1301
|
Robinson RT, Orme IM, Cooper AM. The onset of adaptive immunity in the mouse model of tuberculosis and the factors that compromise its expression. Immunol Rev 2015; 264:46-59. [PMID: 25703551 DOI: 10.1111/imr.12259] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis (Mtb) has been evolving with its human host for over 50 000 years and is an exquisite manipulator of the human immune response. It induces both a strong inflammatory and a strong acquired immune response, and Mtb then actively regulates these responses to create an infectious lesion in the lung while maintaining a relatively ambulatory host. The CD4(+) T cell plays a critical yet contradictory role in this process by both controlling disseminated disease while promoting the development of the lesion in the lung that mediates transmission. In light of this manipulative relationship between Mtb and the human immune response, it is not surprising that our ability to vaccinate against tuberculosis (TB) has not been totally successful. To overcome the current impasse in vaccine development, we need to define the phenotype of CD4(+) T cells that mediate protection and to determine those bacterial and host factors that regulate the effective function of these cells. In this review, we describe the initiation and expression of T cells during TB as well as the fulminant inflammatory response that can compromise T-cell function and survival.
Collapse
Affiliation(s)
- Richard T Robinson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | |
Collapse
|
1302
|
Hebeisen M, Allard M, Gannon PO, Schmidt J, Speiser DE, Rufer N. Identifying Individual T Cell Receptors of Optimal Avidity for Tumor Antigens. Front Immunol 2015; 6:582. [PMID: 26635796 PMCID: PMC4649060 DOI: 10.3389/fimmu.2015.00582] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/30/2015] [Indexed: 02/02/2023] Open
Abstract
Cytotoxic T cells recognize, via their T cell receptors (TCRs), small antigenic peptides presented by the major histocompatibility complex (pMHC) on the surface of professional antigen-presenting cells and infected or malignant cells. The efficiency of T cell triggering critically depends on TCR binding to cognate pMHC, i.e., the TCR–pMHC structural avidity. The binding and kinetic attributes of this interaction are key parameters for protective T cell-mediated immunity, with stronger TCR–pMHC interactions conferring superior T cell activation and responsiveness than weaker ones. However, high-avidity TCRs are not always available, particularly among self/tumor antigen-specific T cells, most of which are eliminated by central and peripheral deletion mechanisms. Consequently, systematic assessment of T cell avidity can greatly help distinguishing protective from non-protective T cells. Here, we review novel strategies to assess TCR–pMHC interaction kinetics, enabling the identification of the functionally most-relevant T cells. We also discuss the significance of these technologies in determining which cells within a naturally occurring polyclonal tumor-specific T cell response would offer the best clinical benefit for use in adoptive therapies, with or without T cell engineering.
Collapse
Affiliation(s)
- Michael Hebeisen
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Mathilde Allard
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Philippe O Gannon
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Julien Schmidt
- Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland ; TCMetrix Sàrl , Epalinges , Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland ; Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland
| | - Nathalie Rufer
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland ; Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland
| |
Collapse
|
1303
|
Yamaguchi T, Takizawa F, Fischer U, Dijkstra JM. Along the Axis between Type 1 and Type 2 Immunity; Principles Conserved in Evolution from Fish to Mammals. BIOLOGY 2015; 4:814-59. [PMID: 26593954 PMCID: PMC4690019 DOI: 10.3390/biology4040814] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/10/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
A phenomenon already discovered more than 25 years ago is the possibility of naïve helper T cells to polarize into TH1 or TH2 populations. In a simplified model, these polarizations occur at opposite ends of an "immune 1-2 axis" (i1-i2 axis) of possible conditions. Additional polarizations of helper/regulatory T cells were discovered later, such as for example TH17 and Treg phenotypes; although these polarizations are not selected by the axis-end conditions, they are affected by i1-i2 axis factors, and may retain more potential for change than the relatively stable TH1 and TH2 phenotypes. I1-i2 axis conditions are also relevant for polarizations of other types of leukocytes, such as for example macrophages. Tissue milieus with "type 1 immunity" ("i1") are biased towards cell-mediated cytotoxicity, while the term "type 2 immunity" ("i2") is used for a variety of conditions which have in common that they inhibit type 1 immunity. The immune milieus of some tissues, like the gills in fish and the uterus in pregnant mammals, probably are skewed towards type 2 immunity. An i2-skewed milieu is also created by many tumors, which allows them to escape eradication by type 1 immunity. In this review we compare a number of i1-i2 axis factors between fish and mammals, and conclude that several principles of the i1-i2 axis system seem to be ancient and shared between all classes of jawed vertebrates. Furthermore, the present study is the first to identify a canonical TH2 cytokine locus in a bony fish, namely spotted gar, in the sense that it includes RAD50 and bona fide genes of both IL-4/13 and IL-3/ IL-5/GM-CSF families.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Uwe Fischer
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Dengakugakubo 1-98, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
1304
|
Yang D, Bustin M, Oppenheim JJ. Harnessing the alarmin HMGN1 for anticancer therapy. Immunotherapy 2015; 7:1129-31. [PMID: 26567750 DOI: 10.2217/imt.15.76] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- De Yang
- Laboratory of Molecular Immunoregulation, Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute at Bethesda, Bethesda, MD 20892, USA
| | - Joost J Oppenheim
- Laboratory of Molecular Immunoregulation, Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
1305
|
|
1306
|
Yao J, Kaberniuk AA, Li L, Shcherbakova DM, Zhang R, Wang L, Li G, Verkhusha VV, Wang LV. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nat Methods 2015; 13:67-73. [PMID: 26550774 PMCID: PMC4697872 DOI: 10.1038/nmeth.3656] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/16/2015] [Indexed: 12/24/2022]
Abstract
Photoacoustic tomography (PAT) of genetically encoded probes allows imaging of targeted biological processes with high spatial resolution at depths. Here, we combined multi-scale photoacoustic imaging with, for the first time, a reversibly switchable non-fluorescent bacterial phytochrome BphP1. With a heme-derived biliverdin chromophore, BphP1 has the most red-shifted absorption among reported genetically encoded probes, and is reversibly photoconvertible between its red and near-infrared light absorption states. We combined single-wavelength PAT with efficient BphP1 photoswitching, enabling differential imaging that substantially removed background signals, enhanced detection sensitivity, increased penetration depth, and improved spatial resolution. In doing so, we monitored tumor growth and metastasis with a ~100 µm resolution at depths approaching 10 mm using photoacoustic computed tomography, and imaged individual cancer cells with a sub-optical-diffraction resolution of ~140 nm using photoacoustic microscopy. This technology is promising for biomedical studies at different length scales.
Collapse
Affiliation(s)
- Junjie Yao
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Andrii A Kaberniuk
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Lei Li
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ruiying Zhang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lidai Wang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Guo Li
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lihong V Wang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
1307
|
Zimmer L, Eigentler TK, Kiecker F, Simon J, Utikal J, Mohr P, Berking C, Kämpgen E, Dippel E, Stadler R, Hauschild A, Fluck M, Terheyden P, Rompel R, Loquai C, Assi Z, Garbe C, Schadendorf D. Open-label, multicenter, single-arm phase II DeCOG-study of ipilimumab in pretreated patients with different subtypes of metastatic melanoma. J Transl Med 2015; 13:351. [PMID: 26541511 PMCID: PMC4635983 DOI: 10.1186/s12967-015-0716-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/26/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Ipilimumab is an approved immunotherapy that has shown an overall survival benefit in patients with cutaneous metastatic melanoma in two phase III trials. As results of registrational trials might not answer all questions regarding safety and efficacy of ipilimumab in patients with advanced melanoma seen in daily clinical practice, the Dermatologic Cooperative Oncology Group conducted a phase II study to assess the efficacy and safety of ipilimumab in patients with different subtypes of metastatic melanoma. PATIENTS AND METHODS We undertook a multicenter phase II study in melanoma patients irrespective of location of the primary melanoma. Here we present data on patients with pretreated metastatic cutaneous, mucosal and occult melanoma who received up to four cycles of ipilimumab administered at a dose of 3 mg/kg in 3 week intervals. Tumor assessments were conducted at baseline, weeks 12, 24, 36 and 48 according to RECIST 1.1 criteria. Adverse events (AEs), including immune-related AEs were graded according to National Cancer Institute Common Toxicity Criteria (CTC) v.4.0. Primary endpoint was the OS rate at 12 months. RESULTS 103 pretreated patients received at least one dose of ipilimumab, including 83 cutaneous, seven mucosal and 13 occult melanomas. 1-year OS rates for cutaneous, mucosal and occult melanoma were 38 %, 14 % and 27 %, respectively. Median OS was 6.8 months (95 % CI 5.3-9.9) for cutaneous, 9.6 months (95 % CI 1.6-11.1) for mucosal, and 9.9 months (lower 95 % CI 2.3, upper 95 % CI non-existent) for occult melanoma. Overall response rates for cutaneous, mucosal and occult melanoma were 16 %, 17 % and 11 %, respectively. Eleven patients had partial response (16 %) and ten patients experienced stable disease (14 %), none achieved a complete response. Treatment-related AEs were observed in 71 patients (69 %), including 20 grade 3-4 events (19 %). No new and unexpected safety findings were noted. CONCLUSIONS Ipilimumab is a treatment option for pretreated patients with advanced cutaneous melanoma seen in daily routine. Toxicity was manageable when treated as per protocol-specific guidelines. TRIAL REGISTRATION Clinical Trials.gov NCT01355120.
