1201
|
Overgaard K, Meden P. Influence of different fixation procedures on the quantification of infarction and oedema in a rat model of stroke. Neuropathol Appl Neurobiol 2000; 26:243-50. [PMID: 10886682 DOI: 10.1046/j.1365-2990.2000.00241.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In pharmacodynamic studies using focal ischaemia models, the size of the infarct measured by quantitative histology is the most important outcome measure. Precise, unbiased and reproducible assessment of infarct volume is of foremost importance. A frequent problem in interventional stroke models is the evaluation of infarcts in animals found dead, where instant post-mortem fixation of the brain cannot be performed. The purpose of this study was to investigate possible bias from perfusion, immediate and 3-h post-mortem delayed immersion fixation on the measured volumes of cerebral infarction, oedema and hemispheres in a rat embolic stroke model. Thirty-six male Sprague-Dawley rats were thromboembolized into the internal carotid artery. After survival for 24 h, the animals were divided into three groups: group 1 - immediate perfusion fixation; group 2 - immediate immersion fixation of the brain; and group 3 - animals left dead for 3 h at room temperature before removal of the brain for immersion fixation. Following histological preparation and evaluation, the volumes of the hemispheres and infarction were measured by quantitative histology and planimetry. Brains fixed by immersion were 7% larger than the perfusion-fixed brains. Delaying the immersion fixation for 3 h may increase hemisphere volume by a further 12%. Independent of the fixation procedure, the size of infarction was approximately 40% of the ipsilateral hemisphere, and the oedema was approximately 11% of the size of the infarct. The used planimetric technique was accurate with measured values within +/- 2% of the factual value. In conclusion, sizes of hemispheres, infarction and oedema in absolute volume measures are influenced by the effect of unwanted variation of brain size caused by biological factors and artificial shrinkage caused by fixation, dehydration and heat treatment of the specimens. Infarction and oedema expressed relatively in per cent of hemisphere and infarct, respectively, are robust measures independent of the investigated fixation procedures.
Collapse
Affiliation(s)
- K Overgaard
- Neurovascular Research Laboratory, Department of Neurology, University Hospital of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
1202
|
Hata R, Maeda K, Hermann D, Mies G, Hossmann KA. Evolution of brain infarction after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2000; 20:937-46. [PMID: 10894177 DOI: 10.1097/00004647-200006000-00006] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The evolution of brain infarction after transient focal cerebral ischemia was studied in mice using multiparametric imaging techniques. One-hour focal cerebral ischemia was induced by occluding the middle cerebral artery using the intraluminal filament technique. Cerebral protein synthesis (CPS) and the regional tissue content of adenosine triphosphate (ATP) were measured after recirculation times from 0 hours to 3 days. The observed changes were correlated with the expression of the mRNAs of hsp-70, c-fos, and junB, as well as the distribution of DNA double-strand breaks, visualized by TUNEL. At the end of 1 hour of ischemia, protein synthesis was suppressed in a larger tissue volume than ATP in accordance with the biochemical differentiation between core and penumbra. Hsp70 mRNA was selectively expressed in the cortical penumbra, whereas c-fos and junB mRNAs were increased both in the lateral part of the penumbra and in the ipsilateral cingulate cortex with normal metabolism. During reperfusion after withdrawal of the intraluminal filament, suppression of CPS persisted except in the most peripheral parts of the middle cerebral artery territory, in which it recovered between 6 hours and 3 days. ATP, in contrast, returned to normal levels within 1 hour but secondarily deteriorated from 3 hours on until, between 1 and 3 days, the ATP-depleted area merged with that of suppressed protein synthesis leading to delayed brain infarction. Hsp70 mRNA, but not c-fos and junB, was strongly expressed during reperfusion, peaking at 3 hours after reperfusion. TUNEL-positive cells were detected from 3 hours on, mainly in areas with secondary ATP depletion. These results stress the importance of an early recovery of CPS for the prevention of ischemic injury and suggest that TUNEL is an unspecific response of delayed brain infarction.
Collapse
Affiliation(s)
- R Hata
- Department of Experimental Neurology, Max Planck Institute for Neurological Research, Cologne, Germany
| | | | | | | | | |
Collapse
|
1203
|
Liu Y, Belayev L, Zhao W, Busto R, Ginsberg MD. MRZ 2/579, a novel uncompetitive N-methyl-D-aspartate antagonist, reduces infarct volume and brain swelling and improves neurological deficit after focal cerebral ischemia in rats. Brain Res 2000; 862:111-9. [PMID: 10799675 DOI: 10.1016/s0006-8993(00)02078-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to evaluate the effects of MRZ 2/579, an uncompetitive N-methyl-D-aspartate antagonist, on infarct size, extent of swelling and neurological deficit in a model of transient middle cerebral artery occlusion in rats. Physiologically controlled Sprague-Dawley rats received 2 h MCAo by retrograde insertion of an intraluminal suture coated with poly-L-lysine. The agent (MRZ 2/579) or vehicle (sodium chloride 0.9%) was administered i.v. immediately after suture removal following a 2-h period of MCAo. Two experimental groups were studied: group A was treated by vehicle (bolus infusion:1 ml/kg for 10 min followed by infusion of 6 ml/kg/h over 6 h). Group B was treated by MRZ 2/579 (bolus infusion:10 mg/kg for 10 min followed by infusion of 6 mg/kg/h over 6 h). The neurological status was evaluated during occlusion (at 60 min) and daily for 3 days after MCAo. Brains were then perfusion-fixed, and infarct volumes and brain swelling were determined. MRZ 2/579 significantly improved the neurological score compared to vehicle-treated rats at 48 h (6.2+/-0.6 and 8.7+/-0.5, respectively; P<0.004) and 72 h after MCAo (5.2+/-0.6 and 8.4+/-0.5, respectively; P<0.001). Treatment with MRZ 2/579 also significantly reduced total infarct volume (29.3+/-11.1 and 83.2+/-16.5 mm(3), respectively; P<0. 01), cortical infarct volume (24.8+/-11.2 and 70.0+/-18.0 mm(3), respectively; P<0.04) and subcortical infarction (21.2+/-4.1 and 49. 6+/-4.5 mm(3), respectively; P<0.0002). Brain swelling was also markedly reduced compared with vehicle-treated rats (4.7+/-1.3 and 10.8+/-2.1%, respectively; P<0.02). These results demonstrate that treatment with MRZ 2/579, when administered promptly after reperfusion, confers neuroprotective effects on infarct volume, brain swelling, and neurological score compared to the vehicle group.
Collapse
Affiliation(s)
- Y Liu
- Cerebral Vascular Disease Research Center, Department of Neurology (D4-5), University of Miami School of Medicine, Miami, FL, USA
| | | | | | | | | |
Collapse
|
1204
|
Zhang L, Chen J, Li Y, Zhang ZG, Chopp M. Quantitative measurement of motor and somatosensory impairments after mild (30 min) and severe (2 h) transient middle cerebral artery occlusion in rats. J Neurol Sci 2000; 174:141-6. [PMID: 10727700 DOI: 10.1016/s0022-510x(00)00268-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We tested the hypothesis that mild and severe ischemic cell damage are reflected in neurological and functional recovery after stroke. Rats were subjected to either 30 min or 120 min of middle cerebral artery occlusion or sham operation. Neurological and functional tests including, gross neurological score, and rotarod and adhesive removal tests were performed at various time points up to 21 days after stroke. Significant differences between groups of animals were detected using the rotarod and adhesive removal test. A significant correlation between lesion volume and adhesive removal test was detected in rats subjected to 30 min of ischemia. Our data indicate that quantitative rotarod and adhesive removal tests measure different aspects of functional recovery after stroke, and both are useful in characterizing functional recovery from an ischemic insult.
Collapse
Affiliation(s)
- L Zhang
- Henry Ford Health Sciences Center, Department of Neurology, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
1205
|
Sakakibara Y, Mitha AP, Ogilvy CS, Maynard KI. Post-treatment with nicotinamide (vitamin B(3)) reduces the infarct volume following permanent focal cerebral ischemia in female Sprague-Dawley and Wistar rats. Neurosci Lett 2000; 281:111-4. [PMID: 10704755 DOI: 10.1016/s0304-3940(00)00854-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Delayed treatment with nicotinamide (NAm) protects male rats against cerebral ischemia. Since the preponderant use of male animals in stroke research may produce results not applicable to female stroke patients due to gender-related differences, we examined whether delayed NAm treatment could protect female rats against focal cerebral ischemia using a model of permanent middle cerebral artery occlusion (MCAo). NAm (500 mg/kg) given intravenously, 2 h after MCAo, significantly reduced the infarct volume of female Sprague-Dawley (55%, P<0.05) and Wistar rats (60%, P<0.05) rats when compared with saline-injected controls. These studies confirm that NAm is neuroprotective specifically at the dose of 500 mg/kg in rats. The novel findings are that this neuroprotection occurs in female, as well as male rats, and that the neuroprotection observed is more robust when administered as an intravenous bolus compared with intraperitoneal administration.
Collapse
Affiliation(s)
- Y Sakakibara
- Neurophysiology Laboratory, Neurosurgical Service, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, EDR 414, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
1206
|
Abstract
We tested the hypothesis that a composite graft of fresh bone marrow (BM) along with brain-derived neurotrophic factor (BDNF), transplanted into the ischemic boundary zone (IBZ) of rat brain, facilitates BM cells to survive and differentiate, and improves functional recovery after middle cerebral artery occlusion (MCAo). The fresh BM was harvested from adult rats injected with bromodeoxyuridine (BrdU) as a tracer. Rats (n=37) were subjected to 2h of MCAo, received grafts at 24h and were sacrificed at 7days after MCAo. Test groups consisted of: (1) control - MCAo alone (n=9); (2) injection of phosphate buffered saline (n=4); (3) transplantation of BM (n=8); (4) injection of BDNF (n=7); and (5) transplantation of BM with BDNF (n=9) into the IBZ. Immunohistochemistry was used to identify cells derived from the BM stem cells. Behavioral tests (rotarod motor test; adhesive-removal somatosensory test) were performed before and 7days after MCAo. The data indicate that intracerebral grafting of a combination of BM with BDNF enhances differentiation of BM cells and significantly improves motor recovery of rotarod (P<0.05) and adhesive-removal (P<0.05) tests. We anticipate that BM along with neurotrophic factors may provide a powerful autoplastic therapy for human neurological injury and degenerative disorders.
