1301
|
Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BPA, De Coninck B. Genome-Wide Characterization of ISR Induced in Arabidopsis thaliana by Trichoderma hamatum T382 Against Botrytis cinerea Infection. FRONTIERS IN PLANT SCIENCE 2012; 3:108. [PMID: 22661981 PMCID: PMC3362084 DOI: 10.3389/fpls.2012.00108] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/07/2012] [Indexed: 05/04/2023]
Abstract
In this study, the molecular basis of the induced systemic resistance (ISR) in Arabidopsis thaliana by the biocontrol fungus Trichoderma hamatum T382 against the phytopathogen Botrytis cinerea B05-10 was unraveled by microarray analysis both before (ISR-prime) and after (ISR-boost) additional pathogen inoculation. The observed high numbers of differentially expressed genes allowed us to classify them according to the biological pathways in which they are involved. By focusing on pathways instead of genes, a holistic picture of the mechanisms underlying ISR emerged. In general, a close resemblance is observed between ISR-prime and systemic acquired resistance, the systemic defense response that is triggered in plants upon pathogen infection leading to increased resistance toward secondary infections. Treatment with T. hamatum T382 primes the plant (ISR-prime), resulting in an accelerated activation of the defense response against B. cinerea during ISR-boost and a subsequent moderation of the B. cinerea induced defense response. Microarray results were validated for representative genes by qRT-PCR. The involvement of various defense-related pathways was confirmed by phenotypic analysis of mutants affected in these pathways, thereby proving the validity of our approach. Combined with additional anthocyanin analysis data these results all point to the involvement of the phenylpropanoid pathway in T. hamatum T382-induced ISR.
Collapse
Affiliation(s)
- Janick Mathys
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Pieter Timmermans
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | | | - Bart Lievens
- Scientia Terrae Research InstituteSint-Katelijne-Waver, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Consortium for Industrial Microbiology and Biotechnology (CIMB), Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven AssociationSint-Katelijne-Waver, Belgium
| | - Mieke Vanhaecke
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| |
Collapse
|
1302
|
Bulley S, Wright M, Rommens C, Yan H, Rassam M, Lin-Wang K, Andre C, Brewster D, Karunairetnam S, Allan AC, Laing WA. Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:390-7. [PMID: 22129455 DOI: 10.1111/j.1467-7652.2011.00668.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Ascorbate, or vitamin C, is obtained by humans mostly from plant sources. Various approaches have been made to increase ascorbate in plants by transgenic means. Most of these attempts have involved leaf material from model plants, with little success reported using genes from the generally accepted l-galactose pathway of ascorbate biosynthesis. We focused on increasing ascorbate in commercially significant edible plant organs using a gene, GDP-l-galactose phosphorylase (GGP or VTC2), that we had previously shown to increase ascorbate concentration in tobacco and Arabidopsis thaliana. The coding sequence of Actinidia chinensis GGP, under the control of the 35S promoter, was expressed in tomato and strawberry. Potato was transformed with potato or Arabidopsis GGP genes under the control of the 35S promoter or a polyubiquitin promoter (potato only). Five lines of tomato, up to nine lines of potato, and eight lines of strawberry were regenerated for each construct. Three lines of tomato had a threefold to sixfold increase in fruit ascorbate, and all lines of strawberry showed a twofold increase. All but one line of each potato construct also showed an increase in tuber ascorbate of up to threefold. Interestingly, in tomato fruit, increased ascorbate was associated with loss of seed and the jelly of locular tissue surrounding the seed which was not seen in strawberry. In both strawberry and tomato, an increase in polyphenolic content was associated with increased ascorbate. These results show that GGP can be used to raise significantly ascorbate concentration in commercially significant edible crops.
Collapse
Affiliation(s)
- Sean Bulley
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1303
|
Vannini C, Marsoni M, Cantara C, De Pinto MC, Locato V, De Gara L, Bracale M. The soluble proteome of tobacco Bright Yellow-2 cells undergoing H₂O₂-induced programmed cell death. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3137-55. [PMID: 22355080 PMCID: PMC3350924 DOI: 10.1093/jxb/ers031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 05/07/2023]
Abstract
Plant programmed cell death (PCD) is a genetically controlled process that plays an important role in development and stress responses. Reactive oxygen species (ROS) are key inducers of PCD. The addition of 50 mM H₂O₂ to tobacco Bright Yellow-2 (TBY-2) cell cultures induces PCD. A comparative proteomic analysis of TBY-2 cells treated with 50 mM H₂O₂ for 30 min and 3 h was performed. The results showed early down-regulation of several elements in the cellular redox hub and inhibition of the protein repair-degradation system. The expression patterns of proteins involved in the homeostatic response, in particular those associated with metabolism, were consistently altered. The changes in abundance of several cytoskeleton proteins confirmed the active role of the cytoskeleton in PCD signalling. Cells undergoing H₂O₂-induced PCD fail to cope with oxidative stress. The antioxidant defence system and the anti-PCD signalling cascades are inhibited. This promotes a genetically programmed cell suicide pathway. Fifteen differentially expressed proteins showed an expression pattern similar to that previously observed in TBY-2 cells undergoing heat shock-induced PCD. The possibility that these proteins are part of a core complex required for PCD induction is discussed.
Collapse
Affiliation(s)
- Candida Vannini
- Dipartimento Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Milena Marsoni
- Dipartimento Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Carlo Cantara
- Dipartimento Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | | | - Vittoria Locato
- Centro Integrato di Ricerca, Università Campus Bio-Medico di Roma, via A. del Portillo 21, 00128 Roma, Italy
| | - Laura De Gara
- Centro Integrato di Ricerca, Università Campus Bio-Medico di Roma, via A. del Portillo 21, 00128 Roma, Italy
| | - Marcella Bracale
- Dipartimento Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| |
Collapse
|
1304
|
Urzica EI, Adler LN, Page MD, Linster CL, Arbing MA, Casero D, Pellegrini M, Merchant SS, Clarke SG. Impact of oxidative stress on ascorbate biosynthesis in Chlamydomonas via regulation of the VTC2 gene encoding a GDP-L-galactose phosphorylase. J Biol Chem 2012; 287:14234-45. [PMID: 22393048 PMCID: PMC3340187 DOI: 10.1074/jbc.m112.341982] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/23/2012] [Indexed: 12/30/2022] Open
Abstract
The L-galactose (Smirnoff-Wheeler) pathway represents the major route to L-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-L-galactose phosphorylases converting GDP-L-galactose to L-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of L-ascorbate. Here we report that the L-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the L-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-L-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and L-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the L-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells.
Collapse
Affiliation(s)
| | | | | | - Carole L. Linster
- From the Departments of Chemistry and Biochemistry
- the de Duve Institute, Université Catholique de Louvain, BCHM 7539, Ave. Hippocrate 75, B-1200 Brussels, Belgium
| | | | | | - Matteo Pellegrini
- Molecular, Cell, and Developmental Biology, and
- Institute of Genomics and Proteomics
| | - Sabeeha S. Merchant
- From the Departments of Chemistry and Biochemistry
- Institute of Genomics and Proteomics
- Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| | - Steven G. Clarke
- From the Departments of Chemistry and Biochemistry
- Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| |
Collapse
|
1305
|
Szarka A, Tomasskovics B, Bánhegyi G. The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int J Mol Sci 2012; 13:4458-4483. [PMID: 22605990 PMCID: PMC3344226 DOI: 10.3390/ijms13044458] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 03/22/2012] [Accepted: 03/26/2012] [Indexed: 12/02/2022] Open
Abstract
The life of any living organism can be defined as a hurdle due to different kind of stresses. As with all living organisms, plants are exposed to various abiotic stresses, such as drought, salinity, extreme temperatures and chemical toxicity. These primary stresses are often interconnected, and lead to the overproduction of reactive oxygen species (ROS) in plants, which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA, which ultimately results in oxidative stress. Stress-induced ROS accumulation is counteracted by enzymatic antioxidant systems and non-enzymatic low molecular weight metabolites, such as ascorbate, glutathione and α-tocopherol. The above mentioned low molecular weight antioxidants are also capable of chelating metal ions, reducing thus their catalytic activity to form ROS and also scavenge them. Hence, in plant cells, this triad of low molecular weight antioxidants (ascorbate, glutathione and α-tocopherol) form an important part of abiotic stress response. In this work we are presenting a review of abiotic stress responses connected to these antioxidants.
Collapse
Affiliation(s)
- András Szarka
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, 1111 Szent Gellért tér 4, Budapest, Hungary; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +36-1-463-3858; Fax: +36-1-463-3855
| | - Bálint Tomasskovics
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, 1111 Szent Gellért tér 4, Budapest, Hungary; E-Mail:
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry Pathobiochemistry, Research Group of Hungarian Academy of Sciences and Semmelweis University, 1444 Budapest, POB 260, Hungary; E-Mail:
| |
Collapse
|
1306
|
Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Chelation. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/872875] [Citation(s) in RCA: 432] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heavy metal (HM) toxicity is one of the major abiotic stresses leading to hazardous effects in plants. A common consequence of HM toxicity is the excessive accumulation of reactive oxygen species (ROS) and methylglyoxal (MG), both of which can cause peroxidation of lipids, oxidation of protein, inactivation of enzymes, DNA damage and/or interact with other vital constituents of plant cells. Higher plants have evolved a sophisticated antioxidant defense system and a glyoxalase system to scavenge ROS and MG. In addition, HMs that enter the cell may be sequestered by amino acids, organic acids, glutathione (GSH), or by specific metal-binding ligands. Being a central molecule of both the antioxidant defense system and the glyoxalase system, GSH is involved in both direct and indirect control of ROS and MG and their reaction products in plant cells, thus protecting the plant from HM-induced oxidative damage. Recent plant molecular studies have shown that GSH by itself and its metabolizing enzymes—notably glutathione S-transferase, glutathione peroxidase, dehydroascorbate reductase, glutathione reductase, glyoxalase I and glyoxalase II—act additively and coordinately for efficient protection against ROS- and MG-induced damage in addition to detoxification, complexation, chelation and compartmentation of HMs. The aim of this review is to integrate a recent understanding of physiological and biochemical mechanisms of HM-induced plant stress response and tolerance based on the findings of current plant molecular biology research.
