101
|
Xulu KR, Womersley JS, Sommer J, Hinsberger M, Elbert T, Weierstall R, Kaminer D, Malan-Müller S, Seedat S, Hemmings SMJ. DNA methylation and psychotherapy response in trauma-exposed men with appetitive aggression. Psychiatry Res 2021; 295:113608. [PMID: 33290938 DOI: 10.1016/j.psychres.2020.113608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Exposure to violence can lead to appetitive aggression (AA), the positive feeling and fascination associated with violence, and posttraumatic stress disorder (PTSD), characterised by hyperarousal, reexperience and feelings of ongoing threat. Psychotherapeutic interventions may act via DNA methylation, an environmentally sensitive epigenetic mechanism that can influence gene expression. We investigated epigenetic signatures of psychotherapy for PTSD and AA symptoms in South African men with chronic trauma exposure. Participants were assigned to one of three groups: narrative exposure therapy for forensic offender rehabilitation (FORNET), cognitive behavioural therapy or waiting list control (n = 9-10/group). Participants provided saliva and completed the Appetitive Aggression Scale and PTSD Symptom Severity Index at baseline, 8-month and 16-month follow-up. The relationship, over time, between methylation in 22 gene promoter region sites, symptom scores, and treatment was assessed using linear mixed models. Compared to baseline, PTSD and AA symptom severity were significantly reduced at 8 and 16 months, respectively, in the FORNET group. Increased methylation of genes implicated in dopaminergic neurotransmission (NR4A2) and synaptic plasticity (AUTS2) was associated with reduced PTSD symptom severity in participants receiving FORNET. Analyses across participants revealed a proportional relationship between AA and methylation of TFAM, a gene involved in mitochondrial biosynthesis.
Collapse
Affiliation(s)
- Khethelo R Xulu
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Jacqueline S Womersley
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Jessica Sommer
- Department of Psychology, University of Konstanz, Konstanz, Germany.
| | | | - Thomas Elbert
- Department of Psychology, University of Konstanz, Konstanz, Germany.
| | - Roland Weierstall
- Department of Psychology, University of Konstanz, Konstanz, Germany; Clinical Psychology & Psychotherapy, Medical School Hamburg, Hamburg, Germany.
| | - Debbie Kaminer
- Department of Psychology, University of Cape Town, Cape Town, South Africa.
| | - Stefanie Malan-Müller
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
102
|
Spectral fingerprinting to evaluate effects of storage conditions on biomolecular structure of filter-dried saliva samples and recovered DNA. Sci Rep 2020; 10:21442. [PMID: 33293589 PMCID: PMC7722934 DOI: 10.1038/s41598-020-78306-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Saliva has been widely recognized as a non-invasive, painless and easy-to-collect bodily fluid, which contains biomarkers that can be used for diagnosis of both oral and systemic diseases. Under ambient conditions, salivary biomarkers are subject to degradation. Therefore, in order to minimize degradation during transport and storage, saliva specimens need to be stabilized. The aim of this study was to investigate the feasibility of preserving saliva samples by drying to provide a shelf-stable source of DNA. Human saliva was dried on filters under ambient conditions using sucrose as lyoprotective agent. Samples were stored under different conditions, i.e. varying relative humidity (RH) and temperature. In addition to assessment of different cell types in saliva and their DNA contents, Fourier transform infrared spectroscopy (FTIR) was used to evaluate the effects of storage on biomolecular structure characteristics of saliva. FTIR analysis showed that saliva dried without a lyoprotectant exhibits a higher content of extended β-sheet protein secondary structures compared to samples that were dried with sucrose. In order to evaluate differences in characteristic bands arising from the DNA backbone among differently stored samples, principal component analysis (PCA) was performed, allowing a clear discrimination between groups with/without sucrose as well as storage durations and conditions. Our results indicated that saliva dried on filters in the presence of sucrose exhibits higher biomolecular stability during storage.
Collapse
|
103
|
Iroanya OO, Obi JC, Ogunyinka OO, Bosede OT, Egwuatu TF, Adewole RA. Messenger RNA (mRNA)-based age determination using skin-specific markers of saliva epithelial cells. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Age determination is a vital factor in biological identification in forensics. This study was carried out to determine the expression levels of three target genes (Keratin 9 (KRT9), Loricrin (LOR) and Corneodesmosin (CDSN)) in salivary epithelial cells and how they can be used in age determination using reference gene, β-actin. Thirty young adults participated in the study and were divided into three groups according to their ages (16–20, 21–25, and 26–30). Ribonucleic acid (RNA) extraction, complementary deoxyribonucleic acid (cDNA) synthesis and quantitative polymerase chain reaction (qPCR) were performed. Data analysis was done using IBM SPSS Version 26 and the comparative Ct method (2−∆∆Ct method).
Results
CDSN was detected in all the sampled age groups. Though the age group 16–20 had the highest (0.4237) expression of CDSN among the three age groups, there was no significant difference (p > 0.05) in the expression of the gene among the three age groups. The LOR gene was lowly expressed across all age groups used in the study. The expression of the gene did not significantly differ (p > 0.05) between the control and 26–30 years age group, but they were however significantly higher (F = 36.47, p ≤ 0.05) than the expression of the gene in both 16–20 and 21–25 years age groups. The KRT9 gene was expressed only in age groups 16–20 and 26–30 and the expression of the gene did not significantly (p > 0.05) differ between these age groups. Though the expression of all the target genes was low, it was observed that the LOR gene expression varied among 21–25 and 26–30 age groups; therefore, more data and further analyses are still required since this experimental approach for age determination using gene expression is still at an emerging stage.
Conclusion
Although RNA concentration was low and the expression values of the genes were low and could not be used in comparing the expression levels among the three age groups, it can be concluded that the three messenger ribonucleic acid (mRNA) markers CDSN, LOR and KRT9, as well as the ACTB reference mRNA marker analysed via the described qPCR assays, are suitable for identifying epithelial cells in saliva.
Collapse
|
104
|
Duffy HBD, Roth TL. Increases in Bdnf DNA Methylation in the Prefrontal Cortex Following Aversive Caregiving Are Reflected in Blood Tissue. Front Hum Neurosci 2020; 14:594244. [PMID: 33324186 PMCID: PMC7721665 DOI: 10.3389/fnhum.2020.594244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
Child maltreatment not only leads to epigenetic changes, but also increases the risk of related behavioral deficits and mental disorders. These issues presumably are most closely associated with epigenetic changes in the brain, but epigenetic changes in peripheral tissues like blood are often examined instead, due to their accessibility. As such, the reliability of using the peripheral epigenome as a proxy for that of the brain is imperative. Previously, our lab has found aberrant methylation at the Brain-derived neurotrophic factor (Bdnf) gene in the prefrontal cortex of rats following aversive caregiving. The current study examined whether aversive caregiving alters Bdnf DNA methylation in the blood compared to the prefrontal cortex. It was revealed that DNA methylation associated with adversity increased in both tissues, but this methylation was not correlated between tissues. These findings indicate that group trends in Bdnf methylation between blood and the brain are comparable, but variation exists among individual subjects.
Collapse
Affiliation(s)
- Hannah B D Duffy
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
105
|
De Nardi L, Carpentieri V, Pascale E, Pucci M, D’Addario C, Cerniglia L, Adriani W, Cimino S. Involvement of DAT1 Gene on Internet Addiction: Cross-Correlations of Methylation Levels in 5'-UTR and 3'-UTR Genotypes, Interact with Impulsivity and Attachment-Driven Quality of Relationships. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7956. [PMID: 33138218 PMCID: PMC7663088 DOI: 10.3390/ijerph17217956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/10/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Internet influences our communication, social and work interactions, entertainment, and many other aspects of life. Even if the original purpose was to simplify our lives, an excessive and/or maladaptive use of it may have negative consequences. The dopamine transporter (DAT1) gene was studied in relation to addictions, including excessive use of the Internet. The crucial role of DAT1 was previously underlined in modulating emotional aspects, such as affiliative behaviors. The present research follows a new approach based on cross-correlation between (de)methylation levels in couples of CpG loci, as previously shown. We investigated the possible relationships between Internet addiction, impulsivity, quality of attachment, DAT1 genotypes (from the 3'-untranslated region (UTR) variable number of tandem repeats (VNTR) poly-morphism), and the dynamics of methylation within the 5'-UTR of the DAT1 gene. From a normative sample of 79 youths, we extrapolated three subgroups a posteriori, i.e., one "vulnerable" with high Internet Addiction Test (IAT) scores (and high Barrat Impulsivity Scale (BIS) scores; n = 9) and two "controls'' with low BIS scores and 10/10 vs. 9/x genotype (n = 12 each). Controls also had a "secure" attachment pattern, while genotypes and attachment styles were undistinguished in the vulnerable subgroup (none showed overt Internet addiction). We found a strongly positive correlation in all groups between CpG2 and CpG3. An unsuspected relationship between the 3'-UTR genotype and a 5'-UTR intra-motif link was revealed by CpG5-CpG6 comparison. The negative correlation between the CpG3-CpG5 positions was quite significant in the control groups (both with genotype 10/10 and with genotype 9/x), whereas a tendency toward positive correlation emerged within the high IAT group. In conclusion, future attention shall be focused on the intra- and inter-motif interactions of methylation on the CpG island at the 5'-UTR of DAT1.
Collapse
Affiliation(s)
- Laura De Nardi
- Faculty of Psychology, International Telematic University Uninettuno, I-00186 Rome, Italy; (L.D.N.); (L.C.)
| | - Valentina Carpentieri
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, I-00161 Rome, Italy;
| | - Esterina Pascale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, I-00161 Rome, Italy;
| | - Mariangela Pucci
- Faculty of Bioscience & Technology for Food, for Agriculture and for Environment, University of Teramo, I-64100 Teramo, Italy; (M.P.); (C.D.)
| | - Claudio D’Addario
- Faculty of Bioscience & Technology for Food, for Agriculture and for Environment, University of Teramo, I-64100 Teramo, Italy; (M.P.); (C.D.)
| | - Luca Cerniglia
- Faculty of Psychology, International Telematic University Uninettuno, I-00186 Rome, Italy; (L.D.N.); (L.C.)
| | - Walter Adriani
- Faculty of Psychology, International Telematic University Uninettuno, I-00186 Rome, Italy; (L.D.N.); (L.C.)
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, I-00161 Rome, Italy;
| | - Silvia Cimino
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, I-00186 Rome, Italy;
| |
Collapse
|
106
|
Abstract
Effects of stresses associated with extremely preterm birth may be biologically "recorded" in the genomes of individuals born preterm via changes in DNA methylation (DNAm) patterns. Genome-wide DNAm profiles were examined in buccal epithelial cells from 45 adults born at extremely low birth weight (ELBW; ≤1000 g) in the oldest known cohort of prospectively followed ELBW survivors (Mage = 32.35 years, 17 male), and 47 normal birth weight (NBW; ≥2500 g) control adults (Mage = 32.43 years, 20 male). Sex differences in DNAm profiles were found in both birth weight groups, but they were greatly enhanced in the ELBW group (77,895 loci) versus the NBW group (3,424 loci), suggesting synergistic effects of extreme prenatal adversity and sex on adult DNAm profiles. In men, DNAm profiles differed by birth weight group at 1,354 loci on 694 unique genes. Only two loci on two genes distinguished between ELBW and NBW women. Gene ontology (GO) and network analyses indicated that loci differentiating between ELBW and NBW men were abundant in genes within biological pathways related to neuronal development, synaptic transportation, metabolic regulation, and cellular regulation. Findings suggest increased sensitivity of males to long-term epigenetic effects of extremely preterm birth. Group differences are discussed in relation to particular gene functions.
Collapse
|
107
|
Straight B, Fisher G, Needham BL, Naugle A, Olungah C, Wanitjirattikal P, Root C, Farman J, Barkman T, Lalancette C. Lifetime stress and war exposure timing may predict methylation changes at NR3C1 based on a pilot study in a warrior cohort in a small-scale society in Kenya. Am J Hum Biol 2020; 33:e23515. [PMID: 33058324 DOI: 10.1002/ajhb.23515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Candidate gene methylation studies of NR3C1 have identified associations with psychosocial adversity, including war trauma. This pilot study (sample sizes from 22 to 45 for primary analyses) examined NR3C1 methylation in a group of Kenyan pastoralist young men in relation to culturally relevant traumatic experiences, including participation in coalitional lethal gun violence. METHODS Adolescent and young adult Samburu men ("warriors") were recruited for participation. DNA was obtained from whole saliva and methylation analyses performed using mass spectrometry. We performed a data reduction of variables from a standardized instrument of lifetime stress using a factor analysis and we assessed the association between the extracted factors with culturally relevant and cross-culturally comparative experiences. RESULTS Cumulative lifetime trauma exposure and forms of violence to which warriors are particularly susceptible were associated with DNA methylation changes in the NR3C1 1F promoter region but not in the NR3C1 1D promoter region. However, sensitivity analyses revealed significant associations between individual CpG sites in both regions and cumulative stress exposures, war exposure timing, and war fatalities. CONCLUSIONS This study supports the importance of NR3C1 methylation changes in response to challenging life circumstances, including in a global south cultural context that contrasts in notable ways from global north contexts and from the starkly tragic examples of the Rwandan genocide and war-associated rape explored in recent studies. Timing of traumatic exposure and culturally salient means to measure enduring symptoms of trauma remain important considerations for DNA methylation studies.
