [Accepted: 04/08/2012] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease is a common adult-onset neurodegenerative disorder whose pathogenesis remains essentially unknown. Currently, it is believed that the neurodegenerative process in Parkinson's disease is a combination of both cell-autonomous and non-cell-autonomous mechanisms. Proposed cell-autonomous mechanisms include alterations in mitochondrial bioenergetics, dysregulation of calcium homeostasis, and impaired turnover of mitochondria. As for the proposed non-cell-autonomous mechanisms, they involve prion-like behavior of misfolded proteins and neuroinflammation. This suggests that cell death in Parkinson's disease is caused by a multifactorial cascade of pathogenic events and argues that effective neuroprotective therapy for Parkinson's disease may have to rely on multiple drug interventions.
Collapse
Affiliation(s)
- Etienne C Hirsch
- Université Pierre et Marie Curie-Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Salpêtrière, Paris, France
| | | | | |
Collapse
|
1230
|
Quantitative analysis of α-synuclein solubility in living cells using split GFP complementation. PLoS One 2012; 7:e43505. [PMID: 22927976 PMCID: PMC3425482 DOI: 10.1371/journal.pone.0043505] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 07/24/2012] [Indexed: 11/19/2022] Open
Abstract
Presently incurable, Parkinson's disease (PD) is the most common neurodegenerative movement disorder and affects 1% of the population over 60 years of age. The hallmarks of PD pathogenesis are the loss of dopaminergic neurons in the substantia nigra pars compacta, and the occurrence of proteinaceous cytoplasmic inclusions (Lewy bodies) in surviving neurons. Lewy bodies are mainly composed of the pre-synaptic protein alpha-synuclein (αsyn), an intrinsically unstructured, misfolding-prone protein with high propensity to aggregate. Quantifying the pool of soluble αsyn and monitoring αsyn aggregation in living cells is fundamental to study the molecular mechanisms of αsyn-induced cytotoxicity and develop therapeutic strategies to prevent αsyn aggregation. In this study, we report the use of a split GFP complementation assay to quantify αsyn solubility. Particularly, we investigated a series of naturally occurring and rationally designed αsyn variants and showed that this method can be used to study how αsyn sequence specificity affects its solubility. Furthermore, we demonstrated the utility of this assay to explore the influence of the cellular folding network on αsyn solubility. The results presented underscore the utility of the split GFP assay to quantify αsyn solubility in living cells.
Collapse
|
1231
|
Baiguera C, Alghisi M, Pinna A, Bellucci A, De Luca MA, Frau L, Morelli M, Ingrassia R, Benarese M, Porrini V, Pellitteri M, Bertini G, Fabene PF, Sigala S, Spillantini MG, Liou HC, Spano PF, Pizzi M. Late-onset Parkinsonism in NFκB/c-Rel-deficient mice. Brain 2012; 135:2750-65. [PMID: 22915735 PMCID: PMC3437025 DOI: 10.1093/brain/aws193] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Activation of the nuclear factor κB/c-Rel can increase neuronal resilience to pathological noxae by regulating the expression of pro-survival manganese superoxide dismutase (MnSOD, now known as SOD2) and Bcl-xL genes. We show here that c-Rel-deficient (c-rel(-/-)) mice developed a Parkinson's disease-like neuropathology with ageing. At 18 months of age, c-rel(-/-) mice exhibited a significant loss of dopaminergic neurons in the substantia nigra pars compacta, as assessed by tyrosine hydroxylase-immunoreactivity and Nissl staining. Nigral degeneration was accompanied by a significant loss of dopaminergic terminals and a significant reduction of dopamine and homovanillic acid levels in the striatum. Mice deficient of the c-Rel factor exhibited a marked immunoreactivity for fibrillary α-synuclein in the substantia nigra pars compacta as well as increased expression of divalent metal transporter 1 (DMT1) and iron staining in both the substantia nigra pars compacta and striatum. Aged c-rel(-/-) mouse brain were characterized by increased microglial reactivity in the basal ganglia, but no astrocytic reaction. In addition, c-rel(-/-) mice showed age-dependent deficits in locomotor and total activity and various gait-related deficits during a catwalk analysis that were reminiscent of bradykinesia and muscle rigidity. Both locomotor and gait-related deficits recovered in c-rel(-/-) mice treated with l-3,4-dihydroxyphenylalanine. These data suggest that c-Rel may act as a regulator of the substantia nigra pars compacta resilience to ageing and that aged c-rel(-/-) mice may be a suitable model of Parkinson's disease.