Collapse
|
1307
|
Zaffagnini M, Bedhomme M, Lemaire SD, Trost P. The emerging roles of protein glutathionylation in chloroplasts. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:86-96. [PMID: 22325869 DOI: 10.1016/j.plantsci.2012.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/08/2012] [Accepted: 01/16/2012] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species play important roles in redox signaling mainly through a set of reversible post-translational modifications of cysteine thiol residues in proteins, including glutathionylation and dithiol/disulfide exchange. Protein glutathionylation has been extensively studied in mammals but emerging evidence suggests that it can play important roles in plants and in chloroplast in particular. This redox modification involves protein thiols and glutathione and is mainly controlled by glutaredoxins, oxidoreductases belonging to the thioredoxin superfamily. In this review, we first present the possible mechanisms of protein glutathionylation and then introduce the chloroplast systems of glutaredoxins and thioredoxins, in order to pinpoint the biochemical properties that make some glutaredoxin isoforms the master enzymes in deglutathionylation. Finally, we discuss the possible roles of glutathionylation in thiol protection, protein regulation, reactive oxygen species scavenging and redox signaling in chloroplasts, with emphasis on the crosstalk between thioredoxin- and glutaredoxin-mediated signaling pathways.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratory of Molecular Plant Physiology, Department of Experimental Evolutionary Biology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | | | | | | |
Collapse
|
1308
|
Loiacono FV, De Tullio MC. Why we should stop inferring simple correlations between antioxidants and plant stress resistance: towards the antioxidomic era. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:160-7. [PMID: 22433077 DOI: 10.1089/omi.2011.0099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A large number of studies have investigated the relationship between different forms of abiotic stress and antioxidants. However, misconceptions and technical flaws often affect studies on this important topic. Reactive oxygen species (ROS) generated under stress conditions should not be considered just as potential threats, because they are essential components of the signaling mechanism inducing plant defenses. Similarly, the complexity of the antioxidant system should be considered, to avoid misleading oversimplifications. Recent literature is discussed, highlighting the importance of accurate experimental setups for obtaining reliable results in this delicate field of research. A tentative "troubleshooting guide" is provided to help researchers interested in improving the quality of their work on the role of antioxidants in plant stress resistance. Significant advancements in the field could be reached with the development of antioxidomics, defined here as a new branch of research at the crossroads of other disciplines including metabolomics and proteomics, studying the complex relationship among antioxidants and their functions.
Collapse
Affiliation(s)
- F Vanessa Loiacono
- Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life Sciences, Institute of Horticulture, Fruit-Growing and Viticulture, Vienna, Austria
| | | |
Collapse
|
1309
|
Chou TS, Chao YY, Kao CH. Involvement of hydrogen peroxide in heat shock- and cadmium-induced expression of ascorbate peroxidase and glutathione reductase in leaves of rice seedlings. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:478-86. [PMID: 22196946 DOI: 10.1016/j.jplph.2011.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 05/20/2023]
Abstract
Hydrogen peroxide (H2O2) is considered a signal molecule inducing cellular stress. Both heat shock (HS) and Cd can increase H2O2 content. We investigated the involvement of H2O2 in HS- and Cd-mediated changes in the expression of ascorbate peroxidase (APX) and glutathione reductase (GR) in leaves of rice seedlings. HS treatment increased the content of H2O2 before it increased activities of APX and GR in rice leaves. Moreover, HS-induced H2O2 production and APX and GR activities could be counteracted by the NADPH oxidase inhibitors dipehenylene iodonium (DPI) and imidazole (IMD). HS-induced OsAPX2 gene expression was associated with HS-induced APX activity but was not regulated by H2O2. Cd-increased H2O2 content and APX and GR activities were lower with than without HS. Cd did not increase the expression of OsAPX and OsGR without HS treatment. Cd increased H2O2 content by Cd before it increased APX and GR activities without HS. Treatment with DPI and IMD effectively inhibited Cd-induced H2O2 production and APX and GR activities. Moreover, the effects of DPI and IMD could be rescued with H2O2 treatment. H2O2 may be involved in the regulation of HS- and Cd-increased APX and GR activities in leaves of rice seedlings.
Collapse
Affiliation(s)
- Ting-Shao Chou
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
1310
|
Zaffagnini M, Bedhomme M, Marchand CH, Morisse S, Trost P, Lemaire SD. Redox regulation in photosynthetic organisms: focus on glutathionylation. Antioxid Redox Signal 2012; 16:567-86. [PMID: 22053845 DOI: 10.1089/ars.2011.4255] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE In photosynthetic organisms, besides the well-established disulfide/dithiol exchange reactions specifically controlled by thioredoxins (TRXs), protein S-glutathionylation is emerging as an alternative redox modification occurring under stress conditions. This modification, consisting of the formation of a mixed disulfide between glutathione and a protein cysteine residue, can not only protect specific cysteines from irreversible oxidation but also modulate protein activities and appears to be specifically controlled by small disulfide oxidoreductases of the TRX superfamily named glutaredoxins (GRXs). RECENT STUDIES In recent times, several studies allowed significant progress in this area, mostly due to the identification of several plant proteins undergoing S-glutathionylation and to the characterization of the molecular mechanisms and the proteins involved in the control of this modification. CRITICAL ISSUES This article provides a global overview of protein glutathionylation in photosynthetic organisms with particular emphasis on the mechanisms of protein glutathionylation and deglutathionylation and a focus on the role of GRXs. Then, we describe the methods employed for identification of glutathionylated proteins in photosynthetic organisms and review the targets and the possible physiological functions of protein glutathionylation. FUTURE DIRECTIONS In order to establish the importance of protein S-glutathionylation in photosynthetic organisms, future studies should be aimed at delineating more accurately the molecular mechanisms of glutathionylation and deglutathionylation reactions, at identifying proteins undergoing S-glutathionylation in vivo under diverse conditions, and at investigating the importance of redoxins, GRX, and TRX, in the control of this redox modification in vivo.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | | | | | |
Collapse
|
1311
|
Jozefczak M, Remans T, Vangronsveld J, Cuypers A. Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 2012; 13:3145-3175. [PMID: 22489146 PMCID: PMC3317707 DOI: 10.3390/ijms13033145] [Citation(s) in RCA: 468] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/10/2012] [Accepted: 02/23/2012] [Indexed: 01/15/2023] Open
Abstract
Since the industrial revolution, the production, and consequently the emission of metals, has increased exponentially, overwhelming the natural cycles of metals in many ecosystems. Metals display a diverse array of physico-chemical properties such as essential versus non-essential and redox-active versus non-redox-active. In general, all metals can lead to toxicity and oxidative stress when taken up in excessive amounts, imposing a serious threat to the environment and human health. In order to cope with different kinds of metals, plants possess defense strategies in which glutathione (GSH; γ-glu-cys-gly) plays a central role as chelating agent, antioxidant and signaling component. Therefore, this review highlights the role of GSH in: (1) metal homeostasis; (2) antioxidative defense; and (3) signal transduction under metal stress. The diverse functions of GSH originate from the sulfhydryl group in cysteine, enabling GSH to chelate metals and participate in redox cycling.
Collapse
Affiliation(s)
- Marijke Jozefczak
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; E-Mails: (M.J.); (T.R.); (J.V.)
| | - Tony Remans
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; E-Mails: (M.J.); (T.R.); (J.V.)
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; E-Mails: (M.J.); (T.R.); (J.V.)
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; E-Mails: (M.J.); (T.R.); (J.V.)
| |
Collapse
|
1312
|
Jia LG, Sheng ZW, Xu WF, Li YX, Liu YG, Xia YJ, Zhang JH. Modulation of anti-oxidation ability by proanthocyanidins during germination of Arabidopsis thaliana seeds. MOLECULAR PLANT 2012; 5:472-481. [PMID: 22115918 DOI: 10.1093/mp/ssr089] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proanthocyanidins (PAs) as the end products of flavonoid biosynthetic pathway mainly accumulate in seed coat but their biological function is largely unknown. We studied the anti-oxidation ability in seed coat and germination changes under externally applied oxidative stresses in PAs-deficient mutants of Arabidopsis. Germination of PAs-deficient mutant seeds was faster than that of wild-type under low or no oxidative stress, suggesting a PAs-induced inhibition of germination. When the applied oxidative stress was high, germination of PAs-deficient mutants was lower than that of wild-type, suggesting a loss of PAs-related anti-oxidation ability in the mutants. Using ABA signaling mutants, our studies demonstrated that both ABA signaling pathway and PAs were important for the response to serve oxidative stress during seed germination. However, the discrepancy of the response between abi mutants and PAs mutants to oxidative stress suggests that ABA signaling pathway may not play a major role in PAs' action in alleviating oxidative stress. Under low or no oxidative stress, germination was mainly determined by the ABA content in seed and the PAs-deficient mutant seeds germinated faster due to their lower ABA content than wild-type. However, oxidative injury inhibited germination when PAs-deficient seeds germinated under high oxidative stress. Wild-type exhibited higher germination under the high oxidative stress due to the PAs' anti-oxidation ability. Oxidative stress applied externally led to changes in endogenous PAs contents that coincided with the expression changes of PAs biogenesis genes. PAs modulated the activities of some key enzymes that controlled the levels of reactive oxygen species and the anti-oxidation capacity during the seed germination. This work suggests that PAs contribute to the adaptive mechanism that helps germination under environmental stresses by playing dual roles in both germination control and anti-oxidation reaction.