Collapse
Affiliation(s)
- Bilinda Straight
- Department of Anthropology, Western Michigan University, Kalamazoo, Michigan, USA
| | - Georgiana Fisher
- Department of Statistics, Western Michigan University, Kalamazoo, Michigan, USA
| | - Belinda L Needham
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy Naugle
- Department of Psychology, Western Michigan University, Kalamazoo, Michigan, USA
| | - Charles Olungah
- University of Nairobi Institute of Anthropology, Gender & African Studies, Nairobi, Nairobi, Kenya
| | | | - Cecilia Root
- Unaffiliated (Western Michigan University Department of Anthropology Alum), Kalamazoo, Michigan, USA
| | - Jen Farman
- Unaffiliated (Western Michigan University Department of Anthropology Alum), Kalamazoo, Michigan, USA
| | - Todd Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| | | |
Collapse
|
108
|
Preliminary indications that the Attachment and Biobehavioral Catch-up Intervention alters DNA methylation in maltreated children. Dev Psychopathol 2020; 32:1486-1494. [PMID: 31854285 DOI: 10.1017/s0954579419001421] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Maltreatment during development is associated with epigenetic changes to the genome. Enhancing caregiving may mitigate these effects. Attachment and Biobehavioral Catch-Up (ABC) is an intervention that has been shown to improve parent-child relationships and a variety of biological and behavioral outcomes among children that are involved in Child Protective Services. This preliminary study, using a small sample size, explored whether children who received ABC exhibit different methylation patterns than those who received a control intervention. The participants included 23 children aged 6-21 months who were randomized to receive ABC (n = 12) or a control intervention (n = 11). While the children displayed similar methylation patterns preintervention, DNA methylation varied between the ABC and control groups at 14,828 sites postintervention. Functional pathway analyses indicated that these differences were associated with gene pathways that are involved in cell signaling, metabolism, and neuronal development. This study is one of the first to explore parenting intervention effects on children's DNA methylation at the whole genome level in infancy. These preliminary findings provide a basis for hypothesis generation in further research with larger-scale studies regarding the malleability of epigenetic states that are associated with maltreatment.
Collapse
|
109
|
McEwen LM, O'Donnell KJ, McGill MG, Edgar RD, Jones MJ, MacIsaac JL, Lin DTS, Ramadori K, Morin A, Gladish N, Garg E, Unternaehrer E, Pokhvisneva I, Karnani N, Kee MZL, Klengel T, Adler NE, Barr RG, Letourneau N, Giesbrecht GF, Reynolds JN, Czamara D, Armstrong JM, Essex MJ, de Weerth C, Beijers R, Tollenaar MS, Bradley B, Jovanovic T, Ressler KJ, Steiner M, Entringer S, Wadhwa PD, Buss C, Bush NR, Binder EB, Boyce WT, Meaney MJ, Horvath S, Kobor MS. The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells. Proc Natl Acad Sci U S A 2020; 117:23329-23335. [PMID: 31611402 PMCID: PMC7519312 DOI: 10.1073/pnas.1820843116] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The development of biological markers of aging has primarily focused on adult samples. Epigenetic clocks are a promising tool for measuring biological age that show impressive accuracy across most tissues and age ranges. In adults, deviations from the DNA methylation (DNAm) age prediction are correlated with several age-related phenotypes, such as mortality and frailty. In children, however, fewer such associations have been made, possibly because DNAm changes are more dynamic in pediatric populations as compared to adults. To address this gap, we aimed to develop a highly accurate, noninvasive, biological measure of age specific to pediatric samples using buccal epithelial cell DNAm. We gathered 1,721 genome-wide DNAm profiles from 11 different cohorts of typically developing individuals aged 0 to 20 y old. Elastic net penalized regression was used to select 94 CpG sites from a training dataset (n = 1,032), with performance assessed in a separate test dataset (n = 689). DNAm at these 94 CpG sites was highly predictive of age in the test cohort (median absolute error = 0.35 y). The Pediatric-Buccal-Epigenetic (PedBE) clock was characterized in additional cohorts, showcasing the accuracy in longitudinal data, the performance in nonbuccal tissues and adult age ranges, and the association with obstetric outcomes. The PedBE tool for measuring biological age in children might help in understanding the environmental and contextual factors that shape the DNA methylome during child development, and how it, in turn, might relate to child health and disease.
Collapse
Affiliation(s)
- Lisa M McEwen
- Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - Kieran J O'Donnell
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada H4H 1R3
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR) Institute, Toronto, ON, Canada M5G 1M1
| | - Megan G McGill
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada H4H 1R3
| | - Rachel D Edgar
- Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - Meaghan J Jones
- Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - David Tse Shen Lin
- Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - Katia Ramadori
- Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - Alexander Morin
- Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - Nicole Gladish
- Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - Elika Garg
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada H4H 1R3
| | - Eva Unternaehrer
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada H4H 1R3
| | - Irina Pokhvisneva
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada H4H 1R3
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR); Singapore 117609
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596
| | - Michelle Z L Kee
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR); Singapore 117609
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School-McLean Hospital, Belmont, MA 02478
| | - Nancy E Adler
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR) Institute, Toronto, ON, Canada M5G 1M1
- Department of Psychiatry, University of California, San Francisco, CA 94143
- Department of Pediatrics, University of California, San Francisco, CA 94143
| | - Ronald G Barr
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR) Institute, Toronto, ON, Canada M5G 1M1
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Nicole Letourneau
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
- Faculty of Nursing, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Gerald F Giesbrecht
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - James N Reynolds
- Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Jeffrey M Armstrong
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53706
| | - Marilyn J Essex
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53706
| | - Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR, Nijmegen, The Netherlands
| | - Roseriet Beijers
- Behavioural Science Institute, Radboud University, 6525 HR, Nijmegen, The Netherlands
| | - Marieke S Tollenaar
- Leiden Institute for Brain and Cognition, Institute of Psychology, Leiden University, 2300 RB, Leiden, The Netherlands
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School-McLean Hospital, Belmont, MA 02478
| | - Meir Steiner
- Department of Psychiatry and Behavioural Neurosciences, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, ON, Canada L8S 4L8
| | - Sonja Entringer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, 10117 Berlin, Germany
- Development, Health, and Disease Research Program, University of California, Irvine, CA 92617
| | - Pathik D Wadhwa
- Development, Health, and Disease Research Program, University of California, Irvine, CA 92617
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, 92617
- Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, 92617
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA, 92617
| | - Claudia Buss
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, 10117 Berlin, Germany
| | - Nicole R Bush
- Department of Psychiatry, University of California, San Francisco, CA 94143
| | - Elisabeth B Binder
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR) Institute, Toronto, ON, Canada M5G 1M1
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322
| | - W Thomas Boyce
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR) Institute, Toronto, ON, Canada M5G 1M1
- Department of Psychiatry, University of California, San Francisco, CA 94143
- Department of Pediatrics, University of California, San Francisco, CA 94143
| | - Michael J Meaney
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada H4H 1R3
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR) Institute, Toronto, ON, Canada M5G 1M1
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR); Singapore 117609
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095;
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA 90095
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4;
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR) Institute, Toronto, ON, Canada M5G 1M1
| |
Collapse
|
110
|
Chubar V, Luyten P, Goossens L, Bekaert B, Bleys D, Soenens B, Claes S. The link between parental psychological control, depressive symptoms and epigenetic changes in the glucocorticoid receptor gene (NR3C1). Physiol Behav 2020; 227:113170. [PMID: 32956684 DOI: 10.1016/j.physbeh.2020.113170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022]
Abstract
AIMS This paper examines the relationship between parental Psychological Control (PC) and depressive symptoms in adolescents and assesses whether this relationship was mediated by DNA methylation, focusing on the glucocorticoid receptor gene (NR3C1), which plays a crucial role in HPA-axis functioning and is linked to environmental stress and depression. This is among the very few studies that looked at the relation between DNA methylation, environmental stress and depression in family trios. METHODS The study cohort consisted of 250 families: father, mother and a biologically related adolescent (adolescents (48.9% boys), mean age: 15.14, SD= 1.9; mean age mothers: 45.83, SD= 4.2; mean age fathers: 47.77, SD= 4.7). Depressive symptoms and PC were measured in adolescents and in both parents. DNA methylation levels in NR3C1 were examined in all participants. RESULTS Depressive symptoms in adolescents were predicted by PC of both mothers and fathers. Moreover, maternal depressive symptoms were associated with maternal PC, and fathers' depressive symptoms and PC. In fathers, only the level of their self-reported PC was associated with their depressive symptoms. There was no relation between adolescents' DNA methylation and depressive symptoms or the level of parental PC. Yet, there was a significant association between maternal depressive symptoms and maternal epigenetic patterns in NR3C1. CONCLUSIONS These findings highlight the need for more research in order to better understand the biological and contextual mechanisms through which parenting and parental emotional well-being is related to the development of psychopathology.
Collapse
Affiliation(s)
- V Chubar
- KU Leuven, Mind-Body Research Group, Department of Neuroscience, B-3000 Leuven, Belgium.
| | - P Luyten
- KU Leuven, Faculty of Psychology and Educational Sciences, B-3000 Leuven, Belgium; University College London, Research Department of Clinical, Educational and Health Psychology, London, UK
| | - L Goossens
- KU Leuven, School Psychology and Child and Adolescent Development Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, B-3000 Leuven, Belgium
| | - B Bekaert
- KU Leuven, University Hospitals Leuven, Department of Forensic Medicine, Laboratory of Forensic Genetics and Molecular Archaeology, B-3000 Leuven, Belgium; KU Leuven, Department of Imaging and Pathology, B-3000 Leuven, Belgium
| | - D Bleys
- KU Leuven, Faculty of Psychology and Educational Sciences, B-3000 Leuven, Belgium
| | - B Soenens
- Ghent university, Department of Developmental, Personality and Social Psychology, Ghent, Belgium
| | - S Claes
- KU Leuven, Mind-Body Research Group, Department of Neuroscience, B-3000 Leuven, Belgium; KU Leuven, University Psychiatric Center KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
111
|
Goodman SJ, Burton CL, Butcher DT, Siu MT, Lemire M, Chater-Diehl E, Turinsky AL, Brudno M, Soreni N, Rosenberg D, Fitzgerald KD, Hanna GL, Anagnostou E, Arnold PD, Crosbie J, Schachar R, Weksberg R. Obsessive-compulsive disorder and attention-deficit/hyperactivity disorder: distinct associations with DNA methylation and genetic variation. J Neurodev Disord 2020; 12:23. [PMID: 32799817 PMCID: PMC7429807 DOI: 10.1186/s11689-020-09324-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/28/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A growing body of research has demonstrated associations between specific neurodevelopmental disorders and variation in DNA methylation (DNAm), implicating this molecular mark as a possible contributor to the molecular etiology of these disorders and/or as a novel disease biomarker. Furthermore, genetic risk variants of neurodevelopmental disorders have been found to be enriched at loci associated with DNAm patterns, referred to as methylation quantitative trait loci (mQTLs). METHODS We conducted two epigenome-wide association studies in individuals with attention-deficit/hyperactivity disorder (ADHD) or obsessive-compulsive disorder (OCD) (aged 4-18 years) using DNA extracted from saliva. DNAm data generated on the Illumina Human Methylation 450 K array were used to examine the interaction between genetic variation and DNAm patterns associated with these disorders. RESULTS Using linear regression followed by principal component analysis, individuals with the most endorsed symptoms of ADHD or OCD were found to have significantly more distinct DNAm patterns from controls, as compared to all cases. This suggested that the phenotypic heterogeneity of these disorders is reflected in altered DNAm at specific sites. Further investigations of the DNAm sites associated with each disorder revealed that despite little overlap of these DNAm sites across the two disorders, both disorders were significantly enriched for mQTLs within our sample. CONCLUSIONS Our DNAm data provide insights into the regulatory changes associated with genetic variation, highlighting their potential utility both in directing GWAS and in elucidating the pathophysiology of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sarah J Goodman
- Genetics and Genome Biology, SickKids Hospital, Toronto, ON, Canada
| | - Christie L Burton
- Neurosciences and Mental Health Program, SickKids Hospital, Toronto, ON, Canada
| | - Darci T Butcher
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Michelle T Siu
- Biochemical Genetics Laboratory, Alberta Children's Hospital, Calgary, AB, Canada
| | - Mathieu Lemire
- Neurosciences and Mental Health Program, SickKids Hospital, Toronto, ON, Canada
| | | | - Andrei L Turinsky
- Genetics and Genome Biology, SickKids Hospital, Toronto, ON, Canada
- Centre for Computational Medicine, SickKids Hospital, Toronto, ON, Canada
| | - Michael Brudno
- Genetics and Genome Biology, SickKids Hospital, Toronto, ON, Canada
- Centre for Computational Medicine, SickKids Hospital, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Noam Soreni
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - David Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Kate D Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Gregory L Hanna
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Paul D Arnold
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
- Departments of Psychiatry and Medical Genetics, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer Crosbie
- Neurosciences and Mental Health Program, SickKids Hospital, Toronto, ON, Canada
| | - Russell Schachar
- Neurosciences and Mental Health Program, SickKids Hospital, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology, SickKids Hospital, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Division of Clinical and Metabolic Genetics, SickKids Hospital, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
112
|
Brown GL, Kogan SM, Cho J. Pathways linking childhood trauma to rural, unmarried, African American father involvement through oxytocin receptor gene methylation. Dev Psychol 2020; 56:1496-1508. [PMID: 32790448 DOI: 10.1037/dev0000929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Father involvement contributes uniquely to children's developmental outcomes. The antecedents of father involvement among unmarried, African American fathers from rural areas, however, have been largely overlooked. The present study tested a conceptual model linking retrospective reports of childhood trauma and early adulthood social instability to father involvement among unmarried, African American men living in resource-poor, rural communities in the southeastern United States. We hypothesized these factors would influence father involvement indirectly, via DNA methylation of the oxytocin receptor gene (OXTR). A sample of 192 fathers participated in 3 waves of data collection in early adulthood. Fathers reported on social instability at Wave 1; OXTR methylation was assessed via saliva samples at Wave 2; and measures of father involvement, retrospective childhood trauma, and quality of the fathers' relationships with their children's mothers were collected at Wave 3. Structural equation modeling indicated that childhood trauma was related directly to reduced levels of father involvement and to increased social instability. Social instability was associated with elevated levels of OXTR methylation, which in turn predicted decreased father involvement. The indirect effect from social instability to father involvement via OXTR methylation was significant. These associations did not operate through fathers' relationship with the child's mother and remained significant even accounting for associations between interparental relationship quality and father involvement. Findings suggest that OXTR methylation might be a biological mechanism linking social instability to father involvement among unmarried, African American fathers in vulnerable contexts and underscore the detrimental influence of childhood trauma on father involvement. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
|
113
|
Gui A, Jones EJH, Wong CCY, Meaburn E, Xia B, Pasco G, Lloyd-Fox S, Charman T, Bolton P, Johnson MH. Leveraging epigenetics to examine differences in developmental trajectories of social attention: A proof-of-principle study of DNA methylation in infants with older siblings with autism. Infant Behav Dev 2020; 60:101409. [PMID: 32623100 DOI: 10.1016/j.infbeh.2019.101409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
Preliminary evidence suggests that changes in DNA methylation, a widely studied epigenetic mechanism, contribute to the etiology of Autism Spectrum Disorder (ASD). However, data is primarily derived from post-mortem brain samples or peripheral tissue from adults. Deep-phenotyped longitudinal infant cohorts are essential to understand how epigenetic modifications relate to early developmental trajectories and emergence of ASD symptoms. We present a proof-of-principle study designed to evaluate the potential of prospective epigenetic studies of infant siblings of children with ASD. Illumina genome-wide 450 K DNA methylation data from buccal swabs was generated for 63 male infants at multiple time-points from 8 months to 2 years of age (total N = 107 samples). 11 of those infants received a diagnosis of ASD at 3 years. We conducted a series of analyses to characterize DNA methylation signatures associated with categorical outcome and neurocognitive measures from parent-report questionnaire, eye-tracking and electro-encephalography. Effects observed across the entire genome (epigenome-wide association analyses) suggest that collecting DNA methylation samples within infant-sibling designs allows for the detection of meaningful signals with smaller sample sizes than previously estimated. Mapping networks of co-methylated probes associated with neural correlates of social attention implicated enrichment of pathways involved in brain development. Longitudinal modelling found covariation between phenotypic traits and DNA methylation levels in the proximity of genes previously associated with cognitive development, although larger samples and more complete datasets are needed to obtain generalizable results. In conclusion, assessment of DNA methylation profiles at multiple time-points in infant-sibling designs is a promising avenue to comprehend developmental origins and mechanisms of ASD.
