101
|
Purinergic signaling in glioma progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 986:81-102. [PMID: 22879065 DOI: 10.1007/978-94-007-4719-7_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Among the pathological alterations that give tumor cells invasive potential, purinergic signaling is emerging as an important component. Studies performed in in vitro, in vivo and ex vivo glioma models indicate that alterations in the purinergic signaling are involved in the progression of these tumors. Gliomas have low expression of all E-NTPDases, when compared to astrocytes in culture. Nucleotides induce glioma proliferation and ATP, although potentially neurotoxic, does not evoke cytotoxic action on the majority of glioma cells in culture. The importance of extracellular ATP for glioma pathobiology was confirmed by the reduction in glioma tumor size by apyrase, which degrades extracellular ATP to AMP, and the striking increase in tumor size by over-expression of an ecto-enzyme that degrades ATP to ADP, suggesting the effect of extracellular ATP on the tumor growth depends on the nucleotide produced by its degradation. The participation of purinergic receptors on glioma progression, particularly P2X(7), is involved in the resistance to ATP-induced cell death. Although more studies are necessary, the purinergic signaling, including ectonucleotidases and receptors, may be considered as future target for glioma pharmacological or gene therapy.
Collapse
|
102
|
Battisti V, Maders LDK, Bagatini MD, Battisti IE, Bellé LP, Santos KF, Maldonado PA, Thomé GR, Schetinger MRC, Morsch VM. Ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) and adenosine deaminase (ADA) activities in prostate cancer patients: influence of Gleason score, treatment and bone metastasis. Biomed Pharmacother 2012; 67:203-8. [PMID: 23433854 DOI: 10.1016/j.biopha.2012.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/07/2012] [Indexed: 12/20/2022] Open
Abstract
The relation between adenine nucleotides and cancer has already been described in literature. Considering that the enzymes ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) and adenosine deaminase (ADA) act together to control nucleotide levels, we aimed to investigate the role of these enzymes in prostate cancer (PCa). E-NPP and ADA activities were determined in serum and platelets of PCa patients and controls. We also verified the influence of the Gleason score, bone metastasis and treatment in the enzyme activities. Platelets and serum E-NPP activity increased, whereas ADA activity in serum decreased in PCa patients. In addition, Gleason score, metastasis and treatment influenced E-NPP and ADA activities. We may propose that E-NPP and ADA are involved in the development of PCa. Moreover, E-NPP and ADA activities are modified in PCa patients with distinct Gleason score, with bone metastasis, as well as in patients under treatment.
Collapse
Affiliation(s)
- Vanessa Battisti
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, 97105-900 Santa Maria, RS, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
da Silveira VG, da Silva RS, de Paula Cognato G, Capiotti KM, Figueiró F, Bogo MR, Bonan CD, Perry MLS, Battastini AMO. A ketogenic diet did not prevent effects on the ectonucleotidases pathway promoted by lithium-pilocarpine-induced status epilepticus in rat hippocampus. Metab Brain Dis 2012; 27:471-8. [PMID: 22945235 DOI: 10.1007/s11011-012-9333-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/19/2012] [Indexed: 10/27/2022]
Abstract
A Ketogenic Diet (KD) mimics the anticonvulsant effects of fasting, which are known to suppress seizures. The purinergic system has been investigated in the matter of epilepsy development, especially the nucleoside adenosine, which has been considered a natural brain anticonvulsant. During epileptic seizures, extracellular adenosine concentration rises rapidly to micromolar levels. Adenosine can exert its anticonvulsant functions, after its release by nucleoside bidirectional transport, or by production through the sequential catabolism of ATP by ectonucleotidases, such as E-NTPDases (ectonucleoside triphosphate diphosphohydrolases) and ecto-5'-nucleotidase. Here, we have investigated the effect of a ketogenic diet on the nucleotide hydrolysis and NTPDases expression in the lithium-pilocarpine (Li-Pilo) model of epilepsy. For the induction of Status Epileticus (SE), 21-day-old female Wistar rats received an i.p. injection of lithium chloride (127 mg/kg) and 18-19 h later an i.p. injection of pilocarpine hydrochloride (60 mg/kg). The control groups received an injection of saline. After induction of SE, the control and Li-Pilo groups received standard or ketogenic diets for 6 weeks. The lithium-pilocarpine exposure affected the ATP (a decrease of between 8 % and 16 %) and ADP (an increase of between 18 % and 22 %) hydrolysis in both groups whereas the diet did not impact the nucleotide hydrolysis. NTPDase2 and 3 mRNA expressions decreased in the Li-Pilo group (41 % and 42 %). This data highlights the participation of the purinergic system in the pathophysiology of this model of epilepsy, since nucleotide hydrolysis and NTPDase expressions were altered by Li-Pilo exposure, with no significant effects of the ketogenic diet. However, the interaction between purinergic signaling and a ketogenic diet on epilepsy still needs to be better elucidated.
Collapse
Affiliation(s)
- Vanessa Gass da Silveira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Protective effects of anthocyanins on the ectonucleotidase activity in the impairment of memory induced by scopolamine in adult rats. Life Sci 2012; 91:1221-8. [DOI: 10.1016/j.lfs.2012.09.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 09/12/2012] [Accepted: 09/19/2012] [Indexed: 12/20/2022]
|
105
|
Savio LEB, Vuaden FC, Rosemberg DB, Bogo MR, Bonan CD, Wyse ATS. Long-term proline exposure alters nucleotide catabolism and ectonucleotidase gene expression in zebrafish brain. Metab Brain Dis 2012; 27:541-9. [PMID: 22669495 DOI: 10.1007/s11011-012-9321-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 05/22/2012] [Indexed: 12/20/2022]
Abstract
Hyperprolinemia is an inherited disorder of proline metabolism and hyperprolinemic patients can present neurological manifestations, such as seizures cognitive dysfunctions, and psychotic disorders. However, the underlying mechanisms of these symptoms are still unclear. Since adenine nucleotides play crucial roles in neurotransmission and neuromodulation, we evaluated the in vivo and in vitro effects of proline on ectonucleotidase activities and gene expression in zebrafish brain. For the in vivo studies, animals were exposed at two proline concentrations (1.5 and 3.0 mM) during 1 h or 7 days (short- or long-term treatments, respectively). For the in vitro assays, different proline concentrations (ranging from 3.0 to 1000 μM) were tested. Short-term proline exposure did not promote significant changes on the ectonucleotidase activities and gene expression. Long-term proline exposure significantly increased ATP catabolism in both concentrations tested (14 % and 22 %, respectively), whereas ADP and AMP hydrolysis were increased only at 3.0 mM proline (21 % and 17 %, respectively) when compared to control. Moreover, the relative gene expression of enpd3 increased in both treated groups after long-term proline, whereas enptd1 increased only at 3.0 mM proline. Proline in vitro did not promote significant changes on ectonucleotidase activities. Altogether, these data indicate that the enzymes responsible for the control of extracellular nucleotides levels might be altered after proline exposure in zebrafish, contributing to better understand the pathophysiology of this disease. Moreover, such findings might facilitate the use of the zebrafish as a complementary vertebrate model for studying inborn errors of amino acid metabolism.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
106
|
NTPDase and 5'-nucleotidase activities from synaptosomes and platelets of rats exposed to cadmium and treated with N-acetylcysteine. Int J Dev Neurosci 2012; 31:69-74. [PMID: 23147562 DOI: 10.1016/j.ijdevneu.2012.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 11/02/2012] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present investigation was to evaluate the hydrolysis of adenine nucleotides on synaptosomes and platelets obtained from rats exposed to cadmium (Cd) and treated with N-acetylcysteine (NAC). Rats received Cd (2 mg/kg) and NAC (150 mg/kg) by gavage every other day for 30 days. Animals were divided into four groups (n = 4-6): control/saline, NAC, Cd, and Cd/NAC. The results of this study demonstrated that NTPDase and 5'-nucleotidase activities were increased in the cerebral cortex synaptosomes of Cd-poisoned rats, and NAC co-treatment reversed these activities to the control levels. In relation to hippocampus synaptosomes, no differences on the NTPDase and 5'-nucleotidase activities of Cd-poisoned rats were observed and only the 5'-nucleotidase activity was increased by the administration of NAC per se. In platelets, Cd-intoxicated rats showed a decreased NTPDase activity and no difference in the 5'-nucleotidase activity; NAC co-treatment was inefficient in counteracting this undesirable effect. Our findings reveal that adenine nucleotide hydrolysis in synaptosomes and platelets of rats were altered after Cd exposure leading to a compensatory response in the central nervous system and acting as a modulator of the platelet activity. NAC was able to modulate the purinergic system which is interesting since the regulation of these enzymes could have potential therapeutic importance. Thus, our results reinforce the importance of the study of the ecto-nucleotidases pathway in poisoning conditions and highlight the possibility of using antioxidants such as NAC as adjuvant against toxicological conditions.