Collapse
Affiliation(s)
- J Chen
- Henry Ford Health Sciences Center, Department of Neurology, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | | | | |
Collapse
|
1207
|
Ren J, Kaplan PL, Charette MF, Speller H, Finklestein SP. Time window of intracisternal osteogenic protein-1 in enhancing functional recovery after stroke. Neuropharmacology 2000; 39:860-5. [PMID: 10699451 DOI: 10.1016/s0028-3908(99)00261-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Osteogenic protein-1 (OP-1, BMP-7) is a member of the bone morphogenetic protein subfamily of the TGF-ss superfamily that selectively stimulates dendritic neuronal outgrowth. In previous studies, we found that the intracisternal injection of OP-1, starting at one day after stroke, enhanced sensorimotor recovery of the contralateral limbs following unilateral cerebral infarction in rats. In the current study, we further explored the time window during which intracisternal OP-1 enhances sensorimotor recovery, as assessed by limb placing tests. We found that intracisternal OP-1 (10 microg) given 1 and 3 days, or 3 and 5 days, but not 7 and 9 days after stroke, significantly enhanced recovery of forelimb and hindlimb placing. There was no difference in infarct volume between vehicle- and OP-1-treated animals. The mechanism of OP-1 action might be stimulation of new dendritic sprouting in the remaining uninjured brain.
Collapse
Affiliation(s)
- J Ren
- CNS Growth Factor Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
1208
|
Huh PW, Belayev L, Zhao W, Clemens JA, Panetta JA, Busto R, Ginsberg MD. Neuroprotection by LY341122, a novel inhibitor of lipid peroxidation, against focal ischemic brain damage in rats. Eur J Pharmacol 2000; 389:79-88. [PMID: 10686299 DOI: 10.1016/s0014-2999(99)00768-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
LY341122 (2-(3, 5-di-t-butyl-4-hydroxyphenyl)-4-(2-(4-methylethylaminomethyl-ph enylox y)ethyl)oxazole) is a potent inhibitor of lipid peroxidation which has been shown to protect against global ischemia and traumatic brain injury in rats. The purpose of this study was to examine the effect of LY341122 on ischemic injury in a highly reproducible model of focal cerebral ischemia in rats. Male Sprague-Dawley rats were anesthetized with halothane and subjected to 120 min of temporary middle cerebral artery occlusion by retrograde insertion of an intraluminal nylon suture coated with poly-L-lysine. The drug (LY341122, n=19) or vehicle (phosphate-buffered saline (PBS), n=10) was administered i.v. (as a 5 or 10 mg/kg bolus followed by a 5 or 10 mg/kg/h infusion for 20 h, respectively, starting 1 or 2 h after the onset of middle cerebral artery occlusion). Neurological status was evaluated during middle cerebral artery occlusion (60 min) and daily for 3 days thereafter. Three days after ischemia, brains were perfusion-fixed and infarct volumes and brain edema were determined. LY341122 significantly improved the neurological score compared to vehicle at 24, 48 and 72 h after middle cerebral artery occlusion. Treatment with LY341122 significantly reduced total infarct volume in all treated groups compared to vehicle rats. Cortical infarct volume was significantly reduced by LY341122 treatment in the 10 mg/kg (1 h) and LY341122 10 mg/kg (2 h) groups compared to vehicle rats (14.7+/-9.5 vs. 106.8+/-20.9 mm(3), and 36.9+/-20.1 vs. 106. 8+/-20.9 mm(3), respectively (mean+/-S.E.M.)). Striatal infarct volume was also significantly reduced by treatment with LY341122 in the 10 mg/kg (1 h) group compared to vehicle (23.7+/-3.4 vs. 68. 2+/-6.7 mm(3)). These results demonstrate the neuroprotective efficacy of LY341122 in focal cerebral ischemia.
Collapse
Affiliation(s)
- P W Huh
- Department of Neurology (D4-5), Cerebral Vascular Disease Research Center, University of Miami School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | |
Collapse
|
1209
|
Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 2000; 6:159-63. [PMID: 10655103 DOI: 10.1038/72256] [Citation(s) in RCA: 1178] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral edema contributes significantly to morbidity and death associated with many common neurological disorders. However, current treatment options are limited to hyperosmolar agents and surgical decompression, therapies introduced more than 70 years ago. Here we show that mice deficient in aquaporin-4 (AQP4), a glial membrane water channel, have much better survival than wild-type mice in a model of brain edema caused by acute water intoxication. Brain tissue water content and swelling of pericapillary astrocytic foot processes in AQP4-deficient mice were significantly reduced. In another model of brain edema, focal ischemic stroke produced by middle cerebral artery occlusion, AQP4-deficient mice had improved neurological outcome. Cerebral edema, as measured by percentage of hemispheric enlargement at 24 h, was decreased by 35% in AQP4-deficient mice. These results implicate a key role for AQP4 in modulating brain water transport, and suggest that AQP4 inhibition may provide a new therapeutic option for reducing brain edema in a wide variety of cerebral disorders.
Collapse
Affiliation(s)
- G T Manley
- Department of Neurosurgery, University of California, San Francisco, California 94143, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1210
|
Hata R, Maeda K, Hermann D, Mies G, Hossmann KA. Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 2000; 20:306-15. [PMID: 10698068 DOI: 10.1097/00004647-200002000-00012] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The evolution of brain infarcts during permanent occlusion of the middle cerebral artery (MCA) was studied in mice using multiparametric imaging techniques. Regional protein synthesis and the regional tissue content of ATP were measured on adjacent cryostat sections at increasing intervals after vascular occlusion ranging from 1 hour to 3 days. The observed changes were correlated with the expression of the mRNA of hsp70, c-fos, c-jun, and junB, as well as the distribution of DNA double-strand breaks visualized by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL). One hour after MCA occlusion, the tissue volume with suppressed protein synthesis was distinctly larger than that in which ATP was depleted. With ongoing ischemia time, the ATP-depleted area gradually expanded and, within 1 day, merged with the region of suppressed protein synthesis. Expression of hsp70 mRNA occurred mainly in the penumbra (defined as the region of suppressed protein synthesis but preserved ATP), peaking at 3 hours after vascular occlusion. Expression of the immediate-early genes c-jun, c-fos, and junB increased both in the penumbra and the periinfarct normal tissue already at 1 hour after vascular occlusion, with slightly different regional and temporal patterns for each of these genes. DNA fragmentations were clearly confined to neurons; they appeared after 1 day in the infarct core (defined as the region of suppressed ATP) and never were detected in the penumbra. The late appearance of TUNEL after infarcts had reached their final size and the absence in the penumbra points against a major pathogenetic role of apoptosis. Permanent MCA occlusion in mice thus produces a gradually expanding infarct, the final size of which is heralded by the early inhibition of protein synthesis.
Collapse
Affiliation(s)
- R Hata
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | | | | | | | |
Collapse
|
1211
|
Aronowski J, Grotta JC, Strong R, Waxham MN. Interplay between the gamma isoform of PKC and calcineurin in regulation of vulnerability to focal cerebral ischemia. J Cereb Blood Flow Metab 2000; 20:343-9. [PMID: 10698072 DOI: 10.1097/00004647-200002000-00016] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protein phosphorylation and dephosphorylation mediated by protein kinases and protein phosphatases, respectively, represent essential steps in a variety of vital neuronal processes that could affect susceptibility to ischemic stroke. In this study, the role of the neuron-specific gamma isoform of protein kinase C (gammaPKC) in reversible focal ischemia was examined using mutant mice in which the gene for gammaPKC was knocked-out (gammaPKC-KO). A period of 150 minutes of unilateral middle cerebral artery and common carotid artery (MCA/CCA) occlusion followed by 21.5 hours of reperfusion resulted in significantly larger (P < 0.005) infarct volumes (n = 10; 31.1+/-4.2 mm3) in gammaPKC-KO than in wild-type (WT) animals (n = 12; 22.6+/-7.4 mm3). To control for possible differences related to genetic background, the authors analyzed Balb/cJ, C57BL/6J, and 129SVJ WT in the MCA/CCA model of focal ischemia. No significant differences in stroke volume were detected between these WT strains. Impaired substrate phosphorylation as a consequence of gammaPKC-KO might be corrected by inhibition of protein dephosphorylation. To test this possibility, gammaPKC-KO mice were treated with the protein phosphatase 2B (calcineurin) inhibitor, FK-506, before ischemia. FK-506 reduced (P < 0.008) the infarct volume in gammaPKC-KO mice (n = 7; 24.6+/-4.6 mm3), but at this dose in this model, had no effect on the infarct volume in WT mice (n = 7; 20.5+/-10.7 mm3). These results indicate that gammaPKC plays some neuroprotective role in reversible focal ischemia.
Collapse
Affiliation(s)
- J Aronowski
- Department of Neurology, The University of Texas--Houston, Medical School, 77030, USA
| | | | | | | |
Collapse
|
1212
|
Strong R, Grotta JC, Aronowski J. Combination of low dose ethanol and caffeine protects brain from damage produced by focal ischemia in rats. Neuropharmacology 2000; 39:515-22. [PMID: 10698017 DOI: 10.1016/s0028-3908(99)00156-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Caffeine and ethanol are two commonly overused psychoactive dietary components. The purpose of this study was to assess the effects of acute, chronic, oral (p.o.) and intravenous (i.v.) caffeine, ethanol and their combination on infarct volume following focal ischemia in rats. Rats received treatment either p.o. 3 h and 1 h before, or by i.v. infusion for 2.5 h beginning 30-180 min after, ischemia. There were six acute treatment groups. (1) oral dH2O (control); (2) oral caffeine (10 mg/kg); (3) oral ethanol (0.65 g/kg total); (4) oral ethanol plus caffeine; (5) intravenous saline; and (6) intravenous ethanol (0.65 g/kg) plus caffeine (10 mg/kg) in saline. A 7th group received oral ethanol plus caffeine for three weeks prior to ischemia. After 3 h of left MCA/CCA occlusion and 24 h reperfusion, infarct volume was determined. Control animal infarct volume was 102.4+/-42.0 mm3. Oral caffeine alone had no effect (122.4+/-30.2 mm3). Oral ethanol alone exacerbated infarct volume (177.2+/-27.8 mm3). Oral caffeine plus ethanol almost entirely eliminated the damage (17.89+/-10.41 mm3). When i.v. treatment with ethanol plus caffeine was initiated at 30, 60, 90 and 120 minutes post-ischemia the infarct volume was reduced by 71.7%, 49.8%, 64.8% and 47.1%, respectively. Chronic daily oral ethanol plus caffeine prior to ischemia eliminated the neuroprotection seen with acute treatment. These studies indicate that ethanol, which by itself aggravates cerebral ischemia, and caffeine, when combined together immediately before or for 2 h after focal stroke, reduces ischemic damage.