Collapse
Affiliation(s)
- Anna Gui
- Department of Psychological Sciences, Birkbeck College, University of London, UK.
| | - Emily J H Jones
- Department of Psychological Sciences, Birkbeck College, University of London, UK
| | - Chloe C Y Wong
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Emma Meaburn
- Department of Psychological Sciences, Birkbeck College, University of London, UK
| | - Baocong Xia
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Greg Pasco
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | | | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Patrick Bolton
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | | |
Collapse
|
114
|
Pathways linking adverse environments to emerging adults' substance abuse and depressive symptoms: A prospective analysis of rural African American men. Dev Psychopathol 2020; 33:1496-1506. [PMID: 32693849 DOI: 10.1017/s0954579420000632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
For African American emerging adult men, developmental challenges are evident in their escalating substance abuse and depressive symptoms; this is particularly true for men from low-resource communities. The present study tests a developmental model linking childhood adversity and contemporaneous contextual stressors to increases in emerging adults' substance use and depressive symptoms, indirectly, via increases in defensive/hostile relational schemas and social developmental risk factors (e.g., risky peers and romantic partners, lack of involvement in school or work). We also advance exploratory hypotheses regarding DNA methylation in the oxytocin receptor gene (OXTR) as a moderator of the effects of stress on relational schemas. Hypotheses were tested with three waves of data from 505 rural African American men aged 19-25 years. Adverse childhood experiences predicted exposure to emerging adult contextual stressors. Contextual stressors forecast increases in defensive/hostile relational schemas, which increased social developmental risk factors. Social developmental risk factors proximally predicted increases in substance abuse and depressive symptoms. OXTR DNA methylation moderated the effects of contextual stressors on defensive/hostile relational schemas. Findings suggest that early exposures to stress carry forward to affect the development of social developmental risk factors in emerging adulthood, which place rural African American men at risk for increased substance abuse and depressive symptoms during the emerging adult years.
Collapse
|
115
|
DNA methylation in the 5-HTT regulatory region is associated with CO 2-induced fear in panic disorder patients. Eur Neuropsychopharmacol 2020; 36:154-159. [PMID: 32522387 DOI: 10.1016/j.euroneuro.2020.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 01/25/2023]
Abstract
A polymorphism in the gene encoding the serotonin (5-HT) transporter (5-HTT) has been shown to moderate the response to CO2 inhalation, an experimental model for panic attacks (PAs). Recurrent, unpredictable PAs represent, together with anticipatory anxiety of recurring attacks, the core feature of panic disorder (PD) and significantly interfere with patients' daily life. In addition to genetic components, accumulating evidence suggests that epigenetic mechanisms, which regulate gene expression by modifying chromatin structure, also play a fundamental role in the etiology of mental disorders. However, in PD, epigenetic mechanisms have barely been examined to date. In the present study, we investigated the relationship between methylation at the regulatory region of the gene encoding the 5-HTT and the reactivity to a 35% CO2 inhalation in PD patients. We focused on four specific CpG sites and found a significant association between the methylation level of one of these CpG sites and the fear response. This suggests that the emotional response to CO2 inhalation might be moderated by an epigenetic mechanism, and underlines the implication of the 5-HT system in PAs. Future studies are needed to further investigate epigenetic alterations in PD and their functional consequences. These insights can increase our understanding of the underlying pathophysiology and support the development of new treatment strategies.
Collapse
|
116
|
Lapsley CR, Irwin R, McLafferty M, Thursby SJ, O'Neill SM, Bjourson AJ, Walsh CP, Murray EK. Methylome profiling of young adults with depression supports a link with immune response and psoriasis. Clin Epigenetics 2020; 12:85. [PMID: 32539844 PMCID: PMC7477873 DOI: 10.1186/s13148-020-00877-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Currently the leading cause of global disability, clinical depression is a heterogeneous condition characterised by low mood, anhedonia and cognitive impairments. Its growing incidence among young people, often co-occurring with self-harm, is of particular concern. We recently reported very high rates of depression among first year university students in Northern Ireland, with over 25% meeting the clinical criteria, based on DSM IV. However, the causes of depression in such groups remain unclear, and diagnosis is hampered by a lack of biological markers. The aim of this exploratory study was to examine DNA methylation patterns in saliva samples from individuals with a history of depression and matched healthy controls. RESULTS From our student subjects who showed evidence of a total lifetime major depressive event (MDE, n = 186) we identified a small but distinct subgroup (n = 30) with higher risk scores on the basis of co-occurrence of self-harm and attempted suicide. Factors conferring elevated risk included being female or non-heterosexual, and intrinsic factors such as emotional suppression and impulsiveness. Saliva samples were collected and a closely matched set of high-risk cases (n = 16) and healthy controls (n = 16) similar in age, gender and smoking status were compared. These showed substantial differences in DNA methylation marks across the genome, specifically in the late cornified envelope (LCE) gene cluster. Gene ontology analysis showed highly significant enrichment for immune response, and in particular genes associated with the inflammatory skin condition psoriasis, which we confirmed using a second bioinformatics approach. We then verified methylation gains at the LCE gene cluster at the epidermal differentiation complex and at MIR4520A/B in our cases in the laboratory, using pyrosequencing. Additionally, we found loss of methylation at the PSORSC13 locus on chromosome 6 by array and pyrosequencing, validating recent findings in brain tissue from people who had died by suicide. Finally, we could show that similar changes in immune gene methylation preceded the onset of depression in an independent cohort of adolescent females. CONCLUSIONS Our data suggests an immune component to the aetiology of depression in at least a small subgroup of cases, consistent with the accumulating evidence supporting a relationship between inflammation and depression. Additionally, DNA methylation changes at key loci, detected in saliva, may represent a valuable tool for identifying at-risk subjects.
Collapse
Affiliation(s)
- Coral R Lapsley
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, UK
| | - Rachelle Irwin
- Genomics Medicine Research Group, School of Biomedical Sciences, Ulster University, Coleraine Campus, Coleraine, UK
| | - Margaret McLafferty
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, UK.,School of Psychology, Ulster University, Coleraine Campus, Coleraine, UK
| | - Sara Jayne Thursby
- Genomics Medicine Research Group, School of Biomedical Sciences, Ulster University, Coleraine Campus, Coleraine, UK
| | - Siobhan M O'Neill
- School of Psychology, Ulster University, Coleraine Campus, Coleraine, UK
| | - Anthony J Bjourson
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, UK
| | - Colum P Walsh
- Genomics Medicine Research Group, School of Biomedical Sciences, Ulster University, Coleraine Campus, Coleraine, UK
| | - Elaine K Murray
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, UK.
| |
Collapse
|
117
|
The relationship between DNA methylation in neurotrophic genes and age as evidenced from three independent cohorts: differences by delirium status. Neurobiol Aging 2020; 94:227-235. [PMID: 32650186 DOI: 10.1016/j.neurobiolaging.2020.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/07/2020] [Accepted: 06/06/2020] [Indexed: 12/19/2022]
Abstract
We previously reported the association between DNA methylation (DNAm) of pro-inflammatory cytokine genes and age. In addition, neurotrophic factors are known to be associated with age and neurocognitive disorders. Therefore, we hypothesized that DNAm of neurotrophic genes change with age, especially in delirium patients. DNAm was analyzed using the Illumina HumanMethylation450 or HumanMethylationEPIC BeadChip Kit in 3 independent cohorts: blood from 383 Grady Trauma Project subjects, brain from 21 neurosurgery patients, and blood from 87 inpatients with and without delirium. Both blood and brain samples showed that most of the DNAm of neurotrophic genes were positively correlated with age. Furthermore, DNAm of neurotrophic genes was more positively correlated with age in delirium cases than in non-delirium controls. These findings support our hypothesis that the neurotrophic genes may be epigenetically modulated with age, and this process may be contributing to the pathophysiology of delirium.
Collapse
|
118
|
Treble-Barna A, Patronick J, Uchani S, Marousis NC, Zigler CK, Fink EL, Kochanek PM, Conley YP, Yeates KO. Epigenetic Effects on Pediatric Traumatic Brain Injury Recovery (EETR): An Observational, Prospective, Longitudinal Concurrent Cohort Study Protocol. Front Neurol 2020; 11:460. [PMID: 32595586 PMCID: PMC7303323 DOI: 10.3389/fneur.2020.00460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction: Unexplained heterogeneity in outcomes following pediatric traumatic brain injury (TBI) is one of the most critical barriers to the development of effective prognostic tools and therapeutics. The addition of personal biological factors to our prediction models may account for a significant portion of unexplained variance and advance the field toward precision rehabilitation medicine. The overarching goal of the Epigenetic Effects on Pediatric Traumatic Brain Injury Recovery (EETR) study is to investigate an epigenetic biomarker involved in both childhood adversity and postinjury neuroplasticity to better understand heterogeneity in neurobehavioral outcomes following pediatric TBI. Our primary hypothesis is that childhood adversity will be associated with worse neurobehavioral recovery in part through an epigenetically mediated reduction in brain-derived neurotrophic factor (BDNF) expression in response to TBI. Methods and analysis: EETR is an observational, prospective, longitudinal concurrent cohort study of children aged 3-18 years with either TBI (n = 200) or orthopedic injury (n = 100), recruited from the UPMC Children's Hospital of Pittsburgh. Participants complete study visits acutely and at 6 and 12 months postinjury. Blood and saliva biosamples are collected at all time points-and cerebrospinal fluid (CSF) when available acutely-for epigenetic and proteomic analysis of BDNF. Additional measures assess injury characteristics, pre- and postinjury child neurobehavioral functioning, childhood adversity, and potential covariates/confounders. Recruitment began in July 2017 and will occur for ~6 years, with data collection complete by mid-2023. Analyses will characterize BDNF DNA methylation and protein levels over the recovery period and investigate this novel biomarker as a potential biological mechanism underlying the known association between childhood adversity and worse neurobehavioral outcomes following pediatric TBI. Ethics and dissemination: The study received ethics approval from the University of Pittsburgh Institutional Review Board. Participants and their parents provide informed consent/assent. Research findings will be disseminated via local and international conference presentations and manuscripts submitted to peer-reviewed journals. Trial Registration: The study is registered with clinicaltrials.org (ClinicalTrials.gov Identifier: NCT04186429).
Collapse
Affiliation(s)
- Amery Treble-Barna
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jamie Patronick
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Srivatsan Uchani
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Noelle C. Marousis
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christina K. Zigler
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Ericka L. Fink
- Safar Center for Resuscitation Research, Division of Pediatric Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, Department of Critical Care and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, Division of Pediatric Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, Department of Critical Care and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yvette P. Conley
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
| | - Keith Owen Yeates
- Department of Psychology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
119
|
Moore SR, Humphreys KL, Colich NL, Davis EG, Lin DTS, MacIsaac JL, Kobor MS, Gotlib IH. Distinctions between sex and time in patterns of DNA methylation across puberty. BMC Genomics 2020; 21:389. [PMID: 32493224 PMCID: PMC7268482 DOI: 10.1186/s12864-020-06789-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are significant sex differences in human physiology and disease; the genomic sources of these differences, however, are not well understood. During puberty, a drastic neuroendocrine shift signals physical changes resulting in robust sex differences in human physiology. Here, we explore how shifting patterns of DNA methylation may inform these pathways of biological plasticity during the pubertal transition. In this study we analyzed DNA methylation (DNAm) in saliva at two time points across the pubertal transition within the same individuals. Our purpose was to compare two domains of DNAm patterns that may inform processes of sexual differentiation 1) sex related sites, which demonstrated differences between males from females and 2) time related sites in which DNAm shifted significantly between timepoints. We further explored the correlated network structure sex and time related DNAm networks and linked these patterns to pubertal stage, assays of salivary testosterone, a reliable diagnostic of free, unbound hormone that is available to act on target tissues, and overlap with androgen response elements. RESULTS Sites that differed by biological sex were largely independent of sites that underwent change across puberty. Time-related DNAm sites, but not sex-related sites, formed correlated networks that were associated with pubertal stage. Both time and sex DNAm networks reflected salivary testosterone levels that were enriched for androgen response elements, with sex-related DNAm networks being informative of testosterone levels above and beyond biological sex later in the pubertal transition. CONCLUSIONS These results inform our understanding of the distinction between sex- and time-related differences in DNAm during the critical period of puberty and highlight a novel linkage between correlated patterns of sex-related DNAm and levels of salivary testosterone.