Collapse
|
107
|
Chiu TY, Christiansen K, Moreno I, Lao J, Loqué D, Orellana A, Heazlewood JL, Clark G, Roux SJ. AtAPY1 and AtAPY2 function as Golgi-localized nucleoside diphosphatases in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2012; 53:1913-25. [PMID: 23034877 DOI: 10.1093/pcp/pcs131] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nucleoside triphosphate diphosphohydrolases (NTPDases; apyrases) (EC 3.6.1.5) hydrolyze di- and triphosphate nucleotides, but not monophosphate nucleotides. They are categorized as E-type ATPases, have a broad divalent cation (Mg(2+), Ca(2+)) requirement for activation and are insensitive to inhibitors of F-type, P-type and V-type ATPases. Among the seven NTPDases identified in Arabidopsis, only APYRASE 1 (AtAPY1) and APYRASE 2 (AtAPY2) have been previously characterized. In this work, either AtAPY1 or AtAPY2 tagged with C-terminal green fluorescent protein (GFP) driven by their respective native promoter can rescue the apy1 apy2 double knockout (apy1 apy2 dKO) successfully, and confocal microscopy reveals that these two Arabidopsis apyrases reside in the Golgi apparatus. In Saccharomyces cerevisiae, both AtAPY1 and AtAPY2 can complement the Golgi-localized GDA1 mutant, rescuing its aberrant protein glycosylation phenotype. In Arabidopsis, microsomes of the wild type show higher substrate preferences toward UDP compared with other NDP substrates. Loss-of-function Arabidopsis AtAPY1 mutants exhibit reduced microsomal UDPase activity, and this activity is even more significantly reduced in the loss-of-function AtAPY2 mutant and in the AtAPY1/AtAPY2 RNA interference (RNAi) technology repressor lines. Microsomes from wild-type plants also have detectable GDPase activity, which is significantly reduced in apy2 but not apy1 mutants. The GFP-tagged AtAPY1 or AtAPY2 constructs in the apy1 apy2 dKO plants can restore microsomal UDP/GDPase activity, confirming that they both also have functional competency. The cell walls of apy1, apy2 and the RNAi-silenced lines all have an increased composition of galactose, but the transport efficiency of UDP-galactose across microsomal membranes was not altered. Taken together, these results reveal that AtAPY1 and AtAPY2 are Golgi-localized nucleotide diphosphatases and are likely to have roles in regulating UDP/GDP concentrations in the Golgi lumen.
Collapse
Affiliation(s)
- Tsan-Yu Chiu
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Dos Santos Jaques JA, Becker LV, Souza VDCG, Leal CAM, Bertoldo TMD, de Vargas Pinheiro K, Morsch VM, Schetinger MRC, Leal DBR. Activities of enzymes that hydrolyze adenine nucleotides in lymphocytes from patients with rheumatoid arthritis. Cell Biochem Funct 2012; 31:395-9. [PMID: 23070807 DOI: 10.1002/cbf.2910] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/07/2012] [Accepted: 09/10/2012] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to investigate the activities of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase; EC 3.6.1.5; CD39) and adenosine deaminase (E-ADA; EC 3.5.4.4) in lymphocytes from patients with rheumatoid arthritis (RA). Thirty patients diagnosed with RA through American College of Rheumatology criteria as well as 30 healthy patients were selected. Peripheral blood lymphocytes were isolated, and E-NTPDase and E-ADA activities were assayed. The results demonstrated an increased E-NTPDase activity (both ATP and ADP as substrates) and a decreased E-ADA activity in RA patients. These data suggest an organic effort to preserve the adenosine level, which is known to have anti-inflammatory and analgesic properties, working as a potent suppressor of immune response.
Collapse
|
109
|
Ribeiro MC, Costa-Alves MS, Wengert M, Meyer-Fernandes JR, Zancan P, Caruso-Neves C, Pinheiro AAS. Characterization of ecto-ATPase activity in the surface of LLC-PK1 cells and its modulation by ischemic conditions. Biochim Biophys Acta Gen Subj 2012; 1820:2030-6. [PMID: 23000490 DOI: 10.1016/j.bbagen.2012.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/04/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND The concentration of extracellular nucleotides is regulated by enzymes that have their catalytic site facing the extracellular space, the so-called ecto-enzymes. METHODS We used LLC-PK1 cells, a well-characterized porcine renal proximal tubule cell line, to biochemically characterize ecto-ATPase activity in the luminal surface. The [γ-(32)P]Pi released after reaction was measured in aliquots of the supernatant by liquid scintillation. RESULTS This activity was linear with time up to 20min of reaction and stimulated by divalent metals. The ecto-ATPase activity measured in the presence of 5mM MgCl(2) was (1) optimum at pH 8, (2) insensitive to different inhibitors of intracellular ATPases, (3) inhibited by 1mM suramin, an inhibitor of ecto-ATPases, (4) sensitive to high concentrations of sodium azide (NaN(3)) and (5) also able to hydrolyze ADP in the extracellular medium. The ATP:ADP hydrolysis ratio calculated was 4:1. The ecto-ADPase activity was also inhibited by suramin and NaN(3). The dose-response of ATP revealed a hyperbolic profile with maximal velocity of 25.2±1.2nmol Pixmg(-1)xmin(-1) and K(0.5) of 0.07±0.01mM. When cells were submitted to ischemia, the E-NTPDase activity was reduced with time, achieving 71% inhibition at 60min of ischemia. CONCLUSION Our results suggest that the ecto-ATPase activity of LLC-PK1 cells has the characteristics of a type 3 E-NTPDase which is inhibited by ischemia. GENERAL SIGNIFICANCE This could represent an important pathophysiologic mechanism that explains the increase in ATP concentration in the extracellular milieu in the proximal tubule during ischemia.
Collapse
Affiliation(s)
- M C Ribeiro
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
110
|
Rooklin DW, Lu M, Zhang Y. Revelation of a catalytic calcium-binding site elucidates unusual metal dependence of a human apyrase. J Am Chem Soc 2012; 134:15595-603. [PMID: 22928549 PMCID: PMC3461190 DOI: 10.1021/ja307267y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human soluble calcium-activated nucleotidase 1 (hSCAN-1) represents a new family of apyrase enzymes that catalyze the hydrolysis of nucleotide di- and triphosphates, thereby modulating extracellular purinergic and pyrimidinergic signaling. Among well-characterized phosphoryl transfer enzymes, hSCAN-1 is unique not only in its unusual calcium-dependent activation, but also in its novel phosphate-binding motif. Its catalytic site does not utilize backbone amide groups to bind phosphate, as in the common P-loop, but contains a large cluster of acidic ionizable side chains. By employing a state-of-the-art computational approach, we have revealed a previously uncharacterized catalytic calcium-binding site in hSCAN-1, which elucidates the unusual calcium-dependence of its apyrase activity. In a high-order coordination shell, the newly identified calcium ion organizes the active site residues to mediate nucleotide binding, to orient the nucleophilic water, and to facilitate the phosphoryl transfer reaction. From ab initio QM/MM molecular dynamics simulations with umbrella sampling, we have characterized a reverse protonation catalytic mechanism for hSCAN-1 and determined its free energy reaction profile. Our results are consistent with available experimental studies and provide new detailed insight into the structure-function relationship of this novel calcium-activated phosphoryl transfer enzyme.
Collapse
Affiliation(s)
- David W. Rooklin
- Department of Chemistry, New York University, New York, NY 10003
| | - Min Lu
- Public Health Research Institute Center, Department of Microbiology and Molecular Genetics, UMDNJ – New Jersey Medical School, Newark, NJ 07103
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY 10003
| |
Collapse
|
111
|
Capiotti KM, Fazenda L, Nazario LR, Menezes FP, Kist LW, Bogo MR, Da Silva RS, Wyse AT, Bonan CD. Arginine exposure alters ectonucleotidase activities and morphology of zebrafish larvae (Danio rerio). Int J Dev Neurosci 2012; 31:75-81. [PMID: 22995533 DOI: 10.1016/j.ijdevneu.2012.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 07/25/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022] Open
Abstract
Hyperargininemia is an inborn error of metabolism (IEM) characterized by tissue accumulation of arginine (Arg). Mental retardation and other neurological features are common symptoms in hyperargininemic patients. Considering purinergic signaling has a crucial role from the early stages of development and underlying mechanisms of this disease are poorly established, we investigated the effect of Arg administration on locomotor activity, morphological alterations, and extracellular nucleotide hydrolysis in larvae and adult zebrafish. We showed that 0.1 mM Arg was unable to promote changes in locomotor activity. In addition, 7-day-post-fertilization (dpf) larvae treated with Arg demonstrated a decreased body size. Arg exposure (0.1 mM) promoted an increase in ATP, ADP, and AMP hydrolysis when compared to control group. These findings demonstrated that Arg might affect morphological parameters and ectonucleotidase activities in zebrafish larvae, suggesting that purinergic system is a target for neurotoxic effects induced by Arg.
