1351
|
Ziegler A, Wilichowski E, Schara U, Hahn A, Müller-Felber W, Johannsen J, von der Hagen M, von Moers A, Stoltenburg C, Saffari A, Walter MC, Husain RA, Pechmann A, Köhler C, Horber V, Schwartz O, Kirschner J. [Recommendations for gene therapy of spinal muscular atrophy with onasemnogene abeparvovec-AVXS-101 : Consensus paper of the German representatives of the Society for Pediatric Neurology (GNP) and the German treatment centers with collaboration of the medical scientific advisory board of the German Society for Muscular Diseases (DGM)]. DER NERVENARZT 2020; 91:518-529. [PMID: 32394004 DOI: 10.1007/s00115-020-00919-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a severe, life-limiting neurodegenerative disease. A disease-modifying and approved therapy with nusinersen has been available in Germany since July 2017. Gene therapies offer another promising treatment option through a once in a lifetime administration. In May 2019 a gene replacement therapy for the treatment of SMA was approved for the first time by the U.S. Food and Drug Administration (FDA). An application for approval in Europe has been submitted and is currently pending. OBJECTIVE This consensus paper was compiled at the invitation of the German Society for Muscular Diseases (DGM) with the participation of all potential German neuromuscular treatment centers, the German section of the Society for Pediatric Neurology (GNP) and with the involvement of the medical scientific advisory board of the DGM. The aim was to define and establish the necessary prerequisites for a safe and successful application of the new gene replacement therapy in clinical practice. CONCLUSION Gene replacement therapy with onasemnogene abeparvovec has the potential to significantly influence the course of SMA. Long-term data on sustainability of effects and possible adverse effects of gene replacement therapy are not yet available. The application of this innovative therapy must be carried out in specialized and appropriately qualified treatment centers under strict safety conditions. This article makes suggestions for the necessary framework conditions and gives recommendations for a systematic pretreatment and posttreatment assessment schedule under gene therapy. The effectiveness and safety of the therapy should be systematically documented in an industry-independent and disease-specific register.
Collapse
Affiliation(s)
- Andreas Ziegler
- Zentrum für Kinder- und Jugendmedizin Heidelberg, Sektion Neuropädiatrie und Stoffwechselmedizin, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Deutschland.
| | - Ekkehard Wilichowski
- Abteilung Neuropädiatrie und Sozialpädiatrie, Klinik für Kinder- und Jugendmedizin, Universitätsmedizin Göttingen, Göttingen, Deutschland
| | - Ulrike Schara
- Abteilung für Neuropädiatrie, Zentrum für neuromuskuläre Erkrankungen des Kindes- und Jugendalters, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Deutschland
| | - Andreas Hahn
- Abteilung Kinderneurologie, Sozialpädiatrie und Epileptologie, Zentrum Kinderheilkunde, Justus-Liebig-Universität, Gießen, Deutschland
| | - Wolfgang Müller-Felber
- Dr. v. Hauner'sche Kinderklinik, Universitätskinderklinik, Ludwig-Maximilians-Universität, München, Deutschland
| | - Jessika Johannsen
- Neuropädiatrie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Maja von der Hagen
- Abteilung Neuropädiatrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Deutschland
| | - Arpad von Moers
- Klinik für Kinder- und Jugendmedizin, DRK Kliniken Berlin, Berlin, Deutschland
| | - Corinna Stoltenburg
- Sozialpädiatrisches Zentrum, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Afshin Saffari
- Zentrum für Kinder- und Jugendmedizin Heidelberg, Sektion Neuropädiatrie und Stoffwechselmedizin, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Deutschland
| | - Maggie C Walter
- Friedrich-Baur-Institut, Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, München, Deutschland
| | - Ralf A Husain
- Klinik für Neuropädiatrie, Universitätsklinikum Jena, Jena, Deutschland
| | - Astrid Pechmann
- Klinik für Neuropädiatrie und Muskelerkrankungen, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Deutschland
| | - Cornelia Köhler
- Abteilung für Neuropädiatrie mit Sozialpädiatrie, Klinik für Kinder- und Jugendmedizin, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Veronka Horber
- Abteilung Neuropädiatrie, Entwicklungsneurologie und Sozialpädiatrie, Universitätsklinik für Kinder- und Jugendmedizin, Tübingen, Deutschland
| | - Oliver Schwartz
- Abteilung für Allgemeine Pädiatrie - Neuropädiatrie, Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Münster, Münster, Deutschland
| | - Janbernd Kirschner
- Abteilung Neuropädiatrie und Sozialpädiatrisches Zentrum, Zentrum für Kinderheilkunde, Universitätsklinikum Bonn, Bonn, Deutschland
| |
Collapse
|
1352
|
Wang D, Zhang F, Gao G. CRISPR-Based Therapeutic Genome Editing: Strategies and In Vivo Delivery by AAV Vectors. Cell 2020; 181:136-150. [PMID: 32243786 DOI: 10.1016/j.cell.2020.03.023] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022]
Abstract
The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-based biotechnologies has revolutionized the life sciences and introduced new therapeutic modalities with the potential to treat a wide range of diseases. Here, we describe CRISPR-based strategies to improve human health, with an emphasis on the delivery of CRISPR therapeutics directly into the human body using adeno-associated virus (AAV) vectors. We also discuss challenges facing broad deployment of CRISPR-based therapeutics and highlight areas where continued discovery and technological development can further advance these revolutionary new treatments.
Collapse
Affiliation(s)
- Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Brain and Cognitive Sciences, Department of Biological Engineering, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
1353
|
Journey to the Center of the Cell: Tracing the Path of AAV Transduction. Trends Mol Med 2020; 27:172-184. [PMID: 33071047 DOI: 10.1016/j.molmed.2020.09.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
As adeno-associated virus (AAV)-based gene therapies are being increasingly approved for use in humans, it is important that we understand vector-host interactions in detail. With the advances in genome-wide genetic screening tools, a clear picture of AAV-host interactions is beginning to emerge. Understanding these interactions can provide insights into the viral life cycle. Accordingly, novel strategies to circumvent the current limitations of AAV-based vectors may be explored. Here, we summarize our current understanding of the various stages in the journey of the vector from the cell surface to the nucleus and contextualize the roles of recently identified host factors.
Collapse
|
1354
|
Breaking the sound barrier: Towards next-generation AAV vectors for gene therapy of hearing disorders. Hear Res 2020; 413:108092. [PMID: 33268240 DOI: 10.1016/j.heares.2020.108092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/14/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022]
Abstract
Owing to the advances in transgenic animal technology and the advent of the next-generation sequencing era, over 120 genes causing hereditary hearing loss have been identified by now. In parallel, the field of human gene therapy continues to make exciting and rapid progress, culminating in the recent approval of several ex vivo and in vivo applications. Despite these encouraging developments and the growing interest in causative treatments for hearing disorders, gene therapeutic interventions in the inner ear remain in their infancy and await clinical translation. This review focuses on the adeno-associated virus (AAV), which nowadays represents one of the safest and most promising vectors in gene therapy. We first provide an overview of AAV biology and outline the principles of therapeutic gene transfer with recombinant AAV vectors, before pointing out major challenges and solutions for clinical translation including vector manufacturing and species translatability. Finally, we highlight seminal technologies for engineering and selection of next-generation "designer" AAV capsids, and illustrate their power and potential with recent examples of their application for inner ear gene transfer in animals.
Collapse
|
1355
|
Piccolo P, Rossi A, Brunetti-Pierri N. Liver-directed gene-based therapies for inborn errors of metabolism. Expert Opin Biol Ther 2020; 21:229-240. [PMID: 32880494 DOI: 10.1080/14712598.2020.1817375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Inborn errors of metabolism include several genetic disorders due to disruption of cellular biochemical reactions. Although individually rare, collectively they are a large and heterogenous group of diseases affecting a significant proportion of patients. Available treatments are often unsatisfactory. Liver-directed gene therapy has potential for treatment of several inborn errors of metabolism. While lentiviral vectors and lipid nanoparticle-mRNA have shown attractive features in preclinical studies and still have to be investigated in humans, adeno-associated virus (AAV) vectors have shown clinical success in both preclinical and clinical trials for in vivo liver-directed gene therapy. AREAS COVERED In this review, we discussed the most relevant clinical applications and the challenges of liver-directed gene-based approaches for therapy of inborn errors of metabolism. EXPERT OPINION Challenges and prospects of clinical gene therapy trials and preclinical studies that are believed to have the greatest potential for clinical translation are presented.
Collapse
Affiliation(s)
- Pasquale Piccolo
- Telethon Institute of Genetics and Medicine , Pozzuoli, Italy.,Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| | - Alessandro Rossi
- Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine , Pozzuoli, Italy.,Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| |
Collapse
|
1356
|
Egorova A, Selutin A, Maretina M, Selkov S, Baranov V, Kiselev A. Characterization of iRGD-Ligand Modified Arginine-Histidine-Rich Peptides for Nucleic Acid Therapeutics Delivery to αvβ3 Integrin-Expressing Cancer Cells. Pharmaceuticals (Basel) 2020; 13:E300. [PMID: 33050526 PMCID: PMC7601072 DOI: 10.3390/ph13100300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/20/2022] Open
Abstract
Efficient and specific delivery of nucleic acid (NA) therapeutics to tumor cells is extremely important for cancer gene therapy. Various therapeutic strategies include delivery of DNA-therapeutics such as immunostimulatory or suicide genes and delivery of siRNA-therapeutics able to silence expression of cancer-related genes. Peptides are a promising class of non-viral vehicles which are biodegradable and can efficiently condense, protect and specifically deliver NA to the cells. Here we designed arginine-histidine-rich peptide carriers consisting of an iRGD ligand to target αvβ3 integrins and studied them as vehicles for DNA and siRNA delivery to cancer cells. Combination of iRGD-modified and unmodified arginine-histidine-rich peptides during NA complexation resulted in carriers with different ligand contents. The NA-binding and protecting properties in vitro transfection efficiency and cytotoxicity of the DNA- and siRNA-polyplexes were studied and the most efficient carrier RGD1 was determined. The ability of the peptides to mediate specific intracellular uptake was confirmed inhuman cervical carcinoma (HeLa), human kidney (293T) and human pancreatic (PANC-1) cell lines with different αvβ3 integrins surface expression. By means of RGD1 carrier, efficient delivery of the herpes simplex virus (HSV-1) thymidine kinase gene to PANC-1 cells was demonstrated. Subsequent ganciclovir treatment led to a reduction of PANC-1 cells' viability by up to 54%. Efficient RNAi-mediated down-regulation of GFP and VEGFA gene expression was achieved in MDA-MB-231-GFP+ breast cancer and EA.hy926 endothelial cells, respectively, by means of RGD1/siRNA polyplexes. Here we demonstrated that the peptide carrier RGD1 can be considered as promising candidate for development of NA therapeutics delivery systems useful in cancer gene therapy.