Collapse
Affiliation(s)
- Lisa Zimmer
- Department of Dermatology, University Hospital, University Duisburg-Essen, Essen, Germany.
| | - Thomas K Eigentler
- Department of Dermatology, Center for Dermatooncology, University Medical Center Tübingen, Tübingen, Germany.
| | - Felix Kiecker
- Department of Dermatology and Allergy, Skin Cancer Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Jan Simon
- Department of Dermatology, Venereology and Allergology, University Hospital Leipzig, Leipzig, Germany.
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| | - Peter Mohr
- Department of Dermatology, Elbekliniken Stade Buxtehude, Buxtehude, Germany.
| | - Carola Berking
- Department of Dermatology and Allergy, Ludwig-Maximilian University, Munich, Germany.
| | - Eckhart Kämpgen
- Department of Dermatology, Dermatologikum Berlin, Berlin, Germany.
| | - Edgar Dippel
- Department of Dermatology, Klinikum Ludwigshafen, Skin Cancer Center Rheinpfalz, Ludwigshafen, Germany.
| | - Rudolf Stadler
- Department of Dermatology, Medical Centre Minden, Minden, Germany.
| | | | - Michael Fluck
- Department of Dermatology Hornheide, Münster, Germany.
| | | | - Rainer Rompel
- Department of Dermatology, Clinical Centre Kassel, Kassel, Germany.
| | - Carmen Loquai
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.
| | - Zeinab Assi
- Department of Dermatology, Center for Dermatooncology, University Medical Center Tübingen, Tübingen, Germany.
| | - Claus Garbe
- Department of Dermatology, Center for Dermatooncology, University Medical Center Tübingen, Tübingen, Germany.
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
1308
|
Chai SJ, Yap YY, Foo YC, Yap LF, Ponniah S, Teo SH, Cheong SC, Patel V, Lim KP. Identification of Four-Jointed Box 1 (FJX1)-Specific Peptides for Immunotherapy of Nasopharyngeal Carcinoma. PLoS One 2015; 10:e0130464. [PMID: 26536470 PMCID: PMC4633155 DOI: 10.1371/journal.pone.0130464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/20/2015] [Indexed: 01/02/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is highly prevalent in South East Asia and China. The poor outcome is due to late presentation, recurrence, distant metastasis and limited therapeutic options. For improved treatment outcome, immunotherapeutic approaches focusing on dendritic and autologous cytotoxic T-cell based therapies have been developed, but cost and infrastructure remain barriers for implementing these in low-resource settings. As our prior observations had found that four-jointed box 1 (FJX1), a tumor antigen, is overexpressed in NPCs, we investigated if short 9-20 amino acid sequence specific peptides matching to FJX1 requiring only intramuscular immunization to train host immune systems would be a better treatment option for this disease. Thus, we designed 8 FJX1-specific peptides and implemented an assay system to first, assess the binding of these peptides to HLA-A2 molecules on T2 cells. After, ELISPOT assays were used to determine the peptides immunogenicity and ability to induce potential cytotoxicity activity towards cancer cells. Also, T-cell proliferation assay was used to evaluate the potential of MHC class II peptides to stimulate the expansion of isolated T-cells. Our results demonstrate that these peptides are immunogenic and peptide stimulated T-cells were able to induce peptide-specific cytolytic activity specifically against FJX1-expressing cancer cells. In addition, we demonstrated that the MHC class II peptides were capable of inducing T-cell proliferation. Our results suggest that these peptides are capable of inducing specific cytotoxic cytokines secretion against FJX1-expressing cancer cells and serve as a potential vaccine-based therapy for NPC patients.
Collapse
Affiliation(s)
- San Jiun Chai
- Cancer Research Initiatives Foundation (CARIF), Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Yoke Yeow Yap
- Department of Surgery, Clinical Campus Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Yoke Ching Foo
- Department of Oncology, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Lee Fah Yap
- Cancer Research Initiatives Foundation (CARIF), Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Sathibalan Ponniah
- Department of Surgery, Cancer Vaccine Development Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Soo Hwang Teo
- Cancer Research Initiatives Foundation (CARIF), Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Sok Ching Cheong
- Cancer Research Initiatives Foundation (CARIF), Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Vyomesh Patel
- Cancer Research Initiatives Foundation (CARIF), Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Kue Peng Lim
- Cancer Research Initiatives Foundation (CARIF), Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
1309
|
Dietrich PY, Dutoit V, Walker PR. Immunotherapy for glioma: from illusion to realistic prospects? Am Soc Clin Oncol Educ Book 2015:51-9. [PMID: 24857060 DOI: 10.14694/edbook_am.2014.34.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is now evidence that the rules established for tumor immunology and immunotherapy in general are relevant for brain tumors. Treatment strategies explored have mainly involved vaccines using either tumor cells or components, and vaccines with defined synthetic peptides. This latter approach offers the advantage to select well-characterized antigens with selective or preferential expression on glioma. This is a prerequisite because collateral damage to the brain is not allowed. A second strategy which is reaching clinical trials is T cell therapy using the patients' own lymphocytes engineered to become tumor reactive. Tumor specificity can be conferred by forced expression of either a high-avidity T cell receptor or an antitumor antibody (the latter cells are called chimeric antigen receptors). An advantage of T cell engineering is the possibility to modify the cells to augment cellular activation, in vivo persistence and resistance to the tumor immunosuppressive milieu. A direct targeting of the hostile glioma microenvironment will additionally be required for achieving potent immunotherapy and various trials are assessing this issue. Finally, combining immunotherapy with immune checkpoint inhibitors and chemotherapy must be explored within rigorous clinical trials that favor constant interactions between the bench and bedside. Regarding immunotherapy for glioma patients, what was an unrealistic dream a decade ago is today a credible prospect.
Collapse
Affiliation(s)
| | - Valérie Dutoit
- From the Center of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Paul R Walker
- From the Center of Oncology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
1310
|
Patel JN, Papachristos A. Personalizing chemotherapy dosing using pharmacological methods. Cancer Chemother Pharmacol 2015; 76:879-96. [PMID: 26298089 DOI: 10.1007/s00280-015-2849-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/13/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE Given the toxic nature and narrow therapeutic index of traditional chemotherapeutics, better methods of dose and therapy selection are critical. Pharmacological methods, including pharmacogenomics and pharmacokinetics, offer a practical method to enrich drug exposure, reduce toxicity, and improve quality of life for patients. METHODS PubMed and key abstracts from the American Society of Clinical Oncology (ASCO) and American Association for Cancer Research (AACR) were searched until July 2015 for clinical data relating to pharmacogenomic- and/or pharmacokinetic-guided dosing of anticancer drugs. RESULTS Based on the results returned from a thorough search of the literature and the plausibility of utilizing pharmacogenomic and/or pharmacokinetic methods to personalize chemotherapy dosing, we identified several chemotherapeutic agents with the potential for therapy individualization. We highlight the available data, clinical validity, and utility of using pharmacogenomics to personalize therapy for tamoxifen, 5-fluorouracil, mercaptopurine, and irinotecan, in addition to using pharmacokinetics to personalize dosing for 5-fluorouracil, busulfan, methotrexate, taxanes, and topotecan. CONCLUSION A concerted effort should be made by researchers to further elucidate the role of pharmacological methods in personalizing chemotherapy dosing to optimize the risk-benefit profile. Clinicians should be aware of the clinical validity, utility, and availability of pharmacogenomic- and pharmacokinetic-guided therapies in clinical practice, to ultimately allow optimal dosing for each and every cancer patient.