Collapse
Affiliation(s)
- Katiucia Marques Capiotti
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Zimmermann H, Zebisch M, Sträter N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 2012; 8:437-502. [PMID: 22555564 PMCID: PMC3360096 DOI: 10.1007/s11302-012-9309-4] [Citation(s) in RCA: 804] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/01/2012] [Indexed: 12/12/2022] Open
Abstract
Ecto-nucleotidases play a pivotal role in purinergic signal transmission. They hydrolyze extracellular nucleotides and thus can control their availability at purinergic P2 receptors. They generate extracellular nucleosides for cellular reuptake and salvage via nucleoside transporters of the plasma membrane. The extracellular adenosine formed acts as an agonist of purinergic P1 receptors. They also can produce and hydrolyze extracellular inorganic pyrophosphate that is of major relevance in the control of bone mineralization. This review discusses and compares four major groups of ecto-nucleotidases: the ecto-nucleoside triphosphate diphosphohydrolases, ecto-5'-nucleotidase, ecto-nucleotide pyrophosphatase/phosphodiesterases, and alkaline phosphatases. Only recently and based on crystal structures, detailed information regarding the spatial structures and catalytic mechanisms has become available for members of these four ecto-nucleotidase families. This permits detailed predictions of their catalytic mechanisms and a comparison between the individual enzyme groups. The review focuses on the principal biochemical, cell biological, catalytic, and structural properties of the enzymes and provides brief reference to tissue distribution, and physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Biologicum, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
113
|
|
114
|
Ginsburg-Shmuel T, Haas M, Grbic D, Arguin G, Nadel Y, Gendron FP, Reiser G, Fischer B. UDP made a highly promising stable, potent, and selective P2Y6-receptor agonist upon introduction of a boranophosphate moiety. Bioorg Med Chem 2012; 20:5483-95. [PMID: 22901672 DOI: 10.1016/j.bmc.2012.07.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
P2Y(6) nucleotide receptor (P2Y(6)-R) plays important physiological roles, such as insulin secretion and reduction of intraocular pressure. However, this receptor is still lacking potent and selective agonists to be used as potential drugs. Here, we synthesized uracil nucleotides and dinucleotides, substituted at the C5 and/or P(α) position with methoxy and/or borano groups, 18-22. Compound 18A, R(p) isomer of 5-OMe-UDP(α-B), is the most potent and P2Y(6)-R selective agonist currently known (EC(50) 0.008 μM) being 19-fold more potent than UDP and showing no activity at uridine nucleotide receptors, P2Y(2)- and P2Y(4)-R. Analogue 18A was highly chemically stable under conditions mimicking gastric juice acidity (t(1/2) = 16.9 h). It was more stable to hydrolysis by nucleotide pyrophosphatases (NPP1,3) than UDP (15% and 28% hydrolysis by NPP1 and NPP3, respectively, vs 50% and 51% hydrolysis of UDP) and metabolically stable in blood serum (t(1/2) = 17 vs 2.4, 11.9, and 21 h for UDP, 5-OMe-UDP, and UDP(α-B), respectively). This newly discovered highly potent and physiologically stable P2Y(6)-R agonist may be of future therapeutic potential.
Collapse
Affiliation(s)
- Tamar Ginsburg-Shmuel
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Souza VDCG, Schlemmer KB, Noal CB, Jaques JADS, Zimmermann CEP, Leal CAM, Fleck J, Casali EA, Morsch VM, Schetinger MRC, Leal DBR. E-NTPDase and E-ADA activities are altered in lymphocytes of patients with indeterminate form of Chagas' disease. Parasitol Int 2012; 61:690-6. [PMID: 22846899 DOI: 10.1016/j.parint.2012.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 07/13/2012] [Accepted: 07/20/2012] [Indexed: 12/20/2022]
Abstract
Trypanosoma cruzi infection triggers a chronic inflammatory process in human host and purinergic system ecto-enzymes play an important role in modulating the inflammatory and immune responses. In this study, it was investigated ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase; EC 3.6.1.5; CD39) and ecto-adenosine deaminase (E-ADA; EC 3.5.4.4) activities in lymphocytes from patients with indeterminate form of Chagas' disease (IFCD). Twenty-five IFCD patients and 25 healthy subjects (control group) were selected. The peripheral lymphocytes were isolated and E-NTPDase and E-ADA activities were determined. Adenine nucleotides and adenosine levels were determined in serum by HPLC and the E-NTPDase1 expression in lymphocytes by Western blot analysis. E-NTPDase (ATP and ADP as substrates) and E-ADA (adenosine as substrate) activities were decreased in lymphocytes from IFCD patients (P<0.05 and P<0.01, respectively), while the E-NTPDase1 expression presented no changes in these patients. Serum ATP levels showed to be decreased (P<0.05) and both AMP (P<0.01) and adenosine (P<0.001) levels were increased in the IFCD group. The enzymatic alterations observed are in agreement with the immune response against T. cruzi infection in IFCD patients, since the decreased extracellular ATP and the increased adenosine levels trigger a Th2 anti-inflammatory response, which it is associated to adaptation of host to parasite, preventing clinical progress of disease.
Collapse
Affiliation(s)
- Viviane do Carmo Gonçalves Souza
- Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Frasson AP, De Carli GA, Bonan CD, Tasca T. Involvement of purinergic signaling on nitric oxide production by neutrophils stimulated with Trichomonas vaginalis. Purinergic Signal 2012; 8:1-9. [PMID: 21833696 PMCID: PMC3286535 DOI: 10.1007/s11302-011-9254-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 07/26/2011] [Indexed: 12/16/2022] Open
Abstract
Trichomonas vaginalis is a parasite from the human urogenital tract that causes trichomonosis, the most prevalent non-viral sexually transmitted disease. The neutrophil infiltration has been considered to be primarily responsible for cytological changes observed at infection site, and the chemoattractants can play an important role in this leukocytic recruitment. Nitric oxide (NO) is one of the most widespread mediator compounds, and it is implicated in modulation of immunological mechanisms. Extracellular nucleotides and nucleosides are signaling molecules involved in several processes, including immune responses and control of leukocyte trafficking. Ectonucleoside triphosphate diphosphohydrolase members, ecto-5'-nucleotidase, and adenosine deaminase (ectoADA) have been characterized in T. vaginalis. Herein, we investigated the effects of purinergic system on NO production by neutrophils stimulated with T. vaginalis. The trophozoites were able to induce a high NO synthesis by neutrophils through iNOS pathway. The extracellular nucleotides ATP, ADP, and ATPγS (a non-hydrolyzable ATP analog) showed no significant change in NO secretion. In contrast, adenosine and its degradation product, inosine, promoted a low production of the compound. The immunosuppressive effect of adenosine upon NO release by neutrophils occurred due to adenosine A(2A) receptor activation. The ecto-5'-nucleotidase activity displayed by T. vaginalis was shown to be important in adenosine generation, indicating the efficiency of purinergic cascade. Our data suggest the influence of purinergic signaling, specifically adenosinergic system, on NO production by neutrophils in T. vaginalis infection, contributing to the immunological aspects of disease.
Collapse
Affiliation(s)
- Amanda Piccoli Frasson
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS Brazil
| | - Geraldo Attilio De Carli
- Instituto de Geriatria e Gerontologia, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, 90610-000 Porto Alegre, RS Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900 Porto Alegre, RS Brazil
| | - Tiana Tasca
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS Brazil
| |
Collapse
|
117
|
Differential macrophage activation alters the expression profile of NTPDase and ecto-5'-nucleotidase. PLoS One 2012; 7:e31205. [PMID: 22348056 PMCID: PMC3278434 DOI: 10.1371/journal.pone.0031205] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 01/03/2012] [Indexed: 12/20/2022] Open
Abstract
Macrophages are key elements in the inflammatory process, whereas depending on the micro-environmental stimulation they exhibit a pro-inflammatory (classical/M1) or an anti-inflammatory/reparatory (alternative/M2) phenotype. Extracellular ATP can act as a danger signal whereas adenosine generally serves as a negative feedback mechanism to limit inflammation. The local increase in nucleotides communication is controlled by ectonucleotidases, such as members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family and ecto-5′-nucleotidase/CD73 (ecto-5′-NT). In the present work we evaluated the presence of these enzymes in resident mice M1 (macrophages stimulated with LPS), and M2 (macrophages stimulated with IL-4) macrophages. Macrophages were collected by a lavage of the mice (6–8 weeks) peritoneal cavity and treated for 24 h with IL-4 (10 ng/mL) or LPS (10 ng/mL). Nitrite concentrations were measured using the Greiss reaction. Supernatants were harvested to determine cytokines and the ATPase, ADPase and AMPase activities were determined by the malachite green method and HPLC analysis. The expression of selected surface proteins was evaluated by flow cytometry. The results reveal that M1 macrophages presented a decreased ATP and AMP hydrolysis in agreement with a decrease in NTPDase1, -3 and ecto-5′-nucleotidase expression compared to M2. In contrast, M2 macrophages showed a higher ATP and AMP hydrolysis and increased NTPDase1, -3 and ecto-5′-nucleotidase expression compared to M1 macrophages. Therefore, macrophages of the M1 phenotype lead to an accumulation of ATP while macrophages of the M2 phenotype may rapidly convert ATP to adenosine. The results also showed that P1 and P2 purinoreceptors present the same mRNA profile in both phenotypes. In addition, M2 macrophages, which have a higher ATPase activity, were less sensitive to cell death. In conclusion, these changes in ectoenzyme activities might allow macrophages to adjust the outcome of the extracellular purinergic cascade in order to fine-tune their functions during the inflammatory set.
Collapse
|
118
|
Maldonado PA, Pimentel VC, Negrini LA, Morsch VM, Schetinger MRC. Role of the purinergic system in patients with cervical intraepithelial neoplasia and uterine cancer. Biomed Pharmacother 2011; 66:6-11. [PMID: 22257696 DOI: 10.1016/j.biopha.2011.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/06/2011] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Cervical cancer remains the second leading cause of death among women. Intraepithelial neoplasias and uterine invasive cancer are frequently associated with disturbances in coagulation and changes in the concentrations of adenine nucleotides. This work intended to analyze changes in extracellular adenine nucleotide hydrolysis and blood platelet aggregation in patients diagnosed for cervical intraepithelial neoplasia in different stages as well as uterine invasive cancer. PATIENTS AND METHODS NTPDase, E-NPP, 5'-nucleotidase, total ADA and its isoforms (ADA1 and ADA2), as well as the platelet aggregation from patients with different stages of cervical intraepithelial neoplasia (NICs I, NIC II, NIC III) and uterine invasive cancer were verified. RESULTS Neither ATP hydrolysis nor E-NPP activity was changed by the neoplasia stage. On the other hand, ADP and AMP hydrolysis as well as ADA activity were enhanced in NIC I group. AMP hydrolysis was also increased in the cancer group. ADA 1 was the ADA isoform found in platelets from both control and patient groups. CONCLUSION Our results showed for the first time that NTPDase, 5'-nucleotidase, E-NPP and ADA are not sensible regarding the grade of neoplasia development, since no significant difference was found between the groups studied. Only ADP hydrolysis and ADA activity showed a significant enhancement in NIC I group related to the other stages possibly as a result of the beginning of the neoplasic transformation. This increase could be reflecting a body's reaction against the probable high adenosine levels. We propose for the first time that the ADA isoform present in platelets is ADA 1.