Collapse
Affiliation(s)
- Li-Guo Jia
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
1313
|
Parsons HT, Fry SC. Oxidation of dehydroascorbic acid and 2,3-diketogulonate under plant apoplastic conditions. PHYTOCHEMISTRY 2012; 75:41-9. [PMID: 22226246 DOI: 10.1016/j.phytochem.2011.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 05/24/2023]
Abstract
The rate of L-ascorbate catabolism in plants often correlates positively with the rate of cell expansion. The reason for this correlation is difficult to explore because of our incomplete knowledge of ascorbate catabolism pathways. These involve enzymic and/or non-enzymic oxidation to dehydroascorbic acid (DHA), which may then be hydrolysed to 2,3-diketogulonate (DKG). Both DHA and DKG were susceptible to further oxidation under conditions of pH and H₂O₂ concentration comparable with the plant apoplast. The kinetics of their oxidation and the identity of some of the products have been investigated here. DHA, whether added in pure form or generated in situ by ascorbate oxidation, was oxidised non-enzymically to yield, almost simultaneously, a monoanion (cyclic-oxalyl-threonate; cOxT) and a dianion (oxalyl-threonate; OxT). The monoanion was resistant to periodate oxidation, showing that it was not oxalic threonic anhydride. The OxT population was shown to be an interconverting mixture of 3-OxT and 4-OxT, differing in pK(a). The 3-OxT appeared to be formed earlier than 4-OxT, but the latter predominated at equilibrium. DKG was oxidised by H₂O₂ to two partially characterised products, one of which was itself further oxidised by H₂O₂ to yield threonate. The possible occurrence of these reactions in the apoplast in vivo and the biological roles of vitamin C catabolites are discussed.
Collapse
Affiliation(s)
- Harriet T Parsons
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JH, UK
| | | |
Collapse
|
1314
|
A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0156-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
1315
|
Hamilton CE, Gundel PE, Helander M, Saikkonen K. Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0158-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
1316
|
Shi C, Baldwin IT, Wu J. Arabidopsis plants having defects in nonsense-mediated mRNA decay factors UPF1, UPF2, and UPF3 show photoperiod-dependent phenotypes in development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:99-114. [PMID: 22353561 DOI: 10.1111/j.1744-7909.2012.01093.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is an important mRNA quality surveillance pathway in all eukaryotes that eliminates aberrant mRNAs derived from various sources. Three NMD factor proteins, UPF1, UPF2, and UPF3 are required for the NMD process and were found to be also involved in certain stress responses in mammalian and yeast cells. Using Arabidopsis thaliana mutants of UPF1 and UPF3 and UPF2-silenced lines (irUPF2), we examined the involvement of UPF1, UPF2, and UPF3 in development and in response to stresses, wounding and infection by Pseudomonas syringae pv. tomato strain DC3000. Under the long (16 h) photoperiod condition, Arabidopsis having a defect in NMD factors exhibited altered morphologies of various organs, disturbed homeostasis of wounding-induced jasmonic acid and pathogen-elicited salicylic acid, and abnormal wounding- and methyl jasmonate-induced changes in the transcript levels of two defense-related genes, LOX2 and VSP2. Importantly, when plants were cultivated under the short (10 h) photoperiod condition, mutants of UPF1 and UPF3 and irUPF2 showed smaller differences from the wild-type plants in growth and stress-induced responses. These data suggest a complex regulatory network, likely composed of light signaling and NMD factor-mediated pathways, in influencing plant development and adaption to environmental stresses.
Collapse
Affiliation(s)
- Chuan Shi
- Department of Medical Engineering and Biotechnology, University of Applied Sciences, Jena, 07745 Germany
| | | | | |
Collapse
|
1317
|
De Pinto MC, Locato V, De Gara L. Redox regulation in plant programmed cell death. PLANT, CELL & ENVIRONMENT 2012; 35:234-44. [PMID: 21711357 DOI: 10.1111/j.1365-3040.2011.02387.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Programmed cell death (PCD) is a genetically controlled process described both in eukaryotic and prokaryotic organisms. Even if it is clear that PCD occurs in plants, in response to various developmental and environmental stimuli, the signalling pathways involved in the triggering of this cell suicide remain to be characterized. In this review, the main similarities and differences in the players involved in plant and animal PCD are outlined. Particular attention is paid to the role of reactive oxygen species (ROS) as key inducers of PCD in plants. The involvement of different kinds of ROS, different sites of ROS production, as well as their interaction with other molecules, is crucial in activating PCD in response to specific stimuli. Moreover, the importance is stressed on the balance between ROS production and scavenging, in various cell compartments, for the activation of specific steps in the signalling pathways triggering this cell suicide process. The review focuses on the complexity of the interplay between ROS and antioxidant molecules and enzymes in determining the most suitable redox environment required for the occurrence of different forms of PCD.
Collapse
Affiliation(s)
- M C De Pinto
- Dipartimento di Biologia, Università degli Studi di Bari, via E. Orabona 4, 70125 Bari, Italy
| | | | | |
Collapse
|
1318
|
Shi YC, Fu YP, Liu WQ. NADPH oxidase in plasma membrane is involved in stomatal closure induced by dehydroascorbate. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 51:26-30. [PMID: 22153236 DOI: 10.1016/j.plaphy.2011.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/23/2011] [Indexed: 05/31/2023]
Abstract
Stoma is surrounded by two guard cells, and regulates the contents of water and CO(2) in plant, its opening and closing was affected by various factors. Recently, dehydroascorbate was found to induce stomata closure and H(2)O(2) generation. However, the mechanism of H(2)O(2) production is not clear. DPI and imidazole inhibit the flavoprotein and the b(-type) cytochrome components of the NADPH oxidase complex. Application of DPI or imidazole with DHA together impaired stomatal closure and elevation of H(2)DCF-DA fluorescent intensity induced by DHA in guard cells. CoCl(2) and PD98059, as the blocker of calcium channel and the inhibitor of MAPKKK, both impaired stomatal closure induced by DHA. The results suggested that DHA-induced H(2)O(2) generation via activation of NADPH oxidase, and thus resulting in stomatal closure. Moreover, Ca(2+) channel and MAPK cascades were involved in stomatal closure induced by DHA.
Collapse
Affiliation(s)
- Yong Chun Shi
- National Key Laboratory of Tobacco Planting, Physiology and Biochemistry, 450002 Zhengzhou, China
| | | | | |
Collapse
|
1319
|
Mellado M, Contreras RA, González A, Dennett G, Moenne A. Copper-induced synthesis of ascorbate, glutathione and phytochelatins in the marine alga Ulva compressa (Chlorophyta). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 51:102-8. [PMID: 22153245 DOI: 10.1016/j.plaphy.2011.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/13/2011] [Indexed: 05/20/2023]
Abstract
In order to analyze the synthesis of antioxidant and heavy metal-chelating compounds in response to copper stress, the marine alga Ulva compressa (Chlorophyta) was exposed to 10 μM copper for 7 days and treated with inhibitors of ASC synthesis, lycorine, and GSH synthesis, buthionine sulfoximine (BSO). The levels of ascorbate, in its reduced (ASC) and oxidized (DHA) forms, glutathione, in its reduced (GSH) and oxidized (GSSG) forms, and phytochelatins (PCs) were determined as well as activities of enzymes involved in ASC synthesis, L-galactose dehydrogenase (GDH) and L-galactono 1,4 lactone dehydrogenase (GLDH), and in GSH synthesis, γ-glutamylcysteine synthase (γ-GCS) and glutathione synthase (GS). The level of ASC rapidly decreased to reach a minimum at day 1 that remained low until day 7, DHA decreased until day 1 but slowly increased up to day 7 and its accumulation was inhibited by lycorine. In addition, GSH level increased to reach a maximal level at day 5 and GSSG increased up to day 7 and their accumulation was inhibited by BSO. Activities of GDH and GLDH increased until day 7 and GLDH was inhibited by lycorine. Moreover, activities of γ-GCS and GS increased until day 7 and γ-GCS was inhibited by BSO. Furthermore, PC2, PC3 and PC4, increased until day 7 and their accumulation was inhibited by BSO. Thus, copper induced the synthesis of ascorbate, glutathione and PCs in U. compressa suggesting that these compounds are involved in copper tolerance. Interestingly, U. compressa is, until now, the only ulvophyte showing ASC, GSH and PCs synthesis in response to copper excess.