Collapse
Affiliation(s)
- Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (M.M.); (V.B.)
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, 198504 Peterhoff, Russia
| | - Alexander Selutin
- Department of Immunology and Intercellular Interactions, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.S.); (S.S.)
| | - Marianna Maretina
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (M.M.); (V.B.)
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, 198504 Peterhoff, Russia
| | - Sergei Selkov
- Department of Immunology and Intercellular Interactions, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.S.); (S.S.)
| | - Vladislav Baranov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (M.M.); (V.B.)
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (M.M.); (V.B.)
| |
Collapse
|
1357
|
Leopold AV, Verkhusha VV. Light control of RTK activity: from technology development to translational research. Chem Sci 2020; 11:10019-10034. [PMID: 33209247 PMCID: PMC7654314 DOI: 10.1039/d0sc03570j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022] Open
Abstract
Inhibition of receptor tyrosine kinases (RTKs) by small molecule inhibitors and monoclonal antibodies is used to treat cancer. Conversely, activation of RTKs with their ligands, including growth factors and insulin, is used to treat diabetes and neurodegeneration. However, conventional therapies that rely on injection of RTK inhibitors or activators do not provide spatiotemporal control over RTK signaling, which results in diminished efficiency and side effects. Recently, a number of optogenetic and optochemical approaches have been developed that allow RTK inhibition or activation in cells and in vivo with light. Light irradiation can control RTK signaling non-invasively, in a dosed manner, with high spatio-temporal precision, and without the side effects of conventional treatments. Here we provide an update on the current state of the art of optogenetic and optochemical RTK technologies and the prospects of their use in translational studies and therapy.
Collapse
Affiliation(s)
- Anna V Leopold
- Medicum , Faculty of Medicine , University of Helsinki , Helsinki 00290 , Finland
| | - Vladislav V Verkhusha
- Medicum , Faculty of Medicine , University of Helsinki , Helsinki 00290 , Finland
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center , Albert Einstein College of Medicine , Bronx , NY 10461 , USA .
| |
Collapse
|
1358
|
El Andari J, Grimm D. Production, Processing, and Characterization of Synthetic AAV Gene Therapy Vectors. Biotechnol J 2020; 16:e2000025. [PMID: 32975881 DOI: 10.1002/biot.202000025] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/13/2020] [Indexed: 12/14/2022]
Abstract
Over the last two decades, gene therapy vectors based on wild-type Adeno-associated viruses (AAV) are safe and efficacious in numerous clinical trials and are translated into three approved gene therapy products. Concomitantly, a large body of preclinical work has illustrated the power and potential of engineered synthetic AAV capsids that often excel in terms of an organ or cell specificity, the efficiency of in vitro or in vivo gene transfer, and/or reactivity with anti-AAV immune responses. In turn, this has created a demand for new, scalable, easy-to-implement, and plug-and-play platform processes that are compatible with the rapidly increasing range of AAV capsid variants. Here, the focus is on recent advances in methodologies for downstream processing and characterization of natural or synthetic AAV vectors, comprising different chromatography techniques and thermostability measurements. To illustrate the breadth of this portfolio, two chimeric capsids are used as representative examples that are derived through forward- or backwards-directed molecular evolution, namely, AAV-DJ and Anc80. Collectively, this ever-expanding arsenal of technologies promises to facilitate the development of the next AAV vector generation derived from synthetic capsids and to accelerate their manufacturing, and to thus boost the field of human gene therapy.
Collapse
Affiliation(s)
- Jihad El Andari
- Dept. of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany.,BioQuant, Cluster of Excellence CellNetworks, University of Heidelberg, 69120, Heidelberg, Germany
| | - Dirk Grimm
- Dept. of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany.,BioQuant, Cluster of Excellence CellNetworks, University of Heidelberg, 69120, Heidelberg, Germany.,German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
1359
|
Abstract
Over a thousand diseases are caused by mutations that alter gene expression levels. The potential of nuclease-deficient zinc fingers, TALEs or CRISPR fusion systems to treat these diseases by modulating gene expression has recently emerged. These systems can be applied to modify the activity of gene-regulatory elements - promoters, enhancers, silencers and insulators, subsequently changing their target gene expression levels to achieve therapeutic benefits - an approach termed cis-regulation therapy (CRT). Here, we review emerging CRT technologies and assess their therapeutic potential for treating a wide range of diseases caused by abnormal gene dosage. The challenges facing the translation of CRT into the clinic are discussed.
Collapse
|
1360
|
Kurasawa JH, Park A, Sowers CR, Halpin RA, Tovchigrechko A, Dobson CL, Schmelzer AE, Gao C, Wilson SD, Ikeda Y. Chemically Defined, High-Density Insect Cell-Based Expression System for Scalable AAV Vector Production. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:330-340. [PMID: 33145369 PMCID: PMC7591331 DOI: 10.1016/j.omtm.2020.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022]
Abstract
The recombinant adeno-associated virus (AAV) vector is one of the most utilized viral vectors in gene therapy due to its robust, long-term in vivo transgene expression and low toxicity. One major hurdle for clinical AAV applications is large-scale manufacturing. In this regard, the baculovirus-based AAV production system is highly attractive due to its scalability and predictable biosafety. Here, we describe a simple method to improve the baculovirus-based AAV production using the ExpiSf Baculovirus Expression System with a chemically defined medium for suspension culture of high-density ExpiSf9 cells. Baculovirus-infected ExpiSf9 cells produced up to 5 × 1011 genome copies of highly purified AAV vectors per 1 mL of suspension culture, which is up to a 19-fold higher yield than the titers we obtained from the conventional Sf9 cell-based system. When mice were administered the same dose of AAV vectors, we saw comparable transduction efficiency and biodistributions between the vectors made in ExpiSf9 and Sf9 cells. Thus, the ExpiSf Baculovirus Expression System would support facile and scalable AAV manufacturing amenable for preclinical and clinical applications.
Collapse
Affiliation(s)
- James H Kurasawa
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Andrew Park
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Carrie R Sowers
- Physicochemical Development, Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Rebecca A Halpin
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Andrey Tovchigrechko
- Applied Analytics & Artificial Intelligence, Data Science & AI, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Claire L Dobson
- Biologic Therapeutics, Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Albert E Schmelzer
- Cell Culture and Fermentation Sciences, Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Changshou Gao
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Susan D Wilson
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Yasuhiro Ikeda
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| |
Collapse
|
1361
|
Brooks PJ, Ottinger EA, Portero D, Lomash RM, Alimardanov A, Terse P, Xu X, Chandler RJ, Geist Hauserman J, Esposito E, Bönnemann CG, Venditti CP, Austin CP, Pariser A, Lo DC. The Platform Vector Gene Therapies Project: Increasing the Efficiency of Adeno-Associated Virus Gene Therapy Clinical Trial Startup. Hum Gene Ther 2020; 31:1034-1042. [PMID: 32993373 PMCID: PMC7585601 DOI: 10.1089/hum.2020.259] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Philip J Brooks
- Office of Rare Disease Research, National Center for Advancing Translational Sciences (NCATS)
| | - Elizabeth A Ottinger
- Therapeutic Development Branch, National Center for Advancing Translational Sciences (NCATS)
| | - Deanna Portero
- Office of Rare Disease Research, National Center for Advancing Translational Sciences (NCATS)
| | - Richa Madan Lomash
- Therapeutic Development Branch, National Center for Advancing Translational Sciences (NCATS)
| | - Asaf Alimardanov
- Therapeutic Development Branch, National Center for Advancing Translational Sciences (NCATS)
| | - Pramod Terse
- Therapeutic Development Branch, National Center for Advancing Translational Sciences (NCATS)
| | - Xin Xu
- Therapeutic Development Branch, National Center for Advancing Translational Sciences (NCATS)
| | - Randy J Chandler
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute (NHGRI)
| | - Janelle Geist Hauserman
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke (NINDS); National Institutes of Health, Bethesda, Maryland, USA
| | - Eric Esposito
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke (NINDS); National Institutes of Health, Bethesda, Maryland, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke (NINDS); National Institutes of Health, Bethesda, Maryland, USA
| | - Charles P Venditti
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute (NHGRI)
| | - Christopher P Austin
- Office of the Director, National Center for Advancing Translational Sciences (NCATS)
| | - Anne Pariser
- Office of Rare Disease Research, National Center for Advancing Translational Sciences (NCATS)
| | - Donald C Lo
- Therapeutic Development Branch, National Center for Advancing Translational Sciences (NCATS)
| |
Collapse
|
1362
|
Johnson TB, White KA, Brudvig JJ, Cain JT, Langin L, Pratt MA, Booth CD, Timm DJ, Davis SS, Meyerink B, Likhite S, Meyer K, Weimer JM. AAV9 Gene Therapy Increases Lifespan and Treats Pathological and Behavioral Abnormalities in a Mouse Model of CLN8-Batten Disease. Mol Ther 2020; 29:162-175. [PMID: 33010819 DOI: 10.1016/j.ymthe.2020.09.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/24/2020] [Accepted: 09/20/2020] [Indexed: 12/26/2022] Open
Abstract
CLN8 disease is a rare form of neuronal ceroid lipofuscinosis caused by biallelic mutations in the CLN8 gene, which encodes a transmembrane endoplasmic reticulum protein involved in trafficking of lysosomal enzymes. CLN8 disease patients present with myoclonus, tonic-clonic seizures, and progressive declines in cognitive and motor function, with many cases resulting in premature death early in life. There are currently no treatments that can cure the disease or substantially slow disease progression. Using a mouse model of CLN8 disease, we tested the safety and efficacy of an intracerebroventricularly (i.c.v.) delivered self-complementary adeno-associated virus serotype 9 (scAAV9) gene therapy vector driving expression of human CLN8. A single neonatal injection was safe and well tolerated, resulting in robust transgene expression throughout the CNS from 4 to 24 months, reducing histopathological and behavioral hallmarks of the disease and restoring lifespan from 10 months in untreated animals to beyond 24 months of age in treated animals. While it is unclear whether some of these behavioral improvements relate to preserved visual function, improvements in learning/memory, or other central or peripheral benefits, these results demonstrate, by far, the most successful degree of rescue reported in an animal model of CLN8 disease, and they support further development of gene therapy for this disorder.
