101
|
Yin W, Duluc D, Joo H, Xue Y, Gu C, Wang Z, Wang L, Ouedraogo R, Oxford L, Clark A, Parikh F, Kim-Schulze S, Thompson-Snipes L, Lee SY, Beauregard C, Woo JH, Zurawski S, Sikora AG, Zurawski G, Oh S. Therapeutic HPV Cancer Vaccine Targeted to CD40 Elicits Effective CD8+ T-cell Immunity. Cancer Immunol Res 2016; 4:823-834. [PMID: 27485136 DOI: 10.1158/2326-6066.cir-16-0128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/21/2016] [Indexed: 11/16/2022]
Abstract
Human papillomavirus (HPV), particularly HPV16 and HPV18, can cause cancers in diverse anatomical sites, including the anogenital and oropharyngeal (throat) regions. Therefore, development of safe and clinically effective therapeutic vaccines is an important goal. Herein, we show that a recombinant fusion protein of a humanized antibody to CD40 fused to HPV16.E6/7 (αCD40-HPV16.E6/7) can evoke HPV16.E6/7-specific CD8+ and CD4+ T-cell responses in head-and-neck cancer patients in vitro and in human CD40 transgenic (hCD40Tg) mice in vivo The combination of αCD40-HPV16.E6/7 and poly(I:C) efficiently primed HPV16.E6/7-specific T cells, particularly CD8+ T cells, in hCD40Tg mice. Inclusion of montanide enhanced HPV16.E6/7-specific CD4+, but not CD8+, T-cell responses. Poly(I:C) plus αCD40-HPV16.E6/7 was sufficient to mount both preventative and therapeutic immunity against TC-1 tumors in hCD40Tg mice, significantly increasing the frequency of HPV16-specific CD8+ CTLs in the tumors, but not in peripheral blood. In line with this, tumor volume inversely correlated with the frequency of HPV16.E6/7-specific CD8+ T cells in tumors, but not in blood. These data suggest that CD40-targeting vaccines for HPV-associated malignancies can provide a highly immunogenic platform with a strong likelihood of clinical benefit. Data from this study offer strong support for the development of CD40-targeting vaccines for other cancers in the future. Cancer Immunol Res; 4(10); 823-34. ©2016 AACR.
Collapse
Affiliation(s)
- Wenjie Yin
- Baylor Institute for Immunology Research, Dallas, Texas. Institute of Biomedical Studies, Baylor University, Waco, Texas
| | | | - HyeMee Joo
- Baylor Institute for Immunology Research, Dallas, Texas. Institute of Biomedical Studies, Baylor University, Waco, Texas
| | - Yaming Xue
- Baylor Institute for Immunology Research, Dallas, Texas
| | - Chao Gu
- Baylor Institute for Immunology Research, Dallas, Texas. Institute of Biomedical Studies, Baylor University, Waco, Texas
| | - Zhiqing Wang
- Baylor Institute for Immunology Research, Dallas, Texas
| | - Lei Wang
- Baylor Institute for Immunology Research, Dallas, Texas
| | | | - Lance Oxford
- Division of Head and Neck Surgery, Texas Oncology, Baylor University Medical Center, Dallas, Texas
| | - Amelia Clark
- Department of Otolaryngology, Stanford School of Medicine, Palo Alto, California
| | - Falguni Parikh
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | | | - LuAnn Thompson-Snipes
- Baylor Institute for Immunology Research, Dallas, Texas. Institute of Biomedical Studies, Baylor University, Waco, Texas
| | - Sang-Yull Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | | | - Jung-Hee Woo
- Cancer Research Institute, Baylor Scott and White Health, Temple, Texas
| | | | - Andrew G Sikora
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Gerard Zurawski
- Baylor Institute for Immunology Research, Dallas, Texas. Institute of Biomedical Studies, Baylor University, Waco, Texas
| | - SangKon Oh
- Baylor Institute for Immunology Research, Dallas, Texas. Institute of Biomedical Studies, Baylor University, Waco, Texas.
| |
Collapse
|
102
|
Abstract
Persistent human papillomavirus (HPV) is the primary etiologic agent of cervical cancer and causes a significant number of vulvar, penile, anal and oropharyngeal cancers. The development of highly effective HPV therapeutic vaccines is a reasonable goal given the recent advances in basic and applied immunology. A number of vaccine strategies designed to induce systemic T cell responses have been tested in clinical trials against high grade cervical or vulvar high grade neoplasia and cancers, but with limited success. In line with the emerging trend to focus more on the epithelial context of HPV infection and premalignant disease, it might be advantageous to develop vaccination strategies that promote trafficking of HPV-specific T cells into lesions and overcome the local immunosuppressive environment. The development of more biologically relevant animal models would improve the preclinical evaluation of therapeutic vaccine candidates. Finally, persistent infection and low grade lesions may prove to be easier targets for therapeutic vaccines, and these vaccines would likely be commercially viable in high income countries and valuable components in screen and treat programs in low resource settings.