Collapse
Affiliation(s)
- Macarena Mellado
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | | | | | | | | |
Collapse
|
1320
|
Page M, Sultana N, Paszkiewicz K, Florance H, Smirnoff N. The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: further evidence for redox control of anthocyanin synthesis. PLANT, CELL & ENVIRONMENT 2012; 35:388-404. [PMID: 21631536 DOI: 10.1111/j.1365-3040.2011.02369.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ascorbate and anthocyanins act as photoprotectants during exposure to high light (HL). They accumulate in Arabidopsis leaves in response to HL on a similar timescale, suggesting a potential relationship between them. Flavonoids and related metabolites were identified and profiled by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The ascorbate-deficient mutants vtc1, vtc2 and vtc3 accumulated less anthocyanin than wild-type (WT) during HL acclimation. In contrast, kaempferol glycoside accumulation was less affected by light and not decreased by ascorbate deficiency, while sinapoyl malate levels decreased during HL acclimation. Comparison of six Arabidopsis ecotypes showed a positive correlation between ascorbate and anthocyanin accumulation in HL. mRNA-Seq analysis showed that all flavonoid biosynthesis transcripts were increased by HL acclimation in WT. RT-PCR analysis showed that vtc1 and vtc2 were impaired in HL induction of transcripts of anthocyanin biosynthesis enzymes, and the transcription factors PAP1, GL3 and EGL3 that activate the pathway. Abscisic acid (ABA) and jasmonic acid (JA), hormones that could affect anthocyanin accumulation, were unaffected in vtc mutants. It is concluded that HL induction of anthocyanin synthesis involves a redox-sensitive process upstream of the known transcription factors. Because anthocyanins accumulate in preference to kaempferol glycosides and sinapoyl malate in HL, they might have specific properties that make them useful in HL acclimation.
Collapse
Affiliation(s)
- Mike Page
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | | | | | | | | |
Collapse
|
1321
|
Foyer CH, Kerchev PI, Hancock RD. The ABA-INSENSITIVE-4 (ABI4) transcription factor links redox, hormone and sugar signaling pathways. PLANT SIGNALING & BEHAVIOR 2012; 7:276-81. [PMID: 22415048 PMCID: PMC3404864 DOI: 10.4161/psb.18770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The cellular reduction-oxidation (redox) hub processes information from metabolism and the environment and so regulates plant growth and defense through integration with the hormone signaling network. One key pathway of redox control involves interactions with ABSCISIC ACID (ABA). Accumulating evidence suggests that the ABA-INSENSITIVE-4 (ABI4) transcription factor plays a key role in transmitting information concerning the abundance of ascorbate and hence the ability of cells to buffer oxidative challenges. ABI4 is required for the ascorbate-dependent control of growth, a process that involves enhancement of salicylic acid (SA) signaling and inhibition of jasmonic acid (JA) signaling pathways. Low redox buffering capacity reinforces SA- JA- interactions through the mediation of ABA and ABI4 to fine-tune plant growth and defense in relation to metabolic cues and environmental challenges. Moreover, ABI4-mediated pathways of sugar sensitivity are also responsive to the abundance of ascorbate, providing evidence of overlap between redox and sugar signaling pathways.
Collapse
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds, UK.
| | | | | |
Collapse
|
1322
|
Tognetti VB, Mühlenbock P, Van Breusegem F. Stress homeostasis - the redox and auxin perspective. PLANT, CELL & ENVIRONMENT 2012; 35:321-33. [PMID: 21443606 DOI: 10.1111/j.1365-3040.2011.02324.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Under environmental stresses, plant development is adaptively modulated. This modulation is influenced by the steady-state balance (homeostasis) between reactive oxygen species (ROS) and phytohormones. Frequently observed symptoms in plant stress adaptation responses include growth retardation, reduced metabolism and photosynthesis, reallocation of metabolic resources and increased antioxidant activities to maximize plant survival under adverse environmental conditions. In view of stress-induced morphogenetic changes during adaptation, ROS and auxin are the main players in the regulatory networks because both are strongly affected by exposure to environmental cues. However, the mechanisms underlying the crosstalk between ROS and auxin are poorly understood. In this review, we aim at surveying how the integration of environmental stress-related signals is modulated by crosstalk between ROS and auxin regulatory networks.
Collapse
|
1323
|
Liu YJ, Yuan Y, Liu YY, Liu Y, Fu JJ, Zheng J, Wang GY. Gene families of maize glutathione-ascorbate redox cycle respond differently to abiotic stresses. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:183-92. [PMID: 22070975 DOI: 10.1016/j.jplph.2011.08.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/19/2011] [Accepted: 08/25/2011] [Indexed: 05/21/2023]
Abstract
The glutathione-ascorbate (GSH-ASC) cycle in plants plays an important role in detoxifying reactive oxygen species. Little is known about how the enzymes and antioxidants in the maize GSH-ASC cycle respond to stress. We clarified the genome positions, exon-intron structures and predicted subcellular locations of the ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) families in maize. ABA treatment increased the transcript levels of most of the APX genes except ZmAPX3 and ZmAPX6, upregulated the transcription of ZmMDAR1 and downregulated the transcriptions of ZmMDAR3 and ZmMDAR4. However, it had little effect on the expressions of the ZmDHAR and ZmGR gene families. ABA treatment increased the activities of only 2 enzymes, ZmAPX and ZmDHAR. The PEG treatment led to similar expression patterns as that of ABA. ZmAPX1.1 and ZmAPX2 exhibited the same expression patterns under PEG treatment conditions. Enzyme activities were not affected by the PEG treatment with the exception of a significant decrease in MDAR activity that was observed after 6h. Compared to the ABA and PEG treatments, the NaCl treatment only slightly affected the transcription of the four gene families but significantly increased the activity of ZmGR. The ABA and PEG treatments elevate the ASC levels and decrease the GSSG level. Our results show that the gene families of the maize GSH-ASC redox cycle respond differently to abiotic stresses and suggest that APX and MDAR may play more important roles in stress tolerance in plants.
Collapse
Affiliation(s)
- Yun-Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Beijing 100081, China
| | | | | | | | | | | | | |
Collapse
|
1324
|
Wojtera-Kwiczor J, Groß F, Leffers HM, Kang M, Schneider M, Scheibe R. Transfer of a Redox-Signal through the Cytosol by Redox-Dependent Microcompartmentation of Glycolytic Enzymes at Mitochondria and Actin Cytoskeleton. FRONTIERS IN PLANT SCIENCE 2012; 3:284. [PMID: 23316205 PMCID: PMC3540817 DOI: 10.3389/fpls.2012.00284] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/30/2012] [Indexed: 05/03/2023]
Abstract
The cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12, GapC) plays an important role in glycolysis by providing the cell with ATP and NADH. Interestingly, despite its glycolytic function in the cytosol, GAPDH was reported to possess additional non-glycolytic activities, correlating with its nuclear, or cytoskeletal localization in animal cells. In transiently transformed mesophyll protoplasts from Arabidopsis thaliana colocalization and interaction of the glycolytic enzymes with the mitochondria and with the actin cytoskeleton was visualized by confocal laser scanning microscopy (cLSM) using fluorescent protein fusions and by bimolecular fluorescence complementation, respectively. Yeast two-hybrid screens, dot-blot overlay assays, and co-sedimentation assays were used to identify potential protein-protein interactions between two cytosolic GAPDH isoforms (GapC1, At3g04120; GapC2, At1g13440) from A. thaliana with the neighboring glycolytic enzyme, fructose 1,6-bisphosphate aldolase (FBA6, At2g36460), the mitochondrial porin (VDAC3; At5g15090), and actin in vitro. From these experiments, a mitochondrial association is suggested for both glycolytic enzymes, GAPDH and aldolase, which appear to bind to the outer mitochondrial membrane, in a redox-dependent manner. In addition, both glycolytic enzymes were found to bind to F-actin in co-sedimentation assays, and lead to bundling of purified rabbit actin, as visualized by cLSM. Actin-binding and bundling occurred reversibly under oxidizing conditions. We speculate that such dynamic formation of microcompartments is part of a redox-dependent retrograde signal transduction network for adaptation upon oxidative stress.