Collapse
Affiliation(s)
- Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA; Amicus Therapeutics, Philadelphia, PA, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jon J Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA; Amicus Therapeutics, Philadelphia, PA, USA
| | - Logan Langin
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Melissa A Pratt
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Clarissa D Booth
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Derek J Timm
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Samantha S Davis
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Brandon Meyerink
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Shibi Likhite
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA; Amicus Therapeutics, Philadelphia, PA, USA.
| |
Collapse
|
1363
|
Elmore ZC, Oh DK, Simon KE, Fanous MM, Asokan A. Rescuing AAV gene transfer from neutralizing antibodies with an IgG-degrading enzyme. JCI Insight 2020; 5:139881. [PMID: 32941184 PMCID: PMC7566709 DOI: 10.1172/jci.insight.139881] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Preexisting humoral immunity to recombinant adeno-associated virus (AAV) vectors restricts the treatable patient population and efficacy of human gene therapies. Approaches to clear neutralizing antibodies (NAbs), such as plasmapheresis and immunosuppression, are either ineffective or cause undesirable side effects. Here, we describe a clinically relevant strategy to rapidly and transiently degrade NAbs before AAV administration using an IgG-degrading enzyme (IdeZ). We demonstrate that recombinant IdeZ efficiently cleaved IgG in dog, monkey, and human antisera. Prophylactically administered IdeZ cleaved circulating human IgG in mice and prevented AAV neutralization in vivo. In macaques, a single intravenous dose of IdeZ rescued AAV transduction by transiently reversing seropositivity. Importantly, IdeZ efficiently cleaved NAbs and rescued AAV transduction in mice passively immunized with individual human donor sera representing a diverse population. Our antibody clearance approach presents a potentially new paradigm for expanding the prospective patient cohort and improving efficacy of AAV gene therapy.
Collapse
Affiliation(s)
| | | | | | | | - Aravind Asokan
- Department of Surgery and
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Biomedical Engineering, Pratt School of Engineering, and
- Regeneration Next, Duke University, Durham, North Carolina, USA
| |
Collapse
|
1364
|
Function analysis of differentially expressed microRNAs in TGF-β1-induced cardiac fibroblasts differentiation. Biosci Rep 2020; 39:BSR20182048. [PMID: 31527065 PMCID: PMC6822545 DOI: 10.1042/bsr20182048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/20/2019] [Accepted: 09/13/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cardiac fibroblasts differentiation plays a critical role in cardiac remodeling and failure, but the underlying molecular mechanisms are still poorly understood. MicroRNAs (miRNAs) had been identified as important regulators during cell differentiation. The aim of the present study was to screen the miRNAs involved in regulation of cardiac fibroblasts differentiation. METHODS The differentiation of rat cardiac fibroblasts into myofibroblasts was induced by transforming growth factor-β1 (TGF-β1). Small RNA sequencing was then applied to detect the differentially expressed miRNAs. RESULTS A total of 450 known miRNAs were detected, and 127 putative novel miRNAs were predicted by miRDeep2 analysis. DEGseq analysis and qRT-PCR confirmed that 24 known miRNAs were differentially expressed in TGF-β1-induced cardiac fibroblasts, including three up-regulated miRNAs and 21 down-regulated miRNAs. After miRNAs target genes prediction by miRanda algorithm, pathway analysis showed that these potential target genes were involved in Calcium signaling pathway, Type II diabetes mellitus, and Glutamatergic synapse pathway, etc. Meanwhile, seven putative miRNAs were also detected differentially expressed during TGF-β1-induced cardiac fibroblasts differentiation. CONCLUSIONS These differentially expressed miRNAs might play critical roles in cardiac fibroblasts differentiation. Altered expression of miRNAs may yield new insights into the underlying mechanisms of cardiac fibrosis and provide novel mechanism-based therapeutic strategies for cardiac fibrosis.
Collapse
|
1365
|
Havlik LP, Simon KE, Smith JK, Klinc KA, Tse LV, Oh DK, Fanous MM, Meganck RM, Mietzsch M, Kleinschmidt J, Agbandje-McKenna M, Asokan A. Coevolution of Adeno-associated Virus Capsid Antigenicity and Tropism through a Structure-Guided Approach. J Virol 2020; 94:e00976-20. [PMID: 32669336 PMCID: PMC7495376 DOI: 10.1128/jvi.00976-20] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated viruses (AAV) are composed of nonenveloped, icosahedral protein shells that can be adapted to package and deliver recombinant therapeutic DNA. Approaches to engineer recombinant capsids for gene therapy applications have focused on rational design or library-based approaches that can address one or two desirable attributes; however, there is an unmet need to comprehensively improve AAV vector properties. Such cannot be achieved by utilizing sequence data alone but requires harnessing the three-dimensional (3D) structural properties of AAV capsids. Here, we solve the structures of a natural AAV isolate complexed with antibodies using cryo-electron microscopy and harness this structural information to engineer AAV capsid libraries through saturation mutagenesis of different antigenic footprints. Each surface loop was evolved by infectious cycling in the presence of a helper adenovirus to yield a new AAV variant that then serves as a template for evolving the next surface loop. This stepwise process yielded a humanized AAV8 capsid (AAVhum.8) displaying nonnatural surface loops that simultaneously display tropism for human hepatocytes, increased gene transfer efficiency, and neutralizing antibody evasion. Specifically, AAVhum.8 can better evade neutralizing antisera from multiple species than AAV8. Further, AAVhum.8 displays robust transduction in a human liver xenograft mouse model with expanded tropism for both murine and human hepatocytes. This work supports the hypothesis that critical properties, such as AAV capsid antibody evasion and tropism, can be coevolved by combining rational design and library-based evolution for clinical gene therapy.IMPORTANCE Clinical gene therapy with recombinant AAV vectors has largely relied on natural capsid isolates. There is an unmet need to comprehensively improve AAV tissue tropism, transduction efficiency, and antibody evasion. Such cannot be achieved by utilizing capsid sequence data alone but requires harnessing the 3D structural properties of AAV capsids. Here, we combine rational design and library-based evolution to coevolve multiple, desirable properties onto AAV by harnessing 3D structural information.
Collapse
Affiliation(s)
- L Patrick Havlik
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Katherine E Simon
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - J Kennon Smith
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Kelli A Klinc
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Longping V Tse
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Daniel K Oh
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Marco M Fanous
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rita M Meganck
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Jürgen Kleinschmidt
- German Cancer Research Center, Research Program Infection and Cancer, Heidelberg, Germany
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Regeneration Next, Duke University, Durham, North Carolina, USA
| |
Collapse
|
1366
|
Tran NT, Heiner C, Weber K, Weiand M, Wilmot D, Xie J, Wang D, Brown A, Manokaran S, Su Q, Zapp ML, Gao G, Tai PW. AAV-Genome Population Sequencing of Vectors Packaging CRISPR Components Reveals Design-Influenced Heterogeneity. Mol Ther Methods Clin Dev 2020; 18:639-651. [PMID: 32775498 PMCID: PMC7397707 DOI: 10.1016/j.omtm.2020.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
The gene therapy field has been galvanized by two technologies that have revolutionized treating genetic diseases: vectors based on adeno-associated viruses (AAVs), and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas gene-editing tools. When combined into one platform, these safe and broadly tropic biotherapies can be engineered to target any region in the human genome to correct genetic flaws. Unfortunately, few investigations into the design compatibility of CRISPR components in AAV vectors exist. Using AAV-genome population sequencing (AAV-GPseq), we previously found that self-complementary AAV vector designs with strong DNA secondary structures can cause a high degree of truncation events, impacting production and vector efficacy. We hypothesized that the single-guide RNA (sgRNA) scaffold, which contains several loop regions, may also compromise vector integrity. We have therefore advanced the AAV-GPseq method to also interrogate single-strand AAV vectors to investigate whether vector genomes carrying Cas9-sgRNA cassettes can cause truncation events. We found that on their own, sgRNA sequences do not produce a high degree of truncation events. However, we demonstrate that vector genome designs that carry dual sgRNA expression cassettes in tail-to-tail configurations lead to truncations. In addition, we revealed that heterogeneity in inverted terminal repeat sequences in the form of regional deletions inherent to certain AAV vector plasmids can be interrogated.
Collapse
Affiliation(s)
- Ngoc Tam Tran
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Cheryl Heiner
- Pacific Biosciences, Inc., Menlo Park, CA 94025, USA
| | | | | | - Daniella Wilmot
- Program in Molecular Medicine and Center for AIDS Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Alexander Brown
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Sangeetha Manokaran
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Maria L. Zapp
- Program in Molecular Medicine and Center for AIDS Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Phillip W.L. Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
1367
|
Zhao J, Yue Y, Patel A, Wasala L, Karp JF, Zhang K, Duan D, Lai Y. High-Resolution Histological Landscape of AAV DNA Distribution in Cellular Compartments and Tissues following Local and Systemic Injection. Mol Ther Methods Clin Dev 2020; 18:856-868. [PMID: 32953935 PMCID: PMC7479330 DOI: 10.1016/j.omtm.2020.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
Adeno-associated virus (AAV) is one of the most important gene delivery vehicles for in vivo gene therapy. Intramuscular (i.m.) and intravascular (i.v.) injection are commonly used for AAV gene transfer. Unfortunately, the fate of AAV vectors following administration remains unclear at the histological level. Taking advantage of RNAscope, a recently developed in situ hybridization technique that can reveal high-resolution viral DNA localization information, in this study, we evaluated body-wide distribution of an AAV9 vector in the context of the cell and tissue microenvironments. We observed distinctive kinetics of cell and nuclear entry of the AAV DNA in striated muscle and liver following i.m. and i.v. injection. We also found characteristic distribution patterns of the AAV DNA in various histological structures in internal organs, including gonads and lymph nodes, following i.v. injection. Finally, we showed significantly body-wide spreading of the AAV DNA following i.m. injection. These results add a new dimension to our understanding of AAV transduction biology and provide a basis for assessing the full impact of AAV gene therapy.