Collapse
Affiliation(s)
- Paula Acosta Maldonado
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Avenida Roraima, 97105-900 Santa Maria, RS, Brazil.
| | | | | | | | | |
Collapse
|
119
|
Glaser T, Cappellari AR, Pillat MM, Iser IC, Wink MR, Battastini AMO, Ulrich H. Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration. Purinergic Signal 2011; 8:523-37. [PMID: 22143354 DOI: 10.1007/s11302-011-9282-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/09/2011] [Indexed: 12/20/2022] Open
Abstract
Replacement of lost or dysfunctional tissues by stem cells has recently raised many investigations on therapeutic applications. Purinergic signaling has been shown to regulate proliferation, differentiation, cell death, and successful engraftment of stem cells originated from diverse origins. Adenosine triphosphate release occurs in a controlled way by exocytosis, transporters, and lysosomes or in large amounts from damaged cells, which is then subsequently degraded into adenosine. Paracrine and autocrine mechanisms induced by immune responses present critical factors for the success of stem cell therapy. While P1 receptors generally exert beneficial effects including anti-inflammatory activity, P2 receptor-mediated actions depend on the subtype of stimulated receptors and localization of tissue repair. Pro-inflammatory actions and excitatory tissue damages mainly result from P2X7 receptor activation, while other purinergic receptor subtypes participate in proliferation and differentiation, thereby providing adequate niches for stem cell engraftment and novel mechanisms for cell therapy and endogenous tissue repair. Therapeutic applications based on regulation of purinergic signaling are foreseen for kidney and heart muscle regeneration, Clara-like cell replacement for pulmonary and bronchial epithelial cells as well as for induction of neurogenesis in case of neurodegenerative diseases.
Collapse
Affiliation(s)
- Talita Glaser
- Departamento de Bioquímica , Instituto de Química, Universidade São Paulo, Av. Prof. Lineu Prestes, 748-Bloco 8S/Room 0858, CEP: 05508-900, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
120
|
Rockenbach L, Bavaresco L, Fernandes Farias P, Cappellari AR, Barrios CH, Bueno Morrone F, Oliveira Battastini AM. Alterations in the extracellular catabolism of nucleotides are involved in the antiproliferative effect of quercetin in human bladder cancer T24 cells. Urol Oncol 2011; 31:1204-11. [PMID: 22137869 DOI: 10.1016/j.urolonc.2011.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/20/2011] [Accepted: 10/23/2011] [Indexed: 11/25/2022]
Abstract
Bladder cancer is the most prevalent tumor in the genitourinary tract and the current treatments are not efficient to prevent recurrence and progression of tumor cases. Studies have revealed evidence of the involvement of the purinergic system in bladder tumorigenesis, particularly ecto-5'-NT/CD73, the enzyme responsible for AMP hydrolysis. Quercetin (3,3',4',5,7-pentahydroxyflavone) is a plant-derived flavonoid that has been shown to exert a broad range of pharmacologic properties, including potential anticancer activity. Here, we investigated the quercetin effect on the E-NTPDases and ecto-5'-nucleotidase/CD73, which catalyzes the introversion of the extracellular purine nucleotides in T24 human bladder cancer cells. The results showed that this flavonoid was able to increase ADP hydrolysis and inhibit the ecto-5'-nucleotidase/CD73 activity, with no effect on protein expression. The treatment with APCP (α,β-methyleneadenosine-5'-diphosphate), another ecto-5'-NT/CD73 inhibitor, led to a significant reduction in cell proliferation. In addition, we showed that AMP, which can be accumulating by enzyme inhibition, had an antiproliferative effect on T24 cells, which was enhanced when its hydrolysis was inhibited by APCP treatment. Otherwise, adenosine did not cause any significant effect on cell proliferation and the quercetin effects were not altered by the simultaneous presence of adenosine. Taken together, the results suggest that the antiproliferative effect of quercetin on tumor cells may occur, at least in part, via alterations in the extracellular catabolism of nucleotides, that could be by AMP accumulation, or could be due to blocked adenosine receptors by this flavonoid, supporting the potential use of quercetin in bladder cancer treatment.
Collapse
Affiliation(s)
- Liliana Rockenbach
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
121
|
Leal DB, Schetinger MR, Leal CA, Bertoncheli CDM, Morsch VM. NTPDase activity in human lymphocytes is not affected by therapeutic doses of anti-HIV drugs. Biomed Pharmacother 2011; 65:594-6. [DOI: 10.1016/j.biopha.2010.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 12/06/2010] [Indexed: 12/20/2022] Open
|
122
|
Vuaden FC, Savio LEB, Ramos DB, Casali EA, Bogo MR, Bonan CD. Endotoxin-induced effects on nucleotide catabolism in mouse kidney. Eur J Pharmacol 2011; 674:422-9. [PMID: 22108548 DOI: 10.1016/j.ejphar.2011.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/30/2011] [Accepted: 11/02/2011] [Indexed: 12/20/2022]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) acts as a proinflammatory mediator. Adenosine, the final product of ATP breakdown, is an anti-inflammatory compound, acting mainly on adenosine A(2A) receptors. Considering that the kidney is an organ strongly affected during systemic inflammatory responses and that ectonucleotidases are responsible for the control of extracellular nucleotide and nucleoside levels, we examined the endotoxin-induced effects on ectonucleotidases in kidney membranes of mice, and whether CGS-21680 hydrochloride (3-[4-[2-[[6-amino-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino]ethyl]phenyl]propanoic acid), a selective adenosine A(2A) receptor agonist, antagonizes the lipopolysaccharide (LPS)-induced effects on nucleotide catabolism in kidney. Animals were injected intraperitoneally with 12 mg/kg LPS and/or 0.5mg/kg CGS-21680 or saline. Nucleotidase activities were determined in kidney membrane preparations and ATP metabolism was measured by high performance liquid chromatography (HPLC) assay. Analysis of ectonucleotidase expression was carried out by semi-quantitative semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR). Exposure to endotoxemia promoted an increase in ATP and p-Nitrophenyl thymidine 5'-monophosphate (p-Nph-5'-TMP) hydrolysis, and a decrease in adenosine 5'-monophosphate (AMP) hydrolysis. CGS-21680 treatment failed to reverse these changes. HPLC analysis indicated a decrease in extracellular ATP and adenosine levels in groups treated with LPS and LPS plus CGS-21680. The expression pattern of ectonucleotidases revealed an increase in Entpd3, Enpp2, and Enpp3 mRNA levels after LPS injection. These findings indicate that nucleotide and nucleoside availability in mouse kidney is altered at different stages of endotoxemia, in order to protect the integrity of this organ when exposed to systemic inflammation.
Collapse
Affiliation(s)
- Fernanda C Vuaden
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
123
|
Bringmann A, Wiedemann P. Müller glial cells in retinal disease. ACTA ACUST UNITED AC 2011; 227:1-19. [PMID: 21921569 DOI: 10.1159/000328979] [Citation(s) in RCA: 312] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 11/19/2022]
Abstract
Virtually all pathogenic stimuli activate Müller cells. Reactive Müller cells exert protective and toxic effects on photoreceptors and neurons. They contribute to oxidative stress and glutamate toxicity due to malfunctions of glutamate uptake and glutathione synthesis. Downregulation of potassium conductance disrupts transcellular potassium and water transport, resulting in neuronal hyperexcitability and edema. Protective effects of reactive Müller cells include upregulation of adenosine 5'-triphosphate (ATP)-degrading ectoenzymes, which enhances the extracellular availability of the neuroprotectant adenosine, abrogation of the osmotic release of ATP, which might protect retinal ganglion cells from apoptosis, and the release of antioxidants and neurotrophic factors. The dedifferentiation of reactive Müller cells to progenitor-like cells might have an impact on future therapeutic approaches. A better understanding of the gliotic mechanisms will be helpful in developing efficient therapeutic strategies aiming at increased protective and regenerative properties and decreased toxicity of reactive Müller cells.
Collapse
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
124
|
Ferenz KB, Rose K, König S, Krieglstein J. ATP-NGF-complex, but not NGF, is the neuroprotective ligand. Neurochem Int 2011; 59:989-95. [PMID: 21930174 DOI: 10.1016/j.neuint.2011.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 12/12/2022]
Abstract
We have shown previously that nerve growth factor (NGF) requires only low nanomolar ATP concentrations in the cell culture medium to protect cortical rat neurons (CRN) from cellular damage induced by staurosporine (STS). We have also demonstrated before that NGF and other growth factors form stable non-covalent complexes with ATP. Here we demonstrated that 8N(1)ATP-NGF, but not NGF, protected CRN against damage. The photo-reactive ATP derivative 8N(3)ATP was incubated with NGF and was trapped in its position by UV irradiation forming a covalent bond. The cross-link with a molar ratio of 1:1 (8N(1)ATP:NGF) was confirmed by mass spectrometry. Circular dichroism experiments revealed that 8N(1)ATP altered the secondary structure of NGF in the same way as ATP did. Covalently bound 8N(1)ATP-NGF was shown to be stable in the presence of the ATP-hydrolyzing enzyme alkaline phosphatase while the non-covalent ATP-NGF-complex dissociated with the removal of free ATP from the solution. 8N(1)ATP-NGF protected CRN against damage by STS independently of free ATP in the culture medium. These results suggest that the ATP-NGF-complex, but not NGF, is the active ligand.