Collapse
Affiliation(s)
- Cristina Baiguera
- Department of Biomedical Sciences and Biotechnologies, University of Brescia and National Institute of Neuroscience, 25123 Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1232
|
Hu Q, Li B, Xu R, Chen D, Mu C, Fei E, Wang G. The protease Omi cleaves the mitogen-activated protein kinase kinase MEK1 to inhibit microglial activation. Sci Signal 2012; 5:ra61. [PMID: 22912494 DOI: 10.1126/scisignal.2002946] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Inflammation in Parkinson's disease is closely associated with disease pathogenesis. Mutations in Omi, which encodes the protease Omi, are linked to neurodegeneration and Parkinson's disease in humans and in mouse models. The severe neurodegeneration and neuroinflammation that occur in mnd2 (motor neuron degeneration 2) mice result from loss of the protease activity of Omi by the point mutation S276C; however, the substrates of Omi that induce neurodegeneration are unknown. We showed that Omi was required for the production of inflammatory molecules by microglia, which are the resident macrophages in the central nervous system. Omi suppressed the activation of the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase 1 and 2 (ERK1/2) by cleaving the upstream kinase MEK1 (mitogen-activated or extracellular signal-regulated protein kinase kinase 1). Knockdown of Omi in microglial cell lines led to activation of ERK1/2 and resulted in degradation of IκBα [α inhibitor of nuclear factor κB (NF-κB)], resulting in NF-κB activation and the expression of genes encoding inflammatory molecules, such as tumor necrosis factor-α and inducible nitric oxide synthase. The production of inflammatory molecules induced by the knockdown of Omi was blocked by the MEK1-specific inhibitor U0126. Furthermore, expression of the protease-deficient S276C Omi mutant in a microglial cell line had no effect on MEK1 cleavage or ERK1/2 activation. In the brains of mnd2 mice, we observed increased transcription of several genes encoding inflammatory molecules, as well as activation of astrocytes and microglia. Therefore, our study demonstrates that Omi is an intrinsic cellular factor that inhibits neuroinflammation.
Collapse
Affiliation(s)
- Qingsong Hu
- Laboratory of Molecular Neuropathology, Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | | | | | | | | | | | | |
Collapse
|
1233
|
Dun Y, Li G, Yang Y, Xiong Z, Feng M, Wang M, Zhang Y, Xiang J, Ma R. Inhibition of the canonical Wnt pathway by Dickkopf-1 contributes to the neurodegeneration in 6-OHDA-lesioned rats. Neurosci Lett 2012; 525:83-8. [PMID: 22902902 DOI: 10.1016/j.neulet.2012.07.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 07/10/2012] [Accepted: 07/15/2012] [Indexed: 12/28/2022]
Abstract
Dickkopf-1 (Dkk1), an antagonist of the Wnt/β-catenin pathway, has been implicated in many neurodegenerative diseases. However, it's unknown whether Dkk1 is involved in the pathogenesis of Parkinson's disease. In this study, we discovered that Dkk1 was increased in 6-hydroxydopamin(6-OHDA)-lesioned rats. In the meanwhile, inhibition of the canonical Wnt signaling pathway, including the activation of glycogen synthase kinase-3β (GSK-3β) and decrease of β-catenin, was also found in 6-OHDA-lesioned rats. Treatment with rhDkk1 aggravated the dopaminergic neuron damage of the substantia nigra and the inhibition of the canonical Wnt signaling pathway in 6-OHDA-lesioned rats, while the above effects in these rats were abolished by pretreatment with LiCl, an inhibitor of GSK-3β, for consecutive 7 d. These data suggest that Dkk1 plays an important role in the etiology of PD models and it contributes to the neurodegeneration in 6-OHDA-lesioned rats via inhibition of the canonical Wnt pathway.