Collapse
Affiliation(s)
- Junling Zhao
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Aman Patel
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Lakmini Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Jacob F. Karp
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Bioengineering, University of Missouri, Columbia, MO 65212, USA
| | - Yi Lai
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
1368
|
Hakim CH, Clément N, Wasala LP, Yang HT, Yue Y, Zhang K, Kodippili K, Adamson-Small L, Pan X, Schneider JS, Yang NN, Chamberlain JS, Byrne BJ, Duan D. Micro-dystrophin AAV Vectors Made by Transient Transfection and Herpesvirus System Are Equally Potent in Treating mdx Mouse Muscle Disease. Mol Ther Methods Clin Dev 2020; 18:664-678. [PMID: 32775499 PMCID: PMC7403893 DOI: 10.1016/j.omtm.2020.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022]
Abstract
Vector production scale-up is a major barrier in systemic adeno-associated virus (AAV) gene therapy. Many scalable manufacturing methods have been developed. However, the potency of the vectors generated by these methods has rarely been compared with vectors made by transient transfection (TT), the most commonly used method in preclinical studies. In this study, we blindly compared therapeutic efficacy of an AAV9 micro-dystrophin vector generated by the TT method and scalable herpes simplex virus (HSV) system in a Duchenne muscular dystrophy mouse model. AAV was injected intravenously at 5 × 1014 (high), 5 × 1013 (medium), or 5 × 1012 (low) viral genomes (vg)/kg. Comparable levels of micro-dystrophin expression were observed at each dose in a dose-dependent manner irrespective of the manufacturing method. Vector biodistribution was similar in mice injected with either the TT or the HSV method AAV. Evaluation of muscle degeneration/regeneration showed equivalent protection by vectors made by either method in a dose-dependent manner. Muscle function was similarly improved in a dose-dependent manner irrespective of the vector production method. No apparent toxicity was observed in any mouse. Collectively, our results suggest that the biological potency of the AAV micro-dystrophin vector made by the scalable HSV method is comparable to that made by the TT method.
Collapse
Affiliation(s)
- Chady H. Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Nathalie Clément
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Lakmini P. Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Hsiao T. Yang
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Kasun Kodippili
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Laura Adamson-Small
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | | | - N. Nora Yang
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Jeffrey S. Chamberlain
- Department of Neurology, Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | - Barry J. Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
1369
|
Liu L, Zhang D, Li Y. LncRNAs in cardiac hypertrophy: From basic science to clinical application. J Cell Mol Med 2020; 24:11638-11645. [PMID: 32896990 PMCID: PMC7579708 DOI: 10.1111/jcmm.15819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac hypertrophy is a typical pathological phenotype of cardiomyopathy and a result from pathological remodelling of cardiomyocytes in humans. At present, emerging evidence demonstrated the roles of long non‐coding RNAs (lncRNAs) in regulating the pathophysiological process of cardiac hypertrophy. Herein, we would like to review the recent researches on this issue and try to analysis the potential therapeutic targets on lncRNA sites. Studies have revealed both genetic mutations related hypertrophic cardiomyopathy and the compensative cardiac hypertrophy due to pressure overload, inflammation, endocrine issues and other external stimulations, share a common molecular mechanism of ventricular hypertrophy. The emerging evidence identified the abnormal expression of lncRNAs would leading to the impairment the function of sarcomere, intracellular calcium handling and mitochondrial metabolisms. Several researches proved the therapeutic role of lncRNAs in preventing or reversing cardiac hypertrophy. With the development of delivery system for small pieces of oligonucleotide, clinicians could design gene therapy approaches to terminate the process of cardiac hypertrophy to provide better prognosis.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
1370
|
Carneiro A, Lee H, Lin L, van Haasteren J, Schaffer DV. Novel Lung Tropic Adeno-Associated Virus Capsids for Therapeutic Gene Delivery. Hum Gene Ther 2020; 31:996-1009. [PMID: 32799685 DOI: 10.1089/hum.2020.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Efforts to identify mutations that underlie inherited genetic diseases combined with strides in the development of gene therapy vectors over the last three decades have culminated in the approval of several adeno-associated virus (AAV)-based gene therapies. Genetic diseases that manifest in the lung such as cystic fibrosis (CF) and surfactant deficiencies, however, have so far proven to be elusive targets. Early clinical trials in CF using AAV serotype 2 (AAV2) achieved safety, but not efficacy endpoints; however, importantly, these studies provided critical information on barriers that need to be surmounted to translate AAV lung gene therapy toward clinical success. Bolstered with an improved understanding of AAV biology and more clinically relevant lung models, next-generation molecular biology and bioinformatics approaches have given rise to novel AAV capsid variants that offer improvements in transduction efficiency, immunological profile, and the ability to circumvent physical barriers in the lung such as mucus. This review discusses the principal limiting barriers to clinical success in lung gene therapy and focuses on novel engineered AAV capsid variants that have been developed to overcome those challenges.
Collapse
Affiliation(s)
- Ana Carneiro
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Hyuncheol Lee
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, USA
| | - Li Lin
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Joost van Haasteren
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, USA.,Department of Bioengineering, University of California, Berkeley, California, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA.,Innovative Genomics Institute (IGI), University of California, Berkeley, California, USA
| |
Collapse
|
1371
|
Our emerging understanding of the roles of long non-coding RNAs in normal liver function, disease, and malignancy. JHEP Rep 2020; 3:100177. [PMID: 33294829 PMCID: PMC7689550 DOI: 10.1016/j.jhepr.2020.100177] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are important biological mediators that regulate numerous cellular processes. New experimental evidence suggests that lncRNAs play essential roles in liver development, normal liver physiology, fibrosis, and malignancy, including hepatocellular carcinoma and cholangiocarcinoma. In this review, we summarise our current understanding of the function of lncRNAs in the liver in both health and disease, as well as discuss approaches that could be used to target these non-coding transcripts for therapeutic purposes.
Collapse
Key Words
- ABCA1, ATP-binding cassette transporter A1
- ACTA2/ɑ-SMA, α-smooth muscle actin
- APO, apolipoprotein
- ASO, antisense oligonucleotides
- BDL, bile duct ligation
- CCA, cholangiocarcinoma
- CCl4, carbon tetrachloride
- COL1A1, collagen type I α 1
- CYP, cytochrome P450
- Cholangiocarcinoma
- DANCR, differentiation antagonising non-protein coding RNA
- DE, definitive endoderm
- DEANR1, definitive endoderm-associated lncRNA1
- DIGIT, divergent to goosecoid, induced by TGF-β family signalling
- DILC, downregulated in liver cancer stem cells
- EST, expression sequence tag
- EpCAM, epithelial cell adhesion molecule
- FBP1, fructose-bisphosphatase 1
- FENDRR, foetal-lethal non-coding developmental regulatory RNA
- FXR, farnesoid X receptor
- GAS5, growth arrest-specific transcript 5
- H3K18ac, histone 3 lysine 18 acetylation
- H3K36me3, histone 3 lysine 36 trimethylation
- H3K4me3, histone 3 lysine 4 trimethylation
- HCC, hepatocellular carcinoma
- HEIH, high expression In HCC
- HNRNPA1, heterogenous nuclear protein ribonucleoprotein A1
- HOTAIR, HOX transcript antisense RNA
- HOTTIP, HOXA transcript at the distal tip
- HSC, hepatic stellate cells
- HULC, highly upregulated in liver cancer
- Hepatocellular carcinoma
- HuR, human antigen R
- LCSC, liver cancer stem cell
- LSD1, lysine-specific demethylase 1
- LXR, liver X receptors
- LeXis, liver-expressed LXR-induced sequence
- Liver cancer
- Liver fibrosis
- Liver metabolism
- Liver-specific lncRNAs
- LncLSTR, lncRNA liver-specific triglyceride regulator
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MEG3, maternally expressed gene 3
- NAT, natural antisense transcript
- NEAT1, nuclear enriched abundant transcript 1
- ORF, open reading frame
- PKM2, pyruvate kinase muscle isozyme M2
- PPAR-α, peroxisome proliferator-activated receptor-α
- PRC, polycomb repressive complex
- RACE, rapid amplification of cDNA ends
- RNA Pol, RNA polymerase
- S6K1, S6 kinase 1
- SHP, small heterodimer partner
- SREBPs, steroid response binding proteins
- SREs, sterol response elements
- TGF-β, transforming growth factor-β
- TTR, transthyretin
- XIST, X-inactive specific transcript
- ZEB1, zinc finger E-box-binding homeobox 1
- ceRNA, competing endogenous RNA
- eRNA, enhancer RNAs
- lincRNA, long intervening non-coding RNA
- lncRNA
- lncRNA, long non-coding RNA
- mTOR, mammalian target of rapamycin
- siRNA, small interfering RNA
Collapse
|
1372
|
Characterization of Adeno-Associated Virus Capsid Proteins Using Hydrophilic Interaction Chromatography Coupled with Mass Spectrometry. J Pharm Biomed Anal 2020; 189:113481. [DOI: 10.1016/j.jpba.2020.113481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
|
1373
|
Kantor A, McClements ME, MacLaren RE. CRISPR-Cas9 DNA Base-Editing and Prime-Editing. Int J Mol Sci 2020; 21:E6240. [PMID: 32872311 PMCID: PMC7503568 DOI: 10.3390/ijms21176240] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Many genetic diseases and undesirable traits are due to base-pair alterations in genomic DNA. Base-editing, the newest evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas-based technologies, can directly install point-mutations in cellular DNA without inducing a double-strand DNA break (DSB). Two classes of DNA base-editors have been described thus far, cytosine base-editors (CBEs) and adenine base-editors (ABEs). Recently, prime-editing (PE) has further expanded the CRISPR-base-edit toolkit to all twelve possible transition and transversion mutations, as well as small insertion or deletion mutations. Safe and efficient delivery of editing systems to target cells is one of the most paramount and challenging components for the therapeutic success of BEs. Due to its broad tropism, well-studied serotypes, and reduced immunogenicity, adeno-associated vector (AAV) has emerged as the leading platform for viral delivery of genome editing agents, including DNA-base-editors. In this review, we describe the development of various base-editors, assess their technical advantages and limitations, and discuss their therapeutic potential to treat debilitating human diseases.