Collapse
Affiliation(s)
- Nicolas Çuburu
- a Laboratory of Cellular Oncology , Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| | - John T Schiller
- a Laboratory of Cellular Oncology , Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| |
Collapse
|
103
|
Sequence-based approach for rapid identification of cross-clade CD8+ T-cell vaccine candidates from all high-risk HPV strains. 3 Biotech 2016; 6:39. [PMID: 28330110 PMCID: PMC4729761 DOI: 10.1007/s13205-015-0352-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/13/2015] [Indexed: 11/16/2022] Open
Abstract
Human papilloma virus (HPV) is the primary etiological agent responsible for cervical cancer in women. Although in total 16 high-risk HPV strains have been identified so far. Currently available commercial vaccines are designed by targeting mainly HPV16 and HPV18 viral strains as these are the most common strains associated with cervical cancer. Because of the high level of antigenic specificity of HPV capsid antigens, the currently available vaccines are not suitable to provide cross-protection from all other high-risk HPV strains. Due to increasing reports of cervical cancer cases from other HPV high-risk strains other than HPV16 and 18, it is crucial to design vaccine that generate reasonable CD8+ T-cell responses for possibly all the high-risk strains. With this aim, we have developed a computational workflow to identify conserved cross-clade CD8+ T-cell HPV vaccine candidates by considering E1, E2, E6 and E7 proteins from all the high-risk HPV strains. We have identified a set of 14 immunogenic conserved peptide fragments that are supposed to provide protection against infection from any of the high-risk HPV strains across globe.
Collapse
|
104
|
Hickman ES, Lomax ME, Jakobsen BK. Antigen Selection for Enhanced Affinity T-Cell Receptor-Based Cancer Therapies. ACTA ACUST UNITED AC 2016; 21:769-85. [PMID: 26993321 DOI: 10.1177/1087057116637837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/15/2016] [Indexed: 12/11/2022]
Abstract
Evidence of adaptive immune responses in the prevention of cancer has been accumulating for decades. Spontaneous T-cell responses occur in multiple indications, bringing the study of de novo expressed cancer antigens to the fore and highlighting their potential as targets for cancer immunotherapy. Circumventing the immune-suppressive mechanisms that maintain tumor tolerance and driving an antitumor cytotoxic T-cell response in cancer patients may eradicate the tumor or block disease progression. Multiple strategies are being pursued to harness the cytotoxic potential of T cells clinically. Highly promising results are now emerging. The focus of this review is the target discovery process for cancer immune therapeutics based on affinity-matured T-cell receptors (TCRs). Target cancer antigens in the context of adoptive cell transfer technologies and soluble biologic agents are discussed. To appreciate the impact of TCR-based technology and understand the TCR discovery process, it is necessary to understand key differences between TCR-based therapy and other immunotherapy approaches. The review first summarizes key advances in the cancer immunotherapy field and then discusses the opportunities that TCR technology provides. The nature and breadth of molecular targets that are tractable to this approach are discussed, together with the challenges associated with finding them.