Collapse
Affiliation(s)
- Joanna Wojtera-Kwiczor
- Department of Plant Physiology, Faculty of Biology and Chemistry, University of OsnabrueckOsnabrueck, Germany
| | - Felicitas Groß
- Department of Plant Physiology, Faculty of Biology and Chemistry, University of OsnabrueckOsnabrueck, Germany
| | - Hans-Martin Leffers
- Department of Plant Physiology, Faculty of Biology and Chemistry, University of OsnabrueckOsnabrueck, Germany
| | - Minhee Kang
- Department of Plant Physiology, Faculty of Biology and Chemistry, University of OsnabrueckOsnabrueck, Germany
| | - Markus Schneider
- Department of Plant Physiology, Faculty of Biology and Chemistry, University of OsnabrueckOsnabrueck, Germany
| | - Renate Scheibe
- Department of Plant Physiology, Faculty of Biology and Chemistry, University of OsnabrueckOsnabrueck, Germany
- *Correspondence: Renate Scheibe, Department of Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrueck, D-49069 Osnabrueck, Germany. e-mail:
| |
Collapse
|
1325
|
Zaffagnini M, Bedhomme M, Marchand CH, Couturier JRM, Gao XH, Rouhier N, Trost P, Lemaire SPD. Glutaredoxin s12: unique properties for redox signaling. Antioxid Redox Signal 2012; 16:17-32. [PMID: 21707412 DOI: 10.1089/ars.2011.3933] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIMS Cysteines (Cys) made acidic by the protein environment are generally sensitive to pro-oxidant molecules. Glutathionylation is a post-translational modification that can occur by spontaneous reaction of reduced glutathione (GSH) with oxidized Cys as sulfenic acids (-SOH). The reverse reaction (deglutathionylation) is strongly stimulated by glutaredoxins (Grx) and requires a reductant, often GSH. RESULTS Here, we show that chloroplast GrxS12 from poplar efficiently reacts with glutathionylated substrates in a GSH-dependent ping pong mechanism. The pK(a) of GrxS12 catalytic Cys is very low (3.9) and makes GrxS12 itself sensitive to oxidation by H(2)O(2) and to direct glutathionylation by nitrosoglutathione. Glutathionylated-GrxS12 (GrxS12-SSG) is temporarily inactive until it is deglutathionylated by GSH. The equilibrium between GrxS12 and glutathione (E(m(GrxS12-SSG))= -315 mV, pH 7.0) is characterized by K(ox) values of 310 at pH 7.0, as in darkened chloroplasts, and 69 at pH 7.9, as in illuminated chloroplasts. INNOVATION Based on thermodynamic data, GrxS12-SSG is predicted to accumulate in vivo under conditions of mild oxidation of the GSH pool that may occur under stress. Moreover, GrxS12-SSG is predicted to be more stable in chloroplasts in the dark than in the light. CONCLUSION These peculiar catalytic and thermodynamic properties could allow GrxS12 to act as a stress-related redox sensor, thus allowing glutathione to play a signaling role through glutathionylation of GrxS12 target proteins.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie Curies, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
1326
|
Lu H, Wan Q, Wang H, Na X, Wang X, Bi Y. Oxidative stress and mitochondrial dysfunctions are early events in narciclasine-induced programmed cell death in tobacco Bright Yellow-2 cells. PHYSIOLOGIA PLANTARUM 2012; 144:48-58. [PMID: 21916896 DOI: 10.1111/j.1399-3054.2011.01521.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Narciclasine (NCS) is a plant growth inhibitor isolated from the secreted mucilage of Narcissus tazetta bulbs. It is a commonly used anticancer agent in animal systems. In this study, we provide evidence to show that NCS also acts as an agent in inducing programmed cell death (PCD) in tobacco Bright Yellow-2 (TBY-2) cell cultures. NCS treatment induces typical PCD-associated morphological and biochemical changes, namely cell shrinkage, chromatin condensation and nuclear DNA degradation. To investigate possible signaling events, we analyzed the production of reactive oxygen species (ROS) and the function of mitochondria during PCD induced by NCS. A biphasic behavior burst of hydrogen peroxide (H(2)O(2)) was detected in TBY-2 cells treated with NCS, and mitochondrial transmembrane potential (MTP) loss occurred after a slight increase. Pre-incubation with antioxidant catalase (CAT) and N-acetyl-L-cysteine (NAC) not only significantly decreased the H(2)O(2) production but also effectively retarded the decrease of MTP and reduced the percentage of cells undergoing PCD after NCS treatment. In conclusion, our results suggest that NCS induces PCD in plant cells; the oxidative stress (accumulation of H(2)O(2)) and the MTP loss play important roles during NCS-induced PCD.
Collapse
Affiliation(s)
- Hongxia Lu
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | | | | | | | | | | |
Collapse
|
1327
|
Laporte D, Olate E, Salinas P, Salazar M, Jordana X, Holuigue L. Glutaredoxin GRXS13 plays a key role in protection against photooxidative stress in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:503-15. [PMID: 21963612 PMCID: PMC3245481 DOI: 10.1093/jxb/err301] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Glutaredoxins (GRXs) belong to the antioxidant and signalling network involved in the cellular response to oxidative stress in bacterial and eukaryotic cells. In spite of the high number of GRX genes in plant genomes, the biological functions and physiological roles of most of them remain unknown. Here the functional characterization of the Arabidopsis GRXS13 gene (At1g03850), that codes for two CC-type GRX isoforms, is reported. The transcript variant coding for the GRXS13.2 isoform is predominantly expressed under basal conditions and is the isoform that is induced by photooxidative stress. Transgenic lines where the GRXS13 gene has been knocked down show increased basal levels of superoxide radicals and reduced plant growth. These lines also display reduced tolerance to methyl viologen (MeV) and high light (HL) treatments, both conditions of photooxidative stress characterized by increased production of superoxide ions. Consistently, lines overexpressing the GRXS13.2 variant show reduced MeV- and HL-induced damage. Alterations in GRXS13 expression also affect superoxide levels and the ascorbate/dehydroascorbate ratio after HL-induced stress. These results indicate that GRXS13 gene expression is critical for limiting basal and photooxidative stress-induced reactive oxygen species (ROS) production. Together, these results place GRXS13.2 as a member of the ROS-scavenging/antioxidant network that shows a particularly low functional redundancy in the Arabidopsis GRX family.
Collapse
|
1328
|
Shapiguzov A, Vainonen JP, Wrzaczek M, Kangasjärvi J. ROS-talk - how the apoplast, the chloroplast, and the nucleus get the message through. FRONTIERS IN PLANT SCIENCE 2012; 3:292. [PMID: 23293644 PMCID: PMC3530830 DOI: 10.3389/fpls.2012.00292] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/07/2012] [Indexed: 05/18/2023]
Abstract
The production of reactive oxygen species (ROS) in different plant subcellular compartments is the hallmark of the response to many stress stimuli and developmental cues. The past two decades have seen a transition from regarding ROS as exclusively cytotoxic agents to being considered as reactive compounds which participate in elaborate signaling networks connecting various aspects of plant life. We have now arrived at a stage where it has become increasingly difficult to disregard the communication between different types and pools of ROS. Production of ROS in the extracellular space, the apoplast, can influence their generation in the chloroplast and both can regulate nuclear gene expression. In spite of existing information on these signaling events, we can still barely grasp the mechanisms of ROS signaling and communication between the organelles. In this review, we summarize evidence that supports the mutual influence of extracellular and chloroplastic ROS production on nuclear gene regulation and how this interaction might occur. We also reflect on how, and via which routes signals might reach the nucleus where they are ultimately integrated for transcriptional reprogramming. New ideas and approaches will be needed in the future to address the pressing questions of how ROS as signaling molecules can participate in the coordination of stress adaptation and development and how they are involved in the chatter of the organelles.
Collapse
Affiliation(s)
| | | | | | - Jaakko Kangasjärvi
- *Correspondence: Jaakko Kangasjärvi, Division of Plant Biology, Department of Biosciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, FIN-00014 Helsinki, Finland. e-mail:
| |
Collapse
|
1329
|
Ort DR, Grennan AK. Founders review 2012. PLANT PHYSIOLOGY 2012; 158:1. [PMID: 22213247 PMCID: PMC3252100 DOI: 10.1104/pp.111.900428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
1330
|
Dubreuil-Maurizi C, Vitecek J, Marty L, Branciard L, Frettinger P, Wendehenne D, Meyer AJ, Mauch F, Poinssot B. Glutathione deficiency of the Arabidopsis mutant pad2-1 affects oxidative stress-related events, defense gene expression, and the hypersensitive response. PLANT PHYSIOLOGY 2011; 157:2000-12. [PMID: 22007023 PMCID: PMC3327178 DOI: 10.1104/pp.111.182667] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/15/2011] [Indexed: 05/18/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) phytoalexin-deficient mutant pad2-1 displays enhanced susceptibility to a broad range of pathogens and herbivorous insects that correlates with deficiencies in the production of camalexin, indole glucosinolates, and salicylic acid (SA). The pad2-1 mutation is localized in the GLUTAMATE-CYSTEINE LIGASE (GCL) gene encoding the first enzyme of glutathione biosynthesis. While pad2-1 glutathione deficiency is not caused by a decrease in GCL transcripts, analysis of GCL protein level revealed that pad2-1 plants contained only 48% of the wild-type protein amount. In contrast to the wild type, the oxidized form of GCL was dominant in pad2-1, suggesting a distinct redox environment. This finding was corroborated by the expression of GRX1-roGFP2, showing that the cytosolic glutathione redox potential was significantly less negative in pad2-1. Analysis of oxidative stress-related gene expression showed a higher transcript accumulation in pad2-1 of GLUTATHIONE REDUCTASE, GLUTATHIONE-S-TRANSFERASE, and RESPIRATORY BURST OXIDASE HOMOLOG D in response to the oomycete Phytophthora brassicae. Interestingly, oligogalacturonide elicitation in pad2-1 revealed a lower plasma membrane depolarization that was found to act upstream of an impaired hydrogen peroxide production. This impaired hydrogen peroxide production was also observed during pathogen infection and correlated with a reduced hypersensitive response in pad2-1. In addition, a lack of pathogen-triggered expression of the ISOCHORISMATE SYNTHASE1 gene, coding for the SA-biosynthetic enzyme isochorismate synthase, was identified as the cause of the SA deficiency in pad2-1. Together, our results indicate that the pad2-1 mutation is related to a decrease in GCL protein and that the resulting glutathione deficiency negatively affects important processes of disease resistance.
Collapse
|
1331
|
Queirós F, Rodrigues JA, Almeida JM, Almeida DPF, Fidalgo F. Differential responses of the antioxidant defence system and ultrastructure in a salt-adapted potato cell line. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:1410-9. [PMID: 22078378 DOI: 10.1016/j.plaphy.2011.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 09/27/2011] [Indexed: 05/02/2023]
Abstract
Changes in lipid peroxidation and ion content and the possible involvement of the antioxidant system in salt tolerance at the cellular level was studied in a potato (Solanum tuberosum L.) callus line grown on 150 mM NaCl (salt-adapted) and in a non-adapted line exposed to 150 mM NaCl (salt-stressed). Salinity reduced the growth rate and increased lipid peroxidation in salt-stressed line, which remained unaltered in the adapted line. Na⁺ and Cl⁻ content increased due to salinity in both lines, but the adapted line displayed greater K⁺/Na⁺ ratio than the stressed one. Total superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and glutathione reductase (GR, EC 1.6.4.2) activities decreased in both salt-exposed lines; catalase (CAT, EC 1.11.1.6) activity did not change in the adapted line, but decreased in the stressed cell line. Salinity caused the suppression of one GR isoform, while the isozyme patterns of SOD, APX, and CAT were not affected. Ascorbate and reduced glutathione increased in both salt-exposed calli lines. α-Tocopherol increased as a result of salt exposure, with higher levels found in adapted calli. Electron microscopy showed that neither the structural integrity of the cells nor membrane structure were affected by salinity, but plastids from adapted cells had higher starch content. The results suggest that the enzymic and non-enzymic components of the antioxidant system are differentially modulated by salt. Different concentrations of antioxidant metabolites are more relevant to the adaptive response to salinity in potato calli than the differences in activity of the antioxidant enzymes.