Collapse
Affiliation(s)
- Ariel Kantor
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
1374
|
Gallego C, Gonçalves MAFV, Wijnholds J. Novel Therapeutic Approaches for the Treatment of Retinal Degenerative Diseases: Focus on CRISPR/Cas-Based Gene Editing. Front Neurosci 2020; 14:838. [PMID: 32973430 PMCID: PMC7468381 DOI: 10.3389/fnins.2020.00838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Inherited retinal diseases encompass a highly heterogenous group of disorders caused by a wide range of genetic variants and with diverse clinical symptoms that converge in the common trait of retinal degeneration. Indeed, mutations in over 270 genes have been associated with some form of retinal degenerative phenotype. Given the immune privileged status of the eye, cell replacement and gene augmentation therapies have been envisioned. While some of these approaches, such as delivery of genes through recombinant adeno-associated viral vectors, have been successfully tested in clinical trials, not all patients will benefit from current advancements due to their underlying genotype or phenotypic traits. Gene editing arises as an alternative therapeutic strategy seeking to correct mutations at the endogenous locus and rescue normal gene expression. Hence, gene editing technologies can in principle be tailored for treating retinal degeneration. Here we provide an overview of the different gene editing strategies that are being developed to overcome the challenges imposed by the post-mitotic nature of retinal cell types. We further discuss their advantages and drawbacks as well as the hurdles for their implementation in treating retinal diseases, which include the broad range of mutations and, in some instances, the size of the affected genes. Although therapeutic gene editing is at an early stage of development, it has the potential of enriching the portfolio of personalized molecular medicines directed at treating genetic diseases.
Collapse
Affiliation(s)
- Carmen Gallego
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| |
Collapse
|
1375
|
Cai W, Luo T, Mao L, Wang M. Spatiotemporal Delivery of CRISPR/Cas9 Genome Editing Machinery Using Stimuli-Responsive Vehicles. Angew Chem Int Ed Engl 2020; 60:8596-8606. [PMID: 32385892 DOI: 10.1002/anie.202005644] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Indexed: 12/17/2022]
Abstract
Recent innovations in genome editing have enabled the precise manipulation of the genetic information of mammalians, and benefitted the development of next-generation gene therapy. Despite these advances, several barriers to the clinical translation of genome editing remain, including the intracellular delivery of genome editing machinery, and the risk of off-target editing effect. Here, we review the recent advance of spatiotemporal delivery of CRISPR/Cas9 genome editing machinery, which is composed of programmable Cas9 nuclease and a single-guide RNA (sgRNA) using stimuli-responsive nanoparticles. We discuss the specific chemistries that have been used for controlled Cas9/sgRNA delivery and intracellular release in the presence of endogenous or external signals. These methodologies can leverage biological signals found locally within disease cells, or exogenous signals administrated with spatiotemporal control, through which an improved genome editing could be achieved. We also discuss the future in exploiting these approaches for fundamental biomedical applications and therapeutic genome editing.
Collapse
Affiliation(s)
- Weiqi Cai
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), No. 2, North first street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, China
| | - Tianli Luo
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), No. 2, North first street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), No. 2, North first street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), No. 2, North first street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, China
| |
Collapse
|
1376
|
Yin S, Ma L, Shao T, Zhang M, Guan Y, Wang L, Hu Y, Chen X, Han H, Shen N, Qiu W, Geng H, Yu Y, Li S, Yu W, Liu M, Li D. Enhanced genome editing to ameliorate a genetic metabolic liver disease through co-delivery of adeno-associated virus receptor. SCIENCE CHINA-LIFE SCIENCES 2020; 65:718-730. [PMID: 32815069 DOI: 10.1007/s11427-020-1744-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022]
Abstract
Genome editing through adeno-associated viral (AAV) vectors is a promising gene therapy strategy for various diseases, especially genetic disorders. However, homologous recombination (HR) efficiency is extremely low in adult animal models. We assumed that increasing AAV transduction efficiency could increase genome editing activity, especially HR efficiency, for in vivo gene therapy. Firstly, a mouse phenylketonuria (PKU) model carrying a pathogenic R408W mutation in phenylalanine hydroxylase (Pah) was generated. Through co-delivery of the general AAV receptor (AAVR), we found that AAVR could dramatically increase AAV transduction efficiency in vitro and in vivo. Furthermore, co-delivery of SaCas9/sgRNA/donor templates with AAVR via AAV8 vectors increased indel rate over 2-fold and HR rate over 15-fold for the correction of the single mutation in PahR408W mice. Moreover, AAVR co-injection successfully increased the site-specific insertion rate of a 1.4 kb Pah cDNA by 11-fold, bringing the HR rate up to 7.3% without detectable global off-target effects. Insertion of Pah cDNA significantly decreased the Phe level and ameliorated PKU symptoms. This study demonstrates a novel strategy to dramatically increase AAV transduction which substantially enhanced in vivo genome editing efficiency in adult animal models, showing clinical potential for both conventional and genome editing-based gene therapy.
Collapse
Affiliation(s)
- Shuming Yin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lie Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tingting Shao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mei Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuting Guan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Liren Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yaqiang Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xi Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Honghui Han
- Bioray Laboratories Inc., Shanghai, 200241, China
| | - Nan Shen
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wenjuan Qiu
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hongquan Geng
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yongguo Yu
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shichang Li
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Weishi Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.,CIPHER GENE LLC, Beijing, 100089, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
1377
|
Boon N, Wijnholds J, Pellissier LP. Research Models and Gene Augmentation Therapy for CRB1 Retinal Dystrophies. Front Neurosci 2020; 14:860. [PMID: 32922261 PMCID: PMC7456964 DOI: 10.3389/fnins.2020.00860] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are inherited degenerative retinal dystrophies with vision loss that ultimately lead to blindness. Several genes have been shown to be involved in early onset retinal dystrophies, including CRB1 and RPE65. Gene therapy recently became available for young RP patients with variations in the RPE65 gene. Current research programs test adeno-associated viral gene augmentation or editing therapy vectors on various disease models mimicking the disease in patients. These include several animal and emerging human-derived models, such as human-induced pluripotent stem cell (hiPSC)-derived retinal organoids or hiPSC-derived retinal pigment epithelium (RPE), and human donor retinal explants. Variations in the CRB1 gene are a major cause for early onset autosomal recessive RP with patients suffering from visual impairment before their adolescence and for LCA with newborns experiencing severe visual impairment within the first months of life. These patients cannot benefit yet from an available gene therapy treatment. In this review, we will discuss the recent advances, advantages and disadvantages of different CRB1 human and animal retinal degeneration models. In addition, we will describe novel therapeutic tools that have been developed, which could potentially be used for retinal gene augmentation therapy for RP patients with variations in the CRB1 gene.
Collapse
Affiliation(s)
- Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands.,The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Lucie P Pellissier
- Biology and Bioinformatics of Signalling Systems, Physiologie de la Reproduction et des Comportements INRAE UMR 0085, CNRS UMR 7247, Université de Tours, IFCE, Nouzilly, France
| |
Collapse
|
1378
|
Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol 2020; 16:529-546. [PMID: 32796930 DOI: 10.1038/s41582-020-0389-4] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Huntington disease (HD) is a neurodegenerative disease caused by CAG repeat expansion in the huntingtin gene (HTT) and involves a complex web of pathogenic mechanisms. Mutant HTT (mHTT) disrupts transcription, interferes with immune and mitochondrial function, and is aberrantly modified post-translationally. Evidence suggests that the mHTT RNA is toxic, and at the DNA level, somatic CAG repeat expansion in vulnerable cells influences the disease course. Genome-wide association studies have identified DNA repair pathways as modifiers of somatic instability and disease course in HD and other repeat expansion diseases. In animal models of HD, nucleocytoplasmic transport is disrupted and its restoration is neuroprotective. Novel cerebrospinal fluid (CSF) and plasma biomarkers are among the earliest detectable changes in individuals with premanifest HD and have the sensitivity to detect therapeutic benefit. Therapeutically, the first human trial of an HTT-lowering antisense oligonucleotide successfully, and safely, reduced the CSF concentration of mHTT in individuals with HD. A larger trial, powered to detect clinical efficacy, is underway, along with trials of other HTT-lowering approaches. In this Review, we discuss new insights into the molecular pathogenesis of HD and future therapeutic strategies, including the modulation of DNA repair and targeting the DNA mutation itself.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- Huntington's Disease Centre, University College London, London, UK. .,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK. .,UK Dementia Research Institute, University College London, London, UK.
| | - Michael D Flower
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK
| | - Christopher A Ross
- Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward J Wild
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
1379
|
Bastola P, Song L, Gilger BC, Hirsch ML. Adeno-Associated Virus Mediated Gene Therapy for Corneal Diseases. Pharmaceutics 2020; 12:pharmaceutics12080767. [PMID: 32823625 PMCID: PMC7464341 DOI: 10.3390/pharmaceutics12080767] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
According to the World Health Organization, corneal diseases are the fourth leading cause of blindness worldwide accounting for 5.1% of all ocular deficiencies. Current therapies for corneal diseases, which include eye drops, oral medications, corrective surgeries, and corneal transplantation are largely inadequate, have undesirable side effects including blindness, and can require life-long applications. Adeno-associated virus (AAV) mediated gene therapy is an optimistic strategy that involves the delivery of genetic material to target human diseases through gene augmentation, gene deletion, and/or gene editing. With two therapies already approved by the United States Food and Drug Administration and 200 ongoing clinical trials, recombinant AAV (rAAV) has emerged as the in vivo viral vector-of-choice to deliver genetic material to target human diseases. Likewise, the relative ease of applications through targeted delivery and its compartmental nature makes the cornea an enticing tissue for AAV mediated gene therapy applications. This current review seeks to summarize the development of AAV gene therapy, highlight preclinical efficacy studies, and discuss potential applications and challenges of this technology for targeting corneal diseases.
Collapse
Affiliation(s)
- Prabhakar Bastola
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Liujiang Song
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brian C. Gilger
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Clinical Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Matthew L. Hirsch
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-919-966-0696
| |
Collapse
|
1380
|
Chakrabarti S, Pattison LA, Doleschall B, Rickman RH, Blake H, Callejo G, Heppenstall PA, Smith ESJ. Intraarticular Adeno-Associated Virus Serotype AAV-PHP.S-Mediated Chemogenetic Targeting of Knee-Innervating Dorsal Root Ganglion Neurons Alleviates Inflammatory Pain in Mice. Arthritis Rheumatol 2020; 72:1749-1758. [PMID: 32418284 DOI: 10.1002/art.41314] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Joint pain is the major clinical symptom of arthritis that affects millions of people. Controlling the excitability of knee-innervating dorsal root ganglion (DRG) neurons (knee neurons) could potentially provide pain relief. We undertook this study to evaluate whether the newly engineered adeno-associated virus (AAV) serotype, AAV-PHP.S, can deliver functional artificial receptors to control knee neuron excitability following intraarticular knee injection. METHODS The AAV-PHP.S virus, packaged with dTomato fluorescent protein and either excitatory (Gq ) or inhibitory (Gi ) designer receptors exclusively activated by designer drugs (DREADDs), was injected into the knee joints of adult mice. Labeling of DRG neurons with AAV-PHP.S from the knee was evaluated using immunohistochemistry. The functionality of Gq - and Gi -DREADDs was evaluated using whole-cell patch clamp electrophysiology on acutely cultured DRG neurons. Pain behavior in mice was assessed using a digging assay, dynamic weight bearing, and rotarod performance, before and after intraperitoneal administration of the DREADD activator, Compound 21. RESULTS We showed that AAV-PHP.S can deliver functional genes into ~7% of lumbar DRG neurons when injected into the knee joint in a similar manner to the well-established retrograde tracer, fast blue. Short-term activation of AAV-PHP.S-delivered Gq -DREADD increased excitability of knee neurons in vitro (P = 0.02 by unpaired t-test), without inducing overt pain in mice when activated in vivo. By contrast, in vivo Gi -DREADD activation alleviated digging deficits induced by Freund's complete adjuvant-mediated knee inflammation (P = 0.0002 by repeated-measures analysis of variance [ANOVA] followed by Holm-Sidak multiple comparisons test). A concomitant decrease in knee neuron excitability was observed in vitro (P = 0.005 by ANOVA followed by Holm-Sidak multiple comparisons test). CONCLUSION We describe an AAV-mediated chemogenetic approach to specifically control joint pain, which may be utilized in translational arthritic pain research.