Collapse
Affiliation(s)
- Jai N Patel
- Department of Cancer Pharmacology, Levine Cancer Institute, Carolinas HealthCare System, 1021 Morehead Medical Drive, Charlotte, NC, 28204, USA.
| | | |
Collapse
|
1311
|
|
1312
|
Abstract
Overexpressed tumor-self antigens represent the largest group of candidate vaccine targets. Those exhibiting a role in oncogenesis may be some of the least studied but perhaps most promising. This review considers this subset of self antigens by highlighting vaccine efforts for some of the better known members and focusing on TPD52, a new promising vaccine target. We shed light on the importance of both preclinical and clinical vaccine studies demonstrating that tolerance and autoimmunity (presumed to preclude this class of antigens from vaccine development) can be overcome and do not present the obstacle that might have been expected. The potential of this class of antigens for broad application is considered, possibly in the context of low tumor burden or adjuvant therapy, as is the need to understand mechanisms of tolerance that are relatively understudied.
Collapse
Key Words
- ALK, Anaplastic lymphoma kinase
- AR, androgen receptor
- CTL, cytotoxic T lymphocyte
- CTLA-4, cytotoxic T lymphocyte-associated antigen 4
- HLA, human leukocyte antigen
- Her-2/neu, human epithelial growth factor receptor 2
- ODN, oligodeoxynucleotide
- Overexpressed tumor-self antigen
- TAA, tumor associated antigen
- TPD52
- TRAMP, Transgenic adenocarcinoma of the mouse prostate
- Treg, T regulatory cell
- VEGFR2, vascular endothelial growth factor receptor 2
- WT-1, Wilms tumor-1
- hD52
- hD52, human TPD52
- mD52
- mD52, murine TPD52
- oncogenic
- shared
- tumor protein D52
- universal
- vaccine
Collapse
Affiliation(s)
- Robert K Bright
- a Department of Immunology and Molecular Microbiology and the TTUHSC Cancer Center ; Texas Tech University Health Sciences Center ; Lubbock , TX USA
| | | | | |
Collapse
|
1313
|
Clausen BE, Stoitzner P. Functional Specialization of Skin Dendritic Cell Subsets in Regulating T Cell Responses. Front Immunol 2015; 6:534. [PMID: 26557117 PMCID: PMC4617171 DOI: 10.3389/fimmu.2015.00534] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DC) are a heterogeneous family of professional antigen-presenting cells classically recognized as most potent inducers of adaptive immune responses. In this respect, Langerhans cells have long been considered to be prototypic immunogenic DC in the skin. More recently this view has considerably changed. The generation of in vivo cell ablation and lineage tracing models revealed the complexity of the skin DC network and, in particular, established the existence of a number of phenotypically distinct Langerin+ and negative DC populations in the dermis. Moreover, by now we appreciate that DC also exert important regulatory functions and are required for the maintenance of tolerance toward harmless foreign and self-antigens. This review summarizes our current understanding of the skin-resident DC system in the mouse and discusses emerging concepts on the functional specialization of the different skin DC subsets in regulating T cell responses. Special consideration is given to antigen cross-presentation as well as immune reactions toward contact sensitizers, cutaneous pathogens, and tumors. These studies form the basis for the manipulation of the human counterparts of the murine DC subsets to promote immunity or tolerance for the treatment of human disease.
Collapse
Affiliation(s)
- Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Division of Experimental Dermatology, Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
1314
|
Abstract
From the early days of transplantation onwards, increased cancer development in transplant recipients, who require immunosuppression to avoid graft rejection, has been recognized. Registry data indicate that approximately 10-30% of deaths are attributed to post-transplant malignancy, with an upward trend in this incidence as more patients have been exposed to chronic lifelong immunosuppression. In this Review, the overall incidence and most frequent types of cancer encountered are summarized, along with information about which transplant recipients are at the greatest risk of malignancy. Reasons for why differences exist in susceptibility to cancer in this patient population are examined, and approaches that might improve our understanding of the options available for reducing the incidence of this adverse effect of immunosuppression are described. Whether anti-rejection drugs have been successful in diminishing overall immunosuppressive burden, and consequently show any promise for decreasing post-transplant malignancies is also discussed. The topic shifts to one class of conventional anti-rejection drugs, the mammalian target of rapamycin (mTOR) inhibitors, which paradoxically have both immunosuppressive and anti-neoplastic properties. The complex activities of mTOR are reviewed in order to provide context for how these seemingly opposing effects are possible, and the latest clinical data on use of mTOR inhibitors in the clinic are discussed. The current and future perspectives on how best to normalize these unacceptably high rates of post-transplantation malignancies are highlighted.
Collapse
|
1315
|
Abstract
Harnessing the ability of the immune system to eradicate cancer has been a long-held goal of oncology. Work from the last two decades has finally brought immunotherapy into the forefront for cancer treatment, with demonstrable clinical success for aggressive tumors where other therapies had failed. In this review, we will discuss a range of therapies that are in different stages of clinical or preclinical development for companion animals with cancer, and which share the common objective of eliciting adaptive, anti-tumor immune responses. Even though challenges remain, manipulating the immune system holds significant promise to create durable responses and improve outcomes in companion animals with cancer. Furthermore, what we learn from this process will inform and accelerate development of comparable therapies for human cancer patients.
Collapse
|
1316
|
Huijbers IJ, Del Bravo J, Bin Ali R, Pritchard C, Braumuller TM, van Miltenburg MH, Henneman L, Michalak EM, Berns A, Jonkers J. Using the GEMM-ESC strategy to study gene function in mouse models. Nat Protoc 2015; 10:1755-85. [PMID: 26492136 DOI: 10.1038/nprot.2015.114] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Preclinical in vivo validation of target genes for therapeutic intervention requires careful selection and characterization of the most suitable animal model in order to assess the role of these genes in a particular process or disease. To this end, genetically engineered mouse models (GEMMs) are typically used. However, the appropriate engineering of these models is often cumbersome and time consuming. Recently, we and others described a modular approach for fast-track modification of existing GEMMs by re-derivation of embryonic stem cells (ESCs) that can be modified by recombinase-mediated transgene insertion and subsequently used for the production of chimeric mice. This 'GEMM-ESC strategy' allows for rapid in vivo analysis of gene function in the chimeras and their offspring. Moreover, this strategy is compatible with CRISPR/Cas9-mediated genome editing. This protocol describes when and how to use the GEMM-ESC strategy effectively, and it provides a detailed procedure for re-deriving and manipulating GEMM-ESCs under feeder- and serum-free conditions. This strategy produces transgenic mice with the desired complex genotype faster than traditional methods: generation of validated GEMM-ESC clones for controlled transgene integration takes 9-12 months, and recombinase-mediated transgene integration and chimeric cohort production takes 2-3 months. The protocol requires skills in embryology, stem cell biology and molecular biology, and it is ideally performed within, or in close collaboration with, a transgenic facility.
Collapse
Affiliation(s)
- Ivo J Huijbers
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jessica Del Bravo
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rahmen Bin Ali
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Colin Pritchard
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tanya M Braumuller
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Martine H van Miltenburg
- Division of Molecular Pathology and Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Linda Henneman
- Division of Molecular Pathology and Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ewa M Michalak
- Division of Molecular Pathology and Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anton Berns
- Division of Molecular Pathology and Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Skoltech Center for Stem Cell Research, Moscow Region, Russia
| | - Jos Jonkers
- Division of Molecular Pathology and Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
1317
|
Zhang Z, Yu X, Wang Z, Wu P, Huang J. Anthracyclines potentiate anti-tumor immunity: A new opportunity for chemoimmunotherapy. Cancer Lett 2015; 369:331-5. [PMID: 26454214 DOI: 10.1016/j.canlet.2015.10.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023]
Abstract
Anthracyclines are a class of drugs, including doxorubicin, epirubicin and idarubicin, used in cancer chemotherapy which are derived from Streptomyces bacterium Streptomyces peucetius var. caesius. Traditionally, substantial pieces of evidence have demonstrated that anthracyclines could harness the host immune system to prevent cancer progression. But nowadays, researches also implied that anthracyclines could sensitize tumor cells to immune cell driven cytotoxicity, like dendritic cells and CD8+ T cell. The ability of anthracyclines in tumor immune cycle, including trigger direct tumor cell death, enhance immune effector cell activation and eliminate immunosuppressive myeloid-derived suppressor cells (MDSCs), explained its capacity to relieve tumor induced immunosuppression and restore anticancer immune responses. And current pre-clinical and clinical trials implied that combination therapies using anthracyclines with immunotherapy have further enhanced the clinical benefit. Here, we discuss how the increased understanding of the immune-driven effects of anthracyclines prompts the design of relevant cancer chemoimmunotherapy strategies.