Collapse
Affiliation(s)
- R Strong
- The Department of Neurology, The University of Texas, Houston Medical School, 77030, USA
| | | | | |
Collapse
|
1213
|
Abstract
Freshly sampled brain tissue exposed to 2,3,5-triphenyltetrazolium chloride (TTC) acquires a red color because mitochondrial enzymes reduce the colorless TTC to a red, water-insoluble formazan deposit. Pan-necrotic areas remain uncolored, which enables quantitation of experimental brain injury by optical scanning and image analysis of serial slices to determine the relative volume of red versus infarcted, non-stained, tissue. The accuracy of this method can be challenged, however, when infarction is accompanied by areas of partial, scattered injury where differences in coloration are difficult to see or quantify. We tested the feasibility of measuring scattered injury using a principle which underlies standard assays for in vitro cell survival, namely extracting deposited formazan with a solvent and measuring its level by spectrophotometry. Anesthetized, adult Sprague Dawley rats were subjected to 12 min of cerebral ischemia to produce selective, delayed neuronal death in hippocampus, striatum and cortex. Some rats also received 6 h of whole-body hypothermia treatment (31.5-32.5 degrees C) immediately after ischemia. Ischemia rats and non-operated controls were sacrificed 1 week later. Hippocampus and portions of cerebrum were incubated 90 min in a 2% TTC solution and then soaked in a measured volume of 50:50 ethanol and dimethylsulfoxide to extract the red formazan product. Spectrophotometric measurements of the extract showed a diminished formazan coloration (absorbance/g brain) in all samples from the untreated ischemia group compared to non-operated controls. This apparent brain injury was attenuated in the group of ischemia rats that received hypothermia treatment. We conclude that solvent extraction and spectrophotometric quantitation of formazan has potential utility as an objective way to index experimental brain injury even if this is diffuse in nature and not amenable to measurement by conventional image analysis techniques.
Collapse
Affiliation(s)
- E Preston
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ont.
| | | |
Collapse
|
1214
|
Huh PW, Belayev L, Zhao W, Koch S, Busto R, Ginsberg MD. Comparative neuroprotective efficacy of prolonged moderate intraischemic and postischemic hypothermia in focal cerebral ischemia. J Neurosurg 2000; 92:91-9. [PMID: 10616087 DOI: 10.3171/jns.2000.92.1.0091] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The purpose of this study was to compare the effects of prolonged hypothermia on ischemic injury in a highly reproducible model of middle cerebral artery (MCA) occlusion in rats. METHODS Male Sprague-Dawley rats were anesthetized with halothane and subjected to 120 minutes of temporary MCA occlusion by retrograde insertion of an intraluminal nylon suture coated with poly-L-lysine through the external carotid artery into the internal carotid artery and the MCA. Two levels of prolonged postischemic cranial hypothermia (32 degrees C and 27 degrees C) and one level of intraischemic cranial hypothermia (32 degrees C) were compared with the ischemic normothermia (37 degrees C) condition. Target cranial temperatures were maintained for 3 hours and then gradually restored to 35 degrees C over an additional 2-hour period. The animals were evaluated using a quantitative neurobehavioral battery of tests before inducing MCA occlusion, during occlusion (at 60 minutes postonset in all rats except those in the intraischemic hypothermia group), and at 24, 48, and 72 hours after reperfusion. The rat brains were perfusion fixed at 72 hours after ischemia, and infarct volumes and brain edema were determined. Both intraischemic and postischemic cooling to 32 degrees C led to similar significant reductions in cortical infarct volume (by 89% and 88%, respectively) and total infarct volume (by 54% and 69%, respectively), whereas postischemic cooling to 27 degrees C produced lesser reductions (64% and 49%, respectively), which were not statistically significant. All three hypothermic regimens significantly lessened hemispheric swelling and improved the neurological score at 24 hours. The authors' data confirm that a high degree of histological neuroprotection is conferred by postischemic cooling to 32 degrees C, which is virtually equivalent to that observed with intraischemic cooling to the same level. CONCLUSIONS These results may be relevant to the design of future clinical trials of therapeutic hypothermia for acute ischemic stroke.
Collapse
Affiliation(s)
- P W Huh
- Cerebral Vascular Disease Research Center, Department of Neurology, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | | | | | |
Collapse
|
1215
|
Başkaya MK, Doğan A, Temiz C, Dempsey RJ. Application of 2,3,5-triphenyltetrazolium chloride staining to evaluate injury volume after controlled cortical impact brain injury: role of brain edema in evolution of injury volume. J Neurotrauma 2000; 17:93-9. [PMID: 10674761 DOI: 10.1089/neu.2000.17.93] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A reliable method for measuring injury volume after traumatic brain injury (TBI) is of great importance when studying pharmacological protective agents in the field of head trauma research. Utilization of 2,3,5-triphenyltetrazolium chloride (TTC) has gained extensive acceptance in stroke research and has recently been applied to injury volume measurement in the lateral fluid percussion model. The present study was undertaken to apply this method to the controlled cortical impact (CCI) model and to study the role of brain edema. Male Sprague-Dawley rats were subjected to CCI brain injury at a velocity of 3 m/sec and 1 mm (mild), 2 mm (moderate), and 3 mm (severe injury) deformation, while rats in the control group were subjected to the same surgical procedure but received no injury. Absolute and corrected injury volumes with TTC staining and brain edema measurements with the wet-dry method were evaluated at 1, 2, 3, 4, and 7 days after TBI. The most prominent injury volume in the moderate injury group (2 mm deformation) was seen at postinjury day 1 and 2 (day 1, absolute: 49.1+/-5.6, corrected: 40.5+/-7.9; day 2, absolute: 46+/-6.9, corrected: 40.2+/-10.5), whereas the smallest injury volume was found at postinjury day 7 (absolute: 24.9+/-7, corrected: 27.4+/-7.4). The time course of brain edema studies demonstrates that brain edema formation peaks at postinjury day 1. A statistically significant reduction of injury volume was observed after postinjury day 4. We also observed that due to the presence of brain edema absolute injury volume is more than corrected injury volume in the first 3 days after injury as opposed to injury volume at postinjury day 7. These results suggest that the measurement of injury volume with TTC staining should be corrected for brain edema in the CCI brain injury model.
Collapse
Affiliation(s)
- M K Başkaya
- Department of Neurosurgery, Louisiana State University Medical Center, Shreveport 71130-3932, USA.
| | | | | | | |
Collapse
|
1216
|
Endres M, Fan G, Hirt L, Fujii M, Matsushita K, Liu X, Jaenisch R, Moskowitz MA. Ischemic brain damage in mice after selectively modifying BDNF or NT4 gene expression. J Cereb Blood Flow Metab 2000; 20:139-44. [PMID: 10616802 DOI: 10.1097/00004647-200001000-00018] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The neurotrophins and the tyrosine kinase (Trk) B receptor may play a protective role in the pathophysiology of cerebral ischemia. In this study, the authors investigated whether reducing endogenous expression of TrkB-binding neurotrophins modifies the susceptibility to ischemic injury after 1-hour middle cerebral artery occlusion followed by 23 hours of reperfusion in a filament middle cerebral artery occlusion model. Mice lacking both alleles for neurotrophin-4 (nt4-/-) or deficient in a single allele for brain-derived neurotrophic factor (bdnf+/-) exhibited larger cerebral infarcts compared to wild-type inbred 129/SVjae mice (68% and 91%, respectively, compared to controls). Moreover, lesions were larger (21%) in nt4-/- mice after permanent middle cerebral artery occlusion. Hence, expression of both NT4 and BDNF, and by inference the TrkB receptor, confers resistance to ischemic injury.
Collapse
Affiliation(s)
- M Endres
- Stroke and Neurovascular Regulation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
1217
|
Panahian N, Huang T, Maines MD. Enhanced neuronal expression of the oxidoreductase--biliverdin reductase--after permanent focal cerebral ischemia. Brain Res 1999; 850:1-13. [PMID: 10629743 DOI: 10.1016/s0006-8993(99)01726-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This is the first report on increased neuronal levels of biliverdin reductase (BVR) in response to ischemic brain injury. BVR is an oxidoreductase, and is unique among all enzymes characterized to date in having dual pH/dual cofactor requirements--NADH and NADPH at 6.7 and 8.7, respectively. BVR catalyses the final step in the heme metabolic pathway and reduces the heme degradation product, biliverdin, to bilirubin. Bilirubin can be both a neurotoxicant and an antioxidant depending on its ratio to protein and concentration. Bilirubin also has immunomodulatory activity. Other biologically active heme degradation products are iron and CO. This study assessed time-dependent changes in the level of BVR, following permanent middle cerebral artery occlusion (MCAo). It also examined correlation of the change in BVR expression with display of indices of ischemic tissue injury. Under halothane anesthesia and normothermic conditions, 72 DNX inbred mice were subjected to MCAo. A time-dependent enlargement of an ischemic lesion over the course of 24 h was observed and measured 55 +/- 5 mm3 at 6 h, 63 +/- 6.7 mm3 at 12 h, and 73 +/- 5 mm3 at 24 h. Six hours after MCAo, increased immunoreactivity for BVR was noted in neurons in the peri-ischemic areas, intraischemic cortical layers 3 and 5, as well as in neurons in regions distant from the borders of vascular distribution of the MCA, such as those in substantia nigra, in the Purkinje layer of the cerebellum and in the central nucleus of inferior colliculus. Twenty-four hours after MCAo, immunoreactivity for BVR remained increased in the peri-ischemia areas. At all time points staining for BVR was decreased in the ischemic core. At the 24 h time point there was an increase in Fe staining in the perimeter of the lesion and an increase in Schiff's staining for lipid peroxidation at the rim of the lesion. In situ hybridization analysis demonstrated a time dependent increase in BVR mRNA labeling in neurons of the peri-ischemic area. In the ischemic hemisphere, when compared with the contralateral hemisphere, neither measurable decreases in BVR mRNA or total protein levels nor a decrease in NADH-dependent BVR activity at pH 6.7 were observed. As judged by Northern and Western blots and activity analysis, despite the apparent loss of BVR from the ischemic core, and its increase in the peri-ischemic region, when compared with the contralateral hemisphere, the overall capacity of the ischemic hemisphere to catalyze the reduction of biliverdin was unchanged throughout the experiment. Should, in the case of ischemia, the conditions favor the antioxidant activity of bilirubin, then we suggest that increase in BVR expression in ischemic penumbra may present a cellular defense mechanism against free radical-mediated neuronal damage. Furthermore, we interpret the apparent tightly regulated expression of BVR in the ischemic hemisphere as an important factor in protection against bilirubin neurotoxicity. Data suggest that pharmacological modulation of BVR expression is a possible new direction for protecting neurons against ischemic injury and oxidative stress.