Collapse
|
105
|
Yang A, Jeang J, Cheng K, Cheng T, Yang B, Wu TC, Hung CF. Current state in the development of candidate therapeutic HPV vaccines. Expert Rev Vaccines 2016; 15:989-1007. [PMID: 26901118 DOI: 10.1586/14760584.2016.1157477] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The identification of human papillomavirus (HPV) as an etiological factor for HPV-associated malignancies creates the opportunity to control these cancers through vaccination. Currently, available preventive HPV vaccines have not yet demonstrated strong evidences for therapeutic effects against established HPV infections and lesions. Furthermore, HPV infections remain extremely common. Thus, there is urgent need for therapeutic vaccines to treat existing HPV infections and HPV-associated diseases. Therapeutic vaccines differ from preventive vaccines in that they are aimed at generating cell-mediated immunity rather than neutralizing antibodies. The HPV-encoded early proteins, especially oncoproteins E6 and E7, form ideal targets for therapeutic HPV vaccines since they are consistently expressed in HPV-associated malignancies and precancerous lesions, playing crucial roles in the generation and maintenance of HPV-associated disease. Our review will cover various therapeutic vaccines in development for the treatment of HPV-associated lesions and cancers. Furthermore, we review strategies to enhance vaccine efficacy and the latest clinical trials on therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Andrew Yang
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - Jessica Jeang
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - Kevin Cheng
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - Ting Cheng
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - Benjamin Yang
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - T-C Wu
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA.,b Department of Obstetrics and Gynecology , Johns Hopkins University , Baltimore , MD , USA.,c Department of Molecular Microbiology and Immunology , Johns Hopkins University , Baltimore , MD , USA.,d Department of Oncology , Johns Hopkins University , Baltimore , MD , USA
| | - Chien-Fu Hung
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA.,d Department of Oncology , Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
106
|
The LALF32-51 peptide as component of HPV therapeutic vaccine circumvents the alum-mediated inhibition of IL-12 and promotes a Th1 response. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.jocit.2015.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
107
|
Li LL, Wang HR, Zhou ZY, Luo J, Wang XL, Xiao XQ, Zhou YB, Zeng Y. C3-Luc Cells Are an Excellent Model for Evaluation of Cellular Immunity following HPV16L1 Vaccination. PLoS One 2016; 11:e0149748. [PMID: 26900913 PMCID: PMC4763794 DOI: 10.1371/journal.pone.0149748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/04/2016] [Indexed: 11/18/2022] Open
Abstract
C3 and TC-1 are the two model cell lines most commonly used in studies of vaccines and drugs against human papillomavirus (HPV) infection. Because C3 cells contain both the HPV16 E and L genes, but TC-1 cells contain only the HPV16 E genes, C3 cells are usually used as the model cell line in studies targeting the HPV16 L protein. However, expression of the L1 protein is difficult to detect in C3 cells using common methods. In our study, Short tandem repeat analysis (STR) was used to demonstrate that C3 cells are indeed derived from mice, PCR results show that HPV16 L1, E6 and E7 genes were detected in C3 genomic DNA, and RT-PCR results demonstrated that L1 transcription had occurred in C3 cells. However, the expression of C3 protein was not found in the results of western blot and immunohistochemistry (IHC). Growth and proliferation of C3 were inhibited by mice spleen lymphocytes that had been immunized with a vaccine against HPV16L1. The luciferase gene was integrated into C3 cells, and it was confirmed that addition of the exogenous gene had no effect on C3 cells by comparing cell growth and tumor formation with untransformed cells. Cells stably expressing luciferase (C3-luc) were screened and subcutaneously injected into the mice. Tumors became established and were observed using a Spectrum Pre-clinical in Vivo Imaging System. Tumor size of mice in the different groups at various time points was calculated by counting photons. The sensitivity of the animals to the vaccine was quantified by statistical comparison. Ten or 30 days following injection of the C3-luc cells, tumor size differed significantly between the PBS and vaccine groups, indicating that C3 cells were susceptible to vaccination even after tumors were formed in vivo.
Collapse
Affiliation(s)
- Li-Li Li
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology, Beijing, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China
| | - He-Rong Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology, Beijing, China
| | - Zhi-Yi Zhou
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology, Beijing, China
| | - Jing Luo
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology, Beijing, China
| | - Xiao-Li Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology, Beijing, China
| | - Xiang-Qian Xiao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology, Beijing, China
| | - Yu-Bai Zhou
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology, Beijing, China
- * E-mail: (ZY); (ZYB)
| | - Yi Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China
- * E-mail: (ZY); (ZYB)
| |
Collapse
|
108
|
DeBay DR, Brewer KD, LeBlanc SA, Weir GM, Stanford MM, Mansour M, Bowen CV. Using MRI to evaluate and predict therapeutic success from depot-based cancer vaccines. Mol Ther Methods Clin Dev 2015; 2:15048. [PMID: 26730395 PMCID: PMC4685660 DOI: 10.1038/mtm.2015.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 12/16/2022]
Abstract
In the preclinical development of immunotherapy candidates, understanding the mechanism of action and determining biomarkers that accurately characterize the induced host immune responses is critical to improving their clinical interpretation. Magnetic resonance imaging (MRI) was used to evaluate in vivo changes in lymph node size in response to a peptide-based cancer vaccine therapy, formulated using DepoVax (DPX). DPX is a novel adjuvant lipid-in-oil-based formulation that facilitates enhanced immune responses by retaining antigens at the injection site for extended latencies, promoting increased potentiation of immune cells. C57BL/6 mice were implanted with C3 (HPV) tumor cells and received either DPX or control treatments, 5 days post-implantation. Complete tumor eradication occurred in DPX-vaccinated animals and large volumetric increases were observed in the vaccine-draining right inguinal lymph node (VRILN) in DPX mice, likely corresponding to increased localized immune response to the vaccine. Upon evaluating the relative measure of vaccine-potentiated immune activation to tumor-induced immune response (VRILN/VLILN), receiver-operating characteristic (ROC) curves revealed an area under the curve (AUC) of 0.90 (±0.07), indicating high specificity and sensitivity as a predictive biomarker of vaccine efficacy. We have determined that for this tumor model, early MRI lymph node volumetric changes are predictive of depot immunotherapeutic success.