Collapse
Affiliation(s)
- Zhigang Zhang
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | | | - Zhen Wang
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Pin Wu
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jian Huang
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
1318
|
Kansy B, Hussain T, Mattheis S, Wollenberg B, Brandau S, Lang S. [Immunotherapy in head and neck cancer]. HNO 2015; 63:797-803. [PMID: 26452491 DOI: 10.1007/s00106-015-0076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The physiological immune response to malignant cells is based on the interaction of antigen-presenting cells, such as dendritic cells and macrophages, with T and B lymphocytes. CD8(+) effector and natural killer cells are primarily responsible for tumor cell lysis. Tumor cells exploit several mechanisms to influence the body's immune system and promote development and progress of solid head and neck malignancies. Via regulatory T cells, myeloid-derived suppressor cells, tumor-associated macrophages, and cancer-associated fibroblasts, tumor cells promote development of suppressive signaling pathways that enable tumor progression. Novel immune therapeutics aim to influence these signaling pathways. Current studies are investigating agents which influence immune-stimulating or immune-suppressive cytokines, as well as drug-based Toll-like receptor activation and vaccination in head and neck cancer. Development of monoclonal antibodies allows for direct and highly specific binding of therapeutics to cell receptors - recently discovered immune checkpoint receptors are particularly intriguing targets. Monoclonal antibodies directed specifically toward T cell-stimulating receptors such as CD28 and CD134, or immunosuppressive receptors CTLA-4 and PD-1, are currently under investigation and have shown promising results.
Collapse
Affiliation(s)
- B Kansy
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Hals-Chirurgie, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Deutschland.
| | - T Hussain
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Hals-Chirurgie, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Deutschland
| | - S Mattheis
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Hals-Chirurgie, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Deutschland
| | - B Wollenberg
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Schleswig-Holstein, Hufelandstraße 55, 45147, Lübeck, Deutschland
| | - S Brandau
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Hals-Chirurgie, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Deutschland
| | - S Lang
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Hals-Chirurgie, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Deutschland
| |
Collapse
|
1319
|
Torres Andón F, Alonso MJ. Nanomedicine and cancer immunotherapy – targeting immunosuppressive cells. J Drug Target 2015; 23:656-71. [DOI: 10.3109/1061186x.2015.1073295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
1320
|
Curran MA, Fox BA, Redmond WL. Editorial: Advances in Combination Tumor Immunotherapy. Front Oncol 2015; 5:198. [PMID: 26442210 PMCID: PMC4585267 DOI: 10.3389/fonc.2015.00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 08/28/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michael A Curran
- Department of Immunology, UT MD Anderson Cancer Center , Houston, TX , USA
| | - Bernard A Fox
- Providence Portland Medical Center, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute , Portland, OR , USA
| | - William L Redmond
- Providence Portland Medical Center, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute , Portland, OR , USA
| |
Collapse
|
1321
|
Kersten K, Salvagno C, de Visser KE. Exploiting the Immunomodulatory Properties of Chemotherapeutic Drugs to Improve the Success of Cancer Immunotherapy. Front Immunol 2015; 6:516. [PMID: 26500653 PMCID: PMC4595807 DOI: 10.3389/fimmu.2015.00516] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/22/2015] [Indexed: 12/29/2022] Open
Abstract
Cancer immunotherapy is gaining momentum in the clinic. The current challenge is to understand why a proportion of cancer patients do not respond to cancer immunotherapy, and how this can be translated into the rational design of combinatorial cancer immunotherapy strategies aimed at maximizing success of immunotherapy. Here, we discuss how tumors orchestrate an immunosuppressive microenvironment, which contributes to their escape from immune attack. Relieving the immunosuppressive networks in cancer patients is an attractive strategy to extend the clinical success of cancer immunotherapy. Since the clinical availability of drugs specifically targeting immunosuppressive cells or mediators is still limited, an alternative strategy is to use conventional chemotherapy drugs with immunomodulatory properties to improve cancer immunotherapy. We summarize the preclinical and clinical studies that illustrate how the anti-tumor T cell response can be enhanced by chemotherapy-induced relief of immunosuppressive networks. Treatment strategies aimed at combining chemotherapy-induced relief of immunosuppression and T cell-boosting checkpoint inhibitors provide an attractive and clinically feasible approach to overcome intrinsic and acquired resistance to cancer immunotherapy, and to extend the clinical success of cancer immunotherapy.
Collapse
Affiliation(s)
- Kelly Kersten
- Division of Immunology, Netherlands Cancer Institute , Amsterdam , Netherlands
| | - Camilla Salvagno
- Division of Immunology, Netherlands Cancer Institute , Amsterdam , Netherlands
| | - Karin E de Visser
- Division of Immunology, Netherlands Cancer Institute , Amsterdam , Netherlands
| |
Collapse
|
1322
|
Hebb J, Kohrt H. Targets, Toxins, and T Cells--a Review of New Monoclonal Antibodies in the Treatment of Peripheral T Cell Lymphomas. Curr Hematol Malig Rep 2015; 10:438-47. [PMID: 26433890 DOI: 10.1007/s11899-015-0290-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The peripheral T cell lymphomas (PTCLs) are a heterogeneous group of neoplasms for which standardized treatment approaches remain elusive. A number of new therapeutic agents have become available, of which monoclonal antibodies (MAbs) represent a powerful tool for targeted treatment of PTCLs. Therapeutic MAbs vary in their structure, targets, and mechanisms of action. Common mechanisms of action include antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity, direct apoptosis, blocking of receptors or signaling pathways, delivery of cytotoxic agents to tumor cells, and binding to and blocking biologically active molecules. This review will focus on recent published evidence for the various MAbs used in the treatment of PTCLs. The results overall have been very promising, and the future will see more trials with these antibodies alone and in various therapy combinations, as well as newer ones with novel modifications, conjugates, and targets.
Collapse
Affiliation(s)
- Jonathan Hebb
- Department of Medicine, Division of Oncology, Stanford University, 269 Campus Drive, CCSR 1105, Stanford, CA, 94305, USA.
| | - Holbrook Kohrt
- Department of Medicine, Division of Oncology, Stanford University, 269 Campus Drive, CCSR 1105, Stanford, CA, 94305, USA.
| |
Collapse
|
1323
|
Shimomura A, Fujiwara Y, Kondo S, Kodaira M, Iwasa S, Kitano S, Tanabe Y, Tamura K, Yamamoto N. Tremelimumab-associated tumor regression following after initial progression: two case reports. Immunotherapy 2015; 8:9-15. [PMID: 26427600 DOI: 10.2217/imt.15.89] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The human IgG2 monoclonal antibody tremelimumab is an immune checkpoint inhibitor that blocks cytotoxic T lymphocyte-associated antigen-4 (CTLA-4). The therapeutic response of anti-CTLA-4 monoclonal antibodies possess unique kinetics, in that antitumor responses are often observed after initial short-term disease progression, in some cases as long as 6-12 months after anti-CTLA-4 treatment initiation. Here, we report two cases: one of bile duct cancer and the other of squamous cell carcinoma of unknown primary, both of which demonstrated initial rapid disease progression followed by dramatic tumor shrinkage after one or two doses of tremelimumab, without any immune-related adverse events. This delayed, yet dramatic antitumor response suggests that tremelimumab may hold promise in the treatment of solid tumors.
Collapse
Affiliation(s)
- Akihiko Shimomura
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Breast & Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yutaka Fujiwara
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shunsuke Kondo
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Makoto Kodaira
- Department of Breast & Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Satoru Iwasa
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shigehisa Kitano
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuko Tanabe
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kenji Tamura
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Breast & Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
1324
|
Anguille S, Smits EL, Bryant C, Van Acker HH, Goossens H, Lion E, Fromm PD, Hart DN, Van Tendeloo VF, Berneman ZN. Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy. Pharmacol Rev 2015; 67:731-53. [PMID: 26240218 DOI: 10.1124/pr.114.009456] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Although the earliest—rudimentary—attempts at exploiting the immune system for cancer therapy can be traced back to the late 18th Century, it was not until the past decade that cancer immunotherapeutics have truly entered mainstream clinical practice. Given their potential to stimulate both adaptive and innate antitumor immune responses, dendritic cells (DCs) have come under intense scrutiny in recent years as pharmacological tools for cancer immunotherapy. Conceptually, the clinical effectiveness of this form of active immunotherapy relies on the completion of three critical steps: 1) the DCs used as immunotherapeutic vehicles must properly activate the antitumor immune effector cells of the host, 2) these immune effector cells must be receptive to stimulation by the DCs and be competent to mediate their antitumor effects, which 3) requires overcoming the various immune-inhibitory mechanisms used by the tumor cells. In this review, following a brief overview of the pivotal milestones in the history of cancer immunotherapy, we will introduce the reader to the basic immunobiological and pharmacological principles of active cancer immunotherapy using DCs. We will then discuss how current research is trying to define the optimal parameters for each of the above steps to realize the full clinical potential of DC therapeutics. Given its high suitability for immune interventions, acute myeloid leukemia was chosen here to showcase the latest research trends driving the field of DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Sébastien Anguille
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Evelien L Smits
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Christian Bryant
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Heleen H Van Acker
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Herman Goossens
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Eva Lion
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Phillip D Fromm
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | | | - Viggo F Van Tendeloo
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Zwi N Berneman
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| |
Collapse
|
1325
|
Chen YY. Efficient Gene Editing in Primary Human T Cells. Trends Immunol 2015; 36:667-669. [PMID: 26440702 DOI: 10.1016/j.it.2015.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
Recent advances in T-cell therapy for cancer, viral infections, and autoimmune diseases highlight the broad therapeutic potential of T-cell engineering. However, site-specific genetic manipulation in primary human T cells remains challenging. Two recent studies describe efficient genome editing in T cells using CRISPR and TALEN approaches.