Collapse
Affiliation(s)
- N Panahian
- Department of Biochemistry, University of Rochester School of Medicine, NY 14642, USA
| | | | | |
Collapse
|
1218
|
Lee EJ, Hung YC, Lee MY. Early alterations in cerebral hemodynamics, brain metabolism, and blood-brain barrier permeability in experimental intracerebral hemorrhage. J Neurosurg 1999; 91:1013-9. [PMID: 10584848 DOI: 10.3171/jns.1999.91.6.1013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The authors sought to ascertain the nature of the hemodynamic and metabolic derangement underlying acute pathophysiological events that occur after intracerebral hemorrhage (ICH). METHODS Cerebral perfusion pressure (CPP), flow velocity (FV) of the middle cerebral artery, and the arteriovenous contents of oxygen and lactate were investigated in 24 dogs subjected to sham operations (Group A, four animals) or intracerebral injections of 3 ml (Group B, 11 animals) or 5 ml (Group C, nine animals) autologous arterial blood. Twelve additional dogs received intravenous injections of 2% Evans blue or trypan blue dye to evaluate blood-brain barrier (BBB) changes. Within 1 hour, animals with ICH exhibited a rise in FV associated with significant reductions (p<0.05) in CPP and the arteriovenous content difference (AVDO2). In Group C animals significant increases in lactate concentration were found in arterial and superior sagittal sinus (SSS) samples compared with those in the other two groups (p<0.05). Additionally, perihematomal dye extravasation was observed in animals subjected to ICH and trypan blue dye injections, with profound and mild leakages in Group C and Group B animals, respectively, but not in Group A and Evans blue dye-injected animals. During the subsequent 4 hours, the FV and AVDO2 returned to normal in Group B animals, indicating a balanced cerebral metabolic rate for oxygen (CMRO2) compared with a deranged CMRO2 in Group C animals due to their lowered FV and AVDO2. However, no coupling increase in brain lactate clearance in Group C animals accounted for either the early lactate elevation in SSS or the decrease in CMRO2. CONCLUSIONS Profound reductions in CPP and brain oxygenation after ICH may rapidly exhaust hemodynamic compensation and, thus, impede cerebral homeostasis; however, these reductions only modestly enhance anaerobic glycolysis. Furthermore, the data suggest that a selective increase in permeability, rather than anatomical disruption, of the BBB is involved in the acute pathophysiological events that occur after ICH, which may provide a possible gateway for systemic arterial lactate entering the SSS.
Collapse
Affiliation(s)
- E J Lee
- Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan, Taiwan
| | | | | |
Collapse
|
1219
|
Chen J, Chopp M, Li Y. Neuroprotective effects of progesterone after transient middle cerebral artery occlusion in rat. J Neurol Sci 1999; 171:24-30. [PMID: 10567046 DOI: 10.1016/s0022-510x(99)00247-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Treatment of focal cerebral ischemia in the rat with intraperitoneal administration of progesterone dissolved in dimethyl sulfoxide (DMSO) has demonstrated therapeutic efficacy. In the present study we test whether iv administration of water soluble progesterone 2 h after the onset of middle cerebral artery occlusion provides therapeutic benefit for the treatment of stroke. In addition, we perform a battery of functional tests: rotarod, adhesive-backed somatosensory, and neurological score, as well as a dose-response study. The data indicate that iv administration of progesterone at a dose of 8 mg/kg significantly reduces the volume of cerebral infarction and significantly improves outcome on the array of functional measures employed. Treatment with 4 mg/kg or 32 mg/kg of progesterone failed to provide any therapeutic benefit. Progesterone, a non toxic, clinically employed, pluripotent therapeutic agent which targets both neuroprotective as well as neuroregenerative strategies, may have important therapeutic benefits for the treatment of stroke.
Collapse
Affiliation(s)
- J Chen
- Henry Ford Health Sciences Center, Department of Neurology, 2799 West Grand Boulevard, Detroit, MI 48309, USA
| | | | | |
Collapse
|
1220
|
Dawson DA, Sugano H, McCarron RM, Hallenbeck JM, Spatz M. Endothelin receptor antagonist preserves microvascular perfusion and reduces ischemic brain damage following permanent focal ischemia. Neurochem Res 1999; 24:1499-505. [PMID: 10591398 DOI: 10.1023/a:1021139713026] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Synthesis and release of the potent vasoconstrictor peptide endothelin-1 (ET-1) increases following cerebral ischemia and has previously been shown to mediate the delayed hypoperfusion associated with transient global ischemia. In this study we assessed the impact of ET-1 on perfusion and infarct volume in a focal model of cerebral ischemia by use of the selective ET(A) receptor antagonist Ro 61-1790 (affinity for ET(A) receptor 1000 fold greater than ETB receptor). Control rats subjected to permanent middle cerebral artery occlusion (MCAO) showed extensive reductions in microvascular perfusion 4 h post-MCAO that were significantly attenuated by Ro 61-1790 pretreatment (10 mg/kg, i.v.). Ro 61-1790 concomitantly and significantly reduced the ischemic lesion volume in the same animals. This effect was maintained 24 h post-MCAO providing that the animals received additional i.v. injections of 5 mg/kg Ro 61-1790 at 5 h and 8 h after MCAO. These findings demonstrate that ET(A) receptor antagonism partially preserves tissue perfusion following focal ischemia and that this effect is associated with significant neuroprotection. The results also support the hypothesis that vasoactive mediators, and ET-1 in particular, are important contributors to the pathogenesis of cerebral ischemic injury.
Collapse
Affiliation(s)
- D A Dawson
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD 20892, USA
| | | | | | | | | |
Collapse
|
1221
|
Coert BA, Anderson RE, Meyer FB. Reproducibility of cerebral cortical infarction in the wistar rat after middle cerebral artery occlusion. J Stroke Cerebrovasc Dis 1999; 8:380-7. [PMID: 17895191 DOI: 10.1016/s1052-3057(99)80045-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/1998] [Accepted: 11/19/1998] [Indexed: 10/24/2022] Open
Abstract
Although middle cerebral artery (MCA) occlusion in the rat is often used to study focal cerebral ischemia, the model of ischemia affects the size and reproducibility of infarction. The purpose of this experiment was to methodically examine different preparations to determine the optimum focal cerebral ischemia model to produce a reproducible severe ischemic injury. Eighty-two Wistar rats underwent either 1 hour, 3 hour, or permanent MCA occlusion combined with no, unilateral, or bilateral common carotid artery artery (CCA) occlusion. Three days after ischemia, the animals were prepared for tetrazolium chloride assessment of infarction size. One-hour MCA occlusion produced a coefficient of variation (CV) of 200% with an infarction volume of 20.3+/-10.5 mm(3). Adding unilateral or bilateral CCA occlusion resulted in a CV of 134% and 101%, respectively. Three-hour MCA occlusion combined with bilateral CCA occlusion decreased the CV to 58% with a cortical infarction volume of 82.6+/-12.1 mm(3), P<05, compared with 1-hour MCA occlusion with or without CCA occlusion. Permanent MCA occlusion combined with 3 hours of bilateral CCA occlusion resulted in a CV of 47% with a cortical infarction volume of 89.6+/-16.0 mm(3). These results indicate that 3-hour MCA occlusion combined with bilateral CCA occlusion provide consistently a large infarction volume after temporary focal cerebral ischemia.
Collapse
|
1222
|
Lee EJ, Ayoub IA, Harris FB, Hassan M, Ogilvy CS, Maynard KI. Mexiletine and magnesium independently, but not combined, protect against permanent focal cerebral ischemia in Wistar rats. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991101)58:3<442::aid-jnr10>3.0.co;2-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
1223
|
Yang GY, Mao Y, Zhou LF, Ye W, Liu XH, Gong C, Lorris Betz A. Attenuation of temporary focal cerebral ischemic injury in the mouse following transfection with interleukin-1 receptor antagonist. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 72:129-37. [PMID: 10529471 DOI: 10.1016/s0169-328x(99)00205-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The proinflammatory cytokine interleukin-1 beta (IL-1beta) is thought to play an important role in the stimulation of the inflammatory response following ischemia and reperfusion. This study investigated the inflammatory effect of IL-1beta during transient focal cerebral ischemia and reperfusion in the mouse transduced with the interleukin-1 receptor antagonist (IL-1ra) gene. An adenoviral vector encoding, either the human IL-1ra gene (AdRSVIL-1ra) or the LacZ gene (AdRSVlacZ) or normal saline, were injected into the right lateral ventricles of adult CD-1 mice (n=96). Five days later, the mice received 1 h temporary middle cerebral artery occlusion (tMACAO) followed by 23 h reperfusion. Cerebral blood flow (CBF), infarct volume, blood-brain barrier (BBB) permeability, and the number of intracellular adhesion molecule-1 positive vessels were measured to determine the effect of IL-1beta during postischemic reperfusion. Infarct volume in the AdRSVIL-1ra-transduced mice was markedly reduced compared to the AdRSVlacZ-transduced and saline-injected mice (36.0+/-5.3 mm(3) vs. 60.0+/-6.2 mm(3), 69. 5+/-6.3 mm(3), after 23 h of reperfusion, n=6-8 per group, p<0.05). BBB disruption and intracellular adhesion molecule-1 expression (135+/-23 vs. 311+/-40 and 357+/-51, n=6-8 per group, p<0.05) in the AdRSVIL-1ra-transduced mice were also less than that of the AdRSVlacZ-transduced and saline-injected mice. Our studies demonstrated that overexpression of IL-1ra in the mouse brain can downregulate intracellular adhesion molecule-1 expression both in the cortex and basal ganglia, which suggests that IL-1beta may play an important role in the activation of the inflammatory response during focal cerebral ischemia by promoting leukocyte adhesion to endothelial cells. The decrease of BBB disruption in AdRSVIL-1ra-transduced mice suggests that the endothelial cells may be a target for IL-1beta during postischemic reperfusion.