Collapse
Affiliation(s)
- Sarah Rose Moore
- Department of Medical Genetics, University of British Columbia
- BC Children's Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
| | - Kathryn Leigh Humphreys
- Department of Psychology and Human Development, Vanderbilt University, 230 Appleton Pl, Nashville, TN, 37203, USA
| | - Natalie Lisanne Colich
- Department of Psychology, University of Washington Seattle, Guthrie Hall (GTH), 119A 98195-1525, Seattle, WA, 98105, USA
| | - Elena Goetz Davis
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305, USA
| | - David Tse Shen Lin
- Department of Medical Genetics, University of British Columbia
- BC Children's Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Julia Lynn MacIsaac
- Department of Medical Genetics, University of British Columbia
- BC Children's Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Michael Steffen Kobor
- Department of Medical Genetics, University of British Columbia
- BC Children's Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Ian Henry Gotlib
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305, USA
| |
Collapse
|
120
|
Epigenetic modification of the oxytocin receptor gene: implications for autism symptom severity and brain functional connectivity. Neuropsychopharmacology 2020; 45:1150-1158. [PMID: 31931508 PMCID: PMC7235273 DOI: 10.1038/s41386-020-0610-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 11/08/2022]
Abstract
The role of oxytocin in social cognition has attracted tremendous interest in social neuroscience and psychiatry. Some studies have reported improvement in social symptoms following oxytocin treatment in autism spectrum disorders (ASD), while others point to endogenous factors influencing its efficiency and to mixed results in terms of long-term clinical benefits. Epigenetic modification to the oxytocin receptor gene (OXTR) in ASD could be an informative biomarker of treatment efficacy. Yet, little is known about the relationship between OXTR methylation, clinical severity, and brain function in ASD. Here, we investigated the relationship between OXTR methylation, ASD diagnosis (in N = 35 ASD and N = 64 neurotypical group), measures of social responsiveness, and resting-state functional connectivity (rsFC) between areas involved in social cognition and reward processing (in a subset of ASD, N = 30). Adults with ASD showed higher OXTR methylation levels in the intron 1 area compared with neurotypical subjects. This hypermethylation was related to clinical symptoms and to a hypoconnectivity between cortico-cortical areas involved in theory of mind. Methylation at a CpG site in the exon 1 area was positively related to social responsiveness deficits in ASD and to a hyperconnectivity between striatal and cortical brain areas. Taken together, these findings provide initial evidence for OXTR hypermethylation in the intron area as a potential biomarker for adults with ASD with less severe developmental communication deficits, but with impairments in theory of mind and self-awareness. Also, OXTR methylation in the exon 1 area could be a potential biomarker of sociability sensitive to life experiences.
Collapse
|
121
|
Wheater ENW, Stoye DQ, Cox SR, Wardlaw JM, Drake AJ, Bastin ME, Boardman JP. DNA methylation and brain structure and function across the life course: A systematic review. Neurosci Biobehav Rev 2020; 113:133-156. [PMID: 32151655 PMCID: PMC7237884 DOI: 10.1016/j.neubiorev.2020.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/01/2023]
Abstract
MRI has enhanced our capacity to understand variations in brain structure and function conferred by the genome. We identified 60 studies that report associations between DNA methylation (DNAm) and human brain structure/function. Forty-three studies measured candidate loci DNAm; seventeen measured epigenome-wide DNAm. MRI features included region-of-interest and whole-brain structural, diffusion and functional imaging features. The studies report DNAm-MRI associations for: neurodevelopment and neurodevelopmental disorders; major depression and suicidality; alcohol use disorder; schizophrenia and psychosis; ageing, stroke, ataxia and neurodegeneration; post-traumatic stress disorder; and socio-emotional processing. Consistency between MRI features and differential DNAm is modest. Sources of bias: variable inclusion of comparator groups; different surrogate tissues used; variation in DNAm measurement methods; lack of control for genotype and cell-type composition; and variations in image processing. Knowledge of MRI features associated with differential DNAm may improve understanding of the role of DNAm in brain health and disease, but caution is required because conventions for linking DNAm and MRI data are not established, and clinical and methodological heterogeneity in existing literature is substantial.
Collapse
Affiliation(s)
- Emily N W Wheater
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom
| | - David Q Stoye
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom
| | - Simon R Cox
- Department of Psychology, University of Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | - James P Boardman
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
122
|
de Araújo CM, Hudziak J, Crocetti D, Wymbs NF, Montalvo-Ortiz JL, Orr C, Albaugh MD, Althoff RR, O'Loughlin K, Holbrook H, Garavan H, Yang BZ, Mostofsky S, Jackowski A, Lee RS, Gelernter J, Kaufman J. Tubulin Polymerization Promoting Protein (TPPP) gene methylation and corpus callosum measures in maltreated children. Psychiatry Res Neuroimaging 2020; 298:111058. [PMID: 32120304 PMCID: PMC11079625 DOI: 10.1016/j.pscychresns.2020.111058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022]
Abstract
The goal of the current study was to evaluate the impact of Tubulin Polymerization Promoting Protein (TPPP) methylation on structural and fractional anisotropy (FA) corpus callosum (CC) measures. TPPP is involved in the development of white matter tracts in the brain and was implicated in stress-related psychiatric disorders in an unbiased whole epigenome methylation study. The cohort included 63 participants (11.73 y/o ±1.91) from a larger study investigating risk and resilience in maltreated children. Voxel-based morphometry (VBM) was used to process the structural data, fractional anisotropy (FA) was determined using an atlas-based approach, and DNA specimens were derived from saliva in two batches using the 450 K (N = 39) and 850 K (N = 24) Illumina arrays, with the data from each batch analyzed separately. After controlling for multiple comparisons and relevant covariates (e.g., demographics, brain volume, cell composition, 3 PCs), 850 K derived TPPP methylation values, in interaction with a dimensional measure of children's trauma experiences, predicted left and right CC body volumes and genu, body and splenium FA (p < .007, all comparisons). The findings in the splenium replicated in subjects with the 450 K data. The results extend prior investigations and suggest a role for TPPP in brain changes associated with stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Célia Maria de Araújo
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, United States; Universidade Federal de São Paulo, São Paulo, Brazil
| | - James Hudziak
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT, United States
| | - Deana Crocetti
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, United States
| | - Nicholas F Wymbs
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, United States
| | | | - Catherine Orr
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT, United States
| | - Matthew D Albaugh
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT, United States
| | - Robert R Althoff
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT, United States
| | - Kerry O'Loughlin
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT, United States
| | - Hannah Holbrook
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT, United States
| | - Hugh Garavan
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT, United States
| | - Bao-Zhu Yang
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Stewart Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, United States; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, , United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | | | - Richard S Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Joel Gelernter
- Department of Psychiatry, Yale University, New Haven, CT, United States; Veterans Administration, West Haven, CT, United States
| | - Joan Kaufman
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States; Center for Child and Family Traumatic Stress, Kennedy Krieger Institute, Baltimore, MD, United States.
| |
Collapse
|
123
|
de Lima RMS, Barth B, Arcego DM, de Mendonça Filho EJ, Clappison A, Patel S, Wang Z, Pokhvisneva I, Sassi RB, Hall GBC, Kobor MS, O'Donnell KJ, Bittencourt APSDV, Meaney MJ, Dalmaz C, Silveira PP. Amygdala 5-HTT Gene Network Moderates the Effects of Postnatal Adversity on Attention Problems: Anatomo-Functional Correlation and Epigenetic Changes. Front Neurosci 2020; 14:198. [PMID: 32256307 PMCID: PMC7093057 DOI: 10.3389/fnins.2020.00198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
Variations in serotoninergic signaling have been related to behavioral outcomes. Alterations in the genome, such as DNA methylation and histone modifications, are affected by serotonin neurotransmission. The amygdala is an important brain region involved in emotional responses and impulsivity, which receives serotoninergic input. In addition, studies suggest that the serotonin transporter gene network may interact with the environment and influence the risk for psychiatric disorders. We propose to investigate whether/how interactions between the exposure to early life adversity and serotonin transporter gene network in the amygdala associate with behavioral disorders. We constructed a co-expression-based polygenic risk score (ePRS) reflecting variations in the function of the serotonin transporter gene network in the amygdala and investigated its interaction with postnatal adversity on attention problems in two independent cohorts from Canada and Singapore. We also described how interactions between ePRS-5-HTT and postnatal adversity exposure predict brain gray matter density and variation in DNA methylation across the genome. We observed that the expression-based polygenic risk score, reflecting the function of the amygdala 5-HTT gene network, interacts with postnatal adversity, to predict attention and hyperactivity problems across both cohorts. Also, both postnatal adversity score and amygdala ePRS-5-HTT score, as well as their interaction, were observed to be associated with variation in DNA methylation across the genome. Variations in gray matter density in brain regions linked to attentional processes were also correlated to our ePRS score. These results confirm that the amygdala 5-HTT gene network is strongly associated with ADHD-related behaviors, brain cortical density, and epigenetic changes in the context of adversity in young children.
Collapse
Affiliation(s)
- Randriely Merscher Sobreira de Lima
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Barbara Barth
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada
| | - Danusa Mar Arcego
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Euclides José de Mendonça Filho
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Programa de Pós-Graduação em Psicologia, Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andrew Clappison
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Sachin Patel
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Zihan Wang
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Roberto Britto Sassi
- Mood Disorders Program, Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Geoffrey B C Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Kieran J O'Donnell
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | | | - Michael J Meaney
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Carla Dalmaz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Pelufo Silveira
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
124
|
Linnér A, Almgren M. Epigenetic programming-The important first 1000 days. Acta Paediatr 2020; 109:443-452. [PMID: 31603247 DOI: 10.1111/apa.15050] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/07/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
The perinatal period is a time of fast physiological change, including epigenetic programming. Adverse events may lead to epigenetic changes, with implications for health and disease. Our review covers the basics of clinical epigenetics and explores the latest research, including the role of epigenetic processes in complex disease phenotypes, such as neurodevelopmental, neurodegenerative and immunological disorders. Some studies suggest that epigenetic alterations are linked to early life environmental stressors, including mode of delivery, famine, psychosocial stress, severe institutional deprivation and childhood abuse. CONCLUSION: Epigenetic modifications due to perinatal environmental exposures can lead to lifelong, but potentially reversible, phenotypic alterations and disease.
Collapse
Affiliation(s)
- Agnes Linnér
- Department of Women’s and Children’s Health Karolinska Institutet Stockholm Sweden
| | - Malin Almgren
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| |
Collapse
|
125
|
Cecil CAM, Zhang Y, Nolte T. Childhood maltreatment and DNA methylation: A systematic review. Neurosci Biobehav Rev 2020; 112:392-409. [PMID: 32081689 DOI: 10.1016/j.neubiorev.2020.02.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022]
Abstract
DNA methylation (DNAm) - an epigenetic process that regulates gene expression - may represent a mechanism for the biological embedding of early traumatic experiences, including childhood maltreatment. Here, we conducted the first systematic review of human studies linking childhood maltreatment to DNAm. In total, 72 studies were included in the review (2008-2018). The majority of extant studies (i) were based on retrospective data in adults, (ii) employed a candidate gene approach (iii) focused on global maltreatment, (iv) were based on easily accessible peripheral tissues, typically blood; and (v) were cross-sectional. Two-thirds of studies (n = 48) also examined maltreatment-related outcomes, such as stress reactivity and psychiatric symptoms. While findings generally support an association between childhood maltreatment and altered patterns of DNAm, factors such as the lack of longitudinal data, low comparability across studies as well as potential genetic and 'pre-exposure' environmental confounding currently limit the conclusions that can be drawn. Key challenges are discussed and concrete recommendations for future research are provided to move the field forward.
Collapse
Affiliation(s)
- Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Yuning Zhang
- Centre for Innovation in Mental Health, University of Southampton; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Tobias Nolte
- The Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; Anna Freud National Centre for Children and Families, London, United Kingdom
| |
Collapse
|
126
|
Schiele MA, Gottschalk MG, Domschke K. The applied implications of epigenetics in anxiety, affective and stress-related disorders - A review and synthesis on psychosocial stress, psychotherapy and prevention. Clin Psychol Rev 2020; 77:101830. [PMID: 32163803 DOI: 10.1016/j.cpr.2020.101830] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
Abstract
Mental disorders are highly complex and multifactorial in origin, comprising an elaborate interplay of genetic and environmental factors. Epigenetic mechanisms such as DNA modifications (e.g. CpG methylation), histone modifications (e.g. acetylation) and microRNAs function as a translator between genes and the environment. Indeed, environmental influences such as exposure to stress shape epigenetic patterns, and lifetime experiences continue to alter the function of the genome throughout the lifespan. Here, we summarize the recently burgeoning body of research regarding the involvement of aberrant epigenetic signatures in mediating an increased vulnerability to a wide range of mental disorders. We review the current knowledge of epigenetic changes to constitute useful markers predicting the clinical response to psychotherapeutic interventions, and of psychotherapy to alter - and potentially reverse - epigenetic risk patterns. Given first evidence pointing to a transgenerational transmission of epigenetic information, epigenetic alterations arising from successful psychotherapy might be transferred to future generations and thus contribute to the prevention of mental disorders. Findings are integrated into a multi-level framework highlighting challenges pertaining to the mechanisms of action and clinical implications of epigenetic research. Promising future directions regarding the prediction, prevention, and personalized treatment of mental disorders in line with a 'precision medicine' approach are discussed.