Collapse
Affiliation(s)
- Katja Bettina Ferenz
- Institut für Pharmazeutische und Medizinische Chemie, Fachbereich Chemie und Pharmazie, Germany
| | | | | | | |
Collapse
|
125
|
Siebel AM, Piato AL, Capiotti KM, Seibt KJ, Bogo MR, Bonan CD. PTZ-induced seizures inhibit adenosine deamination in adult zebrafish brain membranes. Brain Res Bull 2011; 86:385-9. [PMID: 21907764 DOI: 10.1016/j.brainresbull.2011.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/10/2011] [Accepted: 08/29/2011] [Indexed: 12/20/2022]
Abstract
Adenosine exerts neuromodulatory functions with mostly inhibitory effects, being considered an endogenous anticonvulsant. The hydrolysis of ATP by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the regulation of this nucleoside concentration through its deamination. In this study, we tested the effect of pentylenetetrazole (PTZ)-induced seizures on ectonucleotidase and ADA activities in adult zebrafish brain. Our results have demonstrated that PTZ treatments did not alter ectonucleotidase and ADA activities in membranes and soluble fraction, respectively. However, ecto-ADA activity was significantly decreased in brain membranes of animals exposed to 5mM and 15 mM PTZ treatments (22.4% and 29.5%, respectively) when compared to the control group. Semiquantitative RT-PCR analysis did not show significant changes after the PTZ exposure on ADA gene expression. The decreased adenosine deamination observed in this study suggests a modulation of extracellular adenosine levels during PTZ-induced seizures in zebrafish.
Collapse
Affiliation(s)
- Anna Maria Siebel
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
126
|
Wurm A, Pannicke T, Iandiev I, Francke M, Hollborn M, Wiedemann P, Reichenbach A, Osborne NN, Bringmann A. Purinergic signaling involved in Müller cell function in the mammalian retina. Prog Retin Eye Res 2011; 30:324-42. [DOI: 10.1016/j.preteyeres.2011.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/06/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
|
127
|
Kukulski F, Lévesque SA, Sévigny J. Impact of ectoenzymes on p2 and p1 receptor signaling. ADVANCES IN PHARMACOLOGY 2011; 61:263-99. [PMID: 21586362 DOI: 10.1016/b978-0-12-385526-8.00009-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P2 receptors that are activated by extracellular nucleotides (e.g., ATP, ADP, UTP, UDP, Ap(n)A) and P1 receptors activated by adenosine control a diversity of biological processes. The activation of these receptors is tightly regulated by ectoenzymes that metabolize their ligands. This review presents these enzymes as well as their roles in the regulation of P2 and P1 receptor activation. We focus specifically on the role of ectoenzymes in processes of our interest, that is, inflammation, vascular tone, and neurotransmission. An update on the development of ectonucleotidase inhibitors is also presented.
Collapse
Affiliation(s)
- Filip Kukulski
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | | | |
Collapse
|
128
|
Involvement of ecto-5′-nucleotidase/CD73 in U138MG glioma cell adhesion. Mol Cell Biochem 2011; 359:315-22. [DOI: 10.1007/s11010-011-1025-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 08/05/2011] [Indexed: 11/26/2022]
|
129
|
Hopfe M, Dahlmanns T, Henrich B. In Mycoplasma hominis the OppA-mediated cytoadhesion depends on its ATPase activity. BMC Microbiol 2011; 11:185. [PMID: 21854595 PMCID: PMC3179953 DOI: 10.1186/1471-2180-11-185] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/19/2011] [Indexed: 12/20/2022] Open
Abstract
Background In Mycoplasma hominis, a facultative human pathogen of the human genital tract, OppA, the substrate-binding domain of the oligopeptide permease, is a multifunctional protein involved in nutrition uptake, cytoadhesion and hydrolysis of extracellular ATP. Results To map the function-related protein regions the ATPase activity and adhesive behavior of OppA mutants were analyzed. Mutations of the Walker BA motifs resulted in an inhibition of up to 8% of the OppA ATPase activity, whereas deletion of the N-terminal CS1 or the CS2 region, structural motifs that are conserved in bacterial OppA proteins, reduced ATPase activity to 60% and deletion of CS3, the third conserved region adjacent to the Walker B motif led to a reduction to 42% ATPase activity. Interestingly, adhesion of the OppA mutants to immobilized HeLa cells demonstrated that two distal regions are mainly involved in adherence of OppA: the CS1 region, deletion of which led to 35% of the cytoadhesion, and the Walker BA with the adjacent upstream region CS3, deletion of which led to 25% of the cytoadhesion. The influence of the ATPase activity on the adherence of M. hominis to HeLa cells was confirmed by the use of ATPase inhibitors which reduced mycoplasmal cytoadhesion to 50%. Conclusions These findings suggest that the OppA-mediated cytoadherence of Mycoplasma hominis depends on both, the topology of the neighbouring CS1 and ATPase domain regions and the functionality of the ecto-ATPase activity in addition.
Collapse
Affiliation(s)
- Miriam Hopfe
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | | | | |
Collapse
|
130
|
Profile of nucleotide catabolism and ectonucleotidase expression from the hippocampi of neonatal rats after caffeine exposure. Neurochem Res 2011; 37:23-30. [PMID: 21842269 DOI: 10.1007/s11064-011-0577-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/18/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
Nucleotides and nucleosides play an important role in neurodevelopment acting through specific receptors. Ectonucleotidases are the major enzymes involved in controlling the availability of purinergic receptors ligands. ATP is co-released with several neurotransmitters and is the most important source of extracellular adenosine by catabolism exerted by ectonucleotidases. The main ectonucleotidases are named NTPDases (1-8) and 5'-nucleotidase. Adenosine is a powerful modulator of neurotransmitter release. Caffeine blocks adenosine receptor activity as well as adenosine-mediated neuromodulation. Considering the susceptibility of the immature brain to caffeine and the need for correct purinergic signaling during fetal development, we have analyzed the effects of caffeine exposure during gestational and lactational periods on nucleotide degradation and ectonucleotidase expression from the hippocampi of 7-, 14- and 21-days-old rats. Nucleotides hydrolysis was assessed by colorimetric determination of inorganic phosphate released. Ectonucleotidases expression was performed by RT-PCR. ATP and ADP hydrolysis displayed parallel age-dependent decreases in both control and caffeine-treated groups. AMP hydrolysis increased with caffeine treatment in 7-days-old rats (75%); although there was no significant difference in AMP hydrolysis between control (non caffeine-treated) rats and 14- or 21-days caffeine-treated rats. ADP hydrolysis was not affected by caffeine treatment. Caffeine treatment in 7- and 14-days-old rats decreased ATP hydrolysis when compared to the control group (19% and 60% decrease, respectively), but 21-days-treated rats showed an increase in ATP hydrolysis (39%). Expression levels of NTPDase 1 and 5 decreased in hippocampi of caffeine-treated rats. The expression of 5'-nucleotidase was not affected after caffeine exposure. The changes observed in nucleotide hydrolysis and ectonucleotidases expression could promote subtle effects on normal neural development considering the neuromodulatory role of adenosine.
Collapse
|
131
|
Rico EP, Rosemberg DB, Seibt KJ, Capiotti KM, Da Silva RS, Bonan CD. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicol Teratol 2011; 33:608-17. [PMID: 21907791 DOI: 10.1016/j.ntt.2011.07.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/20/2011] [Accepted: 07/20/2011] [Indexed: 01/23/2023]
Abstract
Recent advances in neurobiology have emphasized the study of brain structure and function and its association with numerous pathological and toxicological events. Neurotransmitters are substances that relay, amplify, and modulate electrical signals between neurons and other cells. Neurotransmitter signaling mediates rapid intercellular communication by interacting with cell surface receptors, activating second messenger systems and regulating the activity of ion channels. Changes in the functional balance of neurotransmitters have been implicated in the failure of central nervous system function. In addition, abnormalities in neurotransmitter production or functioning can be induced by several toxicological compounds, many of which are found in the environment. The zebrafish has been increasingly used as an animal model for biomedical research, primarily due to its genetic tractability and ease of maintenance. These features make this species a versatile tool for pre-clinical drug discovery and toxicological investigations. Here, we present a review regarding the role of different excitatory and inhibitory neurotransmitter systems in zebrafish, such as dopaminergic, serotoninergic, cholinergic, purinergic, histaminergic, nitrergic, glutamatergic, glycinergic, and GABAergic systems, and emphasizing their features as pharmacological and toxicological targets. The increase in the global knowledge of neurotransmitter systems in zebrafish and the elucidation of their pharmacological and toxicological aspects may lead to new strategies and appropriate research priorities to offer insights for biomedical and environmental research.
Collapse
Affiliation(s)
- E P Rico
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
132
|
Acute restraint stress in zebrafish: behavioral parameters and purinergic signaling. Neurochem Res 2011; 36:1876-86. [PMID: 21603935 DOI: 10.1007/s11064-011-0509-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2011] [Indexed: 12/20/2022]
Abstract
Despite the extensive knowledge about the effects of acute restraint stress (ARS) in rodents, zebrafish research is still elementary in this field, and the consequences of stress on purinergic system are unclear. Therefore, we evaluated the effects of ARS on behavior, biochemical, and molecular parameters in zebrafish brain. Animals were submitted to a 90 min ARS protocol and tested for anxiety levels, exploratory behavior, and memory performance. Furthermore, we analyzed ectonucleotidase and adenosine deaminase activities and their gene expression profile, as well as transcription of adenosine receptors. ARS increased anxiety, but did not impair locomotion or cognition. ARS significantly increased ATP hydrolysis, decreased cytosolic ADA activity, and changed the entpd and adora gene expression. In conclusion, ARS disturbed zebrafish behavior, and we hypothesize that the augmentation in adenosine-mediated signaling may be a strategy to reestablish homeostasis and normal behavior after a stressful event.