Collapse
|
1381
|
Jamwal S, Elsworth JD, Rahi V, Kumar P. Gene therapy and immunotherapy as promising strategies to combat Huntington's disease-associated neurodegeneration: emphasis on recent updates and future perspectives. Expert Rev Neurother 2020; 20:1123-1141. [PMID: 32720531 DOI: 10.1080/14737175.2020.1801424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Modulation of gene expression using gene therapy as well as modulation of immune activation using immunotherapy has attracted considerable attention as rapidly emerging potential therapeutic intervention for the treatment of HD. Several preclinical and clinical trials for gene-based therapy and immunotherapy/antibody-based have been conducted. AREAS COVERED This review focused on the potential use of gene therapy and immuno-based therapies to treat HD, including the current status, the rationale for these approaches as well as preclinical and clinical data supporting it. Growing knowledge of HD pathogenesis has resulted in the discovery of new therapeutic targets, some of which are now in clinical trials. Focus has been allocated to RNA and DNA-based gene therapies for the reduction of mutant huntingtin (mHTT), using Immuno/antibody-based therapies. EXPERT OPINION While safety and efficacy of gene therapy and immunotherapy has been well demonstrated for HD, therefore much focus has now been shifted to disease-modifying therapies. This review defines the current status and future directions of gene therapy and immunotherapies. The review summarizes by what means HD genetic root cause modification and functional restoration of mHtt protein could be achieved by using targeted multimodality gene therapy and immunotherapy to target intracellular and extracellular mHtt.
Collapse
Affiliation(s)
- Sumit Jamwal
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT, USA
| | - John D Elsworth
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT, USA
| | - Vikrant Rahi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University , Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, School of Basic and Applied Sciences, Central University of Punjab , Bathinda, India
| |
Collapse
|
1382
|
DOK7 Gene Therapy Enhances Neuromuscular Junction Innervation and Motor Function in Aged Mice. iScience 2020; 23:101385. [PMID: 32758427 PMCID: PMC7452162 DOI: 10.1016/j.isci.2020.101385] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/21/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Muscle denervation at the neuromuscular junction (NMJ), the essential synapse between motor neuron and skeletal muscle, is associated with age-related motor impairment. Therefore, improving muscle innervation at aged NMJs may be an effective therapeutic strategy for treating the impairment. We previously demonstrated that the muscle protein Dok-7 plays an essential role in NMJ formation, and, indeed, its forced expression in muscle enlarges NMJs. Moreover, therapeutic administration of an adeno-associated virus vector encoding human Dok-7 (DOK7 gene therapy) suppressed muscle denervation and enhanced motor activity in a mouse model of amyotrophic lateral sclerosis (ALS). Here, we show that DOK7 gene therapy significantly enhances motor function and muscle strength together with NMJ innervation in aged mice. Furthermore, the treated mice showed greatly increased compound muscle action potential (CMAP) amplitudes compared with the controls, suggesting enhanced neuromuscular transmission. Thus, therapies aimed at enhancing NMJ innervation have potential for treating age-related motor impairment. DOK7 gene therapy enhances motor function and muscle strength in aged (≥2 years) mice DOK7 gene therapy enhances neuromuscular junction (NMJ) innervation in aged mice DOK7 gene therapy increases compound muscle action potential amplitudes in aged mice Enhancing NMJ innervation in the elderly may strengthen muscles and motor activities
Collapse
|
1383
|
Luly KM, Choi J, Rui Y, Green JJ, Jackson EM. Safety considerations for nanoparticle gene delivery in pediatric brain tumors. Nanomedicine (Lond) 2020; 15:1805-1815. [PMID: 32698671 PMCID: PMC7441302 DOI: 10.2217/nnm-2020-0110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/01/2020] [Indexed: 12/26/2022] Open
Abstract
Current standard of care for many CNS tumors involves surgical resection followed by chemotherapy and/or radiation. Some pediatric brain tumor types are infiltrative and diffuse in nature, which reduces the role for surgery. Furthermore, children are extremely vulnerable to neurological sequelae from surgery and radiation therapy, thus alternative approaches are in critical need. As molecular targets underlying various cancers become more clearly defined, there is an increasing push for targeted gene therapies. Viral vectors and nonviral nanoparticles have been thoroughly investigated for gene delivery and show promise as vectors for gene therapy for pediatric brain cancer. Here, we review inorganic and organic materials in development for nanoparticle gene delivery to the brain with a particular focus on safety.
Collapse
Affiliation(s)
- Kathryn M Luly
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - John Choi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yuan Rui
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Institute for Nanobiotechnology & The Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Institute for Nanobiotechnology & The Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Ophthalmology & Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Materials Science & Engineering & Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
1384
|
Duan D. Laying the Foundation for Neuromuscular Disease Gene Therapy. Hum Gene Ther 2020; 31:785-786. [PMID: 32640898 PMCID: PMC7462027 DOI: 10.1089/hum.2020.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
1385
|
Chen W, Hu Y, Ju D. Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharm Sin B 2020; 10:1347-1359. [PMID: 32963936 PMCID: PMC7488363 DOI: 10.1016/j.apsb.2020.01.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/09/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Gene therapy is rapidly emerging as a powerful therapeutic strategy for a wide range of neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Some early clinical trials have failed to achieve satisfactory therapeutic effects. Efforts to enhance effectiveness are now concentrating on three major fields: identification of new vectors, novel therapeutic targets, and reliable of delivery routes for transgenes. These approaches are being assessed closely in preclinical and clinical trials, which may ultimately provide powerful treatments for patients. Here, we discuss advances and challenges of gene therapy for neurodegenerative disorders, highlighting promising technologies, targets, and future prospects.
Collapse
Key Words
- AADC, aromatic-l-amino-acid
- AAVs, adeno-associated viruses
- AD, Alzheimer's disease
- ARSA, arylsulfatase A
- ASOs, antisense oligonucleotides
- ASPA, aspartoacylase
- Adeno-associated viruses
- Adv, adenovirus
- BBB, blood–brain barrier
- BCSFB, blood–cerebrospinal fluid barrier
- BRB, blood–retina barrier
- Bip, glucose regulated protein 78
- CHOP, CCAAT/enhancer binding homologous protein
- CLN6, ceroidlipofuscinosis neuronal protein 6
- CNS, central nervous system
- CSF, cerebrospinal fluid
- Central nervous system
- Delivery routes
- ER, endoplasmic reticulum
- FDA, U.S. Food and Drug Administration
- GAA, lysosomal acid α-glucosidase
- GAD, glutamic acid decarboxylase
- GDNF, glial derived neurotrophic factor
- Gene therapy
- HD, Huntington's disease
- HSPGs, heparin sulfate proteoglycans
- HTT, mutant huntingtin
- IDS, iduronate 2-sulfatase
- LVs, retrovirus/lentivirus
- Lamp2a, lysosomal-associated membrane protein 2a
- NGF, nerve growth factor
- Neurodegenerative disorders
- PD, Parkinson's disease
- PGRN, Progranulin
- PINK1, putative kinase 1
- PTEN, phosphatase and tensin homolog
- RGCs, retinal ganglion cells
- RNAi, RNA interference
- RPE, retinal pigmented epithelial
- SGSH, lysosomal heparan-N-sulfamidase gene
- SMN, survival motor neuron
- SOD, superoxide dismutase
- SUMF, sulfatase-modifying factor
- TFEB, transcription factor EB
- TPP1, tripeptidyl peptidase 1
- TREM2, triggering receptor expressed on myeloid cells 2
- UPR, unfolded protein response
- ZFPs, zinc finger proteins
- mTOR, mammalian target of rapamycin
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Wei Chen
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Dianwen Ju
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
| |
Collapse
|
1386
|
Abstract
PURPOSE OF REVIEW T cell-based cellular and antibody immunotherapies have dramatically altered the landscape of cancer treatment over the past decade. Over the same time span, gene editing technologies have enabled unprecedented degrees of genetic control. RECENT FINDINGS Knock-outs of endogenous genes, especially based on electroporation of targetable nucleases such as CRISPR/Cas9, have rapidly proliferated. Simultaneous introduction of large DNA sequences can integrate new synthetic genetic instructions with specific endogenous loci to alter T cell function and specificity. Recently developed discovery technologies to perform genome-wide knock-out and large-scale knock-in screens in T cells can rapidly identify endogenous gene targets and therapeutic knock-in programs. Endogenous gene knock-outs and targeted knock-ins may offer the chance to expand beyond the current limitations of randomly integrating viral vector-based T cell therapies, and extend immunotherapies' therapeutic advances to wider hematologic and solid tumor indications.
Collapse
Affiliation(s)
- Theodore L Roth
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
1387
|
Reddy OL, Savani BN, Stroncek DF, Panch SR. Advances in gene therapy for hematologic disease and considerations for transfusion medicine. Semin Hematol 2020; 57:83-91. [PMID: 32892847 DOI: 10.1053/j.seminhematol.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 12/26/2022]
Abstract
As the list of regulatory agency-approved gene therapies grows, these products are now in the therapeutic spotlight with the potential to cure or dramatically alleviate several benign and malignant hematologic diseases. The mechanisms for gene manipulation are diverse, and include the use of a variety of cell sources and both viral vector- and nuclease-based targeted approaches. Gene editing has also reached the realm of blood component therapy and testing, where cultured products are being developed to improve transfusion support for individuals with rare blood types. In this review, we summarize the milestones in the development of gene therapies for hematologic diseases, mechanisms for gene manipulation, and implications for transfusion medicine and blood centers as these therapies continue to advance and grow.