Collapse
Affiliation(s)
- Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany
| | - Michael G Gottschalk
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, D-79106 Freiburg, Germany.
| |
Collapse
|
127
|
Aghagoli G, Conradt E, Padbury JF, Sheinkopf SJ, Tokadjian H, Dansereau LM, Tronick EZ, Marsit CJ, Lester BM. Social Stress-Related Epigenetic Changes Associated With Increased Heart Rate Variability in Infants. Front Behav Neurosci 2020; 13:294. [PMID: 32009914 PMCID: PMC6974792 DOI: 10.3389/fnbeh.2019.00294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Early life stress can result in persistent alterations of an individual’s stress regulation through epigenetic modifications. Epigenetic alteration of the NR3C1 gene is associated with changes in the stress response system during infancy as measured by cortisol reactivity. Although autonomic nervous system (ANS) reactivity is a key component of the stress response, we have a limited understanding of the effects of NR3C1 DNA methylation on ANS reactivity. To examine this relation, ANS stress responses of term, 4–5-month-old healthy infants were elicited using the face-to-face still-face paradigm, which involved five, 2-min episodes. Two of these episodes were the “still-face” in which the mother was non-responsive to her infant. EKG was acquired continuously and analyzed in 30 s-intervals. Cheek swabs were collected, and DNA was extracted from buccal cells. Respiratory sinus arrhythmia (RSA) was measured as heart rate variability (HRV). Mean HRV was calculated for each 30-s “face to face” episode. DNA methylation of NR3C1 was calculated using bisulfite pyrosequencing. Percent DNA methylation was computed for each of the 13 NR3C1 CpG sites. The relations between mean HRV for each “face to face” episode and percent DNA methylation was examined averaged over CpG sites 1–6 and 7–13 and at each individual CpG site. Higher HRV at baseline, first reunion, and second still-face was related to greater methylation of NR3C1 CpG sites 1–6. Higher HRV at the second reunion was related to greater methylation of NR3C1 CpG sites 12 and 13. These data provide evidence that increased methylation of NR3C1 at CpG sites 12 and 13 are associated with increased activation of parasympathetic pathways as represented by increased HRV.
Collapse
Affiliation(s)
- Ghazal Aghagoli
- Brown Center for the Study of Children at Risk, Brown University, Providence, RI, United States.,Department of Neuroscience, Brown University, Providence, RI, United States
| | - Elisabeth Conradt
- Departments of Psychology, Pediatrics, and Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, United States
| | - James F Padbury
- Warren Alpert Medical School, Brown University, Providence, RI, United States.,Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States
| | - Stephen J Sheinkopf
- Brown Center for the Study of Children at Risk, Brown University, Providence, RI, United States.,Warren Alpert Medical School, Brown University, Providence, RI, United States.,Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States
| | - Hasmik Tokadjian
- Brown Center for the Study of Children at Risk, Brown University, Providence, RI, United States.,Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States
| | - Lynne M Dansereau
- Brown Center for the Study of Children at Risk, Brown University, Providence, RI, United States.,Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States
| | - Edward Z Tronick
- Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| | - Carmen J Marsit
- Department of Environmental Health, Emory University, Atlanta, GA, United States
| | - Barry M Lester
- Brown Center for the Study of Children at Risk, Brown University, Providence, RI, United States.,Warren Alpert Medical School, Brown University, Providence, RI, United States.,Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States
| |
Collapse
|
128
|
Pierre WC, Legault L, Londono I, McGraw S, Lodygensky GA. Alteration of the brain methylation landscape following postnatal inflammatory injury in rat pups. FASEB J 2020; 34:432-445. [PMID: 31914673 PMCID: PMC6972494 DOI: 10.1096/fj.201901461r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/26/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022]
Abstract
Preterm infants are vulnerable to inflammation-induced white matter injury (WMI), which is associated with neurocognitive impairment and increased risk of neuropsychiatric diseases in adulthood. Epigenetic mechanisms, particularly DNA methylation, play a role in normal development and modulate the response to pathological challenges. Our aims were to determine how WMI triggered DNA methylation alterations in brains of neonatal rats and if such changes persisted over time. We used a robust model of WMI by injecting lipopolysaccharide (LPS) or sterile saline in the corpus callosum of 3-day-old (P3) rat pups. Brains were collected 24 hours (P4) and 21 days post-injection (P24). We extracted genomic DNA from the brain to establish genome-wide quantitative DNA methylation profiles using reduced representation bisulfite sequencing. Neonatal LPS exposure induced a persistent increased methylation of genes related to nervous system development and a reduced methylation of genes associated with inflammatory pathways. These findings suggest that early-life neuroinflammatory exposure impacts the cerebral methylation landscape with determining widespread epigenetic modifications especially in genes related to neurodevelopment.
Collapse
Affiliation(s)
- Wyston C. Pierre
- Department of PediatricsUniversité de MontréalResearch Center of the CHU Sainte‐JustineMontréalQCCanada
| | - Lisa‐Marie Legault
- Department of Biochemistry and Molecular MedicineUniversité de MontréalResearch Center of the CHU Sainte‐JustineMontréalQCCanada
| | - Irene Londono
- Department of PediatricsUniversité de MontréalResearch Center of the CHU Sainte‐JustineMontréalQCCanada
| | - Serge McGraw
- Department of Biochemistry and Molecular MedicineUniversité de MontréalResearch Center of the CHU Sainte‐JustineMontréalQCCanada
- Department of Obstetrics & GynecologyUniversité de MontréalResearch Center of the CHU Sainte‐JustineMontréalQCCanada
| | - Gregory A. Lodygensky
- Department of PediatricsUniversité de MontréalResearch Center of the CHU Sainte‐JustineMontréalQCCanada
- Department of Pharmacology and PhysiologyUniversité de MontréalMontréalQCCanada
| |
Collapse
|
129
|
Philibert R, Dogan M, Beach SRH, Mills JA, Long JD. AHRR methylation predicts smoking status and smoking intensity in both saliva and blood DNA. Am J Med Genet B Neuropsychiatr Genet 2020; 183:51-60. [PMID: 31456352 DOI: 10.1002/ajmg.b.32760] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/15/2019] [Accepted: 08/12/2019] [Indexed: 01/21/2023]
Abstract
Many existing DNA repositories do not have robust characterizations of smoking, while for many currently ongoing studies, the advent of vaping has rendered traditional cotinine-based methods of determining smoking status unreliable. Previously, we have shown that methylation status at cg05575921 in whole blood DNA can reliably predict cigarette consumption. However, whether methylation status in saliva can be used similarly has yet to be established. Herein, we use DNA from 418 biochemically confirmed smokers or nonsmokers to compare and contrast the utility of cg05575921 in classifying and quantifying cigarette smoking. Using whole blood DNA, a model incorporating age, gender, and methylation status had a receiver operating characteristic (ROC) area under the curve (AUC) for predicting smoking status of 0.995 with a nonlinear demethylation response to smoking. Using saliva DNA, the ROC AUC for predicting smoking was 0.971 with the plot of the relationship of DNA methylation to daily cigarette consumption being very similar to that seen for whole blood DNA. The addition of information from another methylation marker designed to correct for cellular heterogeneity improved the AUC for saliva DNA to 0.981. Finally, in 31 subjects who reported quitting smoking 10 or more years previously, cg05575921 methylation was nonsignificantly different from controls. We conclude that DNA methylation status at cg05575921 in DNA from whole blood or saliva predicts smoking status and daily cigarette consumption. We suggest these epigenetic assessments for objectively ascertaining smoking status will find utility in research, clinical, and civil applications.
Collapse
Affiliation(s)
- Robert Philibert
- Department of Psychiatry, University of Iowa, Iowa City, Iowa.,Behavioral Diagnostics LLC, Coralville, Iowa
| | - Meeshanthini Dogan
- Department of Psychiatry, University of Iowa, Iowa City, Iowa.,Cardio Diagnostics LLC, Coralville, Iowa
| | - Steven R H Beach
- Center for Family Studies, University of Georgia, Athens, Georgia
| | - James A Mills
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa, Iowa City, Iowa.,Department of Biostatistics, University of Iowa, Iowa City, Iowa
| |
Collapse
|
130
|
Han L, Zhang H, Kaushal A, Rezwan FI, Kadalayil L, Karmaus W, Henderson AJ, Relton CL, Ring S, Arshad SH, Ewart SL, Holloway JW. Changes in DNA methylation from pre- to post-adolescence are associated with pubertal exposures. Clin Epigenetics 2019; 11:176. [PMID: 31791392 PMCID: PMC6888960 DOI: 10.1186/s13148-019-0780-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adolescence is a period characterized by major biological development, which may be associated with changes in DNA methylation (DNA-M). However, it is unknown to what extent DNA-M varies from pre- to post-adolescence, whether the pattern of changes is different between females and males, and how adolescence-related factors are associated with changes in DNA-M. METHODS Genome-scale DNA-M at ages 10 and 18 years in whole blood of 325 subjects (n = 140 females) in the Isle of Wight (IOW) birth cohort was analyzed using Illumina Infinium arrays (450K and EPIC). Linear mixed models were used to examine DNA-M changes between pre- and post-adolescence and whether the changes were gender-specific. Adolescence-related factors and environmental exposure factors were assessed on their association with DNA-M changes. Replication of findings was attempted in the comparable Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. RESULTS In the IOW cohort, after controlling for technical variation and cell compositions at both pre- and post-adolescence, 15,532 cytosine-phosphate-guanine (CpG) sites (of 400,825 CpGs, 3.88%) showed statistically significant DNA-M changes from pre-adolescence to post-adolescence invariant to gender (false discovery rate (FDR) = 0.05). Of these 15,532 CpGs, 10,212 CpGs (66%) were replicated in the ALSPAC cohort. Pathway analysis using Ingenuity Pathway Analysis (IPA) identified significant biological pathways related to growth and development of the reproductive system, emphasizing the importance of this period of transition on epigenetic state of genes. In addition, in IOW, we identified 1179 CpGs with gender-specific DNA-M changes. In the IOW cohort, body mass index (BMI) at age 10 years, age of growth spurt, nonsteroidal drugs use, and current smoking status showed statistically significant associations with DNA-M changes at 15 CpGs on 14 genes such as the AHRR gene. For BMI at age 10 years, the association was gender-specific. Findings on current smoking status were replicated in the ALSPAC cohort. CONCLUSION Adolescent transition is associated with changes in DNA-M at more than 15K CpGs. Identified pathways emphasize the importance of this period of transition on epigenetic state of genes relevant to cell growth and immune system development.
Collapse
Affiliation(s)
- Luhang Han
- Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152 USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN 38152 USA
| | | | - Faisal I. Rezwan
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL UK
| | - Latha Kadalayil
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN 38152 USA
| | - A. John Henderson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 1QU UK
| | - Caroline L. Relton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 1QU UK
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, BS8 1QU UK
| | - Susan Ring
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 1QU UK
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, BS8 1QU UK
| | - S. Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ UK
- David Hide Asthma and Allergy Research Centre, St Mary’s Hospital, Newport, Isle of Wight PO30 5TG UK
| | - Susan L. Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ UK
| |
Collapse
|
131
|
Bordoni L, Smerilli V, Nasuti C, Gabbianelli R. Mitochondrial DNA methylation and copy number predict body composition in a young female population. J Transl Med 2019; 17:399. [PMID: 31779622 PMCID: PMC6883616 DOI: 10.1186/s12967-019-02150-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022] Open
Abstract
Background Since both genomic and environmental factors are involved in obesity etiology, several studies about the influence of adiposity on both nuclear DNA and mitochondrial DNA methylation patterns have been carried out. Nevertheless, few evidences exploring the usage of buccal swab samples to study mitochondrial DNA epigenetics can be found in literature. Methods In this study, mitochondrial DNA from buccal swabs collected from a young Caucasian population (n = 69) have been used to examine potential correlation between mitochondrial DNA copy number and methylation with body composition (BMI, WHtR and bioimpedance measurements). Results A negative correlation between mitochondrial DNA copy number and BMI was measured in females (p = 0.028), but not in males. The mean percentage of D-loop methylation is significantly higher in overweight than in lean female subjects (p = 0.003), and a specific CpG located in the D-loop shows per se an association with impaired body composition (p = 0.004). Body composition impairment is predicted by a combined variable including mtDNA copy number and the D-loop methylation (AUC = 0.785; p = 0.009). Conclusions This study corroborates the hypothesis that mitochondrial DNA carries relevant information about body composition. However, wider investigations able to validate the usage of mtDNA methylation from buccal swabs as a biomarker are warranted.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Vanessa Smerilli
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Cinzia Nasuti
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Rosita Gabbianelli
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy.
| |
Collapse
|
132
|
Relation of Promoter Methylation of the Oxytocin Gene to Stressful Life Events and Depression Severity. J Mol Neurosci 2019; 70:201-211. [DOI: 10.1007/s12031-019-01446-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
|
133
|
Odintsova VV, Hagenbeek FA, Suderman M, Caramaschi D, van Beijsterveldt CEM, Kallsen NA, Ehli EA, Davies GE, Sukhikh GT, Fanos V, Relton C, Bartels M, Boomsma DI, van Dongen J. DNA Methylation Signatures of Breastfeeding in Buccal Cells Collected in Mid-Childhood. Nutrients 2019; 11:E2804. [PMID: 31744183 PMCID: PMC6893543 DOI: 10.3390/nu11112804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Breastfeeding has long-term benefits for children that may be mediated via the epigenome. This pathway has been hypothesized, but the number of empirical studies in humans is small and mostly done by using peripheral blood as the DNA source. We performed an epigenome-wide association study (EWAS) in buccal cells collected around age nine (mean = 9.5) from 1006 twins recruited by the Netherlands Twin Register (NTR). An age-stratified analysis examined if effects attenuate with age (median split at 10 years; n<10 = 517, mean age = 7.9; n>10 = 489, mean age = 11.2). We performed replication analyses in two independent cohorts from the NTR (buccal cells) and the Avon Longitudinal Study of Parents and Children (ALSPAC) (peripheral blood), and we tested loci previously associated with breastfeeding in epigenetic studies. Genome-wide DNA methylation was assessed with the Illumina Infinium MethylationEPIC BeadChip (Illumina, San Diego, CA, USA) in the NTR and with the HumanMethylation450 Bead Chip in the ALSPAC. The duration of breastfeeding was dichotomized ('never' vs. 'ever'). In the total sample, no robustly associated epigenome-wide significant CpGs were identified (α = 6.34 × 10-8). In the sub-group of children younger than 10 years, four significant CpGs were associated with breastfeeding after adjusting for child and maternal characteristics. In children older than 10 years, methylation differences at these CpGs were smaller and non-significant. The findings did not replicate in the NTR sample (n = 98; mean age = 7.5 years), and no nearby sites were associated with breastfeeding in the ALSPAC study (n = 938; mean age = 7.4). Of the CpG sites previously reported in the literature, three were associated with breastfeeding in children younger than 10 years, thus showing that these CpGs are associated with breastfeeding in buccal and blood cells. Our study is the first to show that breastfeeding is associated with epigenetic variation in buccal cells in children. Further studies are needed to investigate if methylation differences at these loci are caused by breastfeeding or by other unmeasured confounders, as well as what mechanism drives changes in associations with age.