Collapse
Affiliation(s)
- Filipa Queirós
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | | | | | | | | |
Collapse
|
1332
|
Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism. Biochem J 2011; 440:375-83. [DOI: 10.1042/bj20110939] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
L-Ascorbate catabolism involves reversible oxidation to DHA (dehydroascorbic acid), then irreversible oxidation or hydrolysis. The precursor–product relationships and the identity of several major DHA breakdown products remained unclear. In the presence of added H2O2, DHA underwent little hydrolysis to DKG (2,3-dioxo-L-gulonate). Instead, it yielded OxT (oxalyl L-threonate), cOxT (cyclic oxalyl L-threonate) and free oxalate (~6:1:1), essentially simultaneously, suggesting that all three product classes independently arose from one reactive intermediate, proposed to be cyclic-2,3-O-oxalyl-L-threonolactone. Only with plant apoplastic esterases present were the esters significant precursors of free oxalate. Without added H2O2, DHA was slowly hydrolysed to DKG. Downstream of DKG was a singly ionized dicarboxy compound (suggested to be 2-carboxy-L-xylonolactone plus 2-carboxy-L-lyxonolactone), which reversibly de-lactonized to a dianionic carboxypentonate. Formation of these lactones and acid was minimized by the presence of residual unreacted ascorbate. In vivo, the putative 2-carboxy-L-pentonolactones were relatively stable. We propose that DHA is a branch-point in ascorbate catabolism, being either oxidized to oxalate and its esters or hydrolysed to DKG and downstream carboxypentonates. The oxidation/hydrolysis ratio is governed by reactive oxygen species status. In vivo, oxalyl esters are enzymatically hydrolysed, but the carboxypentonates are stable. The biological roles of these ascorbate metabolites invite future exploration.
Collapse
|
1333
|
Carvalho JDFC, Madgwick PJ, Powers SJ, Keys AJ, Lea PJ, Parry MAJ. An engineered pathway for glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photorespiration. BMC Biotechnol 2011; 11:111. [PMID: 22104170 PMCID: PMC3252329 DOI: 10.1186/1472-6750-11-111] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/21/2011] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The photorespiratory nitrogen cycle in C₃ plants involves an extensive diversion of carbon and nitrogen away from the direct pathways of assimilation. The liberated ammonia is re-assimilated, but up to 25% of the carbon may be released into the atmosphere as CO₂. Because of the loss of CO₂ and high energy costs, there has been considerable interest in attempts to decrease the flux through the cycle in C₃ plants. Transgenic tobacco plants were generated that contained the genes gcl and hyi from E. coli encoding glyoxylate carboligase (EC 4.1.1.47) and hydroxypyruvate isomerase (EC 5.3.1.22) respectively, targeted to the peroxisomes. It was presumed that the two enzymes could work together and compete with the aminotransferases that convert glyoxylate to glycine, thus avoiding ammonia production in the photorespiratory nitrogen cycle. RESULTS When grown in ambient air, but not in elevated CO₂, the transgenic tobacco lines had a distinctive phenotype of necrotic lesions on the leaves. Three of the six lines chosen for a detailed study contained single copies of the gcl gene, two contained single copies of both the gcl and hyi genes and one line contained multiple copies of both gcl and hyi genes. The gcl protein was detected in the five transgenic lines containing single copies of the gcl gene but hyi protein was not detected in any of the transgenic lines. The content of soluble amino acids including glycine and serine, was generally increased in the transgenic lines growing in air, when compared to the wild type. The content of soluble sugars, glucose, fructose and sucrose in the shoot was decreased in transgenic lines growing in air, consistent with decreased carbon assimilation. CONCLUSIONS Tobacco plants have been generated that produce bacterial glyoxylate carboligase but not hydroxypyruvate isomerase. The transgenic plants exhibit a stress response when exposed to air, suggesting that some glyoxylate is diverted away from conversion to glycine in a deleterious short-circuit of the photorespiratory nitrogen cycle. This diversion in metabolism gave rise to increased concentrations of amino acids, in particular glutamine and asparagine in the leaves and a decrease of soluble sugars.
Collapse
Affiliation(s)
- Josirley de FC Carvalho
- Embrapa Soybean, Londrina, Paraná, Brazil, Rodovia Carlos Strass, Distrito da Warta; C.P.: 6001; 86001-970; Londrina - PR - Brasil
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2 JQ, UK
| | | | | | - Alfred J Keys
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2 JQ, UK
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Biological Sciences, Lancaster, LA1 4YQ, UK
| | | |
Collapse
|
1334
|
Laureau C, Bligny R, Streb P. The significance of glutathione for photoprotection at contrasting temperatures in the alpine plant species Soldanella alpina and Ranunculus glacialis. PHYSIOLOGIA PLANTARUM 2011; 143:246-60. [PMID: 21848651 DOI: 10.1111/j.1399-3054.2011.01505.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The significance of total glutathione content was investigated in two alpine plant species with highly differing antioxidative scavenging capacity. Leaves of Soldanella alpina and Ranunculus glacialis incubated for 48 h in the presence of buthionine-sulfoximine had 50% lower glutathione contents when compared with leaves incubated in water. The low leaf glutathione content was not compensated for by activation of other components involved in antioxidative protection or electron consumption. However, leaves with normal but not with low glutathione content increased their ascorbate content during high light (HL) treatment (S. alpina) or catalase activity at low temperature (LT) (R. glacialis), suggesting that the mere decline of the leaf glutathione content does not act as a signal to ameliorate antioxidative protection by alternative mechanisms. CO(2)-saturated oxygen evolution was not affected in glutathione-depleted leaves at various temperatures, except at 35°C, thereby increasing the high temperature (HT) sensitivity of both alpine species. Leaves with low and normal glutathione content were similarly resistant to photoinhibition and photodamage during HL treatment at ambient temperature in the presence and absence of paraquat or at LT. However, HL- and HT-induced photoinhibition increased in leaves with low compared to leaves with normal glutathione content, mainly because the recovery after heat inactivation was retarded in glutathione-depleted leaves. Differences in the response of photosystem II (PSII) activity and CO(2)-saturated photosynthesis suggest that PSII is not the primary target during HL inactivation at HT. The results are discussed with respect to the role of antioxidative protection as a safety valve for temperature extremes to which plants are not acclimated.
Collapse
Affiliation(s)
- Constance Laureau
- Université Paris-Sud 11, Ecologie, Systématique et Evolution, UMR-CNRS 8079, Bâtiment 362, 91405 Orsay Cedex, France
| | | | | |
Collapse
|
1335
|
Airaki M, Sánchez-Moreno L, Leterrier M, Barroso JB, Palma JM, Corpas FJ. Detection and quantification of S-nitrosoglutathione (GSNO) in pepper (Capsicum annuum L.) plant organs by LC-ES/MS. PLANT & CELL PHYSIOLOGY 2011; 52:2006-15. [PMID: 21965607 DOI: 10.1093/pcp/pcr133] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glutathione (GSH) is one of the major, soluble, low molecular weight antioxidants, as well as the major non-protein thiol in plant cells. However, the relevance of this molecule could be even greater considering that it can react with nitric oxide (NO) to generate S-nitrosoglutathione (GSNO) which is considered to function as a mobile reservoir of NO bioactivity in plants. Although this NO-derived molecule has an increased physiological and phytopathological relevance in plants cells, its identification and quantification in plant tissues have not be reported so far. Using liquid chromatography-electrospray/mass spectrometry (LC-ES/MS), a method was set up to detect and quantify simultaneously GSNO as well reduced and oxidized glutathione (GSH and GSSG, respectively) in different pepper plant organs including roots, stems and leaves, and in Arabidopsis leaves. The analysis of NO and GSNO reductase (GSNOR) activity in these pepper organs showed that the content of GSNO was directly related to the content of NO in each organ and oppositely related to the GSNOR activity. This approach opens up new analytical possibilities to understand the relevance of GSNO in plant cells under physiological and stress conditions.
Collapse
Affiliation(s)
- Morad Airaki
- Departamento de Bioquímica, Biología Celular y Sistemas Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain
| | | | | | | | | | | |
Collapse
|
1336
|
Abstract
Dr. Christine Foyer (B.Sc. 1974; Ph.D. 1977) is recognized here as a Redox Pioneer because she has published an article on redox biology that has been cited more than 1000 times, 4 other articles that have been cited more than 500 times, and a further 32 articles that have been each cited more than 100 times. During her Ph.D. at the Kings College, University of London, United Kingdom, Dr. Foyer discovered that ascorbate and glutathione and enzymes linking NADPH, glutathione, and ascorbate are localized in isolated chloroplast preparations. These observations pioneered the discovery of the ascorbate-glutathione cycle, now known as Foyer-Halliwell-Asada pathway after the names of the three major contributors, a crucial mechanism for H(2)O(2) metabolism in both animals and plants. Dr. Foyer has made a very significant contribution to our current understanding of the crucial roles of ascorbate and glutathione in redox biology, particularly in relation to photosynthesis, respiration, and chloroplast and mitochondrial redox signaling networks. "My view is that science…is compulsive and you have to keep with it all the time and not get despondent when things do not work well. Being passionate about science is what carries you through the hard times so that it isn't so much work, as a hobby that you do for a living. It is the thrill of achieving a better understanding and finding real pleasure in putting new ideas together, explaining data and passing on knowledge that keeps you going no matter what!" --Prof. Christine Helen Foyer.