Collapse
Affiliation(s)
- Yaoyan Dun
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
1234
|
Pisani V, Stefani A, Pierantozzi M, Natoli S, Stanzione P, Franciotta D, Pisani A. Increased blood-cerebrospinal fluid transfer of albumin in advanced Parkinson's disease. J Neuroinflammation 2012; 9:188. [PMID: 22870899 PMCID: PMC3441323 DOI: 10.1186/1742-2094-9-188] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/16/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Alterations in blood-brain barrier permeability have been proposed to represent a relevant factor contributing to Parkinson's disease progression. However, few studies have addressed this issue in patients at different stages of disease. METHODS Albumin was measured in cerebrospinal fluid and serum samples obtained from 73 non-demented subjects with idiopathic Parkinson's disease and 47 age-matched control subjects. The albumin ratio (AR) was calculated to assess blood-cerebrospinal fluid and blood-brain barrier function. The group of patients with Parkinson's disease included 46 subjects with Hoehn-Yahr staging between 1 and 2 and 27, with a score ranging from 2.5 to 4. RESULTS Statistically significant differences in albumin ratio were found between patients with advanced disease, and both early-stage and unaffected groups. Conversely, early-phase patients did not differ from healthy subjects. Additionally, dopaminergic treatment seems to exert a possible effect on AR values. CONCLUSIONS Our study demonstrates that possible dysfunction of the blood-cerebrospinal fluid barrier, blood-brain barrier, or both, characterize Parkinson's disease progression. The associations between clinical scores, treatments and biochemical findings suggest a progressive impairment of barrier integrity during the course of the disease.
Collapse
Affiliation(s)
- Valerio Pisani
- Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
1235
|
Modulating Microglia Activity with PPAR-γ Agonists: A Promising Therapy for Parkinson’s Disease? Neurotox Res 2012; 23:112-23. [DOI: 10.1007/s12640-012-9342-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/08/2012] [Accepted: 07/18/2012] [Indexed: 12/11/2022]
|
1236
|
Desforges NM, Hebron ML, Algarzae NK, Lonskaya I, Moussa CEH. Fractalkine Mediates Communication between Pathogenic Proteins and Microglia: Implications of Anti-Inflammatory Treatments in Different Stages of Neurodegenerative Diseases. Int J Alzheimers Dis 2012; 2012:345472. [PMID: 22919540 PMCID: PMC3420133 DOI: 10.1155/2012/345472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 01/22/2023] Open
Abstract
The role of inflammation in neurodegenerative diseases has been widely demonstrated. Intraneuronal protein accumulation may regulate microglial activity via the fractalkine (CX3CL1) signaling pathway that provides a mechanism through which neurons communicate with microglia. CX3CL1 levels fluctuate in different stages of neurodegenerative diseases and in various animal models, warranting further investigation of the mechanisms underlying microglial response to pathogenic proteins, including Tau, β-amyloid (Aβ), and α-synuclein. The temporal relationship between microglial activity and localization of pathogenic proteins (intra- versus extracellular) likely determines whether neuroinflammation mitigates or exacerbates disease progression. Evidence in transgenic models suggests a beneficial effect of microglial activity on clearance of proteins like Aβ and a detrimental effect on Tau modification, but the role of CX3CL1 signaling in α-synucleinopathies is less clear. Here we review the nature of fractalkine-mediated neuronmicroglia interaction, which has significant implications for the efficacy of anti-inflammatory treatments during different stages of neurodegenerative pathology. Specifically, it is likely that anti-inflammatory treatment in early stages of disease during intraneuronal accumulation of proteins could be beneficial, while anti-inflammatory treatment in later stages when proteins are secreted to the extracellular space could exacerbate disease progression.