Collapse
Affiliation(s)
- Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
1326
|
Doniņa S, Strēle I, Proboka G, Auziņš J, Alberts P, Jonsson B, Venskus D, Muceniece A. Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study. Melanoma Res 2015; 25:421-6. [PMID: 26193376 PMCID: PMC4560272 DOI: 10.1097/cmr.0000000000000180] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/11/2015] [Indexed: 11/26/2022]
Abstract
An oncolytic, nonpathogenic ECHO-7 virus adapted for melanoma that has not been genetically modified (Rigvir) is approved and registered for virotherapy, an active and specific immunotherapy, in Latvia since 2004. The present retrospective study was carried out to determine the effectiveness of Rigvir in substage IB, IIA, IIB and IIC melanoma patients on time to progression and overall survival. White patients (N=79) who had undergone surgical excision of the primary melanoma tumour were included in this study. All patients were free from disease after surgery and classified into substages IB, IIA, IIB and IIC. Circulating levels of clinical chemistry parameters were recorded. Survival was analysed by Cox regression. Rigvir significantly (P<0.05) prolonged survival in substage IB-IIC melanoma patients following surgery compared with patients who were under observation (according to current guidelines). The hazard ratio for patients under observation versus treated with Rigvir was statistically significantly different: hazard ratio 6.27 for all, 4.39 for substage IIA-IIB-IIC and 6.57 for substage IIB-IIC patients. The follow-up period was not statistically different between both treatment groups. These results indicate that the patients treated with Rigvir had a 4.39-6.57-fold lower mortality than those under observation. In this study, there was no untoward side effect or discontinuation of Rigvir treatment. Safety assessment of adverse events graded according to NCI CTCAE did not show any value above grade 2 in Rigvir-treated patients. In conclusion, Rigvir significantly prolongs survival in early-stage melanoma patients without any side effect.
Collapse
Affiliation(s)
- Simona Doniņa
- Outpatient Department, Riga Eastern Clinical University Hospital
- Institute of Microbiology and Virology
| | - Ieva Strēle
- Department of Public Health and Epidemiology, Riga Stradiņš University
| | - Guna Proboka
- Outpatient Department, Riga Eastern Clinical University Hospital
| | | | | | - Björn Jonsson
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
1327
|
Mäkinen LK, Ahmed A, Hagström J, Lehtonen S, Mäkitie AA, Salo T, Haglund C, Atula T. Toll-like receptors 2, 4, and 9 in primary, metastasized, and recurrent oral tongue squamous cell carcinomas. J Oral Pathol Med 2015; 45:338-45. [DOI: 10.1111/jop.12373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Laura K. Mäkinen
- Department of Otorhinolaryngology - Head and Neck Surgery; Helsinki University Hospital and University of Helsinki; Helsinki Finland
| | - Abdirisak Ahmed
- Institute of Dentistry; Biomedicum 1; University of Helsinki; Helsinki Finland
| | - Jaana Hagström
- Department of Pathology; Haartman Institute; University of Helsinki; Helsinki Finland
- Department of Pathology; HUSLAB; Helsinki University Hospital; Helsinki Finland
- Department of Oral Pathology; Institute of Dentistry; University of Helsinki; Helsinki Finland
| | - Sanna Lehtonen
- Department of Pathology; Haartman Institute; University of Helsinki; Helsinki Finland
| | - Antti A. Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery; Helsinki University Hospital and University of Helsinki; Helsinki Finland
| | - Tuula Salo
- Institute of Dentistry; Biomedicum 1; University of Helsinki; Helsinki Finland
- Department of Diagnostics and Oral Medicine; Institute of Dentistry; Oulu University Hospital and; University of Oulu; Oulu Finland
| | - Caj Haglund
- Department of Surgery; Helsinki University Hospital; Helsinki Finland
- Research Programs Unit; Translational Cancer Biology; University of Helsinki; Helsinki Finland
| | - Timo Atula
- Department of Otorhinolaryngology - Head and Neck Surgery; Helsinki University Hospital and University of Helsinki; Helsinki Finland
| |
Collapse
|
1328
|
Sckisel GD, Mirsoian A, Bouchlaka MN, Tietze JK, Chen M, Blazar BR, Murphy WJ. Late administration of murine CTLA-4 blockade prolongs CD8-mediated anti-tumor effects following stimulatory cancer immunotherapy. Cancer Immunol Immunother 2015; 64:1541-52. [PMID: 26423422 DOI: 10.1007/s00262-015-1759-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/14/2015] [Indexed: 12/19/2022]
Abstract
We have demonstrated that immunostimulatory therapies such as interleukin-2 (IL-2) and anti-CD40 (αCD40) can be combined to deliver synergistic anti-tumor effects. While this strategy has shown success, efficacy varies depending on a number of factors including tumor type and severe toxicities can be seen. We sought to determine whether blockade of negative regulators such as cytotoxic T lymphocyte antigen-4 (CTLA-4) could simultaneously prolong CD8(+) T cell responses and augment T cell anti-tumor effects. We devised a regimen in which anti-CTLA-4 was administered late so as to delay contraction and minimize toxicities. This late administration both enhanced and prolonged CD8 T cell activation without the need for additional IL-2. The quality of the T cell response was improved with increased frequency of effector/effector memory phenotype cells along with improved lytic ability and bystander expansion. This enhanced CD8 response translated to improved anti-tumor responses both at the primary and metastatic sites. Importantly, toxicities were not exacerbated with combination. This study provides a platform for rational design of immunotherapy combinations to maximize anti-tumor immunity while minimizing toxicities.
Collapse
Affiliation(s)
- Gail D Sckisel
- Department of Dermatology, University of California, Davis, School of Medicine, IRC Building Rm 1630, 2921 Stockton Blvd., Sacramento, CA, 95817, USA
| | - Annie Mirsoian
- Department of Dermatology, University of California, Davis, School of Medicine, IRC Building Rm 1630, 2921 Stockton Blvd., Sacramento, CA, 95817, USA
| | - Myriam N Bouchlaka
- Department of Dermatology, University of California, Davis, School of Medicine, IRC Building Rm 1630, 2921 Stockton Blvd., Sacramento, CA, 95817, USA
| | - Julia K Tietze
- Department of Dermatology, University of California, Davis, School of Medicine, IRC Building Rm 1630, 2921 Stockton Blvd., Sacramento, CA, 95817, USA
| | - Mingyi Chen
- Department of Pathology, University of California, School of Medicine, Sacramento, CA, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Bone Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, USA
| | - William J Murphy
- Department of Dermatology, University of California, Davis, School of Medicine, IRC Building Rm 1630, 2921 Stockton Blvd., Sacramento, CA, 95817, USA. .,Department of Internal Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
1329
|
Lee L, Gupta M, Sahasranaman S. Immune Checkpoint inhibitors: An introduction to the next-generation cancer immunotherapy. J Clin Pharmacol 2015; 56:157-69. [PMID: 26183909 DOI: 10.1002/jcph.591] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/13/2015] [Indexed: 12/31/2022]
Abstract
Activating the immune system to eliminate cancer cells and produce clinically relevant responses has been a long-standing goal of cancer research. Most promising therapeutic approaches to activating antitumor immunity include immune checkpoint inhibitors. Immune checkpoints are numerous inhibitory pathways hardwired in the immune system. They are critical for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues to minimize collateral tissue damage. Tumors regulate certain immune checkpoint pathways as a major mechanism of immune resistance. Because immune checkpoints are initiated by ligand-receptor interactions, blockade by antibodies provides a rational therapeutic approach. Although targeted therapies are clinically successful, they are often short-lived due to rapid development of resistance. Immunotherapies offer one notable advantage. Enhancing the cell-mediated immune response against tumor cells leads to generation of a long-term memory lymphocyte population patrolling the body to attack growth of any new tumor cells, thereby sustaining the therapeutic effects. Furthermore, early clinical results suggest that combination immunotherapies offer even more potent antitumor activity. This review is intended to provide an introduction to immune checkpoint inhibitors and discusses the scientific overview of cancer immunotherapy, mechanisms of the inhibitors, clinical pharmacology considerations, advances in combination therapies, and challenges in drug development.