Collapse
|
133
|
Pochmann D, Innocente AM, Buffon A, Freitas Sarkis JJ, Porciúncula LDO. Biochemical characterization of an ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP, E.C. 3.1.4.1) from rat cardiac soluble and microsomal fractions. J Enzyme Inhib Med Chem 2011; 27:29-36. [DOI: 10.3109/14756366.2011.574129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daniela Pochmann
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul,
Porto Alegre, RS, Brazil
| | - Adrine Maria Innocente
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul,
Porto Alegre, RS, Brazil
| | - Andréia Buffon
- Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul,
Porto Alegre, RS, Brazil
| | - João José Freitas Sarkis
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul,
Porto Alegre, RS, Brazil
| | - Lisiane De Oliveira Porciúncula
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul,
Porto Alegre, RS, Brazil
| |
Collapse
|
134
|
Immunotherapy for pythiosis: Effect on NTPDase activity in lymphocytes of an experimental model. Biomed Pharmacother 2011; 64:718-22. [PMID: 20970953 DOI: 10.1016/j.biopha.2010.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 09/10/2010] [Indexed: 12/13/2022] Open
Abstract
NTPDase (EC 3.6.1.5) occurs in lymphocytes and plays an important role in immune function, in that hydrolyzes extracellular nucleoside tri- and/or diphosphates to form AMP. Pythium insidiosum causes the disease pythiosis, a pyogranulomatous disease of horses, dogs, cattle, cats and humans. Most antifungal drugs are ineffective against this pathogen, and immunotherapy, a treatment approach that relies on the injection of P. insidiosum antigen, has been successfully used in humans and horses to manage this disease. In this study, we investigated NTPDase activity in lymphocytes from rabbits inoculated with zoospores of P. insidiosum. After immunotherapy, we investigated the relationship between enzymatic activity and the pattern of the immune response. One milliliter of zoospores was inoculated subcutaneously into the coastal region of each rabbit. An average of 17,500 viable mobile zoospores/mL of induction medium was administered. Inoculated rabbits were checked weekly, and the subcutaneous nodular area (cm²) was measured 28 days after inoculation. Rabbits that developed lesions received four doses of immunotherapy at intervals of 14 days. Blood samples were collected by heart puncture twice a month for the determination of NTPDase activity. The results demonstrated that NTPDase activity in lymphocytes was increased in relation to ATP hydrolysis (by about 100%) in pythiosis and returned to normal values after immunotherapy. The data demonstrating NTPDase activity before and after immunotherapy reinforce the previously elaborated hypothesis that the change from a Th2 to a Th1 immune response is responsible for the curative properties of immunotherapy.
Collapse
|
135
|
Abstract
This review begins with background information about the discovery and conceptual steps contributing to our current knowledge of purinergic signalling. It then deals with several topics concerned with the physiology and pathophysiology of the lower urinary tract, including: the involvement in the voiding reflex of ATP released as a co-transmitter with acetylcholine from parasympathetic nerves supplying the bladder and ATP released from urothelial cells during bladder distension to initiate the voiding reflex via P2X₃ receptors on suburothelial low-threshold sensory nerve fibres; this latter mechanosensory transduction pathway is also involved via high-threshold fibres in the initiation of pain. Treatment of prostate and bladder cancer with ATP not only appears to be effective against the primary tumours, but also improves the systemic symptoms associated with advanced malignancy. There is dual control of the tone of blood vessels: constriction by ATP released as a co-transmitter from sympathetic nerves and vasodilatation via ATP released from endothelial cells during shear stress acting on endothelial P2 receptors to release nitric oxide. A purinergic hypothesis is discussed for the mechanism underlying acupuncture, widely used for the treatment of urinary disorders.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, UK.
| |
Collapse
|
136
|
Fausther M, Sévigny J. Extracellular nucleosides and nucleotides regulate liver functions via a complex system of membrane proteins. C R Biol 2011; 334:100-17. [PMID: 21333941 DOI: 10.1016/j.crvi.2010.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/17/2010] [Accepted: 12/09/2010] [Indexed: 12/22/2022]
Abstract
Nucleosides and nucleotides are now considered as extracellular signalling molecules, like neurotransmitters and hormones. Hepatic cells, amongst other cells, ubiquitously express specific transmembrane receptors that transduce the physiological signals induced by extracellular nucleosides and nucleotides, as well as various cell surface enzymes that regulate the levels of these mediators in the extracellular medium. Here, we cover various aspects of the signalling pathways initiated by extracellular nucleosides and nucleotides in the liver, and discuss their overall impact on hepatic physiology.
Collapse
Affiliation(s)
- Michel Fausther
- Centre de recherche en rhumatologie et immunologie, CHU de Québec, QC, Canada
| | | |
Collapse
|
137
|
Souza CGD, Böhmer AE, Müller AP, Oses JP, Viola GG, Lesczinski DN, Souza DGD, Knorr L, Moreira JD, Lhullier F, Souza DO, Perry MLS. Effects of a highly palatable diet on lipid and glucose parameters, nitric oxide, and ectonucleotidases activity. Appl Physiol Nutr Metab 2010; 35:591-7. [PMID: 20962914 DOI: 10.1139/h10-048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity has reached epidemic proportions worldwide and is stimulated by the ready availability of food rich in fat and sugar (highly palatable diet). This type of diet increases the risks of obesity-associated pathologies, such as insulin resistance and cardiovascular disease. Nitric oxide, a potent endogenous vasodilator, is decreased in these pathologies, mostly as a result of insulin resistance. Ectonucleotidases are ecto and soluble enzymes that regulate the availability of the nucleotides ATP, ADP, and AMP and the nucleoside adenosine in the vascular system, thereby affecting vasoconstriction, vasodilatation, and platelet aggregation homeostasis. The aim of this study was to evaluate the effects of a highly palatable diet on serum lipid and glucose parameters, nitric oxide, and ectonucleotidase activity. Forty male Wistar rats were fed 1 of 2 diets for either 45 days or 4 months: standard chow (SC, n = 10) or a highly palatable diet enriched with sucrose (HP, n = 10). Body mass, visceral fat mass, glucose tolerance, cholesterol (total, high-density lipoprotein (HDL) and non-HDL), serum triacylglycerol, liver triacylglycerol, and free glycerol were increased in the HP group after 45 days and after 4 months, whereas insulin levels were not different between the groups at either time. Furthermore, levels of nitric oxide metabolites and ATP, ADP, and AMP hydrolysis were significantly lower in the HP group (p < 0.05) after 4 months. In conclusion, the consumption of the HP diet for 4 months induced overall corporal and metabolic changes, and decreased nitric oxide metabolites and ectonucleotidase activity, thereby promoting an appropriate environment for the development of cardiovascular diseases, without apparent changes in insulin levels.
Collapse
Affiliation(s)
- Carolina Guerini de Souza
- Department of Biochemistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2600 anexo, CEP 90035003, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Vuaden FC, Savio LEB, Bastos CMA, Bogo MR, Bonan CD. Adenosine A(2A) receptor agonist (CGS-21680) prevents endotoxin-induced effects on nucleotidase activities in mouse lymphocytes. Eur J Pharmacol 2010; 651:212-7. [PMID: 21114987 DOI: 10.1016/j.ejphar.2010.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 10/20/2010] [Accepted: 11/03/2010] [Indexed: 11/18/2022]
Abstract
Adenosine 5'-triphosphate (ATP) released during inflammation presents proinflammatory properties. Adenosine, produced by catabolism of ATP, is an anti-inflammatory compound. Considering the role of ATP and adenosine in inflammation and the importance of ectonucleotidases in the maintenance of their extracellular levels, we investigated the effect of a selective agonist of the adenosine A(2A) receptor (CGS-21680) on ectonucleotidase activities and gene expression patterns in lymphocytes from mice submitted to an endotoxemia model. Animals were injected intraperitoneally with 12mg/kg Lipopolyssacharide (LPS) and/or 0.5mg/kg CGS-21680 or saline. Nucleotidase activities were determined in lymphocytes from mesenteric lymph nodes and analysis of ectonucleotidase expression was carried out by a semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay. Exposure to endotoxemia promoted an increase in nucleotide hydrolysis. When CGS-21680 was administered concomitantly with LPS, this increase was prevented for ATP, adenosine 5'-monophosphate (AMP), and p-Nitrophenyl thymidine 5'-monophosphate (p-Nph-5'-TMP) hydrolysis. However, when CGS-21680 was administered 24h after LPS injection, the increase was not reversed. The expression pattern of ectonucleotidases was not altered between LPS and LPS plus CGS-21680 groups, indicating that the transcriptional control was not involved on the effect exerted for CGS-21680. These results showed an enhancement of extracellular nucleotide catabolism in lymphocytes after induction of endotoxemia, which was prevented, but not reversed by CGS-21680 administration. These findings suggest that the control of nucleotide and nucleoside levels exerted by CGS-21680 could contribute to the modulation of the inflammatory process promoted by adenosine A(2A) agonists.