Collapse
Affiliation(s)
- Opal L Reddy
- Center for Cellular Engineering, National institutes of Health, Clinical Center, Bethesda, Maryland
| | - Bipin N Savani
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - David F Stroncek
- Center for Cellular Engineering, National institutes of Health, Clinical Center, Bethesda, Maryland
| | - Sandhya R Panch
- Center for Cellular Engineering, National institutes of Health, Clinical Center, Bethesda, Maryland.
| |
Collapse
|
1388
|
Hacker UT, Bentler M, Kaniowska D, Morgan M, Büning H. Towards Clinical Implementation of Adeno-Associated Virus (AAV) Vectors for Cancer Gene Therapy: Current Status and Future Perspectives. Cancers (Basel) 2020; 12:E1889. [PMID: 32674264 PMCID: PMC7409174 DOI: 10.3390/cancers12071889] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Adeno-associated virus (AAV) vectors have gained tremendous attention as in vivo delivery systems in gene therapy for inherited monogenetic diseases. First market approvals, excellent safety data, availability of large-scale production protocols, and the possibility to tailor the vector towards optimized and cell-type specific gene transfer offers to move from (ultra) rare to common diseases. Cancer, a major health burden for which novel therapeutic options are urgently needed, represents such a target. We here provide an up-to-date overview of the strategies which are currently developed for the use of AAV vectors in cancer gene therapy and discuss the perspectives for the future translation of these pre-clinical approaches into the clinic.
Collapse
Affiliation(s)
- Ulrich T. Hacker
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology, and Infectious Diseases, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, 04103 Leipzig, Germany;
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
| | - Martin Bentler
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
| | - Dorota Kaniowska
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology, and Infectious Diseases, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, 04103 Leipzig, Germany;
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
1389
|
Xu J, DeVries SH, Zhu Y. Quantification of Adeno-Associated Virus with Safe Nucleic Acid Dyes. Hum Gene Ther 2020; 31:1086-1099. [PMID: 32368927 DOI: 10.1089/hum.2020.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated virus (AAV) is the most commonly used viral vector for both biological and gene therapeutic applications. Although many methods have been developed to measure quantity attributes of AAV, they are often technically challenging and time-consuming. Here, we report a method to titer AAV with GelGreen® dye, a safe green fluorescence nucleic acid dye recently engineered by Biotium company (Fremont, CA). This method, hereinafter referred to as GelGreen method, provides a fast (∼30 min) and reliable strategy for AAV titration. To validate GelGreen method, we measured genome titer of an AAV reference material AAV8RSM and compared our titration results with those determined by Reference Material Working Group (ARMWG). We showed that GelGreen results and capsid enzyme-linked immunosorbent assay results are comparable with each other. We also showed that GelRed® dye, a red fluorescence dye from Biotium, can be used to directly "visualize" AAV genome titer on a conventional gel imager, presenting an especially direct approach to estimate viral quantity. Finally, we showed that GelGreen and GelRed dyes can also be used to quantify self-complementary AAV (scAAV) and crudely purified AAV samples. In summary, we described a technique to titer AAV by using new generation of safe DNA dyes. This technique is simple, safe, reliable, and cost efficient. It has potential to be broadly applied for quantifying and normalizing AAV viral vectors.
Collapse
Affiliation(s)
- Jian Xu
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Steven H DeVries
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yongling Zhu
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
1390
|
Andrews CD, Huang Y, Ho DD, Liberatore RA. In vivo expressed biologics for infectious disease prophylaxis: rapid delivery of DNA-based antiviral antibodies. Emerg Microbes Infect 2020; 9:1523-1533. [PMID: 32579067 PMCID: PMC7473320 DOI: 10.1080/22221751.2020.1787108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With increasing frequency, humans are facing outbreaks of emerging infectious diseases (EIDs) with the potential to cause significant morbidity and mortality. In the most extreme instances, such outbreaks can become pandemics, as we are now witnessing with COVID-19. According to the World Health Organization, this new disease, caused by the novel coronavirus SARS-CoV-2, has already infected more than 10 million people worldwide and led to 499,913 deaths as of 29 June, 2020. How high these numbers will eventually go depends on many factors, including policies on travel and movement, availability of medical support, and, because there is no vaccine or highly effective treatment, the pace of biomedical research. Other than an approved antiviral drug that can be repurposed, monoclonal antibodies (mAbs) hold the most promise for providing a stopgap measure to lessen the impact of an outbreak while vaccines are in development. Technical advances in mAb identification, combined with the flexibility and clinical experience of mAbs in general, make them ideal candidates for rapid deployment. Furthermore, the development of mAb cocktails can provide a faster route to developing a robust medical intervention than searching for a single, outstanding mAb. In addition, mAbs are well-suited for integration into platform technologies for delivery, in which minimal components need to be changed in order to be redirected against a novel pathogen. In particular, utilizing the manufacturing and logistical benefits of DNA-based platform technologies in order to deliver one or more antiviral mAbs has the potential to revolutionize EID responses.
Collapse
Affiliation(s)
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, New York, NY, USA.,Columbia University Vagelos College of Physicans and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, New York, NY, USA.,Columbia University Vagelos College of Physicans and Surgeons, New York, NY, USA
| | | |
Collapse
|
1391
|
Abstract
The ability to edit DNA at the nucleotide level using clustered regularly interspaced short palindromic repeats (CRISPR) systems is a relatively new investigative tool that is revolutionizing the analysis of many aspects of human health and disease, including orthopaedic disease. CRISPR, adapted for mammalian cell genome editing from a bacterial defence system, has been shown to be a flexible, programmable, scalable, and easy-to-use gene editing tool. Recent improvements increase the functionality of CRISPR through the engineering of specific elements of CRISPR systems, the discovery of new, naturally occurring CRISPR molecules, and modifications that take CRISPR beyond gene editing to the regulation of gene transcription and the manipulation of RNA. Here, the basics of CRISPR genome editing will be reviewed, including a description of how it has transformed some aspects of molecular musculoskeletal research, and will conclude by speculating what the future holds for the use of CRISPR-related treatments and therapies in clinical orthopaedic practice. Cite this article: Bone Joint Res 2020;9(7):351–359.
Collapse
Affiliation(s)
- Jamie Fitzgerald
- Bone and Joint Center, Henry Ford Hospital, Integrative Biosciences Center, Detroit, Michigan, USA
| |
Collapse
|
1392
|
Adams B, Bak H, Tustian AD. Moving from the bench towards a large scale, industrial platform process for adeno‐associated viral vector purification. Biotechnol Bioeng 2020; 117:3199-3211. [DOI: 10.1002/bit.27472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Hanne Bak
- Regeneron Pharmaceuticals Inc. Tarrytown New York
| | | |
Collapse
|
1393
|
Huang L, Kebschull JM, Fürth D, Musall S, Kaufman MT, Churchland AK, Zador AM. BRICseq Bridges Brain-wide Interregional Connectivity to Neural Activity and Gene Expression in Single Animals. Cell 2020; 182:177-188.e27. [PMID: 32619423 PMCID: PMC7771207 DOI: 10.1016/j.cell.2020.05.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 03/27/2020] [Accepted: 05/15/2020] [Indexed: 12/26/2022]
Abstract
Comprehensive analysis of neuronal networks requires brain-wide measurement of connectivity, activity, and gene expression. Although high-throughput methods are available for mapping brain-wide activity and transcriptomes, comparable methods for mapping region-to-region connectivity remain slow and expensive because they require averaging across hundreds of brains. Here we describe BRICseq (brain-wide individual animal connectome sequencing), which leverages DNA barcoding and sequencing to map connectivity from single individuals in a few weeks and at low cost. Applying BRICseq to the mouse neocortex, we find that region-to-region connectivity provides a simple bridge relating transcriptome to activity: the spatial expression patterns of a few genes predict region-to-region connectivity, and connectivity predicts activity correlations. We also exploited BRICseq to map the mutant BTBR mouse brain, which lacks a corpus callosum, and recapitulated its known connectopathies. BRICseq allows individual laboratories to compare how age, sex, environment, genetics, and species affect neuronal wiring and to integrate these with functional activity and gene expression.
Collapse
Affiliation(s)
- Longwen Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Justus M Kebschull
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Daniel Fürth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Simon Musall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Matthew T Kaufman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, USA
| | | | - Anthony M Zador
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
1394
|
Witzigmann D, Kulkarni JA, Leung J, Chen S, Cullis PR, van der Meel R. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv Drug Deliv Rev 2020; 159:344-363. [PMID: 32622021 PMCID: PMC7329694 DOI: 10.1016/j.addr.2020.06.026] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/12/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Hereditary genetic disorders, cancer, and infectious diseases of the liver affect millions of people around the globe and are a major public health burden. Most contemporary treatments offer limited relief as they generally aim to alleviate disease symptoms. Targeting the root cause of diseases originating in the liver by regulating malfunctioning genes with nucleic acid-based drugs holds great promise as a therapeutic approach. However, employing nucleic acid therapeutics in vivo is challenging due to their unfavorable characteristics. Lipid nanoparticle (LNP) delivery technology is a revolutionary development that has enabled clinical translation of gene therapies. LNPs can deliver siRNA, mRNA, DNA, or gene-editing complexes, providing opportunities to treat hepatic diseases by silencing pathogenic genes, expressing therapeutic proteins, or correcting genetic defects. Here we discuss the state-of-the-art LNP technology for hepatic gene therapy including formulation design parameters, production methods, preclinical development and clinical translation.
Collapse
Affiliation(s)
- Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada
| | - Jayesh A Kulkarni
- NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada; Evonik Canada, Vancouver, BC, Canada
| | - Jerry Leung
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Sam Chen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Integrated Nanotherapeutics, Vancouver, BC, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada.