Collapse
Affiliation(s)
- Nicole M. Desforges
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Michaeline L. Hebron
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Norah K. Algarzae
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Irina Lonskaya
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Charbel E.-H. Moussa
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
1237
|
Son HJ, Lee JA, Shin N, Choi JH, Seo JW, Chi DY, Lee CS, Kim EM, Choe H, Hwang O. A novel compound PTIQ protects the nigral dopaminergic neurones in an animal model of Parkinson's disease induced by MPTP. Br J Pharmacol 2012; 165:2213-27. [PMID: 21951056 DOI: 10.1111/j.1476-5381.2011.01692.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE In Parkinson's disease, the dopaminergic neurones in the substantia nigra undergo degeneration. While the exact mechanism for the degeneration is not completely understood, neuronal apoptosis and neuroinflammation are thought to be key contributors. We have recently established that MMP-3 plays crucial roles in dopaminergic cell death and microglial activation. EXPERIMENTAL APPROACH We tested the effects of 7-hydroxy-6-methoxy-2-propionyl-1,2,3,4-tetrahydroisoquinoline (PTIQ) on expression of MMP-3 and inflammatory molecules and dopaminergic cell death in vitro and in an animal model of Parkinson's disease, and Parkinson's disease-related motor deficits. The pharmacokinetic profile of PTIQ was also evaluated. KEY RESULTS PTIQ effectively suppressed the production of MMP-3 induced in response to cellular stress in the dopaminergic CATH.a cell line and prevented the resulting cell death. In BV-2 microglial cells activated with lipopolysaccharide, PTIQ down-regulated expression of MMP-3 along with IL-1β, TNF-α and cyclooxygenase-2 and blocked nuclear translocation of NF-κB. In the mouse model of Parkinson's disease ,induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), PTIQ attenuated the associated motor deficits, prevented neurodegeneration and suppressed microglial activation in the substantia nigra. Pharmacokinetic analysis showed it was relatively stable against liver microsomal enzymes, did not inhibit the cytochrome p450 isozymes or the hERG ion channel, exhibited no cytotoxicity on liver cells or lethality when administered at 1000 mg kg(-1) and entered the brain rather rapidly yielding a 28% brain:plasma ratio after i.p. injection. CONCLUSIONS AND IMPLICATIONS These results suggest PTIQ has potential as a candidate drug for disease-modifying therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Hyo Jin Son
- Department of Biochemistry, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1238
|
Liver X receptor β protects dopaminergic neurons in a mouse model of Parkinson disease. Proc Natl Acad Sci U S A 2012; 109:13112-7. [PMID: 22826221 DOI: 10.1073/pnas.1210833109] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disease whose progression may be slowed, but at present there is no pharmacological intervention that would stop or reverse the disease. Liver X receptor β (LXRβ) is a member of the nuclear receptor super gene family expressed in the central nervous system, where it is important for cortical layering during development and survival of dopaminergic neurons throughout life. In the present study we have used the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD to investigate the possible use of LXRβ as a target for prevention or treatment of PD. The dopaminergic neurons of the substantia nigra of LXRβ(-/-) mice were much more severely affected by MPTP than were those of their WT littermates. In addition, the number of activated microglia and GFAP-positive astrocytes was higher in the substantia nigra of LXRβ(-/-) mice than in WT littermates. Administration of the LXR agonist GW3965 to MPTP-treated WT mice protected against loss of dopaminergic neurons and of dopaminergic fibers projecting to the striatum, and resulted in fewer activated microglia and astroglia. Surprisingly, LXRβ was not expressed in the neurons of the substantia nigra but in the microglia and astroglia. We conclude that LXR agonists may have beneficial effects in treatment of PD by modulating the cytotoxic functions of microglia.
Collapse
|
1239
|
The role of eNSCs in neurodegenerative disease. Mol Neurobiol 2012; 46:555-62. [PMID: 22821143 DOI: 10.1007/s12035-012-8303-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 01/19/2023]
Abstract
Recent progress in biology has shown that many if not all adult tissues contain a population of stem cells. It is believed that these cells are involved in the regeneration of the tissue or organ in which they reside as a response to the natural turnover of differentiated cells or to injury. In the adult mammalian brain, stem cells in the subventricular zone and the dentate gyrus may also play a role in the replacement of neurons. A positive beneficial response to injury does not necessarily require cell replacement. New findings suggest that some populations of endogenous neural stem cells in the central nervous system may have adopted a function different from cell replacement and are involved in the protection of neurons in diverse paradigms of disease and injury. In this article, we will focus on the immature cell populations of the central nervous system and the signal transduction pathways that regulate them which suggest new possibilities for their manipulation in injury and disease.