Collapse
Affiliation(s)
- Fernanda Cenci Vuaden
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
139
|
Mittelman K, Ziv K, Maoz T, Kleinberger T. The cytosolic tail of the Golgi apyrase Ynd1 mediates E4orf4-induced toxicity in Saccharomyces cerevisiae. PLoS One 2010; 5:e15539. [PMID: 21124936 PMCID: PMC2989921 DOI: 10.1371/journal.pone.0015539] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 10/13/2010] [Indexed: 11/18/2022] Open
Abstract
The adenovirus E4 open reading frame 4 (E4orf4) protein contributes to regulation of the progression of virus infection. When expressed individually, E4orf4 was shown to induce non-classical transformed cell-specific apoptosis in mammalian cells. At least some of the mechanisms underlying E4orf4-induced toxicity are conserved from yeast to mammals, including the requirement for an interaction of E4orf4 with protein phosphatase 2A (PP2A). A genetic screen in yeast revealed that the Golgi apyrase Ynd1 associates with E4orf4 and contributes to E4orf4-induced toxicity, independently of Ynd1 apyrase activity. Ynd1 and PP2A were shown to contribute additively to E4orf4-induced toxicity in yeast, and to interact genetically and physically. A mammalian orthologue of Ynd1 was shown to bind E4orf4 in mammalian cells, confirming the evolutionary conservation of this interaction. Here, we use mutation analysis to identify the cytosolic tail of Ynd1 as the protein domain required for mediation of the E4orf4 toxic signal and for the interaction with E4orf4. We also show that E4orf4 associates with cellular membranes in yeast and is localized at their cytoplasmic face. However, E4orf4 is membrane-associated even in the absence of Ynd1, suggesting that additional membrane proteins may mediate E4orf4 localization. Based on our results and on a previous report describing a collection of Ynd1 protein partners, we propose that the Ynd1 cytoplasmic tail acts as a scaffold, interacting with a multi-protein complex, whose targeting by E4orf4 leads to cell death.
Collapse
Affiliation(s)
- Karin Mittelman
- Department of Molecular Microbiology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Keren Ziv
- Department of Molecular Microbiology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Tsofnat Maoz
- Department of Molecular Microbiology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Tamar Kleinberger
- Department of Molecular Microbiology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
140
|
Oses JP, Batassini C, Pochmann D, Böhmer AE, Vuaden FC, Silvestrin RB, Oliveira A, Bonan CD, Bogo MR, Souza DO, Portela LVC, Sarkis JJDF, Mello e Souza T. The hydrolysis of striatal adenine- and guanine-based purines in a 6-hydroxydopamine rat model of Parkinson's disease. Neurochem Res 2010; 36:215-22. [PMID: 21046237 DOI: 10.1007/s11064-010-0305-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2010] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is characterized by a progressive neurodegeneration in the substantia nigra and a striatal dopamine decrease. Striatal extracellular adenosine and ATP modulate the dopaminergic neurotransmission whereas guanosine has a protective role in the brain. Therefore, the regulation of their levels by enzymatic activity may be relevant to the clinical feature of PD. Here it was evaluated the extracellular nucleotide hydrolysis from striatal slices 4 weeks after a unilateral infusion with 6-OHDA into the medial forebrain bundle. This infusion increased ADP, AMP, and GTP hydrolysis by 15, 25, and 41%, respectively, and decreased GDP hydrolysis by 60%. There was no change in NTPDases1, 2, 3, 5, 6, and 5'-nucleotidase transcription. Dopamine depletion changes nucleotide hydrolysis and, therefore, alters the regulation of striatal nucleotide levels. These changes observed in 6-OHDA-lesioned animals may contribute to the symptoms observed in the model and provide evidence to indicate that extracellular purine hydrolysis is a key factor in understanding PD, giving hints for new therapies.
Collapse
Affiliation(s)
- Jean Pierre Oses
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Vlajkovic SM, Guo CX, Dharmawardana N, Wong ACY, Boison D, Housley GD, Thorne PR. Role of adenosine kinase in cochlear development and response to noise. J Neurosci Res 2010; 88:2598-609. [PMID: 20648650 PMCID: PMC3041170 DOI: 10.1002/jnr.22421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adenosine signalling has an important role in cochlear protection from oxidative stress. In most tissues, intracellular adenosine kinase (ADK) is the primary route of adenosine metabolism and the key regulator of intracellular and extracellular adenosine levels. The present study provides the first evidence for ADK distribution in the adult and developing rat cochlea. In the adult cochlea, ADK was localized to the nuclear or perinuclear region of spiral ganglion neurons, lateral wall tissues, and epithelial cells lining scala media. In the developing cochlea, ADK was strongly expressed in multiple cell types at birth and reached its peak level of expression at postnatal day 21 (P21). Ontogenetic changes in ADK expression were evident in the spiral ganglion, organ of Corti, and stria vascularis. In the spiral ganglion, ADK showed a shift from predominantly satellite cell immunolabelling at P1 to neuronal expression from P14 onward. In contrast to the role of ADK in various aspects of cochlear development, the ADK contribution to the cochlear response to noise stress was less obvious. Transcript and protein levels of ADK were unaltered in the cochlea exposed to broadband noise (90-110 dBSPL, 24 hr), and the selective inhibition of ADK in the cochlea with ABT-702 failed to restore hearing thresholds after exposure to traumatic noise. This study indicates that ADK is involved in purine salvage pathways for nucleotide synthesis in the adult cochlea, but its role in the regulation of adenosine signalling under physiological and pathological conditions has yet to be established.
Collapse
Affiliation(s)
- Srdjan M Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Aukland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
142
|
In vitro and in vivo interactions of aluminum on NTPDase and AChE activities in lymphocytes of rats. Cell Immunol 2010; 265:133-8. [PMID: 20832780 DOI: 10.1016/j.cellimm.2010.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/06/2010] [Accepted: 08/09/2010] [Indexed: 12/20/2022]
Abstract
Al adjuvants are used in vaccines to increase the immune response. NTPDase and AChE play a pivotal role and act in the regulation of the immune system. The effect of Al exposure in vitro and in vivo on NTPDase and AChE activities in the lymphocytes of rats was determined. In vitro, ATP hydrolysis was decreased by 20.4% and 17.3% and ADP hydrolysis was decreased by 36.5% and 34.8%, in groups D and E, respectively, when compared to the control. AChE activity was increased by 157.3%, 152.5%, 74.7% and 90.8% in groups B, C, D, and E, respectively, when compared to the control. In vivo, ATP hydrolysis was increased by 85% and 86% and ADP hydrolysis was increased by 104.2% and 74%, in Al plus citrate and Al groups, respectively, when compared to the control. AChE activity was increased by 50.7% in Al plus citrate and by 28.6% in Al groups, when compared to the control. Our results show that Al exposure both in vitro and in vivo altered NTPDase and AChE activities in lymphocytes. These results may demonstrate the ability of Al to elicit the immune system, where NTPDase and AChE activities can act as purinergic and cholinergic markers in lymphocytes.
Collapse
|
143
|
L-NAME-treatment alters ectonucleotidase activities in kidney membranes of rats. Life Sci 2010; 87:325-32. [PMID: 20655932 DOI: 10.1016/j.lfs.2010.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 07/02/2010] [Accepted: 07/06/2010] [Indexed: 11/21/2022]
Abstract
AIMS To investigate the effect of N(omega)-Nitro-L-arginine methyl ester (l-NAME) treatment, known to induce a sustained elevation of blood pressure, on ectonucleotidase activities in kidney membranes of rats. MAIN METHODS L-NAME (30 mg/kg/day) was administered to Wistar rats for 14 days in the drinking water. Enzyme activities were determined colorimetrically and their gene expression patterns were analyzed by semi-quantitative RT-PCR. The metabolism of ATP and the accumulation of adenosine were evaluated by HPLC in kidney membranes from control and hypertensive rats. PKC phosphorylation state was investigated by Western blot. KEY FINDINGS We observed an increase in systolic blood pressure from 115+/-12 mmHg (control group) to 152+/-18 mmHg (l-NAME-treated group). Furthermore, the hydrolysis of ATP, ADP, AMP, and p-Nph-5'TMP was also increased (17%, 35%, 27%, 20%, respectively) as was the gene expression of NTPDase2, NTPDase3 and NPP3 in kidneys of hypertensive animals. Phospho-PKC was increased in hypertensive rats. SIGNIFICANCE The general increase in ATP hydrolysis and in ecto-5'-nucleotidase activity suggests a rise in renal adenosine levels and in renal autoregulatory responses in order to protect the kidney against the threat presented by hypertension.
Collapse
|
144
|
Differential expression of P2Y receptors in the rat cochlea during development. Purinergic Signal 2010; 6:231-48. [PMID: 20806015 DOI: 10.1007/s11302-010-9191-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 05/26/2010] [Indexed: 01/16/2023] Open
Abstract
Purinergic signaling has broad physiological significance to the hearing organ, involving signal transduction via ionotropic P2X receptors and metabotropic G-protein-coupled P2Y and P1 (adenosine), alongside conversion of nucleotides and nucleosides by ecto-nucleotidases and ecto-nucleoside diphosphokinase. In addition, ATP release is modulated by acoustic overstimulation or stress and involves feedback regulation. Many of these principal elements of the purinergic signaling complex have been well characterized in the cochlea, while the characterization of P2Y receptor expression is emerging. The present study used immunohistochemistry to evaluate the expression of five P2Y receptors, P2Y(1), P2Y(2), P2Y(4), P2Y(6), and P2Y(12), during development of the rat cochlea. Commencing in the late embryonic period, the P2Y receptors studied were found in the cells lining the cochlear partition, associated with establishment of the electrochemical environment which provides the driving force for sound transduction. In addition, early postnatal P2Y(2) and P2Y(4) protein expression in the greater epithelial ridge, part of the developing hearing organ, supports the view that initiation and regulation of spontaneous activity in the hair cells prior to hearing onset is mediated by purinergic signaling. Sub-cellular compartmentalization of P2Y receptor expression in sensory hair cells, and diversity of receptor expression in the spiral ganglion neurons and their satellite cells, indicates roles for P2Y receptor-mediated Ca(2+)-signaling in sound transduction and auditory neuron excitability. Overall, the dynamics of P2Y receptor expression during development of the cochlea complement the other elements of the purinergic signaling complex and reinforce the significance of extracellular nucleotide and nucleoside signaling to hearing.