Collapse
Affiliation(s)
- G Y Yang
- Department of Surgery (Neurosurgery), School of Medicine, University of Michigan, 5550 Kresge I/0532, 1500 East Medical Center Dr., Ann Arbor, MI 48109-0532, USA.
| | | | | | | | | | | | | |
Collapse
|
1224
|
Behrens MM, Strasser U, Heidinger V, Lobner D, Yu SP, McDonald JW, Won M, Choi DW. Selective activation of group II mGluRs with LY354740 does not prevent neuronal excitotoxicity. Neuropharmacology 1999; 38:1621-30. [PMID: 10530823 DOI: 10.1016/s0028-3908(99)00098-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent reports have suggested a role for group II metabotropic glutamate receptors (mGluRs) in the attenuation of excitotoxicity. Here we examined the effects of the recently available group II agonist (+)-2-Aminobicyclo[3.1.0]hexane-2-6-dicarboxylic acid (LY354740) on N-methyl-D-aspartate (NMDA)-induced excitotoxic neuronal death, as well as on hypoxic-ischemic neuronal death both in vitro and in vivo. At concentrations shown to be selective for group II mGluRs expressed in cell lines (0.1-100 nM), LY354740 did not attenuate NMDA-mediated neuronal death in vitro or in vivo. Furthermore, LY354740 did not attenuate oxygen-glucose deprivation-induced neuronal death in vitro or ischemic infarction after transient middle cerebral artery occlusion in rats. In addition, the neuroprotective effect of another group II agonist, (S)-4-carboxy-3-phenylglycine (4C3HPG), which has shown injury attenuating effects both in vitro and in vivo, was not blocked by the group II antagonists (2 S)-alpha-ethylglutamic acid (EGLU), (RS)-alpha-methyl-4-sulphonophenylglycine (MSPG), or the group III antagonist (S)-alpha-methyl-3-carboxyphenylalanine (MCPA), suggesting that this neuroprotection may be mediated by other effects such as upon group I mGluRs.
Collapse
Affiliation(s)
- M M Behrens
- Center for the Study of Nervous System Injury and Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
1225
|
Ashwal S, Tone B, Tian HR, Cole DJ, Liwnicz BH, Pearce WJ. Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion in the rat pup. Pediatr Res 1999; 46:390-400. [PMID: 10509358 DOI: 10.1203/00006450-199910000-00006] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Our studies examined the hypothesis that the distribution of cerebral injury after a focal ischemic insult in the immature rat pup is associated with the regional distribution of nitric oxide synthase (NOS) activity and that differences in the vulnerability to ischemia between pup and adult might be related to differences in cofactor availability. We measured NOS activity in well-defined regions prone to become either core or penumbra in controls and at different times (end of occlusion, 0.5 h, and 24 h reperfusion) after middle cerebral artery occlusion (MCAO) from the right and left hemispheres in a 14- to 18-day-old rat pup filament model. Three groups of corresponding isoflurane sham controls were also included. "Core" NOS activity for combined right and left hemispheres ranged from 113% to 217% more than "penumbral" regions in control and sham groups. In the three MCAO groups, marked decreases in ischemic core and penumbral NOS activity were seen; however, core NOS remained higher than penumbral regions bilaterally. The effects of cofactor addition (10 microM tetrahydrobiopterin, 3 microM flavin adenine dinucleotide, and 3 microM flavin mononucleotide) on NOS activity were similar in "core" and "penumbral" regions in control and sham groups. However, after 24 h MCAO, cofactor addition preferentially increased NOS activity in the ischemic hemisphere. Co-factor addition in the pup also had a greater effect on enhancing NOS activity in all regions compared with the adult. Greater NOS activity in core regions in the rat pup, as in the adult, could in part, explain the increased vulnerability of that region to ischemia. NOS activity also can be influenced by the availability of cofactors and this effect may be greater in the immature animal.
Collapse
Affiliation(s)
- S Ashwal
- Department of Pediatrics, Loma Linda University School of Medicine, California 92350, USA
| | | | | | | | | | | |
Collapse
|
1226
|
Maeda K, Hata R, Bader M, Walther T, Hossmann KA. Larger anastomoses in angiotensinogen-knockout mice attenuate early metabolic disturbances after middle cerebral artery occlusion. J Cereb Blood Flow Metab 1999; 19:1092-8. [PMID: 10532633 DOI: 10.1097/00004647-199910000-00005] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abnormalities in the homeostasis of the renin-angiotensin system have been implicated in the pathogenesis of vascular disorders, including stroke. The authors investigated whether angiotensinogen (AGN) knockout mice exhibit differences in brain susceptibility to focal ischemia, and whether such differences can be related to special features of the collateral circulation. Wild-type and AGN-knockout mice were submitted to permanent suture occlusion of the middle cerebral artery (MCA). The collateral vascular system was visualized by systemic latex infusion, and the ischemic lesions were identified by cresyl-violet staining. The core and penumbra of the evolving infarct were differentiated by bioluminescence and autoradiographic imaging of ATP and protein biosynthesis, respectively. In wild-type mice, mean arterial blood pressure was 95.0 +/- 8.6 mm Hg, and the diameter of fully relaxed anastomotic vessels between the peripheral branches of the anterior and middle cerebral arteries 26.6 +/- 4.0 microm. In AGN knockouts, mean arterial blood pressure was significantly lower, 71.5 +/- 8.5 mm Hg (P < .01), and the anastomotic vessels were significantly larger, 29.4 +/- 4.6 microm (P < .01). One hour after MCA occlusion, AGN-knockout mice exhibited a smaller ischemic core (defined as the region of ATP depletion) but a larger penumbra (the area of disturbed protein synthesis with preserved ATP). At 24 hours after MCA occlusion, this difference disappeared, and histologically visible lesions were of similar size in both strains. The observations show that in AGN-knockout mice the more efficient collateral blood supply delays ischemic injury despite the lower blood pressure. Pharmacologic suppression of angiotensin formation may prolong the therapeutic window for treatment of infarcts.
Collapse
Affiliation(s)
- K Maeda
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Cologne, Germany
| | | | | | | | | |
Collapse
|
1227
|
Soriano SG, Wang YF, Wagner DD, Frenette PS. P- and E-selectin-deficient mice are susceptible to cerebral ischemia-reperfusion injury. Brain Res 1999; 835:360-4. [PMID: 10415396 DOI: 10.1016/s0006-8993(99)01637-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined brain sections from P- and E-selectin-deficient mice (-/-) and their nontransgenic littermates (+/+) after focal cerebral ischemia and reperfusion (I/R) tissue injury. There was no difference in the subsequent infarct volume after 3 h of ischemia and 21 h of reperfusion. These data indicate that selectin-independent mechanisms mediate tissue injury after a prolonged period of transient focal ischemia.
Collapse
Affiliation(s)
- S G Soriano
- Department of Anesthesia, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
1228
|
Huang J, Kim LJ, Mealey R, Marsh HC, Zhang Y, Tenner AJ, Connolly ES, Pinsky DJ. Neuronal protection in stroke by an sLex-glycosylated complement inhibitory protein. Science 1999; 285:595-9. [PMID: 10417391 DOI: 10.1126/science.285.5427.595] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Glycoprotein adhesion receptors such as selectins contribute to tissue injury in stroke. Ischemic neurons strongly expressed C1q, which may target them for complement-mediated attack or C1qRp-mediated clearance. A hybrid molecule was used to simultaneously inhibit both complement activation and selectin-mediated adhesion. The extracellular domain of soluble complement receptor-1 (sCR1) was sialyl Lewis x glycosylated (sCR1sLex) to inhibit complement activation and endothelial-platelet-leukocyte interactions. sCR1 and sCR1sLex colocalized to ischemic cerebral microvessels and C1q-expressing neurons, inhibited neutrophil and platelet accumulation, and reduced cerebral infarct volumes. Additional benefit was conferred by sialyl Lewis x glycosylation of the unmodified parent sCR1 molecule.
Collapse
Affiliation(s)
- J Huang
- Columbia University, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
1229
|
Schielke GP, Kupina NC, Boxer PA, Bigge CF, Welty DF, Iadecola C. The neuroprotective effect of the novel AMPA receptor antagonist PD152247 (PNQX) in temporary focal ischemia in the rat. Stroke 1999; 30:1472-7. [PMID: 10390325 DOI: 10.1161/01.str.30.7.1472] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Evidence suggests that glutamate contributes to ischemic brain damage through activation of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor. We tested the novel, selective AMPA receptor antagonist PD152247 (PNQX) in a model of temporary focal ischemia to determine the dose-response relationship and to investigate the contribution of drug-induced hypothermia to the neuroprotective action of AMPA receptor antagonists. METHODS Temporary focal cerebral ischemia was induced in Sprague-Dawley rats by occluding the middle cerebral artery and both carotid arteries for 3 hours. Body temperature was monitored by telemetry. PNQX was administered intraperitoneally or by intravenous infusion with various doses for 6 hours. Lesion volume was determined after 3 days by stereological methods. RESULTS PNQX reduced the lesion volume by 51% after intraperitoneal administration. The intravenous dose-response study demonstrated that the lowest effective dose of PNQX was 1.0 mg/kg per hour, which corresponded to a steady state plasma level of 685 ng/mL. Neuroprotection was demonstrated at PNQX plasma concentrations that did not lower body temperature over the entire course of the experiment. CONCLUSIONS AMPA receptor activation plays an important role in the development of ischemic brain damage. Thus, novel AMPA receptor antagonists may be useful for the treatment of stroke in humans.
Collapse
Affiliation(s)
- G P Schielke
- Departments of Neuroscience Therapeutics, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, MI, USA.
| | | | | | | | | | | |
Collapse
|
1230
|
Kawamata T, Ren J, Cha JH, Finklestein SP. Intracisternal antisense oligonucleotide to growth associated protein-43 blocks the recovery-promoting effects of basic fibroblast growth factor after focal stroke. Exp Neurol 1999; 158:89-96. [PMID: 10448420 DOI: 10.1006/exnr.1999.7101] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Focal infarction (stroke) of the lateral cerebral cortex of rats (including the sensorimotor cortex) produces deficits in sensorimotor function of the contralateral limbs that recover partially over time. In previous studies, we found that the intracisternal injection of basic fibroblast growth factor (bFGF), a potent neurotrophic growth factor, starting at 1 day after stroke, significantly enhanced recovery of sensorimotor function of the contralateral forelimb and hindlimb. Moreover, immunoreactivity (IR) for growth-associated protein-43 (GAP-43), a molecular marker of new axonal growth, was increased in the intact contralateral sensorimotor cortex following bFGF treatment. In the current study, we found that the intracisternal administration of antisense, but not missense, oligonucleotide to GAP-43 blocked the recovery-enhancing effects of bFGF and blocked the increase in GAP-43 IR in the contralateral cortex. These results suggest that upregulation of GAP-43 expression and consequent enhanced axonal sprouting in intact uninjured parts of the brain are likely mechanisms for the recovery-promoting effects of bFGF.