Collapse
|
1240
|
Ho JWM, Ho PWL, Liu HF, So DHF, Chan KH, Tse ZHM, Kung MHW, Ramsden DB, Ho SL. UCP4 is a target effector of the NF-κB c-Rel prosurvival pathway against oxidative stress. Free Radic Biol Med 2012; 53:383-94. [PMID: 22580300 DOI: 10.1016/j.freeradbiomed.2012.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 04/08/2012] [Accepted: 05/01/2012] [Indexed: 01/11/2023]
Abstract
Mitochondrial uncoupling protein-4 (UCP4) enhances neuronal survival in 1-methyl-4-phenylpyridinium (MPP(+)) toxicity by suppressing oxidative stress and preserving intracellular ATP and mitochondrial membrane potential (MMP). NF-κB regulates neuronal viability via its complexes, p65 mediating cell death and c-Rel promoting cell survival. We reported previously that NF-κB mediates UCP4 neuroprotection against MPP(+) toxicity. Here, we investigated its link with the NF-κB c-Rel prosurvival pathway in alleviating mitochondrial dysfunction and oxidative stress. We overexpressed a c-Rel-encoding plasmid in SH-SY5Y cells and showed that c-Rel overexpression induced NF-κB activity without affecting p65 level. Overexpression of c-Rel increased UCP4 promoter activity and protein expression. Electrophoretic mobility shift assay showed that H(2)O(2) increased NF-κB binding to the UCP4 promoter and that NF-κB complexes were composed of p50/p50 and p50/c-Rel dimers. Under H(2)O(2)-induced oxidative stress, UCP4 knockdown significantly increased superoxide levels, decreased reduced glutathione (GSH) levels, and increased oxidized glutathione levels, compared to controls. UCP4 expression induced by c-Rel overexpression significantly decreased superoxide levels and preserved GSH levels and MMP under similar stress. These protective effects of c-Rel overexpression in H(2)O(2)-induced oxidative stress were significantly reduced after UCP4 knockdown, indicating that UCP4 is a target effector gene of the NF-κB c-Rel prosurvival pathway to mitigate the effects of oxidative stress.
Collapse
Affiliation(s)
- Jessica Wing-Man Ho
- Division of Neurology, University Department of Medicine, University of Hong Kong, Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
1241
|
Ahmed I, Tamouza R, Delord M, Krishnamoorthy R, Tzourio C, Mulot C, Nacfer M, Lambert JC, Beaune P, Laurent-Puig P, Loriot MA, Charron D, Elbaz A. Association between Parkinson's disease and the HLA-DRB1 locus. Mov Disord 2012; 27:1104-10. [PMID: 22807207 DOI: 10.1002/mds.25035] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/27/2012] [Accepted: 04/08/2012] [Indexed: 12/31/2022] Open
Abstract
Two genome-wide association studies (GWASs) recently highlighted the HLA-DRA and HLA-DRB5 genes as associated with Parkinson disease (PD). However, because HLA-DRA displays a low level of polymorphisms and HLA-DRB5 is only present in approximately 20% of the population, these findings are difficult to interpret. Our aims were: (1) to replicate and investigate in greater detail the association between PD and the HLA-DR region; (2) to identify PD-associated HLA alleles; and (3) to perform a meta-analysis of our top finding. As part of 2 French population-based case-control studies of PD including highly ethnically homogeneous participants, we investigated the association between PD and 51 Single-nucleotide polymorphisms (SNPs) in the HLA-DR region. HLA-DRB1 alleles were imputed using the HLA(*) IMP software. HLA typing was performed in a subsample of the participants. We performed a meta-analysis of our top finding based on 4 GWAS data sets. Among 499 cases and 1123 controls, after correction for multiple testing, we found an association with rs660895 (OR/minor allele, 0.70; 95% CI, 0.57-0.87) within the HLA-DRB1 gene, which encodes the most polymorphic HLA-DR chain (DRβ). A meta-analysis (7996 cases, 36455 controls) confirmed this association (OR, 0.86; 95% CI, 0.82-0.91; P < .0001). SNP-based imputation of HLA alleles showed an inverse association between PD and the HLA-DRB1(*) 04 allele. We replicated an association between PD and the HLA-DR region and provided further insight into the loci and alleles involved. The highly polymorphic HLA-DRB1 locus contains rs660895, which represents a more legitimate candidate than previous ones. Our finding is in agreement with the hypothesis of an immune component in PD pathophysiology.