Collapse
Affiliation(s)
- Veronika V. Odintsova
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands (D.I.B.)
- Amsterdam Public Health Research Institute, 1081 BT Amsterdam, The Netherlands
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 101000, Russia
| | - Fiona A. Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands (D.I.B.)
- Amsterdam Public Health Research Institute, 1081 BT Amsterdam, The Netherlands
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Bristol Medical School, Population Health Science, University of Bristol, Bristol BS8 1TH, UK
| | - Doretta Caramaschi
- MRC Integrative Epidemiology Unit, Bristol Medical School, Population Health Science, University of Bristol, Bristol BS8 1TH, UK
| | | | - Noah A. Kallsen
- Avera Institute for Human Genetics, Sioux Falls, SD 57101, USA
| | - Erik A. Ehli
- Avera Institute for Human Genetics, Sioux Falls, SD 57101, USA
| | | | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 101000, Russia
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, 09121 Cagliari, Italy
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, Bristol Medical School, Population Health Science, University of Bristol, Bristol BS8 1TH, UK
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands (D.I.B.)
- Amsterdam Public Health Research Institute, 1081 BT Amsterdam, The Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands (D.I.B.)
- Amsterdam Public Health Research Institute, 1081 BT Amsterdam, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands (D.I.B.)
- Amsterdam Public Health Research Institute, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
134
|
Fujisawa TX, Nishitani S, Takiguchi S, Shimada K, Smith AK, Tomoda A. Oxytocin receptor DNA methylation and alterations of brain volumes in maltreated children. Neuropsychopharmacology 2019; 44:2045-2053. [PMID: 31071720 PMCID: PMC6898679 DOI: 10.1038/s41386-019-0414-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/07/2019] [Accepted: 04/26/2019] [Indexed: 11/09/2022]
Abstract
Although oxytocin (OXT) plays an important role in secure attachment formation with a primary caregiver, which is impaired in many children with childhood maltreatment (CM), epigenetic regulation in response to CM is a key factor in brain development during childhood. To address this issue, we first investigated differences in salivary DNA methylation of the oxytocin receptor (OXTR) between CM and Non-CM groups of Japanese children (CM: n = 44; Non-CM: n = 41) and its impact on brain structures in subgroup analysis using brain imaging and full clinical data (CM: n = 24; Non-CM: n = 31). As a result, we observed that the CM group showed higher CpG 5,6 methylation than did the Non-CM group and confirmed negative correlations of gray matter volume (GMV) in the left orbitofrontal cortex (OFC) with CpG 5,6 methylation. In addition, the CM group showed significantly lower GMV in the left OFC than did the Non-CM group. Furthermore, as a result of examining the relationship between GMV in the left OFC and psychiatric symptoms in CM, we observed a negative association with insecure attachment style and also confirmed the mediation effect of left-OFC GMV reduction on the relationship between OXTR methylation and insecure attachment style. These results suggest that any modulation of the oxytocin signaling pathway induced by OXTR hypermethylation at CpG 5,6 leads to atypical development of the left OFC, resulting in distorted attachment formation in children with CM.
Collapse
Affiliation(s)
- Takashi X. Fujisawa
- 0000 0001 0692 8246grid.163577.1Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Shota Nishitani
- 0000 0001 0941 6502grid.189967.8Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA USA ,0000 0001 0941 6502grid.189967.8Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Shinichiro Takiguchi
- grid.413114.2Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Koji Shimada
- 0000 0001 0692 8246grid.163577.1Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Alicia K. Smith
- 0000 0001 0941 6502grid.189967.8Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA USA ,0000 0001 0941 6502grid.189967.8Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan. .,Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan.
| |
Collapse
|
135
|
Short AK, Baram TZ. Early-life adversity and neurological disease: age-old questions and novel answers. Nat Rev Neurol 2019; 15:657-669. [PMID: 31530940 PMCID: PMC7261498 DOI: 10.1038/s41582-019-0246-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
Neurological illnesses, including cognitive impairment, memory decline and dementia, affect over 50 million people worldwide, imposing a substantial burden on individuals and society. These disorders arise from a combination of genetic, environmental and experiential factors, with the latter two factors having the greatest impact during sensitive periods in development. In this Review, we focus on the contribution of adverse early-life experiences to aberrant brain maturation, which might underlie vulnerability to cognitive brain disorders. Specifically, we draw on recent robust discoveries from diverse disciplines, encompassing human studies and experimental models. These discoveries suggest that early-life adversity, especially in the perinatal period, influences the maturation of brain circuits involved in cognition. Importantly, new findings suggest that fragmented and unpredictable environmental and parental signals comprise a novel potent type of adversity, which contributes to subsequent vulnerabilities to cognitive illnesses via mechanisms involving disordered maturation of brain 'wiring'.
Collapse
Affiliation(s)
- Annabel K Short
- Departments of Anatomy and Neruobiology, University of California-Irvine, Irvine, CA, USA
- Departments of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Departments of Anatomy and Neruobiology, University of California-Irvine, Irvine, CA, USA.
- Departments of Pediatrics, University of California-Irvine, Irvine, CA, USA.
- Departments of Neurology, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
136
|
Childebayeva A, Harman T, Weinstein J, Goodrich JM, Dolinoy DC, Day TA, Bigham AW, Brutsaert TD. DNA Methylation Changes Are Associated With an Incremental Ascent to High Altitude. Front Genet 2019; 10:1062. [PMID: 31737045 PMCID: PMC6828981 DOI: 10.3389/fgene.2019.01062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and nongenetic factors are involved in the individual ability to physiologically acclimatize to high-altitude hypoxia through processes that include increased heart rate and ventilation. High-altitude acclimatization is thought to have a genetic component, yet it is unclear if other factors, such as epigenetic gene regulation, are involved in acclimatization to high-altitude hypoxia in nonacclimatized individuals. We collected saliva samples from a group of healthy adults of European ancestry (n = 21) in Kathmandu (1,400 m; baseline) and three altitudes during a trek to the Everest Base Camp: Namche (3,440 m; day 3), Pheriche (4,240 m; day 7), and Gorak Shep (5,160 m; day 10). We used quantitative bisulfite pyrosequencing to determine changes in DNA methylation, a well-studied epigenetic marker, in LINE-1, EPAS1, EPO, PPARa, and RXRa. We found significantly lower DNA methylation between baseline (1,400 m) and high altitudes in LINE-1, EPO (at 4,240 m only), and RXRa. We found increased methylation in EPAS1 (at 4,240 m only) and PPARa. We also found positive associations between EPO methylation and systolic blood pressure and RXRa methylation and hemoglobin. Our results show that incremental exposure to hypoxia can affect the epigenome. Changes to the epigenome, in turn, could underlie the process of altitude acclimatization.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Anthropology, University of Michigan, Ann Arbor, MI, United States.,Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Taylor Harman
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States
| | - Julien Weinstein
- Department of Anthropology, University of Michigan, Ann Arbor, MI, United States
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.,Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada
| | - Abigail W Bigham
- Department of Anthropology, University of Michigan, Ann Arbor, MI, United States.,Department of Anthropology, University of California, Los Angeles, CA, United States
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
137
|
Humphreys KL, Moore SR, Davis EG, MacIsaac JL, Lin DTS, Kobor MS, Gotlib IH. DNA methylation of HPA-axis genes and the onset of major depressive disorder in adolescent girls: a prospective analysis. Transl Psychiatry 2019; 9:245. [PMID: 31582756 PMCID: PMC6776528 DOI: 10.1038/s41398-019-0582-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/11/2019] [Indexed: 12/28/2022] Open
Abstract
The stress response system is disrupted in individuals with major depressive disorder (MDD) as well as in those at elevated risk for developing MDD. We examined whether DNA methylation (DNAm) levels of CpG sites within HPA-axis genes predict the onset of MDD. Seventy-seven girls, approximately half (n = 37) of whom were at familial risk for MDD, were followed longitudinally. Saliva samples were taken in adolescence (M age = 13.06 years [SD = 1.52]) when participants had no current or past MDD diagnosis. Diagnostic interviews were administered approximately every 18 months until the first onset of MDD or early adulthood (M age of last follow-up = 19.23 years [SD = 2.69]). We quantified DNAm in saliva samples using the Illumina EPIC chip and examined CpG sites within six key HPA-axis genes (NR3C1, NR3C2, CRH, CRHR1, CRHR2, FKBP5) alongside 59 genotypes for tagging SNPs capturing cis genetic variability. DNAm levels within CpG sites in NR3C1, CRH, CRHR1, and CRHR2 were associated with risk for MDD across adolescence and young adulthood. To rule out the possibility that findings were merely due to the contribution of genetic variability, we re-analyzed the data controlling for cis genetic variation within these candidate genes. Importantly, methylation levels in these CpG sites continued to significantly predict the onset of MDD, suggesting that variation in the epigenome, independent of proximal genetic variants, prospectively predicts the onset of MDD. These findings suggest that variation in the HPA axis at the level of the methylome may predict the development of MDD.