Collapse
Affiliation(s)
- Lucy Lee
- Clinical Pharmacology, Immunomedics Inc., Morris Plains, NJ, USA
| | - Manish Gupta
- Clinical Pharmacology & Pharmacometrics, Bristol-Myers Squibb, Princeton, NJ, USA
| | | |
Collapse
|
1330
|
Tsuchiya N, Sawada Y, Endo I, Uemura Y, Nakatsura T. Potentiality of immunotherapy against hepatocellular carcinoma. World J Gastroenterol 2015; 21:10314-10326. [PMID: 26420958 PMCID: PMC4579878 DOI: 10.3748/wjg.v21.i36.10314] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/21/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, is the fifth most common cancer worldwide and the second leading cause of cancer-related death. Despite the high incidence, treatment options remain limited for advanced HCC, and as a result prognosis continues to be poor. Current therapeutic options, surgery, chemotherapy and radiotherapy, have only modest efficacy. New treatment modalities to prolong survival and to minimize the risk of adverse response are desperately needed for patients with advanced HCC. Tumor immunotherapy is a promising, novel treatment strategy that may lead to improvements in both treatment-associated toxicity and outcome. The strategies have developed in part through genomic studies that have yielded candidate target molecules and in part through basic biology studies that have defined the pathways and cell types regulating immune response. Here, we summarize the various types of HCC immunotherapy and argue that the newfound field of HCC immunotherapy might provide critical advantages in the effort to improve prognosis of patients with advanced HCC. Already several immunotherapies, such as tumor-associated antigen therapy, immune checkpoint inhibitors and cell transfer immunotherapy, have demonstrated safety and feasibility in HCC patients. Unfortunately, immunotherapy currently has low efficacy in advanced stage HCC patients; overcoming this challenge will place immunotherapy at the forefront of HCC treatment, possibly in the near future.
Collapse
|
1331
|
Targeting immune checkpoints: New opportunity for mesothelioma treatment? Cancer Treat Rev 2015; 41:914-24. [PMID: 26433514 DOI: 10.1016/j.ctrv.2015.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
Malignant pleural mesothelioma is an aggressive cancer linked to asbestos exposure in most patients. Due to the long latency between exposure and presentation, incidence is expected to further increase in the next decade, despite the ban on asbestos import which occurred at the end of last century in industrialized countries. Platinum-based palliative chemotherapy is the only treatment with proven benefit on outcome, resulting in selected patients in a median overall survival of about 1 year. Therefore, there is room for therapeutic improvement using a new strategy to prolong survival. Dealing with cancer cell induced immunosuppression is a promising approach. Reactivating immune responses that are silenced by immune checkpoints recently gained a lot of interest. Checkpoint blockade has already shown promising preclinical and clinical results in several cancer types and is currently also being investigated in mesothelioma. Here, we discuss the expression patterns and mechanisms of action of CTLA-4 and PD-1 as the two most studied and of TIM-3 and LAG-3 as two interesting upcoming immune checkpoints. Furthermore, we review the clinical results of molecules blocking these immune checkpoints and point out their future opportunities with a special focus on mesothelioma.
Collapse
|
1332
|
Abstract
Innate and adaptive immunity are activated by both infections and tumors. The immune cells infiltrating infected tissues are similar to those infiltrating neoplastic tissues, but their function in the first setting is quite different from that in the latter. Infected tissues are usually characterized by an acute inflammatory environment that favors the generation of protective immunity, whereas tumors are characterized by chronic inflammation that suppresses antitumor immune responses and promotes tumor growth and escape from the immune system. During resolution of the immune response to infection or in chronic infections, immunosuppressive mechanisms that are typical of the tumor microenvironment are observed in infected tissues. Conversely, immunotherapy and chemotherapy may redirect the tumor microenvironment and allow the activation of effective anticancer immune responses. The transformation of neoplastic cells is determined by intrinsic genetic alteration but tumor progression is controlled by the tumor microenvironment and by the inflammatory and immune response to the tumors. Commensal microorganisms live in great numbers in all our barrier epithelia and control inflammation and immunity both locally and systemically. The commensal microbiota is essential for optimal immune response to pathogens and for the establishment of autoimmunity. It also modulates inflammation and immune responses that affect tumor growth and it is required for the effectiveness of anticancer immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
1333
|
Bui JK, Mellors JW. Reversal of T-cell exhaustion as a strategy to improve immune control of HIV-1. AIDS 2015; 29:1911-5. [PMID: 26355569 DOI: 10.1097/qad.0000000000000788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
1334
|
Waugh KA, Leach SM, Slansky JE. Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity. Vaccines (Basel) 2015; 3:771-802. [PMID: 26393659 PMCID: PMC4586477 DOI: 10.3390/vaccines3030771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 02/07/2023] Open
Abstract
Transcription is a dynamic process influenced by the cellular environment: healthy, transformed, and otherwise. Genome-wide mRNA expression profiles reflect the collective impact of pathways modulating cell function under different conditions. In this review we focus on the transcriptional pathways that control tumor infiltrating CD8+ T cell (TIL) function. Simultaneous restraint of overlapping inhibitory pathways may confer TIL resistance to multiple mechanisms of suppression traditionally referred to as exhaustion, tolerance, or anergy. Although decades of work have laid a solid foundation of altered transcriptional networks underlying various subsets of hypofunctional or “dysfunctional” CD8+ T cells, an understanding of the relevance in TIL has just begun. With recent technological advances, it is now feasible to further elucidate and utilize these pathways in immunotherapy platforms that seek to increase TIL function.
Collapse
Affiliation(s)
- Katherine A Waugh
- University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA.
| | - Sonia M Leach
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA.
| | - Jill E Slansky
- University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA.
| |
Collapse
|
1335
|
Wang T, Liu X, Ji Z, Men Y, Du M, Ding C, Wu Y, Liu X, Kang Q. Antitumor and immunomodulatory effects of recombinant fusion protein rMBP-NAP through TLR-2 dependent mechanism in tumor bearing mice. Int Immunopharmacol 2015; 29:876-883. [PMID: 26384537 DOI: 10.1016/j.intimp.2015.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/06/2015] [Accepted: 08/24/2015] [Indexed: 12/16/2022]
Abstract
The pro-inflammatory and immunomodulatory properties of Helicobacter pylori neutrophil activating protein (Hp-NAP) not only make it to play an important role in disease pathogenesis but also make it to be a potential candidate for therapeutic applications, including vaccine and drug development. Our previous work demonstrated that the recombinant Hp-NAP fused with the maltose binding protein of Escherichia coli (rMBP-NAP) play an important role in regulating the differentiation of Th1 cells. In this study, we investigated the ability of rMBP-NAP to induce antitumor immunity using two murine models of hepatoma H22 and sarcoma S180. Subcutaneous administration of mice with rMBP-NAP resulted in an about 40%-50% decrease of tumor growth compared with that of the control mice. Splenocytes from the tumor-bearing mice treated with rMBP-NAP showed a significant accumulation of CD4(+) IFN-γ-secreting cells, which is a cytokine profile of Th1 cells. Furthermore, intravenous injection of T2.5, toll like receptor (TLR) 2 blocking antibody, significantly recede the antitumor effect of rMBP-NAP and the production of IFN-γ induced by rMBP-NAP. Our findings indicate that potentiality of rMBP-NAP to be a candidate for the development of immunomodulatory antitumoral drugs.
Collapse
Affiliation(s)
- Ting Wang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Xilong Liu
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Zhenyu Ji
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, 40 University Road, Zhengzhou 450052, PR China.
| | - Yingli Men
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Mingxuan Du
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Cong Ding
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
1336
|
Kang L, Pan J, Wu J, Hu J, Sun Q, Tang J. Anti-HBV Drugs: Progress, Unmet Needs, and New Hope. Viruses 2015; 7:4960-77. [PMID: 26389937 PMCID: PMC4584298 DOI: 10.3390/v7092854] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 12/14/2022] Open
Abstract
Approximately 240 million people worldwide are chronically infected with hepatitis B virus (HBV), which represents a significant challenge to public health. The current goal in treating chronic HBV infection is to block progression of HBV-related liver injury and inflammation to end-stage liver diseases, including cirrhosis and hepatocellular carcinoma, because we are unable to eliminate chronic HBV infection. Available therapies for chronic HBV infection mainly include nucleos/tide analogues (NAs), non-NAs, and immunomodulatory agents. However, none of them is able to clear chronic HBV infection. Thus, a new generation of anti-HBV drugs is urgently needed. Progress has been made in the development and testing of new therapeutics against chronic HBV infection. This review aims to summarize the state of the art in new HBV drug research and development and to forecast research and development trends and directions in the near future.