Collapse
|
1242
|
Appel SH. Inflammation in Parkinson's disease: Cause or consequence? Mov Disord 2012; 27:1075-7. [DOI: 10.1002/mds.25111] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/15/2012] [Indexed: 11/05/2022] Open
|
1243
|
Schumm S, Sebban C, Cohen-Salmon C, Callebert J, Launay JM, Golmard JL, Boussicault L, Petropoulos I, Hild A, Rousselet E, Prigent A, Friguet B, Mariani J, Hirsch EC. Aging of the dopaminergic system and motor behavior in mice intoxicated with the parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem 2012; 122:1032-46. [PMID: 22708926 DOI: 10.1111/j.1471-4159.2012.07837.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication of mice is a standard model of Parkinson's disease (PD). However, it does not reproduce functionally PD. Given the occurrence of PD during aging, symptoms might only be detected in MPTP-intoxicated mice after aging. To address this, mice injected with MPTP at 2.5 months were followed up to a maximum age of 21 months. There was no loss of dopamine cells with aging in control mice; moreover, the initial post-MPTP intoxication decrease in dopamine cell was no longer significant at 21 months. With aging, striatal dopamine level remained constant, but concentrations of the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were markedly reduced in both groups. There was also a late impairment of fine motor skills. After MPTP intoxication, hyperactivity was immediately detected and it became greater than in control mice from 14 months of age; fine motor skills were also more impaired; both these symptoms were correlated with striatal dopamine, DOPAC and HVA concentrations. In bothgroups, neither motor symptoms nor dopamine changes worsened with age. These findings do not support the notion that PD develops with age in mice after MPTP intoxication and that the motor deficits seen are because of an aging process.
Collapse
Affiliation(s)
- Sophie Schumm
- AP-HP, Hôpital Charles Foix, Unité d'Explorations Fonctionnelles, Ivry-sur-Seine, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1244
|
Quercetin and sesamin protect dopaminergic cells from MPP+-induced neuroinflammation in a microglial (N9)-neuronal (PC12) coculture system. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:921941. [PMID: 22919443 PMCID: PMC3418684 DOI: 10.1155/2012/921941] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/11/2012] [Accepted: 05/20/2012] [Indexed: 11/30/2022]
Abstract
A growing body of evidence indicates that the majority of Parkinson's disease (PD) cases are associated with microglia activation with resultant elevation of various inflammatory mediators and neuroinflammation. In this study, we investigated the effects of 2 natural molecules, quercetin and sesamin, on neuroinflammation induced by the Parkinsonian toxin 1-methyl-4-phenylpyridinium (MPP+) in a glial-neuronal system. We first established that quercetin and sesamin defend microglial cells against MPP+-induced increases in the mRNA or protein levels of 3 pro-inflammatory cytokines (interleukin-6, IL-1β and tumor necrosis factor-alpha), as revealed by real time-quantitative polymerase chain reaction and enzyme-linked immunoabsorbent assay, respectively. Quercetin and sesamin also decrease MPP+-induced oxidative stress in microglial cells by reducing inducible nitric oxide synthase protein expression as well as mitochondrial superoxide radicals. We then measured neuronal cell death and apoptosis after MPP+ activation of microglia, in a microglial (N9)-neuronal (PC12) coculture system. Our results revealed that quercetin and sesamin rescued neuronal PC12 cells from apoptotic death induced by MPP+ activation of microglial cells. Altogether, our data demonstrate that the phytoestrogen quercetin and the lignan sesamin diminish MPP+-evoked microglial activation and suggest that both these molecules may be regarded as potent, natural, anti-inflammatory compounds.