Collapse
Affiliation(s)
- Luis A Del Río
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC , Granada, Spain
| |
Collapse
|
1337
|
Modeling the acid–base properties of glutathione in different ionic media, with particular reference to natural waters and biological fluids. Amino Acids 2011; 43:629-48. [DOI: 10.1007/s00726-011-1110-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 09/26/2011] [Indexed: 10/16/2022]
|
1338
|
Dolferus R, Ji X, Richards RA. Abiotic stress and control of grain number in cereals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:331-41. [PMID: 21889038 DOI: 10.1016/j.plantsci.2011.05.015] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/26/2011] [Accepted: 05/26/2011] [Indexed: 05/18/2023]
Abstract
Grain number is the only yield component that is directly associated with increased grain yield in important cereal crops like wheat. Historical yield studies show that increases in grain yield are always accompanied by an increase in grain number. Adverse weather conditions can cause severe fluctuations in grain yield and substantial yield losses in cereal crops. The problem is global and despite its impact on world food production breeding and selection approaches have only met with limited success. A specific period during early reproductive development, the young microspore stage of pollen development, is extremely vulnerable to abiotic stress in self-fertilising cereals (wheat, rice, barley, sorghum). A better understanding of the physiological and molecular processes that lead to stress-induced pollen abortion may provide us with the key to finding solutions for maintaining grain number under abiotic stress conditions. Due to the complexity of the problem, stress-proofing our main cereal crops will be a challenging task and will require joint input from different research disciplines.
Collapse
Affiliation(s)
- Rudy Dolferus
- CSIRO Plant Industry, Canberra, ACT 2601, Australia.
| | | | | |
Collapse
|
1339
|
Xiang L, Li Y, Rolland F, Van den Ende W. Neutral invertase, hexokinase and mitochondrial ROS homeostasis: emerging links between sugar metabolism, sugar signaling and ascorbate synthesis. PLANT SIGNALING & BEHAVIOR 2011; 6:1567-73. [PMID: 21918379 PMCID: PMC3256386 DOI: 10.4161/psb.6.10.17036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 05/18/2023]
Abstract
Alkaline/neutral invertases (A/N-Invs) are unique to plants and photosynthetic bacteria. Although considerable advances have been made in our understanding of sucrose metabolic enzymes in plants, the function of A/N-Invs remained puzzling. In a recent study, we have analyzed the subcellullar localization of a cytosolic (At-A/N-InvG, At1g35580) and a mitochondrial (At-A/N-InvA, At1g56560) Arabidopsis A/N-Inv. Unexpectedly, At-A/N-InvA knockout plants showed a more severe growth defect than At-A/N-InvG knockout plants and a link between the two A/N-Invs and oxidative stress defence was found. Overexpression of At-A/N-InvA and At-A/N-InvG in leaf mesophyll protoplasts reduced the activity of the ascorbate peroxidase 2 (APX2) promoter, that was stimulated by hydrogen peroxide and abscisic acid. It is discussed here how sugars and ascorbate might contribute to mitochondrial reactive oxygen species homeostasis. We hypothesize that both mitochondrial and cytosolic A/N-Invs and mitochondria-associated hexokinases are key mediators, integrating metabolic and sugar signalling processes.
Collapse
Affiliation(s)
- Li Xiang
- KULeuven; Lab of Molecular Plant Physiology Kasteelpark Arenberg; Leuven, Belgium
| | - Yi Li
- Functional Biology; Kasteelpark Arenberg; Leuven, Belgium
| | - Filip Rolland
- Functional Biology; Kasteelpark Arenberg; Leuven, Belgium
| | - Wim Van den Ende
- KULeuven; Lab of Molecular Plant Physiology Kasteelpark Arenberg; Leuven, Belgium
| |
Collapse
|
1340
|
Dafré-Martinelli M, Nakazato RK, Dias APL, Rinaldi MCS, Domingos M. The redox state of Ipomoea nil 'Scarlet O'Hara' growing under ozone in a subtropical area. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1645-1652. [PMID: 21741708 DOI: 10.1016/j.ecoenv.2011.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/30/2011] [Accepted: 06/01/2011] [Indexed: 05/31/2023]
Abstract
The occurrence of visible leaf injury caused by ozone in Ipomoea nil 'Scarlet O'Hara' may be regulated by their redox state, affecting its bioindicator efficiency. Thus, this study aimed to determine whether the redox state of I. nil plants in a subtropical area (São Paulo, SE-Brazil) contaminated by ozone oscillates, and to identify the environmental factors behind these variations. We comparatively evaluated indicators of redox state (ascorbic acid, glutathione, superoxide dismutase, ascorbate peroxidase, glutathione reductase) and leaf injury during nine field experiments of 28 days each. The variations in the redox indicators were explained by the combined effects of chronic levels of ozone and meteorological variables (mainly global solar radiation and air temperature) 3-6 days prior to the sampling days. The ascorbic acid and glutathione were crucial for increasing plant tolerance to ozone. Weak visible injury was observed in all experiments and occurred in leaves with low levels of ascorbic and dehydroascorbic acids.
Collapse
|
1341
|
Kerchev PI, Pellny TK, Vivancos PD, Kiddle G, Hedden P, Driscoll S, Vanacker H, Verrier P, Hancock RD, Foyer CH. The transcription factor ABI4 Is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis. THE PLANT CELL 2011; 23:3319-34. [PMID: 21926335 PMCID: PMC3203439 DOI: 10.1105/tpc.111.090100] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/03/2011] [Accepted: 08/30/2011] [Indexed: 05/18/2023]
Abstract
Cellular redox homeostasis is a hub for signal integration. Interactions between redox metabolism and the ABSCISIC ACID-INSENSITIVE-4 (ABI4) transcription factor were characterized in the Arabidopsis thaliana vitamin c defective1 (vtc1) and vtc2 mutants, which are defective in ascorbic acid synthesis and show a slow growth phenotype together with enhanced abscisic acid (ABA) levels relative to the wild type (Columbia-0). The 75% decrease in the leaf ascorbate pool in the vtc2 mutants was not sufficient to adversely affect GA metabolism. The transcriptome signatures of the abi4, vtc1, and vtc2 mutants showed significant overlap, with a large number of transcription factors or signaling components similarly repressed or induced. Moreover, lincomycin-dependent changes in LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN 1.1 expression were comparable in these mutants, suggesting overlapping participation in chloroplast to nucleus signaling. The slow growth phenotype of vtc2 was absent in the abi4 vtc2 double mutant, as was the sugar-insensitive phenotype of the abi4 mutant. Octadecanoid derivative-responsive AP2/ERF-domain transcription factor 47 (ORA47) and AP3 (an ABI5 binding factor) transcripts were enhanced in vtc2 but repressed in abi4 vtc2, suggesting that ABI4 and ascorbate modulate growth and defense gene expression through jasmonate signaling. We conclude that low ascorbate triggers ABA- and jasmonate-dependent signaling pathways that together regulate growth through ABI4. Moreover, cellular redox homeostasis exerts a strong influence on sugar-dependent growth regulation.
Collapse
Affiliation(s)
- Pavel I. Kerchev
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Till K. Pellny
- Plant Science Department, Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Pedro Diaz Vivancos
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura–Consejo Superior de Investigaciones Científicas, 30100-Murcia, Campus de Espinardo, Spain
| | - Guy Kiddle
- Plant Science Department, Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Peter Hedden
- Plant Science Department, Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Simon Driscoll
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Hélène Vanacker
- Institut de Biologie des Plantes, Université de Paris sud 11, 91405 Orsay cedex, Paris, France
| | - Paul Verrier
- Department of Biomathematics, Bioinformatics Centre for Mathematical and Computational Biology, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Robert D. Hancock
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Christine H. Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- Address correspondence to
| |
Collapse
|
1342
|
Lee Y, Park CH, Ram Kim A, Chang SC, Kim SH, Lee WS, Kim SK. The effect of ascorbic acid and dehydroascorbic acid on the root gravitropic response in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:909-16. [PMID: 21696975 DOI: 10.1016/j.plaphy.2011.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/31/2011] [Indexed: 05/09/2023]
Abstract
The effects of ascorbic acid (AA) and dehydroascorbic acid (DHA), one of products of the disproportionation of monodehydroascorbate (MDHA) by AA oxidase (AAO, EC 1.10.3.3), on the gravitropic curvature of Arabidopsis roots were characterized by biochemical and genetic approaches. Exogenously applied AA and DHA both stimulated root gravitropic responses in a concentration-dependent fashion. AA also changed the Indole-3-acetic acid (IAA) distribution in the roots after gravistimulation. In an effort to determine the relationship between AA and DHA in the gravitropic response, changes in the amount of reduced AA were evaluated in Arabidopsis under a variety of conditions. The expression level of an AAO gene (AAO1) was increased upon gravistimulation. Brassinolide (BL), indole-3-acetic acid (IAA), and AA also increased the transcript levels of this gene. Root elongation and the gravitropic response were both suppressed in the AA biosynthesis mutant, vtc1, which has a greatly reduced level of total AA. Furthermore, the line of AAO double mutants (aao1-1 X aao3-1, 41-21) showed a reduced gravitropic response and reduced root elongation. Taken together, the results of this study imply that both AA and DHA help to determine the redox environment for the root gravitropic response, but DHA, rather than AA, is a major player in the regulation of the gravitropic response mediated by AA in the roots of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Yew Lee
- Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
1343
|
Birtić S, Colville L, Pritchard HW, Pearce SR, Kranner I. Mathematically combined half-cell reduction potentials of low-molecular-weight thiols as markers of seed ageing. Free Radic Res 2011; 45:1093-102. [PMID: 21749317 DOI: 10.3109/10715762.2011.595409] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The half-cell reduction potential of the glutathione disulphide (GSSG)/glutathione (GSH) redox couple appears to correlate with cell viability and has been proposed to be a marker of seed viability and ageing. This study investigated the relationship between seed viability and the individual half-cell reduction potentials (E(i)s) of four low-molecular-weight (LMW) thiols in Lathyrus pratensis seeds subjected to artificial ageing: GSH, cysteine (Cys), cysteinyl-glycine (Cys-Gly) and γ-glutamyl-cysteine (γ-Glu-Cys). The standard redox potential of γ-Glu-Cys was previously unknown and was experimentally determined. The E(i)s were mathematically combined to define a LMW thiol-disulphide based redox environment (E(thiol-disulphide)). Loss of seed viability correlated with a shift in E(thiol-disulphide) towards more positive values, with a LD(50) value of -0.90 ± 0.093 mV M (mean ± SD). The mathematical definition of E(thiol-disulphide) is envisaged as a step towards the definition of the overall cellular redox environment, which will need to include all known redox-couples.