Collapse
Affiliation(s)
- Lei Kang
- Department of Clinical Pharmacy, Shanghai First People's Hospital, Shanghai Jiao Tong University, 650 New Songjiang Road, Songjiang District, Shanghai 201620, China.
| | - Jiaqian Pan
- Department of Clinical Pharmacy, Shanghai First People's Hospital, Shanghai Jiao Tong University, 650 New Songjiang Road, Songjiang District, Shanghai 201620, China.
| | - Jiaofen Wu
- Department of Pharmacy, Ningbo Medical Treatment Center Lihuili Hospital, 57 Xingning Road, Ningbo 315040, China.
| | - Jiali Hu
- Department of Pharmacy, The Third Staff Hospital of Baogang Group, 15 Qingnian Road, Baotou 014010, China.
| | - Qian Sun
- Department of Clinical Pharmacy, Shanghai First People's Hospital, Shanghai Jiao Tong University, 650 New Songjiang Road, Songjiang District, Shanghai 201620, China.
| | - Jing Tang
- Department of Clinical Pharmacy, Shanghai First People's Hospital, Shanghai Jiao Tong University, 650 New Songjiang Road, Songjiang District, Shanghai 201620, China.
| |
Collapse
|
1337
|
Marino F, Bern M, Mommen GP, Leney AC, van Gaans-van den Brink JA, Bonvin AM, Becker C, van Els CA, Heck AJR. Extended O-GlcNAc on HLA Class-I-Bound Peptides. J Am Chem Soc 2015; 137:10922-10925. [PMID: 26280087 PMCID: PMC4603548 DOI: 10.1021/jacs.5b06586] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report unexpected mass spectrometric observations of glycosylated human leukocyte antigen (HLA) class I-bound peptides. Complemented by molecular modeling, in vitro enzymatic assays, and oxonium ion patterns, we propose that the observed O-linked glycans carrying up to five monosaccharides are extended O-GlcNAc's rather than GalNAc-initiated O-glycans. A cytosolic O-GlcNAc modification is normally terminal and does not extend to produce a polysaccharide, but O-GlcNAc on an HLA peptide presents a special case because the loaded HLA class I complex traffics through the endoplasmic reticulum and Golgi apparatus on its way to the cell membrane and is hence exposed to glycosyltransferases. We also report for the first time natural HLA class I presentation of O- and N-linked glycopeptides derived from membrane proteins. HLA class I peptides with centrally located oligosaccharides have been shown to be immunogenic and may thus be important targets for immune surveillance.
Collapse
Affiliation(s)
- Fabio Marino
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | - Geert P.M. Mommen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Institute for Translational Vaccinology, Bilthoven, Netherlands
| | - Aneika C. Leney
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | - Alexandre M.J.J. Bonvin
- Computational Structural Biology, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | - Cécile A.C.M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
1338
|
Abstract
The recent clinical successes of immune checkpoint blockade and chimeric antigen receptor T cell therapies represent a turning point in cancer immunotherapy. These successes also underscore the importance of understanding basic tumor immunology for successful clinical translation in treating patients with cancer. The Reviews in this Review Series focus on current developments in cancer immunotherapy, highlight recent advances in our understanding of basic aspects of tumor immunology, and suggest how these insights can lead to the development of new immunotherapeutic strategies.
Collapse
|
1339
|
Amoozgar Z, Goldberg MS. Targeting myeloid cells using nanoparticles to improve cancer immunotherapy. Adv Drug Deliv Rev 2015; 91:38-51. [PMID: 25280471 DOI: 10.1016/j.addr.2014.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022]
Abstract
While nanoparticles have traditionally been used to deliver cytotoxic drugs directly to tumors to induce cancer cell death, emerging data suggest that nanoparticles are likely to generate a larger impact on oncology through the delivery of agents that can stimulate antitumor immunity. Tumor-targeted nanocarriers have generally been used to localize chemotherapeutics to tumors and thus decrease off-target toxicity while enhancing efficacy. Challengingly, tumor heterogeneity and evolution render tumor-intrinsic approaches likely to succumb to relapse. The immune system offers exquisite specificity, cytocidal potency, and long-term activity that leverage an adaptive memory response. For this reason, the ability to manipulate immune cell specificity and function would be desirable, and nanoparticles represent an exciting means by which to perform such manipulation. Dendritic cells and tumor-associated macrophages are cells of the myeloid lineage that function as natural phagocytes, so they naturally take up nanoparticles. Dendritic cells direct the specificity and potency of cellular immune responses that can be targeted for cancer vaccines. Herein, we discuss the specific criteria needed for efficient vaccine design, including but not limited to the route of administration, size, morphology, surface charge, targeting ligands, and nanoparticle composition. In contrast, tumor-associated macrophages are critical mediators of immunosuppression whose trans-migratory abilities can be exploited to localize therapeutics to the tumor core and which can be directly targeted for elimination or for repolarization to a tumor suppressive phenotype. It is likely that a combination of targeting dendritic cells to stimulate antitumor immunity and tumor-associated macrophages to reduce immune suppression will impart significant benefits and result in durable antitumor responses.
Collapse
|
1340
|
Fan Y, Moon JJ. Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy. Vaccines (Basel) 2015; 3:662-85. [PMID: 26350600 PMCID: PMC4586472 DOI: 10.3390/vaccines3030662] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022] Open
Abstract
Recent studies have demonstrated great therapeutic potential of educating and unleashing our own immune system for cancer treatment. However, there are still major challenges in cancer immunotherapy, including poor immunogenicity of cancer vaccines, off-target side effects of immunotherapeutics, as well as suboptimal outcomes of adoptive T cell transfer-based therapies. Nanomaterials with defined physico-biochemical properties are versatile drug delivery platforms that may address these key technical challenges facing cancer vaccines and immunotherapy. Nanoparticle systems have been shown to improve targeted delivery of tumor antigens and therapeutics against immune checkpoint molecules, amplify immune activation via the use of new stimuli-responsive or immunostimulatory materials, and augment the efficacy of adoptive cell therapies. Here, we review the current state-of-the-art in nanoparticle-based strategies designed to potentiate cancer immunotherapies, including cancer vaccines with subunit antigens (e.g., oncoproteins, mutated neo-antigens, DNA and mRNA antigens) and whole-cell tumor antigens, dendritic cell-based vaccines, artificial antigen-presenting cells, and immunotherapeutics based on immunogenic cell death, immune checkpoint blockade, and adoptive T-cell therapy.
Collapse
Affiliation(s)
- Yuchen Fan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
1341
|
Bole-Richard E, Deschamps M, Ferrand C, Robinet E. Editorial: Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol 2015; 6:174. [PMID: 26379549 PMCID: PMC4548201 DOI: 10.3389/fphar.2015.00174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 12/03/2022] Open
Affiliation(s)
- Elodie Bole-Richard
- Institut National de la Santé et de la Recherche Médicale UMR 1098, Etablissement Français du Sang Bourgogne/Franche-Comté Besançon, France ; SFR FRD 4234 Ingénierie et Biologie Cellulaire et Tissulaire, Université de Franche-Comté Besançon, France
| | - Marina Deschamps
- Institut National de la Santé et de la Recherche Médicale UMR 1098, Etablissement Français du Sang Bourgogne/Franche-Comté Besançon, France ; SFR FRD 4234 Ingénierie et Biologie Cellulaire et Tissulaire, Université de Franche-Comté Besançon, France
| | - Christophe Ferrand
- Institut National de la Santé et de la Recherche Médicale UMR 1098, Etablissement Français du Sang Bourgogne/Franche-Comté Besançon, France ; SFR FRD 4234 Ingénierie et Biologie Cellulaire et Tissulaire, Université de Franche-Comté Besançon, France
| | - Eric Robinet
- Institut National de la Santé et de la Recherche Médicale UMR 1110, Institut de Recherche sur les Maladies Virales et Hépatiques Strasbourg, France ; Institut Hospitalo-Universitaire de Strasbourg Strasbourg, France
| |
Collapse
|
1342
|
Abstract
The immune system is designed to discriminate between self and tumor tissue. Through genetic recombination, there is fundamentally no limit to the number of tumor antigens that immune cells can recognize. Yet, tumors use a variety of immunosuppressive mechanisms to evade immunity. Insight into how the immune system interacts with tumors is expanding rapidly and has accelerated the translation of immunotherapies into medical breakthroughs. Herein, we appraise novel strategies that exploit the patient's immune system to kill cancer. We review various forms of immune-based therapies, which have shown significant promise in patients with hematologic malignancies, including (i) conventional monoclonal therapies like rituximab; (ii) engineered monoclonal antibodies called bispecific T-cell engagers; (iii) monoclonal antibodies and pharmaceutical drugs that block inhibitory T-cell pathways (i.e. PD-1, CTLA-4, and IDO); and (iv) adoptive cell transfer therapy with T cells engineered to express chimeric antigen receptors or T-cell receptors. We also assess the idea of using these therapies in combination and conclude by suggesting multi-prong approaches to improve treatment outcomes and curative responses in patients.