Collapse
|
145
|
da Silveira VG, de Paula Cognato G, Müller AP, Figueiró F, Bonan CD, Perry MLS, Battastini AMO. Effect of ketogenic diet on nucleotide hydrolysis and hepatic enzymes in blood serum of rats in a lithium-pilocarpine-induced status epilepticus. Metab Brain Dis 2010; 25:211-7. [PMID: 20443057 DOI: 10.1007/s11011-010-9198-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
The ketogenic diet (KD) is a high-fat and low-carbohydrate diet, used for treating refractory epilepsy in children. We have previously shown alterations in nucleotidase activities from the central nervous system and blood serum of rats submitted to different models of epilepsy. In this study we investigated the effect of KD on nucleotidase activities in the blood serum, as well if KD has any influence in the activity of liver enzymes such as alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase activities in Wistar rats submitted to the lithium-pilocarpine model of epilepsy. At 21 days of age, rats received an injection of lithium chloride and, 18-19 h later, they received an injection of pilocarpine hydrochloride for status epilepticus induction. The results reported herein show that seizures induced by lithium-pilocarpine elicit a significant increase in ATP hydrolysis and alkaline phosphatase activity, as well as a decrease in ADP hydrolysis and aspartate aminotransferase activity. The KD is a rigorous regimen that can be associated with hepatic damage, as shown herein by the elevated activities of liver enzymes and 5'-nucleotidase in blood serum. Further studies are necessary to investigate the mechanism of inhibition of lithium on nucleotidases in blood serum.
Collapse
Affiliation(s)
- Vanessa Gass da Silveira
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Anexo, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
146
|
Fausther M, Pelletier J, Ribeiro CM, Sévigny J, Picher M. Cystic fibrosis remodels the regulation of purinergic signaling by NTPDase1 (CD39) and NTPDase3. Am J Physiol Lung Cell Mol Physiol 2010; 298:L804-18. [PMID: 20190036 PMCID: PMC2886614 DOI: 10.1152/ajplung.00019.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 02/25/2010] [Indexed: 12/20/2022] Open
Abstract
Airway defenses are regulated by a complex purinergic signaling network located on the epithelial surfaces, where ATP stimulates the clearance of mucin and pathogens. The present study shows that the obstructive disease cystic fibrosis (CF) affects the activity, expression, and tissue distribution of two ectonucleotidases found critical for the regulation of ATP on airway surfaces: NTPDase1 and NTPDase3. Functional polarities and mRNA expression levels were determined on primary cultures of human bronchial epithelial (HBE) cells from healthy donors and CF patients. The in vitro model of the disease was completed by exposing CF HBE cultures for 4 days to supernatant of the mucopurulent material (SMM) collected from the airways of CF patients. We report that NTPDase1 and NTPDase3 are coexpressed on HBE cultures, where they regulate physiological and excess nucleotide concentrations, respectively. In aseptic conditions, CF epithelia exhibit >50% lower NTPDase1 activity, protein, and mRNA levels than normal epithelia, whereas these parameters are threefold higher for NTPDase3. Exposure to SMM induced opposite polarity shifts of the two NTPDases on both normal and CF epithelia, apical NTPDase1 being mobilized to basolateral surfaces and bilateral NTPDase3 to the apical surface. Their immunolocalization in human tissue revealed that NTPDase1 is expressed in epithelial, inflammatory, and endothelial cells, whereas NTPDase3 is restricted to epithelial cells. Furthermore, the SMM-exposed CF HBE cultures reproduced the impact of the disease on their in vivo distribution. This study provides evidence that an extensive remodeling of the enzymatic network regulating clearance occurs in the airways of CF patients.
Collapse
Affiliation(s)
- Michel Fausther
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, Ste-Foy, Quebec City, Canada
| | | | | | | | | |
Collapse
|
147
|
Aliagas E, Torrejón-Escribano B, Lavoie EG, de Aranda IG, Sévigny J, Solsona C, Martín-Satué M. Changes in expression and activity levels of ecto-5'-nucleotidase/CD73 along the mouse female estrous cycle. Acta Physiol (Oxf) 2010; 199:191-7. [PMID: 20136797 DOI: 10.1111/j.1748-1716.2010.02095.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM Extracellular ATP and its hydrolysis product adenosine modulate various reproductive functions such as those requiring contraction, hormone synthesis and maintenance of fluid composition. Moreover, adenosine is a key molecule for sperm capacitation. Extracellular nucleotide and nucleoside levels are affected by cell surface ectonucleotidases, amongst which the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family is the most abundant and effective to hydrolyse ATP and ADP to AMP. In the female reproductive tract three members of this family have been recently identified: NTPDase1, NTPDase2 and NTPDase3 (Histochem. Cell Biol.131, 2009, 615). The purpose of the present study was to characterize in this system the expression profile of ecto-5'-nucleotidase (CD73), the enzyme generating adenosine from AMP. METHODS Immunological techniques and in situ enzymatic assays were used to characterize the ecto-5'-nucleotidase expression in the mouse female reproductive tract along the four stages of the estrous cycle, that were determined by vaginal smear examination. RESULTS Ecto-5'-nucleotidase was abundantly detected in the corpora lutea of the ovaries, as well as in several epithelia, such as that of oviducts, uterus and endometrial glands. Marked changes in endometrial ecto-5'-nucleotidase expression and activity along the estrous cycle are described, these being maximum at estrus phase, coinciding with optimal female sexual receptivity. CONCLUSION The adenosine generated thereby, besides other functions, might contribute to sperm capacitation, thus significantly influencing fertility.
Collapse
Affiliation(s)
- E Aliagas
- Departament Patologia i Terapèutica Experimental, Facultat de Medicina, Universitat de Barcelona-IDIBELL, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
148
|
O’Keeffe MG, Thorne PR, Housley GD, Robson SC, Vlajkovic SM. Distribution of NTPDase5 and NTPDase6 and the regulation of P2Y receptor signalling in the rat cochlea. Purinergic Signal 2010; 6:249-61. [PMID: 20806016 PMCID: PMC2912994 DOI: 10.1007/s11302-010-9190-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 05/26/2010] [Indexed: 10/19/2022] Open
Abstract
Membrane-bound ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) in the inner ear regulate complex extracellular purinergic type-2 (P2) receptor signalling pathways through hydrolysis of extracellular nucleoside 5'-triphosphates and diphosphates. This study investigated the distribution of NTPDase5 and NTPDase6, two intracellular members of the E-NTPDase family, and linked this to regulation of P2 receptor signalling in the adult rat cochlea. These extracellular ectonucleotidases preferentially hydrolyse nucleoside 5'-diphosphates such as UDP and GDP. Expression of both enzymes at mRNA and protein level was detected in cochlear tissues and there was in vivo release of soluble NTPDase5 and 6 into cochlear fluids. Strong NTPDase5 immunostaining was found in the spiral ganglion neurones and supporting Deiters' cells of the organ of Corti, while NTPDase6 was confined to the inner hair cells. Upregulation of NTPDase5 after exposure to loud sound indicates a dynamic role for NTPDase5 in cochlear response to stress, whereas NTPDase6 may have more limited extracellular roles. Noise-induced upregulation of co-localised UDP-preferring P2Y(6) receptors in the spiral ganglion neurons further supports the involvement of NTPDase5 in regulation of P2Y receptor signalling. Noise stress also induced P2Y(14) (UDP- and UDP-glucose preferring) receptor expression in the root processes of the outer sulcus cells, but this was not associated with localization of the E-NTPDases.
Collapse
Affiliation(s)
- Mary G. O’Keeffe
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Peter R. Thorne
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Discipline of Audiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Gary D. Housley
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Physiology & Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Simon C. Robson
- Beth Israel Deaconess Medical Center, Harvard University, Boston, MA USA
| | - Srdjan M. Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
149
|
Martín-Satué M, Lavoie EG, Fausther M, Lecka J, Aliagas E, Kukulski F, Sévigny J. High expression and activity of ecto-5′-nucleotidase/CD73 in the male murine reproductive tract. Histochem Cell Biol 2010; 133:659-68. [DOI: 10.1007/s00418-010-0704-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2010] [Indexed: 11/29/2022]
|
150
|
Rücker B, Abreu-Vieira G, Bischoff LB, Harthmann AD, Sarkis JJF, Wink MR, Casali EA. The nucleotide hydrolysis is altered in blood serum of streptozotocin-induced diabetic rats. Arch Physiol Biochem 2010; 116:79-87. [PMID: 20420481 DOI: 10.3109/13813451003777067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ectonucleotidases and the nucleotide metabolism have been implicated as important regulators of various tissue functions in diabetes disease. Here we evaluated the ectonucleotidase activities and the profile of extracellular ATP metabolism in blood serum of streptozotocin (STZ)-induced diabetic rats. We observed a raise in ATP, ADP, AMP, and 5'-TMP hydrolysis in blood serum after 30 days of diabetes induction, when compared with the citrate group. However, in serum of rats treated 6 days with insulin, the hydrolysis returned to the control levels. Extracellular ATP metabolism estimated by HPLC analysis showed a rapid hydrolysis of extracellular ATP by diabetic animals, leading to the formation of high levels of adenosine when compared with citrate and insulin groups. Since in diabetes the vascular disease is frequently present, the alterations observed are important, because these enzymes control the nucleotides/nucleosides ratio in the circulation and thus the events related to haemostasis.
Collapse
Affiliation(s)
- Bárbara Rücker
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|