Collapse
Affiliation(s)
- Kathryn L. Humphreys
- 0000 0001 2264 7217grid.152326.1Department of Psychology and Human Development, Vanderbilt University, Nashville, TN USA
| | - Sarah R. Moore
- 0000 0001 2288 9830grid.17091.3eBC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC Canada
| | - Elena Goetz Davis
- 0000000419368956grid.168010.eDepartment of Psychology, Stanford University, Stanford, USA
| | - Julie L. MacIsaac
- 0000 0001 2288 9830grid.17091.3eBC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC Canada
| | - David T. S. Lin
- 0000 0001 2288 9830grid.17091.3eBC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC Canada
| | - Michael S. Kobor
- 0000 0001 2288 9830grid.17091.3eBC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC Canada
| | - Ian H. Gotlib
- 0000000419368956grid.168010.eDepartment of Psychology, Stanford University, Stanford, USA
| |
Collapse
|
138
|
Xu K, Montalvo‐Ortiz JL, Zhang X, Southwick SM, Krystal JH, Pietrzak RH, Gelernter J. Epigenome‐Wide
DNA
Methylation Association Analysis Identified Novel Loci in Peripheral Cells for Alcohol Consumption Among European American Male Veterans. Alcohol Clin Exp Res 2019; 43:2111-2121. [PMID: 31386212 DOI: 10.1111/acer.14168] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Ke Xu
- Department of Psychiatry Yale School of Medicine New Haven Connecticut
- VA Connecticut Healthcare System West Haven Connecticut
| | - Janitza L. Montalvo‐Ortiz
- Department of Psychiatry Yale School of Medicine New Haven Connecticut
- VA Connecticut Healthcare System West Haven Connecticut
| | - Xinyu Zhang
- Department of Psychiatry Yale School of Medicine New Haven Connecticut
- VA Connecticut Healthcare System West Haven Connecticut
| | - Steven M. Southwick
- Department of Psychiatry Yale School of Medicine New Haven Connecticut
- VA Connecticut Healthcare System West Haven Connecticut
- Clinical Neurosciences Division U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder West Haven Connecticut
| | - John H. Krystal
- Department of Psychiatry Yale School of Medicine New Haven Connecticut
- VA Connecticut Healthcare System West Haven Connecticut
- Clinical Neurosciences Division U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder West Haven Connecticut
| | - Robert H. Pietrzak
- Department of Psychiatry Yale School of Medicine New Haven Connecticut
- VA Connecticut Healthcare System West Haven Connecticut
- Clinical Neurosciences Division U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder West Haven Connecticut
| | - Joel Gelernter
- Department of Psychiatry Yale School of Medicine New Haven Connecticut
- VA Connecticut Healthcare System West Haven Connecticut
- Clinical Neurosciences Division U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder West Haven Connecticut
| |
Collapse
|
139
|
Murata Y, Fujii A, Kanata S, Fujikawa S, Ikegame T, Nakachi Y, Zhao Z, Jinde S, Kasai K, Bundo M, Iwamoto K. Evaluation of the usefulness of saliva for DNA methylation analysis in cohort studies. Neuropsychopharmacol Rep 2019; 39:301-305. [PMID: 31393092 PMCID: PMC7292296 DOI: 10.1002/npr2.12075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction Epigenetic information such as DNA methylation is a useful biomarker that reflects complex gene‐environmental interaction. Peripheral tissues such as blood and saliva are commonly collected as the source of genomic DNA in cohort studies. Epigenetic studies mainly use blood, while a few studies have addressed the epigenetic characteristics of saliva. Methods The effects of methods for DNA extraction and purification from saliva on DNA methylation were surveyed using Illumina Infinium HumanMethylation450 BeadChip. Using 386 661 probes, DNA methylation differences between blood and saliva from 22 healthy volunteers, and their functional and structural characteristics were examined. CpG sites with DNA methylation levels showing large interindividual variations in blood were evaluated using saliva DNA methylation profiles. Results Genomic DNA prepared by simplified protocol from saliva showed a similar quality DNA methylation profile to that derived from the manufacturer provided protocol. Consistent with previous studies, the DNA methylation profiles of blood and saliva showed high correlations. Blood showed 1,514 hypomethylated and 2099 hypermethylated probes, suggesting source‐dependent DNA methylation patterns. CpG sites with large methylation difference between the two sources were underrepresented in the promoter regions and enriched within gene bodies. CpG sites with large interindividual methylation variations in blood also showed considerable variations in saliva. Conclusion In addition to high correlation in DNA methylation profiles, CpG sites showing large interindividual DNA methylation differences were similar between blood and saliva, ensuring saliva could be a suitable alternative source for genomic DNA in cohort studies. Consideration of source‐dependent DNA methylation differences will, however, be necessary. We compared quality of saliva methylome data collected by several DNA purification protocols and examined the characteristics of saliva methylome. Optimized protocol and identified characteristics such as common informative CpG sites to blood and unique epigenetic changes in saliva will contribute to promote the use of saliva for epigenetic studies in clinical settings and epidemiological cohort studies.![]()
Collapse
Affiliation(s)
- Yui Murata
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayaka Fujii
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Sho Kanata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Shinya Fujikawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tempei Ikegame
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Zhilei Zhao
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
140
|
Dawes K, Andersen A, Vercande K, Papworth E, Philibert W, Beach SR, Gibbons FX, Gerrard M, Philibert R. Saliva DNA Methylation Detects Nascent Smoking in Adolescents. J Child Adolesc Psychopharmacol 2019; 29:535-544. [PMID: 31180231 PMCID: PMC6727474 DOI: 10.1089/cap.2018.0176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objectives: Early identification of smoking, essential for the successful implementation of interventions, arrests the escalation of smoking and smoking-associated risk behaviors in adolescents. However, because nascent smoking is typically episodic and infrequent, enzyme-linked immunoassay reagent-based approaches that detect cotinine, a key nicotine metabolite, are not effective in identifying adolescents in the earliest stages of smoking. Epigenetic methods may offer an alternative approach for detecting early-stage smokers. In prior work, we and others have shown that the methylation status of cg05575921 of whole-blood DNA accurately predicts smoking status in regularly smoking adults and is sensitive to nascent smoking. Yet, the blood draws necessary to obtain DNA for this method may be poorly accepted by adolescents. Saliva could be an alternative source of DNA. However, the ability of saliva DNA methylation status to predict smoking status among adolescents is unknown. Methods: To explore the possibility of using salivary DNA for screening purposes, we examined the DNA methylation status at cg05575921 in saliva DNA samples from 162 high school aged subjects for whom we also had paired serum cotinine values. Results: Overall, the reliability of self-report of nicotine/tobacco use in these adolescents was poor with 67% of all subjects whose serum levels of cotinine was ≥2 ng/mL (n = 75) denying any use of nicotine-containing products in the past 6 months. However, the correspondence of the two biological measures of smoking was high, with serum cotinine positivity being strongly correlated with cg05575921 methylation (p < 0.0001). Receiver operating characteristic (ROC) analyses showed that cg05575921 methylation status could be used to classify those with positive serum cotinine values (≥2 ng/mL) from those denying smoking and have undetectable levels of cotinine. Conclusions: We conclude that saliva DNA methylation assessments hold promise as a means of detecting nascent smoking.
Collapse
Affiliation(s)
- Kelsey Dawes
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
| | - Allan Andersen
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
| | - Kyra Vercande
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
| | - Emma Papworth
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
| | | | - Steven R.H. Beach
- Center for Family Research, University of Georgia, Athens, Georgia
- Department of Psychology, University of Georgia, Athens, Georgia
| | | | - Meg Gerrard
- Department of Psychology, University of Connecticut, Storrs, Connecticut
| | - Robert Philibert
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
- Behavioral Diagnostics, Coralville, Iowa
| |
Collapse
|
141
|
Kogan SM, Bae D, Cho J, Smith AK, Nishitani S. Childhood Adversity, Socioeconomic Instability, Oxytocin-Receptor-Gene Methylation, and Romantic-Relationship Support Among Young African American Men. Psychol Sci 2019; 30:1234-1244. [PMID: 31318641 DOI: 10.1177/0956797619854735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Men's emerging adult romantic relationships forecast downstream relationship behavior, including commitment and quality. Accumulating evidence implicates methylation of the oxytocin-receptor-gene (OXTR) system in regulating relationship behavior. We tested hypotheses regarding the links between (a) childhood adversity and (b) socioeconomic instability in emerging adulthood on supportive romantic relationships via their associations with OXTR methylation. Hypotheses were tested using path analysis with data from 309 participants in the African American Men's Project. Consistent with our hypotheses, results showed that OXTR methylation proximally predicted changes in relationship support during a 1.5-year period. Childhood adversity was not directly associated with OXTR methylation but, rather, with contemporaneous socioeconomic instability, which in turn predicted elevated OXTR methylation. Findings suggest that early adversity is indirectly associated with OXTR methylation by links with downstream socioeconomic instability. Findings must be considered provisional, however, because preregistered replications are needed to establish more firmly the relations among these variables.
Collapse
Affiliation(s)
- Steven M Kogan
- 1 Department of Human Development and Family Science, University of Georgia
| | - Dayoung Bae
- 2 Center for Family Research, University of Georgia
| | - Junhan Cho
- 3 Keck School of Medicine, University of Southern California
| | - Alicia K Smith
- 4 Department of Psychiatry and Behavioral Sciences, Emory University
| | - Shota Nishitani
- 4 Department of Psychiatry and Behavioral Sciences, Emory University
| |
Collapse
|
142
|
Siu MT, Butcher DT, Turinsky AL, Cytrynbaum C, Stavropoulos DJ, Walker S, Caluseriu O, Carter M, Lou Y, Nicolson R, Georgiades S, Szatmari P, Anagnostou E, Scherer SW, Choufani S, Brudno M, Weksberg R. Functional DNA methylation signatures for autism spectrum disorder genomic risk loci: 16p11.2 deletions and CHD8 variants. Clin Epigenetics 2019; 11:103. [PMID: 31311581 PMCID: PMC6636171 DOI: 10.1186/s13148-019-0684-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 05/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a common and etiologically heterogeneous neurodevelopmental disorder. Although many genetic causes have been identified (> 200 ASD-risk genes), no single gene variant accounts for > 1% of all ASD cases. A role for epigenetic mechanisms in ASD etiology is supported by the fact that many ASD-risk genes function as epigenetic regulators and evidence that epigenetic dysregulation can interrupt normal brain development. Gene-specific DNAm profiles have been shown to assist in the interpretation of variants of unknown significance. Therefore, we investigated the epigenome in patients with ASD or two of the most common genomic variants conferring increased risk for ASD. Genome-wide DNA methylation (DNAm) was assessed using the Illumina Infinium HumanMethylation450 and MethylationEPIC arrays in blood from individuals with ASD of heterogeneous, undefined etiology (n = 52), and individuals with 16p11.2 deletions (16p11.2del, n = 9) or pathogenic variants in the chromatin modifier CHD8 (CHD8+/−, n = 7). Results DNAm patterns did not clearly distinguish heterogeneous ASD cases from controls. However, the homogeneous genetically-defined 16p11.2del and CHD8+/− subgroups each exhibited unique DNAm signatures that distinguished 16p11.2del or CHD8+/− individuals from each other and from heterogeneous ASD and control groups with high sensitivity and specificity. These signatures also classified additional 16p11.2del (n = 9) and CHD8 (n = 13) variants as pathogenic or benign. Our findings that DNAm alterations in each signature target unique genes in relevant biological pathways including neural development support their functional relevance. Furthermore, genes identified in our CHD8+/− DNAm signature in blood overlapped differentially expressed genes in CHD8+/− human-induced pluripotent cell-derived neurons and cerebral organoids from independent studies. Conclusions DNAm signatures can provide clinical utility complementary to next-generation sequencing in the interpretation of variants of unknown significance. Our study constitutes a novel approach for ASD risk-associated molecular classification that elucidates the vital cross-talk between genetics and epigenetics in the etiology of ASD. Electronic supplementary material The online version of this article (10.1186/s13148-019-0684-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M T Siu
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - D T Butcher
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - A L Turinsky
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - C Cytrynbaum
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, 555 University Ave, Toronto, Ontario, M5G 1X8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - D J Stavropoulos
- Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - S Walker
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - O Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - M Carter
- Department of Genetics, The Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Y Lou
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - R Nicolson
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada
| | - S Georgiades
- Department of Psychiatry and Behavioural Neurosciences, Offord Centre for Child Studies, McMaster University, Hamilton, Ontario, Canada
| | - P Szatmari
- Child and Youth Mental Health Collaborative, Centre for Addiction and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - E Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - S W Scherer
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - S Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - M Brudno
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - R Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, 555 University Ave, Toronto, Ontario, M5G 1X8, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. .,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada. .,Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
143
|
Laufer BI, Hwang H, Vogel Ciernia A, Mordaunt CE, LaSalle JM. Whole genome bisulfite sequencing of Down syndrome brain reveals regional DNA hypermethylation and novel disorder insights. Epigenetics 2019; 14:672-684. [PMID: 31010359 PMCID: PMC6557615 DOI: 10.1080/15592294.2019.1609867] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023] Open
Abstract
Down Syndrome (DS) is the most common genetic cause of intellectual disability, in which an extra copy of human chromosome 21 (HSA21) affects regional DNA methylation profiles across the genome. Although DNA methylation has been previously examined at select regulatory regions across the genome in a variety of DS tissues and cells, differentially methylated regions (DMRs) have yet to be examined in an unbiased sequencing-based approach. Here, we present the first analysis of DMRs from whole genome bisulfite sequencing (WGBS) data of human DS and matched control brain, specifically frontal cortex. While no global differences in DNA methylation were observed, we identified 3,152 DS-DMRs across the entire genome, the majority of which were hypermethylated in DS. DS-DMRs were significantly enriched at CpG islands and de-enriched at specific gene body and regulatory regions. Functionally, the hypermethylated DS-DMRs were enriched for one-carbon metabolism, membrane transport, and glutamatergic synaptic signalling, while the hypomethylated DMRs were enriched for proline isomerization, glial immune response, and apoptosis. Furthermore, in a cross-tissue comparison to previous studies of DNA methylation from diverse DS tissues and reference epigenomes, hypermethylated DS-DMRs showed a strong cross-tissue concordance, while a more tissue-specific pattern was observed for the hypomethylated DS-DMRs. Overall, this approach highlights that low-coverage WGBS of clinical samples can identify epigenetic alterations to known biological pathways, which are potentially relevant to therapeutic treatments and include metabolic pathways. These results also provide new insights into the genome-wide effects of genetic alterations on DNA methylation profiles indicative of altered neurodevelopment and brain function.
Collapse
Affiliation(s)
- Benjamin I. Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Hyeyeon Hwang
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Annie Vogel Ciernia
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Charles E. Mordaunt
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| |
Collapse
|
144
|
Kumsta R. The role of epigenetics for understanding mental health difficulties and its implications for psychotherapy research. Psychol Psychother 2019; 92:190-207. [PMID: 30924323 DOI: 10.1111/papt.12227] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 12/14/2022]
Abstract
Many mental health difficulties have developmental origins. Understanding the mechanisms for how psychosocial experiences are biologically embedded and influence lifelong development is a key challenge for the mental health disciplines. In recent years, epigenetic processes have emerged as a potential mechanism mediating the long-lasting vulnerability following the experience of adversity. Animal models provide evidence that early-life adversity can produce enduring epigenetic modifications in the brain, which mediate disorder-like behaviours, and there is emerging evidence to support that environmental factors influence epigenetic processes in humans. The investigation of DNA methylation, a chemical modification of the DNA with a role in gene regulatory processes, is becoming increasingly popular in psychological studies. A particular interest for the psychotherapy field lies in the potential for psychological interventions to influence epigenetic processes. Hence, the focus of this review will be on studies that have investigated intervention-associated changes in DNA methylation. Results of the first few studies will be critically reviewed, and a model of how therapy-associated changes of DNA methylation in peripheral, non-brain tissue might be useful as epigenetic biomarkers of treatment outcome will be presented. PRACTITIONER POINTS: Many mental health difficulties have substantial developmental origin. Epigenetic processes have emerged as a potential mechanism mediating the long-term effects of early adversity Epigenetic refers to cellular mechanisms that control gene expression states, independent of changes to the underlying DNA sequence. The epigenome can be highly dynamic and potentially influenced by external factors A particular interest for the psychotherapy field lies in the potential for psychological interventions to influence epigenetic processes.