Collapse
Affiliation(s)
- T Kawamata
- CNS Growth Factor Research Laboratory, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | |
Collapse
|
1231
|
Hata R, Gillardon F, Michaelidis TM, Hossmann KA. Targeted disruption of the bcl-2 gene in mice exacerbates focal ischemic brain injury. Metab Brain Dis 1999; 14:117-24. [PMID: 10488913 DOI: 10.1023/a:1020709814456] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neuronal death after brain ischemia is mainly due to necrosis but there is also evidence for involvement of apoptosis. To test the importance of apoptosis, we investigated the effect of targeted disruption of the apoptosis-suppressive gene bcl-2 on the severity of ischemic brain injury. Transient focal ischemia for 1 hour was induced by occlusion of the middle cerebral artery in homozygous (n=7) and heterozygous (n=6) bcl-2 knockout mice as well as in their wildtype littermates (n=5). Bcl-2 ablation did not influence cerebral blood flow but it significantly increased infarct size and neurological deficit score at 1 day after reperfusion in a gene-dose dependent manner. The exacerbation of tissue damage in the absence of Bcl-2 underscores the importance of apoptotic pathways for the manifestation of ischemic injury after transient vascular occlusion.
Collapse
Affiliation(s)
- R Hata
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | | | | | |
Collapse
|
1232
|
Aronowski J, Cho KH, Strong R, Grotta JC. Neurofilament proteolysis after focal ischemia; when do cells die after experimental stroke? J Cereb Blood Flow Metab 1999; 19:652-60. [PMID: 10366195 DOI: 10.1097/00004647-199906000-00008] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To determine the occurrence and time-course of presumably irreversible subcellular damage after moderate focal ischemia, rats were subjected to 1, 3, 6, 9, or 24 hours of permanent unilateral middle cerebral and common carotid occlusion or 3 hours of reversible occlusion followed by 3, 6, or 21 hours of reperfusion. The topography and the extent of damage were analyzed with tetrazolium staining and immunoblot using an antibody capable of detecting breakdown of neurofilament. Neurofilament proteolysis began after 3 hours in the infarct core but was still incomplete in penumbral regions up to 9 hours. Similarly, tetrazolium-staining abnormalities were observed in the core of 50% of animals after 3 hours of ischemia. At 6 hours of permanent ischemia, infarct volume was maximal, and further prolongation of occlusion to 9 or 24 hours did not increase abnormal tetrazolium staining. In contrast to permanent ischemia and in agreement with the authors' previous demonstration of "reperfusion injury" in this model, prolongation of reperfusion from 3 hours to 6 and 21 hours after 3 hours of reversible occlusion gradually augmented infarct volume by 203% and 324%, respectively. Neurofilament proteolysis initiated approximately 3 hours after ischemia was quantitatively greatest in the core and extended during reperfusion to incorporate penumbra with a similar time course to that of tetrazolium abnormalities. These data demonstrate that, at least as measured by neurofilament breakdown and mitochondrial failure, extensive cellular damage is not present in penumbral regions for up to 9 hours, suggesting the potential for rescuing these regions by appropriate and timely neuroprotective strategies.
Collapse
Affiliation(s)
- J Aronowski
- Department of Neurology, The University of Texas Medical School at Houston, 77030, USA
| | | | | | | |
Collapse
|
1233
|
CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. J Neurosci 1999. [PMID: 10234013 DOI: 10.1523/jneurosci.19-10-03809.1999] [Citation(s) in RCA: 311] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Programmed cell death plays an important role in the neuronal degeneration after cerebral ischemia, but the underlying mechanisms are not fully understood. Here we examined, in vivo and in vitro, whether ischemia-induced neuronal death involves death-inducing ligand/receptor systems such as CD95 and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). After reversible middle cerebral artery occlusion in adult rats, both CD95 ligand and TRAIL were expressed in the apoptotic areas of the postischemic brain. Further recombinant CD95 ligand and TRAIL proteins induced apoptosis in primary neurons and neuron-like cells in vitro. The immunosuppressant FK506, which most effectively protects against ischemic neurodegeneration, prevented postischemic expression of these death-inducing ligands both in vivo and in vitro. FK506 also abolished phosphorylation, but not expression, of the c-Jun transcription factor involved in the transcriptional control of CD95 ligand. Most importantly, in lpr mice expressing dysfunctional CD95, reversible middle cerebral artery occlusion resulted in infarct volumes significantly smaller than those found in wild-type animals. These results suggest an involvement of CD95 ligand and TRAIL in the pathophysiology of postischemic neurodegeneration and offer alternative strategies for the treatment of cardiovascular brain disease.
Collapse
|
1234
|
Morita-Fujimura Y, Fujimura M, Kawase M, Murakami K, Kim GW, Chan PH. Inhibition of interleukin-1beta converting enzyme family proteases (caspases) reduces cold injury-induced brain trauma and DNA fragmentation in mice. J Cereb Blood Flow Metab 1999; 19:634-42. [PMID: 10366193 DOI: 10.1097/00004647-199906000-00006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The authors examined the effect of z-VAD.FMK, an inhibitor that blocks caspase family proteases, on cold injury-induced brain trauma, in which apoptosis as well as necrosis is assumed to play a role. A vehicle alone or with z-VAD.FMK was administered into the cerebral ventricles of mice 15 minutes before and 24 and 48 hours after cold injury. At 24 hours after cold injury, infarction volumes in the z-VAD.FMK-treated animals were significantly smaller than infarction volumes in the vehicle-treated animals, and were further decreased at 72 hours (0.92 +/- 1.80 mm3, z-VAD.FMK-treated animals; 7.46 +/- 3.53 mm3, vehicle-treated animals; mean +/- SD, n = 7 to 8). The amount of DNA fragmentation was significantly decreased in the z-VAD.FMK-treated animals compared with the vehicle-treated animals, as shown by terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling staining and DNA gel electrophoresis. By Western blot analysis, both the proform and activated form of interleukin-1beta converting enzyme (caspase 1) were detected in the control brain, and the activated form showed moderate reduction after cold injury-induced brain trauma. These results indicate that caspase inhibitors could reduce cold injury-induced brain trauma by preventing neuronal cell death by DNA damage. The caspase family proteases appear to contribute to the mechanisms of cell death in cold injury-induced brain trauma and to provide therapeutic targets for traumatic brain injury.
Collapse
Affiliation(s)
- Y Morita-Fujimura
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California 94304, USA
| | | | | | | | | | | |
Collapse
|
1235
|
Takahashi K, Pieper AA, Croul SE, Zhang J, Snyder SH, Greenberg JH. Post-treatment with an inhibitor of poly(ADP-ribose) polymerase attenuates cerebral damage in focal ischemia. Brain Res 1999; 829:46-54. [PMID: 10350529 DOI: 10.1016/s0006-8993(99)01335-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) is thought to play a physio-logical role in maintaining genomic integrity and in the repair of DNA strand breaks. However, the activation of PARP by free radical-damaged DNA plays a pivotal role in mediating ischemia-reperfusion injury. The excessive activation of PARP causes a rapid depletion of intracellular energy leading to cell death. The present study examined the effect of post-ischemic pharmacological inhibition of PARP in a rat focal cerebral ischemia model. In Long-Evans rats, focal cerebral ischemia was produced by cauterization of the right distal middle cerebral artery (MCA) with bilateral temporary common carotid artery (CCA) occlusion for 90 min. A PARP inhibitor, 3, 4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone (DPQ; IC50=1 microM/l) was injected i.p. 30 min after the onset of MCA occlusion (control: 10, 20, 40 and 80 mg/kg; n=7 each). Twenty-four hours later, the total infarct volume was measured. Regional blood flow in the right parietal cortex decreased to approximately 20% of the baseline following MCA occlusion in all groups. PARP inhibition lead to a significant decrease in damaged volume in all treated groups with the largest reduction in the 40 mg/kg group (111.5+/-24. 8 mm3, mean+/-SD, p<0.01), compared to the control group (193.5+/-28. 6 mm3). We also found there was a significant increase of poly(ADP-ribose) immunoreactivity in the ischemic region, as compared to the contralateral side, with DPQ treatment diminishing poly(ADP-ribose) production. These findings indicate that DPQ exerts its neuroprotective effects in vivo by PARP inhibition and that PARP inhibitors may be effective for treating ischemic stroke, even when the treatment is initiated after the onset of ischemia.
Collapse
Affiliation(s)
- K Takahashi
- Cerebrovascular Research Center, Department of Neurology, University of Pennsylvania, School of Medicine, 429 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6063, USA
| | | | | | | | | | | |
Collapse
|
1236
|
Chopp M, Li Y, Jiang N. Increase in apoptosis and concomitant reduction of ischemic lesion volume and evidence for synaptogenesis after transient focal cerebral ischemia in rat treated with staurosporine. Brain Res 1999; 828:197-201. [PMID: 10320744 DOI: 10.1016/s0006-8993(99)01354-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We sought to determine whether induction of apoptosis alters an ischemic lesion. Rats were subjected to 2 h of middle cerebral artery occlusion (MCAo) and treated with staurosporine (n=8) or vehicle (n=4). Our data demonstrate that at 22 h after MCAo, staurosporine triggered a significant increase in apoptosis, a reduction of lesion volume and an increase of synaptophysin immunoreactivity, as compared to the control group.
Collapse
Affiliation(s)
- M Chopp
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202, USA.
| | | | | |
Collapse
|
1237
|
Jolkkonen J, Puurunen K, Koistinaho J, Kauppinen R, Haapalinna A, Nieminen L, Sivenius J. Neuroprotection by the alpha2-adrenoceptor agonist, dexmedetomidine, in rat focal cerebral ischemia. Eur J Pharmacol 1999; 372:31-6. [PMID: 10374712 DOI: 10.1016/s0014-2999(99)00186-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study was undertaken to explore the possible neuroprotective effect of the selective alpha2-adrenoceptor agonist, dexmedetomidine in a rat model of focal cerebral ischemia. The effect of dexmedetomidine (9 microg kg(-1)) on infarct volume was assessed and compared to that of glutamate receptor antagonists cis-4(phosphonomethyl)-2-piperidine carboxylic acid (CGS-19755) (20 mg kg(-1)) or 2,3-dihydro-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) (50 mg kg(-1)). Dexmedetomidine decreased total ischemic volume by 40% in the cortex (P<0.05) compared to NaCl-treated control rats, whereas NBQX reduced the infarct by 73% in the cortex (P<0.001) and by 43% in the striatum (P<0.01). Dexmedetomidine infusion was associated with some minor degree of hyperglycemia and hypotension. Drug-induced kidney changes were only seen in NBQX-treated rats. These results suggest that dexmedetomidine reduced ischemic volume despite causing a minor increase in blood glucose concentrations and hypotension. Its neuroprotective efficacy was better than that produced by CGS-19775, and dexmedetomidine was safer with respect to kidney toxicity when compared to NBQX.