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
1395
|
Pereira-Silva M, Jarak I, Alvarez-Lorenzo C, Concheiro A, Santos AC, Veiga F, Figueiras A. Micelleplexes as nucleic acid delivery systems for cancer-targeted therapies. J Control Release 2020; 323:442-462. [DOI: 10.1016/j.jconrel.2020.04.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/09/2023]
|
1396
|
Ledo AM, Vining KH, Alonso MJ, Garcia-Fuentes M, Mooney DJ. Extracellular matrix mechanics regulate transfection and SOX9-directed differentiation of mesenchymal stem cells. Acta Biomater 2020; 110:153-163. [PMID: 32417266 PMCID: PMC7291356 DOI: 10.1016/j.actbio.2020.04.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
Abstract
Gene delivery within hydrogel matrices can potentially direct mesenchymal stem cells (MSCs) towards a chondrogenic fate to promote regeneration of cartilage. Here, we investigated whether the mechanical properties of the hydrogel containing the gene delivery systems could enhance transfection and chondrogenic programming of primary human bone marrow-derived MSCs. We developed collagen-I-alginate interpenetrating polymer network hydrogels with tunable stiffness and adhesion properties. The hydrogels were activated with nanocomplexed SOX9 polynucleotides to direct chondrogenic differentiation of MSCs. MSCs transfected within the hydrogels showed higher expression of chondrogenic markers compared to MSCs transfected in 2D prior to encapsulation. The nanocomplex uptake and resulting expression of transfected SOX9 were jointly enhanced by increased stiffness and cell-adhesion ligand density in the hydrogels. Further, transfection of SOX9 effectively induced MSCs chondrogenesis and reduced markers of hypertrophy compared to control matrices. These findings highlight the importance of matrix stiffness and adhesion as design parameters in gene-activated matrices for regenerative medicine. STATEMENT OF SIGNIFICANCE: Gene-activated matrices (GAMs) are biodegradable polymer networks integrating gene therapies, and they are promising technologies for supporting tissue regeneration. Despite this interest, there is still limited information on how to rationally design these systems. Here, we provide a systematic study of the effect of matrix stiffness and cell adhesion ligands on gene transfer efficiency. We show that high stiffness and the presence of cell-binding sites promote transfection efficiency and that this result is related to more efficient internalization and trafficking of the gene therapies. GAMs with optimized mechanical properties can induce cartilage formation and result in tissues with better characteristics for articular cartilage tissue engineering as compared to previously described standard methods.
Collapse
Affiliation(s)
- Adriana M Ledo
- Department of Pharmacy and Pharmaceutical Technology, IDIS Research Institute, CIMUS Research Institute, University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Kyle H Vining
- Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Maria J Alonso
- Department of Pharmacy and Pharmaceutical Technology, IDIS Research Institute, CIMUS Research Institute, University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Marcos Garcia-Fuentes
- Department of Pharmacy and Pharmaceutical Technology, IDIS Research Institute, CIMUS Research Institute, University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
1397
|
Hsu HL, Brown A, Loveland AB, Lotun A, Xu M, Luo L, Xu G, Li J, Ren L, Su Q, Gessler DJ, Wei Y, Tai PWL, Korostelev AA, Gao G. Structural characterization of a novel human adeno-associated virus capsid with neurotropic properties. Nat Commun 2020; 11:3279. [PMID: 32606306 PMCID: PMC7327033 DOI: 10.1038/s41467-020-17047-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 05/27/2020] [Indexed: 02/05/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) are currently considered the safest and most reliable gene delivery vehicles for human gene therapy. Three serotype capsids, AAV1, AAV2, and AAV9, have been approved for commercial use in patients, but they may not be suitable for all therapeutic contexts. Here, we describe a novel capsid identified in a human clinical sample by high-throughput, long-read sequencing. The capsid, which we have named AAVv66, shares high sequence similarity with AAV2. We demonstrate that compared to AAV2, AAVv66 exhibits enhanced production yields, virion stability, and CNS transduction. Unique structural properties of AAVv66 visualized by cryo-EM at 2.5-Å resolution, suggest that critical residues at the three-fold protrusion and at the interface of the five-fold axis of symmetry likely contribute to the beneficial characteristics of AAVv66. Our findings underscore the potential of AAVv66 as a gene therapy vector.
Collapse
Affiliation(s)
- Hung-Lun Hsu
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Alexander Brown
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna B Loveland
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anoushka Lotun
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Meiyu Xu
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Li Luo
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R., China
| | - Guangchao Xu
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R., China
| | - Jia Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lingzhi Ren
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yuquan Wei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R., China
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
1398
|
Adachi K, Dissen GA, Lomniczi A, Xie Q, Ojeda SR, Nakai H. Adeno-associated virus-binding antibodies detected in cats living in the Northeastern United States lack neutralizing activity. Sci Rep 2020; 10:10073. [PMID: 32572045 PMCID: PMC7308316 DOI: 10.1038/s41598-020-66596-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Cats are a critical pre-clinical model for studying adeno-associated virus (AAV) vector-mediated gene therapies. A recent study has described the high prevalence of anti-AAV neutralizing antibodies among domestic cats in Switzerland. However, our knowledge of pre-existing humoral immunity against various AAV serotypes in cats is still limited. Here, we show that, although antibodies binding known AAV serotypes (AAV1 to AAV11) are prevalent in cats living in the Northeastern United States, these antibodies do not necessarily neutralize AAV infectivity. We analyzed sera from 35 client-owned, 20 feral, and 30 specific pathogen-free (SPF) cats for pre-existing AAV-binding antibodies against the 11 serotypes. Antibody prevalence was 7 to 90% with an overall median of 50%. The AAV-binding antibodies showed broad reactivities with other serotypes. Of 44 selected antibodies binding AAV2, AAV6 or AAV9, none exhibited appreciable neutralizing activities. Instead, AAV6 or AAV9-binding antibodies showed a transduction-enhancing effect. AAV6-binding antibodies were highly prevalent in SPF cats (83%), but this was primarily due to cross-reactivity with preventive vaccine-induced anti-feline panleukopenia virus antibodies. These results indicate that prevalent pre-existing immunity in cats is not necessarily inhibitory to AAV and highlight a substantial difference in the nature of AAV-binding antibodies in cats living in geographically different regions.
Collapse
Affiliation(s)
- Kei Adachi
- Department of Molecular & Medical Genetics, Oregon Health & Science University School of Medicine, Portland, Oregon, 97239, USA
| | - Gregory A Dissen
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, 97006, United States of America.,Molecular Virology Core, Oregon National Primate Research Center, Beaverton, Oregon, 97006, United States of America
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, 97006, United States of America
| | - Qing Xie
- Department of Molecular & Medical Genetics, Oregon Health & Science University School of Medicine, Portland, Oregon, 97239, USA
| | - Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, 97006, United States of America
| | - Hiroyuki Nakai
- Department of Molecular & Medical Genetics, Oregon Health & Science University School of Medicine, Portland, Oregon, 97239, USA. .,Department of Molecular Microbiology & Immunology, Oregon Health & Science University School of Medicine, Portland, Oregon, 97239, USA. .,Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, 97006, United States of America.
| |
Collapse
|
1399
|
Yang YS, Xie J, Chaugule S, Wang D, Kim JM, Kim J, Tai PW, Seo SK, Gravallese E, Gao G, Shim JH. Bone-Targeting AAV-Mediated Gene Silencing in Osteoclasts for Osteoporosis Therapy. Mol Ther Methods Clin Dev 2020; 17:922-935. [PMID: 32405514 PMCID: PMC7210389 DOI: 10.1016/j.omtm.2020.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/13/2020] [Indexed: 12/26/2022]
Abstract
Improper activity of bone-resorbing osteoclasts results in low bone density and deterioration of bone structure, which increase the risk of fractures. Anti-resorptive therapies targeting osteoclasts have proven effective in preserving bone mass, but these therapeutic agents lead to defective new bone formation and numerous potential side effects. In this study, we demonstrate that recombinant adeno-associated virus, serotype 9 (rAAV9) can deliver to osteoclasts an artificial microRNA (amiR) that silences expression of key osteoclast regulators, RANK (receptor activator for nuclear factor κB) and cathepsin K (rAAV9.amiR-rank, rAAV9.amiR-ctsk), to prevent bone loss in osteoporosis. As rAAV9 is highly effective for the transduction of osteoclasts, systemic administration of rAAV9 carrying amiR-rank or amiR-ctsk results in a significant increase of bone mass in mice. Furthermore, the bone-targeting peptide motif (Asp)14 or (AspSerSer)6 was grafted onto the AAV9-VP2 capsid protein, resulting in significant reduction of transgene expression in non-bone peripheral organs. Finally, systemic delivery of bone-targeting rAAV9.amiR-ctsk counteracts bone loss and improves bone mechanical properties in mouse models of postmenopausal and senile osteoporosis. Collectively, inhibition of osteoclast-mediated bone resorption via bone-targeting rAAV9-mediated silencing of ctsk is a promising gene therapy that can preserve bone formation and mitigate osteoporosis, while limiting adverse off-target effects.
Collapse
Affiliation(s)
- Yeon-Suk Yang
- Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sachin Chaugule
- Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jung-Min Kim
- Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA, USA
| | - JiHea Kim
- Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W.L. Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Seok-kyo Seo
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ellen Gravallese
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jae-Hyuck Shim
- Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
1400
|
Buck TM, Wijnholds J. Recombinant Adeno-Associated Viral Vectors (rAAV)-Vector Elements in Ocular Gene Therapy Clinical Trials and Transgene Expression and Bioactivity Assays. Int J Mol Sci 2020; 21:E4197. [PMID: 32545533 PMCID: PMC7352801 DOI: 10.3390/ijms21124197] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Inherited retinal dystrophies and optic neuropathies cause chronic disabling loss of visual function. The development of recombinant adeno-associated viral vectors (rAAV) gene therapies in all disease fields have been promising, but the translation to the clinic has been slow. The safety and efficacy profiles of rAAV are linked to the dose of applied vectors. DNA changes in the rAAV gene cassette affect potency, the expression pattern (cell-specificity), and the production yield. Here, we present a library of rAAV vectors and elements that provide a workflow to design novel vectors. We first performed a meta-analysis on recombinant rAAV elements in clinical trials (2007-2020) for ocular gene therapies. We analyzed 33 unique rAAV gene cassettes used in 57 ocular clinical trials. The rAAV gene therapy vectors used six unique capsid variants, 16 different promoters, and six unique polyadenylation sequences. Further, we compiled a list of promoters, enhancers, and other sequences used in current rAAV gene cassettes in preclinical studies. Then, we give an update on pro-viral plasmid backbones used to produce the gene therapy vectors, inverted terminal repeats, production yield, and rAAV safety considerations. Finally, we assess rAAV transgene and bioactivity assays applied to cells or organoids in vitro, explants ex vivo, and clinical studies.
Collapse
Affiliation(s)
- Thilo M. Buck
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
- Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|