Collapse
Affiliation(s)
- Michelle H Nelson
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA; Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
1343
|
Mall C, Sckisel GD, Proia DA, Mirsoian A, Grossenbacher SK, Pai CCS, Chen M, Monjazeb AM, Kelly K, Blazar BR, Murphy WJ. Repeated PD-1/PD-L1 monoclonal antibody administration induces fatal xenogeneic hypersensitivity reactions in a murine model of breast cancer. Oncoimmunology 2015; 5:e1075114. [PMID: 27057446 DOI: 10.1080/2162402x.2015.1075114] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 02/09/2023] Open
Abstract
Monoclonal antibodies (mAbs) targeting coinhibitory molecules such as PD-1, PD-L1 and CTLA-4 are increasingly used as targets of therapeutic intervention against cancer. While these targets have led to a critical paradigm shift in treatments for cancer, these approaches are also plagued with limitations owing to cancer immune evasion mechanisms and adverse toxicities associated with continuous treatment. It has been difficult to reproduce and develop interventions to these limitations preclinically due to poor reagent efficacy and reagent xenogenecity not seen in human trials. In this study, we investigated adverse effects of repeated administration of PD-1 and PD-L1 mAbs in the murine 4T1 mammary carcinoma model. We observed rapid and fatal hypersensitivity reactions in tumor bearing mice within 30-60 min after 4-5 administrations of PD-L1 or PD-1 mAb but not CTLA-4 antibody treatment. These events occurred only in mice bearing the highly inflammatory 4T1 tumor and did not occur in mice bearing non-inflammatory tumors. We observed that mortality was associated with systemic accumulation of IgG1 antibodies, antibodies specific to the PD-1 mAb, and accumulation of Gr-1high neutrophils in lungs which have been implicated in the IgG mediated pathway of anaphylaxis. Anti-PD-1 associated toxicities were alleviated when PD-1 blockade was combined with the therapeutic HSP90 inhibitor, ganetespib, which impaired immune responses toward the xenogeneic PD-1 mAb. This study highlights a previously uncharacterized fatal hypersensitivity exacerbated by the PD-1/PD-L1 axis in the broadly used 4T1 tumor model as well as an interesting relationship between this particular class of checkpoint blockade and tumor-dependent immunomodulation.
Collapse
Affiliation(s)
- Christine Mall
- Department of Dermatology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Gail D Sckisel
- Department of Dermatology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | | | - Annie Mirsoian
- Department of Dermatology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Steven K Grossenbacher
- Department of Dermatology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Chien-Chun Steven Pai
- Department of Dermatology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Mingyi Chen
- Department of Pathology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Arta M Monjazeb
- Department of Radiation Oncology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Karen Kelly
- Department of Internal Medicine, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Masonic Cancer Center , Minneapolis, MN, USA
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA; Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
1344
|
Chang HN, Liu BY, Qi YK, Zhou Y, Chen YP, Pan KM, Li WW, Zhou XM, Ma WW, Fu CY, Qi YM, Liu L, Gao YF. Blocking of the PD-1/PD-L1 Interaction by aD-Peptide Antagonist for Cancer Immunotherapy. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
1345
|
Chang H, Liu B, Qi Y, Zhou Y, Chen Y, Pan K, Li W, Zhou X, Ma W, Fu C, Qi Y, Liu L, Gao Y. Blocking of the PD‐1/PD‐L1 Interaction by a
D
‐Peptide Antagonist for Cancer Immunotherapy. Angew Chem Int Ed Engl 2015; 54:11760-4. [DOI: 10.1002/anie.201506225] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Hao‐Nan Chang
- Tsinghua‐Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084 (China)
| | - Bei‐Yuan Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province (China)
| | - Yun‐Kun Qi
- Tsinghua‐Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084 (China)
| | - Yang Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province (China)
| | - Yan‐Ping Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province (China)
| | - Kai‐Mai Pan
- Tsinghua‐Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084 (China)
| | - Wen‐Wen Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province (China)
| | - Xiu‐Man Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province (China)
| | - Wei‐Wei Ma
- Tsinghua‐Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, Institute for Immunobiology, School of Life Medicine, Tsinghua University, Beijing 100084 (China)
| | - Cai‐Yun Fu
- School of Life Sciences, Zhejiang Sci‐Tech University, Hangzhou 310018, Zhejiang Province (China)
| | - Yuan‐Ming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province (China)
| | - Lei Liu
- Tsinghua‐Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084 (China)
| | - Yan‐Feng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province (China)
| |
Collapse
|
1346
|
Li L, Goedegebuure SP, Fleming TP, Gillanders WE. Developing a clinical development paradigm for translation of a mammaglobin-A DNA vaccine. Immunotherapy 2015; 7:709-11. [PMID: 26250406 DOI: 10.2217/imt.15.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Lijin Li
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA.,The Alvin J Siteman Cancer Center at Barnes-Jewish Hospital & Washington University School of Medicine, MO, USA
| | - Timothy P Fleming
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA.,The Alvin J Siteman Cancer Center at Barnes-Jewish Hospital & Washington University School of Medicine, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA.,The Alvin J Siteman Cancer Center at Barnes-Jewish Hospital & Washington University School of Medicine, MO, USA
| |
Collapse
|
1347
|
Abstract
Cardiothoracic transplantation has significantly impacted the lives of pediatric patients with advanced cardiopulmonary failure. The current state of lung transplantation in children as well as its ongoing and future challenges are discussed.
Collapse
|
1348
|
Ward FJ, Dahal LN, Khanolkar RC, Shankar SP, Barker RN. Targeting the alternatively spliced soluble isoform of CTLA-4: prospects for immunotherapy? Immunotherapy 2015; 6:1073-84. [PMID: 25428646 DOI: 10.2217/imt.14.73] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CTLA-4 is an inhibitory protein that contributes to immune homeostasis and tolerance, a role that has led to its exploitation as a therapeutic in several clinical settings including cancer and autoimmune disease. Development of CTLA-4 therapies focused largely on the full-length receptor isoform but other CTLA-4 isoforms are also expressed, including a secretable form of CTLA-4 (soluble CTLA-4 [sCTLA-4]). The contribution of sCTLA-4 to immune regulation has been less well studied, primarily because it was identified some years after the original description of CTLA-4. Here, we examine how sCTLA-4 might contribute to immune regulation and ask whether it might be a biomarker to inform current CTLA-4 therapies or represent a novel CTLA-4 target for future therapeutics.
Collapse
Affiliation(s)
- Frank J Ward
- Section of Immunology & Infection, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | | | | | | | | |
Collapse
|
1349
|
Yoshida T, Koda K, Nakao S, Ohyama Y. [Pharmacological profile and clinical efficacy of human anti-human PD-1 antibody nivolumab (OPDIVO®) as a new immune checkpoint inhibitor]. Nihon Yakurigaku Zasshi 2015; 146:106-114. [PMID: 26256749 DOI: 10.1254/fpj.146.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
1350
|
Wang M, Yin B, Wang HY, Wang RF. Current advances in T-cell-based cancer immunotherapy. Immunotherapy 2015; 6:1265-78. [PMID: 25524383 DOI: 10.2217/imt.14.86] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is a leading cause of death worldwide; due to the lack of ideal cancer biomarkers for early detection or diagnosis, most patients present with late-stage disease at the time of diagnosis, thus limiting the potential for successful treatment. Traditional cancer treatments, including surgery, chemotherapy and radiation therapy, have demonstrated very limited efficacy for patients with late-stage disease. Therefore, innovative and effective cancer treatments are urgently needed for cancer patients with late-stage and refractory disease. Cancer immunotherapy, particularly adoptive cell transfer, has shown great promise in the treatment of patients with late-stage disease, including those who are refractory to standard therapies. In this review, we will highlight recent advances and discuss future directions in adoptive cell transfer based cancer immunotherapy.
Collapse
Affiliation(s)
- Mingjun Wang
- Center for Inflammation & Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | | | | | | |
Collapse
|