Collapse
|
1245
|
Mori K, Kaneko YS, Nakashima A, Nagasaki H, Nagatsu T, Nagatsu I, Ota A. Subventricular zone under the neuroinflammatory stress and Parkinson's disease. Cell Mol Neurobiol 2012; 32:777-85. [PMID: 22189676 PMCID: PMC11498532 DOI: 10.1007/s10571-011-9783-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/08/2011] [Indexed: 12/20/2022]
Abstract
This review summarizes the effects of neuroinflammatory stress on the subventricular zone (SVZ), where new neurons are constitutively produced in the adult brain, especially focusing on the relation with Parkinson's disease (PD), because the SVZ is under the control of dopaminergic afferents from the substantia nigra (SN). In Lewy bodies-positive-PD, microglia is known to phagocytoze aggregated α-synuclein, resulting in the release of inflammatory cytokines. The neurogenesis in the SVZ should be affected in PD brain by the neuroinflammatory process. The administration of lipopolysaccaharide is available as an alternative model for microglia-induced loss of dopaminergic neurons and also the impairment of stem cell maintenance. Therefore, the research on the neuroinflammatory process in the SVZ gives us a hint to prevent the outbreak of PD or at least slow the disease process.
Collapse
Affiliation(s)
- Keiji Mori
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192 Japan
| | - Yoko S. Kaneko
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192 Japan
| | - Akira Nakashima
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192 Japan
| | - Hiroshi Nagasaki
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192 Japan
| | - Toshiharu Nagatsu
- Department of Pharmacology, Fujita Health University School of Medicine, Toyoake, 470-1192 Japan
| | - Ikuko Nagatsu
- Department of Anatomy, Fujita Health University School of Medicine, Toyoake, 470-1192 Japan
| | - Akira Ota
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192 Japan
| |
Collapse
|
1246
|
Astrocyte-specific IKK2 activation in mice is sufficient to induce neuroinflammation but does not increase susceptibility to MPTP. Neurobiol Dis 2012; 48:481-7. [PMID: 22750522 DOI: 10.1016/j.nbd.2012.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/19/2012] [Accepted: 06/22/2012] [Indexed: 12/21/2022] Open
Abstract
A key regulator of inflammatory gene expression is the transcription factor NF-κB that is controlled by the IκB proteins. We used a transgenic mouse model expressing a constitutively active IκB-kinase-2 (IKK2-CA) in astrocytes under control of the human glial fibrillary acidic protein promotor (IKK2-mice) to investigate neuroinflammation, proinflammatory cytokine expression, microglial activation and a potential enhanced susceptibility to the neurotoxin MPTP (4×10 mg/kg). Readouts included the determination of cytokines, striatal dopamine (DA), nigral tyrosine hydroxylase (TH) positive neurons, microglial activation and motor activity. IKK2-CA expression in astrocytes conditionally induced by the tet-off system resulted in a widespread neuroinflammation indicated by the increased expression of inflammatory cytokines and the presence of activated microglia and astrogliosis. Additionally, striatal DA concentrations but not nigral TH-positive neurons were reduced in IKK2-mice by 20%. Motor activity of IKK2-mice was not affected. Surprisingly, there was a similar reduction in striatal DA concentrations and the number of nigral TH-positive neurons in IKK2 and control mice after MPTP treatment. In conclusion, although naïve IKK2-mice showed reduced striatal DA concentrations and an increase in inflammatory markers in the brain, a higher susceptibility to MPTP was not observed. This finding argues against a prominent role of astrocyte specific, IKK2-mediated neuroinflammation in MPTP-induced neurodegeneration.
Collapse
|
1247
|
Doorn KJ, Lucassen PJ, Boddeke HW, Prins M, Berendse HW, Drukarch B, van Dam AM. Emerging roles of microglial activation and non-motor symptoms in Parkinson's disease. Prog Neurobiol 2012; 98:222-38. [PMID: 22732265 DOI: 10.1016/j.pneurobio.2012.06.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
Abstract
Recent data has indicated that the traditional view of Parkinson's disease (PD) as an isolated disorder of the nigrostriatal dopaminergic system alone is an oversimplification of its complex symptomatology. Aside from classical motor deficits, various non-motor symptoms including autonomic dysfunction, sensory and cognitive impairments as well as neuropsychiatric alterations and sleep disturbances are common in PD. Some of these non-motor symptoms can even antedate the motor problems. Many of them are associated with extranigral neuropathological changes, such as extensive α-synuclein pathology and also neuroinflammatory responses in specific brain regions, i.e. microglial activation, which has been implicated in several aspects of PD pathogenesis and progression. However, microglia do not represent a uniform population, but comprise a diverse group of cells with brain region-specific phenotypes that can exert beneficial or detrimental effects, depending on the local phenotype and context. Understanding how microglia can be neuroprotective in one brain region, while promoting neurotoxicity in another, will improve our understanding of the role of microglia in neurodegeneration in general, and of their role in PD pathology in particular. Since neuroinflammatory responses are in principle modifiable, such approaches could help to identify new targets or adjunctive therapies for the full spectrum of PD-related symptoms.