Collapse
Affiliation(s)
- Robert Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
145
|
Dunn EC, Soare TW, Zhu Y, Simpkin AJ, Suderman MJ, Klengel T, Smith ADAC, Ressler KJ, Relton CL. Sensitive Periods for the Effect of Childhood Adversity on DNA Methylation: Results From a Prospective, Longitudinal Study. Biol Psychiatry 2019; 85:838-849. [PMID: 30905381 PMCID: PMC6552666 DOI: 10.1016/j.biopsych.2018.12.023] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 12/04/2018] [Accepted: 12/16/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Exposure to early-life adversity is known to predict DNA methylation (DNAm) patterns that may be related to psychiatric risk. However, few studies have investigated whether adversity has time-dependent effects based on the age at exposure. METHODS Using a two-stage structured life course modeling approach, we tested the hypothesis that there are sensitive periods when adversity induces greater DNAm changes. We tested this hypothesis in relation to two alternatives: an accumulation hypothesis, in which the effect of adversity increases with the number of occasions exposed, regardless of timing; and a recency model, in which the effect of adversity is stronger for more proximal events. Data came from the Accessible Resource for Integrated Epigenomic Studies, a subsample of mother-child pairs from the Avon Longitudinal Study of Parents and Children (n = 691-774). RESULTS After covariate adjustment and multiple testing correction, we identified 38 CpG sites that were differentially methylated at 7 years of age following exposure to adversity. Most loci (n = 35) were predicted by the timing of adversity, namely exposures before 3 years of age. Neither the accumulation nor recency of the adversity explained considerable variability in DNAm. A standard epigenome-wide association study of lifetime exposure (vs. no exposure) failed to detect these associations. CONCLUSIONS The developmental timing of adversity explains more variability in DNAm than the accumulation or recency of exposure. Very early childhood appears to be a sensitive period when exposure to adversity predicts differential DNAm patterns. Classification of individuals as exposed versus unexposed to early-life adversity may dilute observed effects.
Collapse
Affiliation(s)
- Erin C Dunn
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Thomas W Soare
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yiwen Zhu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Andrew J Simpkin
- Medical Research Council Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Matthew J Suderman
- Medical Research Council Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts; Department of Psychiatry and Psychotherapy, University Medical Center Gottingen, Germany
| | - Andrew D A C Smith
- Applied Statistics Group, University of the West of England, Bristol, United Kingdom
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom; Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
146
|
Hamza M, Halayem S, Bourgou S, Daoud M, Charfi F, Belhadj A. Epigenetics and ADHD: Toward an Integrative Approach of the Disorder Pathogenesis. J Atten Disord 2019; 23:655-664. [PMID: 28665177 DOI: 10.1177/1087054717696769] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Epigenetic hypothesis is one of the research pathways used to explain the complex etiology of neurodevelopmental disorders. This review highlights the findings of recent studies in the field of epigenetics in ADHD. METHODS An electronic literature search using Medline. RESULTS In the Gene × Environment interaction model, several clinical, genetic and molecular arguments support the epigenetic hypothesis in ADHD etiology. Environmental ADHD risk factors including toxic, nutritional factors and stressful life events lead to changes in DNA methylation and in histone modification levels. One critical CpG site located in the promoter of the DRD4 gene exhibited a specific pattern in ADHD children. A methylome wide exploration of DNA showed decreased methylation in vasoactive intestinal peptide receptor 2 gene, which was not replicated by further research. CONCLUSION Current data require consolidation and could lead to the identification of biomarkers and the introduction of new modalities of treatment.
Collapse
Affiliation(s)
- Meriem Hamza
- 1 University of Tunis El Manar, Tunis, Tunisia.,2 Mongi Slim Hospital, Sidi Daoud, Tunisia
| | - Soumeyya Halayem
- 1 University of Tunis El Manar, Tunis, Tunisia.,3 Razi Hospital, Manouba, Tunisia
| | - Soumaya Bourgou
- 1 University of Tunis El Manar, Tunis, Tunisia.,2 Mongi Slim Hospital, Sidi Daoud, Tunisia
| | - Mona Daoud
- 1 University of Tunis El Manar, Tunis, Tunisia.,2 Mongi Slim Hospital, Sidi Daoud, Tunisia
| | - Fatma Charfi
- 1 University of Tunis El Manar, Tunis, Tunisia.,2 Mongi Slim Hospital, Sidi Daoud, Tunisia
| | - Ahlem Belhadj
- 1 University of Tunis El Manar, Tunis, Tunisia.,2 Mongi Slim Hospital, Sidi Daoud, Tunisia
| |
Collapse
|
147
|
Krol KM, Puglia MH, Morris JP, Connelly JJ, Grossmann T. Epigenetic modification of the oxytocin receptor gene is associated with emotion processing in the infant brain. Dev Cogn Neurosci 2019; 37:100648. [PMID: 31125951 PMCID: PMC6969294 DOI: 10.1016/j.dcn.2019.100648] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/22/2023] Open
Abstract
First developmental neuroimaging epigenetics study with human infants. Oxytocin receptor gene methylation (OXTRm) assessed in a large sample of infants. OXTRm predicts inferior frontal brain responses to emotional faces using fNIRS. Higher OXTRm linked to enhanced brain responses to angry and fearful faces. OXTRm contributes to variability in social brain function early in ontogeny.
The neural capacity to discriminate between emotions emerges early in development, though little is known about specific factors that contribute to variability in this vital skill during infancy. In adults, DNA methylation of the oxytocin receptor gene (OXTRm) is an epigenetic modification that is variable, predictive of gene expression, and has been linked to autism spectrum disorder and the neural response to social cues. It is unknown whether OXTRm is variable in infants, and whether it is predictive of early social function. Implementing a developmental neuroimaging epigenetics approach in a large sample of infants (N = 98), we examined whether OXTRm is associated with neural responses to emotional expressions. OXTRm was assessed at 5 months of age. At 7 months of age, infants viewed happy, angry, and fearful faces while functional near-infrared spectroscopy was recorded. We observed that OXTRm shows considerable variability among infants. Critically, infants with higher OXTRm show enhanced responses to anger and fear and attenuated responses to happiness in right inferior frontal cortex, a region implicated in emotion processing through action-perception coupling. Findings support models emphasizing oxytocin’s role in modulating neural response to emotion and identify OXTRm as an epigenetic mark contributing to early brain function.
Collapse
Affiliation(s)
- Kathleen M Krol
- Department of Psychology, University of Virginia, 480 McCormick Rd. Charlottesville VA 22903, USA; Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04275 Leipzig, Germany.
| | - Meghan H Puglia
- Department of Psychology, University of Virginia, 480 McCormick Rd. Charlottesville VA 22903, USA
| | - James P Morris
- Department of Psychology, University of Virginia, 480 McCormick Rd. Charlottesville VA 22903, USA
| | - Jessica J Connelly
- Department of Psychology, University of Virginia, 480 McCormick Rd. Charlottesville VA 22903, USA
| | - Tobias Grossmann
- Department of Psychology, University of Virginia, 480 McCormick Rd. Charlottesville VA 22903, USA; Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04275 Leipzig, Germany
| |
Collapse
|
148
|
Hack LM, Fries GR, Eyre HA, Bousman CA, Singh AB, Quevedo J, John VP, Baune BT, Dunlop BW. Moving pharmacoepigenetics tools for depression toward clinical use. J Affect Disord 2019; 249:336-346. [PMID: 30802699 PMCID: PMC6763314 DOI: 10.1016/j.jad.2019.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a leading cause of disability worldwide, and over half of patients do not achieve symptom remission following an initial antidepressant course. Despite evidence implicating a strong genetic basis for the pathophysiology of MDD, there are no adequately validated biomarkers of treatment response routinely used in clinical practice. Pharmacoepigenetics is an emerging field that has the potential to combine both genetic and environmental information into treatment selection and further the goal of precision psychiatry. However, this field is in its infancy compared to the more established pharmacogenetics approaches. METHODS We prepared a narrative review using literature searches of studies in English pertaining to pharmacoepigenetics and treatment of depressive disorders conducted in PubMed, Google Scholar, PsychINFO, and Ovid Medicine from inception through January 2019. We reviewed studies of DNA methylation and histone modifications in both humans and animal models of depression. RESULTS Emerging evidence from human and animal work suggests a key role for epigenetic marks, including DNA methylation and histone modifications, in the prediction of antidepressant response. The challenges of heterogeneity of patient characteristics and loci studied as well as lack of replication that have impacted the field of pharmacogenetics also pose challenges to the development of pharmacoepigenetic tools. Additionally, given the tissue specific nature of epigenetic marks as well as their susceptibility to change in response to environmental factors and aging, pharmacoepigenetic tools face additional challenges to their development. LIMITATIONS This is a narrative and not systematic review of the literature on the pharmacoepigenetics of antidepressant response. We highlight key studies pertaining to pharmacoepigenetics and treatment of depressive disorders in humans and depressive-like behaviors in animal models, regardless of sample size or methodology. While we discuss DNA methylation and histone modifications, we do not cover microRNAs, which have been reviewed elsewhere recently. CONCLUSIONS Utilization of genome-wide approaches and reproducible epigenetic assays, careful selection of the tissue assessed, and integration of genetic and clinical information into pharmacoepigenetic tools will improve the likelihood of developing clinically useful tests.
Collapse
Affiliation(s)
- Laura M Hack
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Palo Alto, CA 94305, USA; Sierra Pacific Mental Illness Research Education and Clinical Centers, VA Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Gabriel R Fries
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Harris A Eyre
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Palo Alto, CA 94305, USA; Innovation Institute, Texas Medical Center, Houston, TX, USA; IMPACT SRC, School of Medicine, Deakin University, Geelong, Victoria, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Chad A Bousman
- Departments of Medical Genetics, Psychiatry, Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Ajeet B Singh
- IMPACT SRC, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Joao Quevedo
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Vineeth P John
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Bernhard T Baune
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
149
|
Jiang S, Kamei N, Bolton JL, Ma X, Stern HS, Baram TZ, Mortazavi A. Intra-individual methylomics detects the impact of early-life adversity. Life Sci Alliance 2019; 2:2/2/e201800204. [PMID: 30936186 PMCID: PMC6445397 DOI: 10.26508/lsa.201800204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 11/24/2022] Open
Abstract
This study shows that methylation profile changes across time in the same individual distinguish a stressful experience from typical infancy, providing a potential predictive marker of vulnerability to disease. Genetic and environmental factors interact during sensitive periods early in life to influence mental health and disease via epigenetic processes such as DNA methylation. However, it is not known if DNA methylation changes outside the brain provide an “epigenetic signature” of early-life experiences. Here, we used a novel intra-individual approach by testing DNA methylation from buccal cells of individual rats before and immediately after exposure to one week of typical or adverse life experience. We find that whereas inter-individual changes in DNA methylation reflect the effect of age, DNA methylation changes within paired DNA samples from the same individual reflect the impact of diverse neonatal experiences. Genes coding for critical cellular metabolic enzymes, ion channels, and receptors were more methylated in pups exposed to the adverse environment, predictive of their repression. In contrast, the adverse experience was associated with less methylation on genes involved in pathways of death and inflammation as well as cell-fate–related transcription factors, indicating their potential up-regulation. Thus, intra-individual methylome signatures indicate large-scale transcription-driven alterations of cellular fate, growth, and function.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Noriko Kamei
- Department of Pediatrics and Anatomy/Neurobiology, University of California, Irvine, CA, USA
| | - Jessica L Bolton
- Department of Pediatrics and Anatomy/Neurobiology, University of California, Irvine, CA, USA
| | - Xinyi Ma
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Hal S Stern
- Department of Statistics, University of California, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Pediatrics and Anatomy/Neurobiology, University of California, Irvine, CA, USA .,Department of Neurology, University of California, Irvine, CA, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| |
Collapse
|
150
|
Lewis CR, Henderson-Smith A, Breitenstein RS, Sowards HA, Piras IS, Huentelman MJ, Doane LD, Lemery-Chalfant K. Dopaminergic gene methylation is associated with cognitive performance in a childhood monozygotic twin study. Epigenetics 2019; 14:310-323. [PMID: 30806146 DOI: 10.1080/15592294.2019.1583032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Individual differences in cognitive function are due to a combination of heritable and non-heritable factors. A large body of evidence from clinical, cognitive, and pharmacological neuroscience implicates dopaminergic gene variants as modulators of cognitive functions. Neuroepigenetic studies demonstrate environmental factors also influence complex phenotypes by affecting gene expression regulation. To evaluate the mechanism of environmental influence on cognitive abilities, we examined if epigenetic regulation of dopaminergic genes plays a role in cognition. Using a DNA methylation profiling microarray, we used a monozygotic (MZ) twin difference design to evaluate if co-twin differences in methylation of CpG sites near six dopaminergic genes predicted differences in response inhibition and memory performance. Studying MZ twins allows us to assess if environmentally driven differences in methylation affect differences in phenotype while controlling for the influence of genotype and shared family environment. Response inhibition was assessed with the flanker task and short-term and working memory were assessed with digit span recall. We found MZ co-twin differences in DRD4 gene methylation predicted differences in short-term memory. MZ differences in COMT, DBH, DAT1, DRD1, and DRD2 gene methylation predicted differences in response inhibition. Taken together, findings suggest methylation status of dopaminergic genes may influence cognitive functions in a dissociable manner. Our results highlight the importance of the epigenome and environment, over and above the influence of genotype, in supporting complex cognitive functions.
Collapse
Affiliation(s)
- Candace R Lewis
- a Neurogenomics Division , Translational Genomics Research Institute , Phoenix , AZ , USA.,b Psychology Department , Arizona State University , Tempe , AZ , USA
| | | | | | - Hayley A Sowards
- b Psychology Department , Arizona State University , Tempe , AZ , USA
| | - Ignazio S Piras
- a Neurogenomics Division , Translational Genomics Research Institute , Phoenix , AZ , USA
| | - Matthew J Huentelman
- a Neurogenomics Division , Translational Genomics Research Institute , Phoenix , AZ , USA
| | - Leah D Doane
- b Psychology Department , Arizona State University , Tempe , AZ , USA
| | | |
Collapse
|