Collapse
Affiliation(s)
- J Jolkkonen
- Department of Neurology, University of Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
1238
|
Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M. NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med 1999; 5:554-9. [PMID: 10229233 DOI: 10.1038/8432] [Citation(s) in RCA: 439] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The transcription factor NF-kappaB is a regulator of cell death or survival. To investigate the role of NF-kappaB in neuronal cell death, we studied its activation in a rodent model of stroke. In the ischemic hemisphere, NF-kappaB was activated, as determined by increased expression of an NF-kappaB-driven reporter transgene, nuclear translocation of NF-kappaB in neurons and enhanced DNA binding of NF-kappaB subunits RelA and p50. In p50 knockout mice, ischemic damage was significantly reduced. This indicates a cell death-promoting role of NF-kappaB in focal ischemia. NF-kappaB may provide a new pharmacological target in neurologic disease.
Collapse
Affiliation(s)
- A Schneider
- Department of Neurology, University of Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
1239
|
Vogel J, Möbius C, Kuschinsky W. Early delineation of ischemic tissue in rat brain cryosections by high-contrast staining. Stroke 1999; 30:1134-41. [PMID: 10229755 DOI: 10.1161/01.str.30.5.1134] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE After short periods of ischemia, commonly used staining methods yield only moderate differences in optical contrast between normal and damaged brain tissue when gray-scale images are used for computer-assisted image analysis. We describe a high-contrast silver infarct staining (SIS) method that allows an early delineation of ischemic tissue as soon as 2 hours after middle cerebral artery occlusion (MCAO) in rat brain cryosections. METHODS Rats were subjected to permanent MCAO for 2, 4, 6, and 48 hours. The optical densities were quantified in nonischemic white and gray matter and in damaged tissue from gray-scale images of serial sections with the use of a video camera-based image analyzing system. SIS, hematoxylin-eosin, Nissl, and nitroblue tetrazolium stainings were performed in cryosections, and 2,3, 5-triphenyltetrazolium hydrochloride (TTC) staining was performed in unfrozen vibratome sections. In addition, the range of reduced cerebral blood flow (CBF) in areas demarcated by SIS was determined in iodo[14C]antipyrine autoradiograms of adjacent cryosections. RESULTS At all times after MCAO, only SIS showed significantly (P<0.01) lower optical densities in damaged than in normal brain tissue for both white and gray matter. TTC staining was as effective as SIS 6 and 48 hours after MCAO. The tightest correlation between areas of reduced SIS and of reduced CBF was found at a mean ischemic CBF of 22.3 mL/100 g per minute. This corresponds to a CBF range of 0 to 44 mL/100 g per minute in areas of reduced SIS. CONCLUSIONS In contrast to other staining methods, SIS allows a reliable delineation of ischemic brain tissue (core plus penumbra) from nonischemic white and gray matter of rat brain cryosections as soon as 2 hours after MCAO.
Collapse
Affiliation(s)
- J Vogel
- Department of Physiology, University of Heidelberg, Germany.
| | | | | |
Collapse
|
1240
|
Abstract
Marijuana and related drugs (cannabinoids) have been proposed as treatments for a widening spectrum of medical disorders. R(+)-[2, 3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1, 4-benzoxazin-yl]-(1-naphthalenyl)methanone mesylate (R(+)-WIN 55212-2), a synthetic cannabinoid agonist, decreased hippocampal neuronal loss after transient global cerebral ischemia and reduced infarct volume after permanent focal cerebral ischemia induced by middle cerebral artery occlusion in rats. The less active enantiomer S(-)-WIN 55212-3 was ineffective, and the protective effect of R(+)-WIN 55212-2 was blocked by the specific central cannabinoid (CB1) cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide-hydrochloride. R(+)-WIN 55212-2 also protected cultured cerebral cortical neurons from in vitro hypoxia and glucose deprivation, but in contrast to the receptor-mediated neuroprotection observed in vivo, this in vitro effect was not stereoselective and was insensitive to CB1 and CB2 receptor antagonists. Cannabinoids may have therapeutic potential in disorders resulting from cerebral ischemia, including stroke, and may protect neurons from injury through a variety of mechanisms.
Collapse
|
1241
|
Petullo D, Masonic K, Lincoln C, Wibberley L, Teliska M, Yao DL. Model development and behavioral assessment of focal cerebral ischemia in rats. Life Sci 1999; 64:1099-108. [PMID: 10210272 DOI: 10.1016/s0024-3205(99)00038-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stroke in humans is usually focal and occurs in the Middle Cerebral Artery (MCA) distribution. There are several rat models that mimic strokes clinically seen in human. Severity of ischemia can be determined by occlusion time, arteries occluded i.e. MCA alone or combined with one or both Common Carotid Arteries (CCA), and/or location of the occlusion. In this study three focal cerebral infarctions (stroke) were induced for 90 and 120 minutes due to the occlusion of: the MCA alone (MCAo); MCA plus unilateral CCA (MCAo+1CCAo); and MCA plus bilateral CCA (MCAo+2CCAo). Histological parameters included infarct lesion size and hemispheric swelling. Since functional recovery of clinical deficits in stroke often correlates with the efficacy of anti-ischemic therapy, we focused on the behavioral recovery. We combined many sources to obtain comprehensive guidelines for clinical behavior evaluation. Tests included limb flexion, torso twisting, circling, lateral push resistance, beam balancing and walking, hindlimb placing, and inverted angle-board gripping. Occlusion lasting 90 minutes was found to have consistent and repeatable deficits. Results from our study demonstrate 120 minutes of occlusion produced a 60% morality rate and was therefore dropped. Body weight changes between groups showed that increased occlusion time produced more weight loss. Behavior changes indicated that MCAo+2CCAo for 90 minutes demonstrated assessable and consistent clinical deficits for the screening of potential therapeutics.
Collapse
Affiliation(s)
- D Petullo
- Human Genome Sciences, Inc., Rockville, Maryland 20850, USA
| | | | | | | | | | | |
Collapse
|
1242
|
Maeda K, Hata R, Hossmann KA. Regional metabolic disturbances and cerebrovascular anatomy after permanent middle cerebral artery occlusion in C57black/6 and SV129 mice. Neurobiol Dis 1999; 6:101-8. [PMID: 10343325 DOI: 10.1006/nbdi.1998.0235] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
C57Black/6 and SV129 mice are widely used for the production of transgenic mutants in molecular stroke research but the ischemic susceptibility of these strains is influenced by differences in vascular anatomy and the responsiveness to excitotoxins and vasodilatory stimuli. To differentiate between these opposing effects on infarct size, the vascular territory of the two strains was correlated with the hemodynamic, metabolic, and morphological consequences of permanent middle cerebral artery (MCA) occlusion. The vascular anatomy was studied by latex infusion, brain infarction by vital staining, the size of the ischemic penumbra by imaging of ATP and protein synthesis, and blood flow by laser-Doppler flowmetry. In C57Black/6 mice the MCA-supplied vascular territory and the size of brain infarcts were significantly larger than in SV129 mice but the size of the penumbra and the residual blood flow in the center of the MCA-supplying territory were similar in both strains. These findings suggest that differences in infarct size in C57Black/6 and SV129 mice are determined mainly by the vascular anatomy and not by differences in collateral vascular responsiveness or excitotoxicity.
Collapse
Affiliation(s)
- K Maeda
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | | | |
Collapse
|
1243
|
Zhang RL, Zhang ZG, Chopp M, Zivin JA. Thrombolysis with tissue plasminogen activator alters adhesion molecule expression in the ischemic rat brain. Stroke 1999; 30:624-9. [PMID: 10066862 DOI: 10.1161/01.str.30.3.624] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE We tested the hypothesis that treatment of embolic stroke with recombinant human tissue plasminogen activator (rhtPA) alters cerebral expression of adhesion molecules. METHODS Male Wistar rats were subjected to middle cerebral artery occlusion by a single fibrin-rich clot. P-selectin, E-selectin, and intercellular adhesion molecule-1 (ICAM-1) immunoreactivity was measured at 6 or 24 hours after embolic stroke in control rats and in rats treated with rhtPA at 1 or 4 hours after stroke. To examine the therapeutic efficacy of combined rhtPA and anti-ICAM-1 antibody treatment at 4 hours after embolization, ischemic lesion volumes were measured in rats treated with rhtPA alone, rats treated with rhtPA and anti-ICAM-1 antibody, and nontreated rats. RESULTS Administration of rhtPA at 1 hour after embolization resulted in a significant reduction of adhesion molecule vascular immunoreactivity after embolization in the ipsilateral hemisphere compared with corresponding control rats. However, when rhtPA was administered to rats at 4 hours after embolization, significant increases of adhesion molecule immunoreactivity in the ipsilateral hemisphere were detected. A significant increase of ICAM-1 immunoreactivity was also detected in the contralateral hemisphere at 24 hours after ischemia. A significant reduction in lesion volume was found in rats treated with the combination of rhtPA and anti-ICAM-1 antibody compared with rats treated only with rhtPA. CONCLUSIONS The present study suggests that the time of initiation of thrombolytic therapy alters vascular immunoreactivity of inflammatory adhesion molecules in the ischemic brain and that therapeutic benefit can be obtained by combining rhtPA and anti-ICAM-1 antibody treatment 4 hours after stroke.
Collapse
Affiliation(s)
- R L Zhang
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI, USA
| | | | | | | |
Collapse
|
1244
|
Hill JK, Gunion-Rinker L, Kulhanek D, Lessov N, Kim S, Clark WM, Dixon MP, Nishi R, Stenzel-Poore MP, Eckenstein FP. Temporal modulation of cytokine expression following focal cerebral ischemia in mice. Brain Res 1999; 820:45-54. [PMID: 10023029 DOI: 10.1016/s0006-8993(98)01140-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There is increasing evidence that the inflammatory response plays an important role in CNS ischemia. The murine model of focal ischemia, however, remains incompletely characterized. In this study we examined expression of several cytokines and the vascular adhesion molecule E-selectin, in order to characterize the molecular events following stroke in the C57BL/6J mouse. Using a multi-probe RNAse protection assay (RPA), mRNA for 19 cytokines was analyzed following permanent and transient occlusion of the middle cerebral artery in mice. In addition, samples from the same mice were analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR) to evaluate E-selectin mRNA expression levels. Several cytokine mRNAs showed a similar expression pattern in both permanent and transient CNS ischemia while others showed a temporal expression pattern that was dependent on the type of stroke. For both models, mRNA levels of TNFalpha rose early (4 h) followed by IL-6 (10-18 h) and a comparatively late increase (96 h) in TGFbeta1. IL-1alpha, IL-1beta and IL-1ra levels showed a model dependent shift in temporal expression. Reperfusion appeared to delay the induction of these cytokines. Temporal changes in cytokine mRNA expression in the mouse CNS occur following ischemic damage. Our findings demonstrate the utility and power of multi-probe RPA for evaluation of changes in cytokine mRNA levels. Moreover, this study is, to our knowledge the first to show temporal changes in cytokine mRNA in mouse cerebral ischemia, forming a basis for further exploration of the roles of these cytokines in modulating ischemic neuronal damage in this model.