Collapse
Affiliation(s)
- Karlijn J Doorn
- University of Amsterdam, Swammerdam Institute for Life Sciences, Center for Neuroscience, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
1248
|
Quik M, Perez XA, Bordia T. Nicotine as a potential neuroprotective agent for Parkinson's disease. Mov Disord 2012; 27:947-57. [PMID: 22693036 DOI: 10.1002/mds.25028] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/13/2012] [Accepted: 04/08/2012] [Indexed: 02/06/2023] Open
Abstract
Converging research efforts suggest that nicotine and other drugs that act at nicotinic acetylcholine receptors (nAChRs) may be beneficial in the management of Parkinson's disease. This idea initially stemmed from the results of epidemiological studies that demonstrated that smoking is associated with a decreased incidence of Parkinson's disease. The subsequent finding that nicotine administration protected against nigrostriatal damage in parkinsonian animal models led to the idea that nicotine in tobacco products may contribute to this apparent protective action. Nicotine most likely exerts its effects by interacting at nAChRs. Accumulating research indicates that multiple subtypes containing nAChRs, including α4β2, α6β2, and/or α7, may be involved. Stimulation of nAChRs initially activates various intracellular transduction pathways primarily via alterations in calcium signaling. Consequent adaptations in immune responsiveness and trophic factors may ultimately mediate nicotine's ability to reduce/halt the neuronal damage that arises in Parkinson's disease. In addition to a potential neuroprotective action, nicotine also has antidepressant properties and improves attention/cognition. Altogether, these findings suggest that nicotine and nAChR drugs represent promising therapeutic agents for the management of Parkinson's disease.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, Menlo Park, California, USA.
| | | | | |
Collapse
|
1249
|
Amirhamzeh A, Vosoughi M, Shafiee A, Amini M. Synthesis and docking study of diaryl-isothiazole and 1,2,3-thiadiazole derivatives as potential neuroprotective agents. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0124-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
1250
|
Cunningham C. Microglia and neurodegeneration: the role of systemic inflammation. Glia 2012; 61:71-90. [PMID: 22674585 DOI: 10.1002/glia.22350] [Citation(s) in RCA: 559] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/17/2012] [Indexed: 01/11/2023]
Abstract
It is well accepted that CNS inflammation has a role in the progression of chronic neurodegenerative disease, although the mechanisms through which this occurs are still unclear. The inflammatory response during most chronic neurodegenerative disease is dominated by the microglia and mechanisms by which these cells contribute to neuronal damage and degeneration are the subject of intense study. More recently it has emerged that systemic inflammation has a significant role to play in the progression of these diseases. Well-described adaptive pathways exist to transduce systemic inflammatory signals to the brain, but activation of these pathways appears to be deleterious to the brain if the acute insult is sufficiently robust, as in severe sepsis, or sufficiently prolonged, as in repeated stimulation with robust doses of inflammogens such as lipopolysaccharide (LPS). Significantly, moderate doses of inflammogens produce new pathology in the brain and exacerbate or accelerate features of disease when superimposed upon existing pathology or in the context of genetic predisposition. It is now apparent in multiple chronic disease states, and in ageing, that microglia are primed by prior pathology, or by genetic predisposition, to respond more vigorously to subsequent inflammatory stimulation, thus transforming an adaptive CNS inflammatory response to systemic inflammation, into one that has deleterious consequences for the individual. In this review, the preclinical and clinical evidence supporting a significant role for systemic inflammation in chronic neurodegenerative diseases will be discussed. Mechanisms by which microglia might effect neuronal damage and dysfunction, as a consequence of systemic stimulation, will be highlighted.
Collapse
Affiliation(s)
- Colm Cunningham
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland.
| |
Collapse
|