Collapse
Affiliation(s)
- Simona Birtić
- Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, West Sussex, UK
| | | | | | | | | |
Collapse
|
1344
|
Jahns P, Holzwarth AR. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:182-93. [PMID: 21565154 DOI: 10.1016/j.bbabio.2011.04.012] [Citation(s) in RCA: 618] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/31/2011] [Accepted: 04/02/2011] [Indexed: 11/18/2022]
Abstract
Photoprotection of photosystem II (PSII) is essential to avoid the light-induced damage of the photosynthetic apparatus due to the formation of reactive oxygen species (=photo-oxidative stress) under excess light. Carotenoids are known to play a crucial role in these processes based on their property to deactivate triplet chlorophyll (³Chl*) and singlet oxygen (¹O₂*). Xanthophylls are further assumed to be involved either directly or indirectly in the non-photochemical quenching (NPQ) of excess light energy in the antenna of PSII. This review gives an overview on recent progress in the understanding of the photoprotective role of the xanthophylls zeaxanthin (which is formed in the light in the so-called xanthophyll cycle) and lutein with emphasis on the NPQ processes associated with PSII of higher plants. The current knowledge supports the view that the photoprotective role of Lut is predominantly restricted to its function in the deactivation of ³Chl*, while zeaxanthin is the major player in the deactivation of excited singlet Chl (¹Chl*) and thus in NPQ (non-photochemical quenching). Additionally, zeaxanthin serves important functions as an antioxidant in the lipid phase of the membrane and is likely to act as a key component in the memory of the chloroplast with respect to preceding photo-oxidative stress. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr.1, D-40225 Düsseldorf, Germany.
| | | |
Collapse
|
1345
|
Kempinski CF, Haffar R, Barth C. Toward the mechanism of NH(4) (+) sensitivity mediated by Arabidopsis GDP-mannose pyrophosphorylase. PLANT, CELL & ENVIRONMENT 2011; 34:847-58. [PMID: 21332510 DOI: 10.1111/j.1365-3040.2011.02290.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The ascorbic acid (AA)-deficient Arabidopsis thaliana mutant vtc1-1, which is defective in GDP-mannose pyrophosphorylase (GMPase), exhibits conditional hypersensitivity to ammonium (NH(4) (+) ), a phenomenon that is independent of AA deficiency. As GMPase is important for GDP-mannose biosynthesis, a nucleotide sugar necessary for protein N-glycosylation, it has been thought that GDP-mannose deficiency is responsible for the growth defect in vtc1-1 in the presence of NH(4) (+) . Therefore, the motivation for this work was to elucidate the growth and developmental processes that are affected in vtc1-1 in the presence of NH(4) (+) and to determine whether GDP-mannose deficiency generally causes NH(4) (+) sensitivity. Furthermore, as NH(4) (+) may alter cytosolic pH, we investigated the responses of vtc1-1 to pH changes in the presence and absence of NH(4) (+) . Using qRT-PCR and staining procedures, we demonstrate that defective N-glycosylation in vtc1-1 contributes to cell wall, membrane and cell cycle defects, resulting in root growth inhibition in the presence of NH(4) (+) . However, by using mutants acting upstream of vtc1-1 and contributing to GDP-mannose biosynthesis, we show that GDP-mannose deficiency does not generally lead to and is not the primary cause of NH(4) (+) sensitivity. Instead, our data suggest that GMPase responds to pH alterations in the presence of NH(4) (+) .
Collapse
Affiliation(s)
- Chase F Kempinski
- Department of Biology, West Virginia University, 5228 Life Sciences Building, 53 Campus Drive, Morgantown, West Virginia 26506-6057, USA
| | | | | |
Collapse
|
1346
|
Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH. Glutathione. THE ARABIDOPSIS BOOK 2011; 9:e0142. [PMID: 22303267 PMCID: PMC3267239 DOI: 10.1199/tab.0142] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glutathione is a simple sulfur compound composed of three amino acids and the major non-protein thiol in many organisms, including plants. The functions of glutathione are manifold but notably include redox-homeostatic buffering. Glutathione status is modulated by oxidants as well as by nutritional and other factors, and can influence protein structure and activity through changes in thiol-disulfide balance. For these reasons, glutathione is a transducer that integrates environmental information into the cellular network. While the mechanistic details of this function remain to be fully elucidated, accumulating evidence points to important roles for glutathione and glutathione-dependent proteins in phytohormone signaling and in defense against biotic stress. Work in Arabidopsis is beginning to identify the processes that govern glutathione status and that link it to signaling pathways. As well as providing an overview of the components that regulate glutathione homeostasis (synthesis, degradation, transport, and redox turnover), the present discussion considers the roles of this metabolite in physiological processes such as light signaling, cell death, and defense against microbial pathogen and herbivores.
Collapse
Affiliation(s)
- Graham Noctor
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
| | - Guillaume Queval
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
- Present address: Department of Plant Systems Biology, Flanders Institute for Biotechnology and Department of Plant Biotechnologyand Genetics, Gent University, 9052 Gent, Belgium
| | - Amna Mhamdi
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
| | - Sejir Chaouch
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
| | - Christine H. Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
1347
|
Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH. Glutathione. THE ARABIDOPSIS BOOK 2011. [PMID: 22303267 DOI: 10.1199/tab0142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Glutathione is a simple sulfur compound composed of three amino acids and the major non-protein thiol in many organisms, including plants. The functions of glutathione are manifold but notably include redox-homeostatic buffering. Glutathione status is modulated by oxidants as well as by nutritional and other factors, and can influence protein structure and activity through changes in thiol-disulfide balance. For these reasons, glutathione is a transducer that integrates environmental information into the cellular network. While the mechanistic details of this function remain to be fully elucidated, accumulating evidence points to important roles for glutathione and glutathione-dependent proteins in phytohormone signaling and in defense against biotic stress. Work in Arabidopsis is beginning to identify the processes that govern glutathione status and that link it to signaling pathways. As well as providing an overview of the components that regulate glutathione homeostasis (synthesis, degradation, transport, and redox turnover), the present discussion considers the roles of this metabolite in physiological processes such as light signaling, cell death, and defense against microbial pathogen and herbivores.
Collapse
|
1348
|
Duan J, Li J, Guo S, Kang Y. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1620-1635. [PMID: 18242770 DOI: 10.1134/s1021443716050113] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 09/29/2007] [Accepted: 11/26/2007] [Indexed: 05/23/2023]
Abstract
We investigated the effects of short-term salinity stress and spermidine application to salinized nutrient solution on polyamine metabolism and various stress defense reactions in the roots of two cucumber (Cucumis sativus L.) cultivars, Changchun mici and Jinchun No. 2. Seedlings grown in nutrient solution salinized with 50mM NaCl for 8d displayed reduced relative water content, net photosynthetic rates and plant growth, together with increased lipid peroxidation and electrolyte leakage in the roots. These changes were more marked in cv. Jinchun No. 2 than in cv. Changchun mici, confirming that the latter cultivar is more salinity-tolerant than the former. Salinity stress caused an increase in superoxide and hydrogen peroxide production, particularly in cv. Jinchun No. 2 roots, while the salinity-induced increase in antioxidant enzyme activities and proline contents in the roots was much larger in cv. Changchun mici than in cv. Jinchun No. 2. In comparison to cv. Jinchun No. 2, cv. Changchun mici showed a marked increase in arginine decarboxylase, ornithine decarboxylase, S-adenosylmethionine decarboxylase and diamine oxidase activities, as well as free spermidine and spermine, soluble conjugated and insoluble bound putrescine, spermidine and spermine contents in the roots during exposure to salinity. On the other hand, spermidine application to salinized nutrient solution resulted in alleviation of the salinity-induced membrane damage in the roots and plant growth and photosynthesis inhibition, together with an increase in polyamine and proline contents and antioxidant enzyme activities in the roots of cv. Jinchun No. 2 but not of cv. Changchun mici. These results suggest that spermidine confers short-term salinity tolerance on cucumber probably through inducing antioxidant enzymes and osmoticants.
Collapse
Affiliation(s)
- Jiuju Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | | | | | | |
Collapse
|