Collapse
Affiliation(s)
- J K Hill
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Mail Code L220, 3181 Sam Jackson Park Road, Portland, OR 97201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1245
|
Murakami K, Kondo T, Yang G, Chen SF, Morita-Fujimura Y, Chan PH. Cold injury in mice: a model to study mechanisms of brain edema and neuronal apoptosis. Prog Neurobiol 1999; 57:289-99. [PMID: 10096842 DOI: 10.1016/s0301-0082(98)00047-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Small rodents, mice in particular, have been widely used for genetic manipulation because of the extensive knowledge in development, embryology and other molecular aspects of this species. However, the use of mice for neurobiology research in the area of brain edema and neuronal injury has not been common. Here we summarize the studies of cold injury-induced brain edema and neuronal apoptosis using mice. Blood-brain barrier (BBB) permeability, demonstrated by extravasation of a serum albumin tracer, Evans Blue, was increased immediately after the injury and returned to the control level by 24 hr. Water content was maximized at 24 hr, whereas a secondary lesion gradually progressed up to 72 hr after cold injury. The mechanism of the development of the cold injury-induced edema and the secondary lesion, involving of oxygen radicals in particular, was determined using superoxide dismutase (SOD)-1 transgenic (Tg) mice with overexpressed copper, zinc-SOD. All of the parameters, BBB permeability, water content and secondary lesion, were attenuated in the Tg mice as compared to littermate non-Tg mice. This clearly demonstrates that oxygen radicals, superoxide anion in particular, mediate cold injury. We also studied whether apoptosis contributes to brain injury following cold injury. Staining with terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling showed the apoptotic cells widespread throughout the entire lesion while still remaining in the margin. DNA laddering was exhibited by gel electrophoresis. These studies indicate that oxidative mediates the development of cold injury-induced edema and the secondary injury, and induces apoptotic cell death. We believe that cold injury in mice provides a simple animal model to study the pathogenesis of brain edema and apoptosis in genetically altered animals.
Collapse
Affiliation(s)
- K Murakami
- CNS Injury and Edema Research Center, Department of Neurological Surgery, University of California, School of Medicine, San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|
1246
|
Nakashima K, Yamashita K, Uesugi S, Ito H. Temporal and spatial profile of apoptotic cell death in transient intracerebral mass lesion of the rat. J Neurotrauma 1999; 16:143-51. [PMID: 10098959 DOI: 10.1089/neu.1999.16.143] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Apoptosis is involved in the pathogenesis of cerebral ischemia. Previous studies have confirmed that the brain surrounding an intracerebral hematoma develops ischemia. We investigated the number and distribution of cells exhibiting DNA fragmentation with apoptotic morphology in the transient intracerebral mass lesion to determine whether apoptosis contributed to the lesion progress after intracerebral hemorrhage (ICH). Transient intracerebral mass was created by inflation of a microballoon for 10 min (group A) or 2 h (group B) in the caudoputamen in rats, and brains were examined 1, 3, 6, 24, and 48 h after microballoon deflation. The lesion volume was calculated using parallel coronal sections with cresyl violet staining. Terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine (dUTP)-biotin nick end labeling (TUNEL) was used to detect cells undergoing DNA fragmentation. Immunohistochemistry for Fas antigen was also done to ascertain molecular mechanisms of apoptosis. Histological examination of hematoxylin and eosin-stained sections showed the typical appearance of neuronal necrosis in the caudoputaminal lesion. Lesion volume in the caudoputamen gradually increased as time advanced from 1 to 48 h. Cells stained heavily by TUNEL with apoptotic morphology were detected in the lesion, but not in the inner boundary zone of the lesion. The number of these cells significantly increased from 6 to 24 h in each experimental group (p < 0.05). The cells with positive immunoreactivity for Fas antigen was prominently observed in the lesion at 6 h. The distribution of apoptotic cells and the rapid increase in the number of apoptotic cells after 24 h propose that apoptotic cell death may contribute to lesion core formation but not to gradual development of the lesion.
Collapse
Affiliation(s)
- K Nakashima
- Department of Neurosurgery, Yamaguchi University School of Medicine, Japan
| | | | | | | |
Collapse
|
1247
|
Endres M, Fink K, Zhu J, Stagliano NE, Bondada V, Geddes JW, Azuma T, Mattson MP, Kwiatkowski DJ, Moskowitz MA. Neuroprotective effects of gelsolin during murine stroke. J Clin Invest 1999; 103:347-54. [PMID: 9927495 PMCID: PMC407902 DOI: 10.1172/jci4953] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/1998] [Accepted: 12/10/1998] [Indexed: 11/17/2022] Open
Abstract
Increased Ca2+ influx through activated N-methyl-D-aspartate (NMDA) receptors and voltage-dependent Ca2+ channels (VDCC) is a major determinant of cell injury following brain ischemia. The activity of these channels is modulated by dynamic changes in the actin cytoskeleton, which may occur, in part, through the actions of the actin filament-severing protein gelsolin. We show that gelsolin-null neurons have enhanced cell death and rapid, sustained elevation of Ca2+ levels following glucose/oxygen deprivation, as well as augmented cytosolic Ca2+ levels in nerve terminals following depolarization in vitro. Moreover, major increases in infarct size are seen in gelsolin-null mice after reversible middle cerebral artery occlusion, compared with controls. In addition, treatment with cytochalasin D, a fungal toxin that depolymerizes actin filaments, reduced the infarct size of both gelsolin-null and control mice to the same final volume. Hence, enhancement or mimicry of gelsolin activity may be neuroprotective during stroke.
Collapse
Affiliation(s)
- M Endres
- Stroke and Neurovascular Regulation, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1248
|
Schäbitz WR, Li F, Irie K, Sandage BW, Locke KW, Fisher M. Synergistic effects of a combination of low-dose basic fibroblast growth factor and citicoline after temporary experimental focal ischemia. Stroke 1999; 30:427-31; discussion 431-2. [PMID: 9933283 DOI: 10.1161/01.str.30.2.427] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Basic fibroblast growth factor (bFGF) and citicoline (cytidine 5'-diphosphate choline, an endogenous compound that stabilizes membrane function) have demonstrated neuroprotective effects after focal cerebral ischemia. Both agents are candidates for future stroke therapy in humans. For evaluation of synergistic effects of bFGF and citicoline, a low-dose combination of both compounds was tested against each compound alone and placebo. METHODS Four groups of Sprague-Dawley rats (n=12 per group) underwent 90 minutes of focal cerebral ischemia with the use of the suture model of middle cerebral artery occlusion. Animals were randomly and blindly assigned to one of the following treatment groups: placebo, low-dose citicoline (250 mg/kg IP daily for 4 days), low-dose bFGF (10 microg/kg per hour IV for 3 hours), and the combination of both (250 mg/kg citicoline and 10 microg/kg per hour bFGF). Triphenyltetrazolium chloride staining was used after 4 days to determine postmortem infarction. Neurological scores were assessed on a daily basis. RESULTS The premature mortality rate was 41.7% in the placebo and citicoline groups, 33.3% in the bFGF group, and 25% (P=NS) in the combination group. The mean neurological score on day 4 was 3.1+/-1.6 (placebo), 3.1+/-1.6 (citicoline), 2.9+/-1.5 (bFGF), and 2.4+/-1.4 (combination) (P=NS). The mean volume of infarction was significantly reduced in the combination group (136. 5+/-25.4 mm3) versus placebo (172.6+/-48.9 mm3; P=0.036, Fisher test), versus citicoline alone (186.0+/-35.7 mm3; P=0.005, Fisher test), and versus bFGF alone (176.0+/-49.2 mm3; P=0.023, Fisher test). CONCLUSIONS These results demonstrate synergistic effects of a low-dose combination of the growth factor bFGF and citicoline after temporary experimental focal cerebral ischemia and furthermore support the effectiveness of a combination treatment regimen for the management of acute stroke.
Collapse
Affiliation(s)
- W R Schäbitz
- Department of Neurology, Memorial Health Care, Department of Neurology, The University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | |
Collapse
|
1249
|
Doğan A, Rao AM, Hatcher J, Rao VL, Başkaya MK, Dempsey RJ. Effects of MDL 72527, a specific inhibitor of polyamine oxidase, on brain edema, ischemic injury volume, and tissue polyamine levels in rats after temporary middle cerebral artery occlusion. J Neurochem 1999; 72:765-70. [PMID: 9930751 DOI: 10.1046/j.1471-4159.1999.0720765.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The possible effects of the polyamine interconversion pathway on tissue polyamine levels, brain edema formation, and ischemic injury volume were studied by using a selective irreversible inhibitor, MDL 72527, of the interconversion pathway enzyme, polyamine oxidase. In an intraluminal suture occlusion model of middle cerebral artery in spontaneously hypertensive rats, 100 mg/kg MDL 72527 changed the brain edema formation from 85.7 +/- 0.3 to 84.5 +/- 0.9% in cortex (p < 0.05) and from 79.9 +/- 1.7 to 78.4 +/- 2.0% in subcortex (difference not significant). Ischemic injury volume was reduced by 22% in the cortex (p < 0.05) and 17% in the subcortex (p < 0.05) after inhibition of polyamine oxidase by MDL 72527. There was an increase in tissue putrescine levels together with a decrease in spermine and spermidine levels at the ischemic site compared with the nonischemic site after ischemia-reperfusion injury. The increase in putrescine levels at the ischemic cortical and subcortical region was reduced by a mean of 45% with MDL 72527 treatment. These results suggest that the polyamine interconversion pathway has an important role in the postischemic increase in putrescine levels and that blocking of this pathway can be neuroprotective against neuronal cell damage after temporary focal cerebral ischemia.
Collapse
Affiliation(s)
- A Doğan
- Department of Neurological Surgery, University of Wisconsin and Veterans Adminstration Hospital, Madison 53792, USA
| | | | | | | | | | | |
Collapse
|
1250
|
LaManna JC, Kuo NT, Lust WD. Hypoxia-induced brain angiogenesis. Signals and consequences. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 454:287-93. [PMID: 9889903 DOI: 10.1007/978-1-4615-4863-8_34] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- J C LaManna
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4938, USA
| | | | | |
Collapse
|