Collapse
Affiliation(s)
- Drew R DeBay
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, Nova Scotia, Canada
| | - Kimberly D Brewer
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, Nova Scotia, Canada
- Immunovaccine Inc., Halifax, Nova Scotia, Canada
- Department of Radiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sarah A LeBlanc
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, Nova Scotia, Canada
| | | | | | - Marc Mansour
- Immunovaccine Inc., Halifax, Nova Scotia, Canada
| | - Chris V Bowen
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, Nova Scotia, Canada
- Department of Radiology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
109
|
Ugel S, Facciponte JG, De Sanctis F, Facciabene A. Targeting tumor vasculature: expanding the potential of DNA cancer vaccines. Cancer Immunol Immunother 2015; 64:1339-48. [PMID: 26267042 PMCID: PMC11028665 DOI: 10.1007/s00262-015-1747-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/28/2015] [Indexed: 01/16/2023]
Abstract
Targeting the tumor vasculature with anti-angiogenesis modalities is a bona fide validated approach that has complemented cancer treatment paradigms. Tumor vasculature antigens (TVA) can be immunologically targeted and offers multiple theoretical advantages that may enhance existing strategies against cancer. We focused on tumor endothelial marker 1 (TEM1/CD248) as a model TVA since it is broadly expressed on many different cancers. Our DNA-based vaccine approach demonstrated that CD248 can be effectively targeted immunologically; anti-tumor responses were generated in several mouse models; and CD8(+)/CD4(+) T cell responses were elicited against peptides derived from CD248 protein. Our work supports our contention that CD248 is a novel immunotherapeutic target for cancer treatment and highlights the efficient, safe and translatable use of DNA-based immunotherapy. We next briefly highlight ongoing investigations targeting CD248 with antibodies as a diagnostic imaging agent and as a therapeutic antibody in an early clinical trial. The optimal approach for generating effective DNA-based cancer vaccines for several tumor types may be a combinatorial approach that enhances immunogenicity such as combination with chemotherapy. Additional combination approaches are discussed and include those that alleviate the immunosuppressive tumor microenvironment induced by myeloid-derived suppressor cells and T regulatory cells. Targeting the tumor vasculature by CD248-based immunological modalities expands the armamentarium against cancer.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Cancer Vaccines/therapeutic use
- Combined Modality Therapy
- Disease Models, Animal
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Humans
- Immunotherapy/methods
- Neoplasms/immunology
- Neoplasms/therapy
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/therapy
- T-Lymphocytes/immunology
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
- Stefano Ugel
- Ovarian Cancer Research Center (OCRC), University of Pennsylvania School of Medicine, Biomedical Research Building II/III, 13th Floor, 421 Curie Blvd., Philadelphia, PA 19104 USA
- Immunology Section, Department of Pathology and Diagnostics, University of Verona, 37134 Verona, Italy
| | - John G. Facciponte
- Ovarian Cancer Research Center (OCRC), University of Pennsylvania School of Medicine, Biomedical Research Building II/III, 13th Floor, 421 Curie Blvd., Philadelphia, PA 19104 USA
| | - Francesco De Sanctis
- Ovarian Cancer Research Center (OCRC), University of Pennsylvania School of Medicine, Biomedical Research Building II/III, 13th Floor, 421 Curie Blvd., Philadelphia, PA 19104 USA
- Immunology Section, Department of Pathology and Diagnostics, University of Verona, 37134 Verona, Italy
| | - Andrea Facciabene
- Ovarian Cancer Research Center (OCRC), University of Pennsylvania School of Medicine, Biomedical Research Building II/III, 13th Floor, 421 Curie Blvd., Philadelphia, PA 19104 USA
| |
Collapse
|
110
|
Lei J, Osen W, Gardyan A, Hotz-Wagenblatt A, Wei G, Gissmann L, Eichmüller S, Löchelt M. Replication-Competent Foamy Virus Vaccine Vectors as Novel Epitope Scaffolds for Immunotherapy. PLoS One 2015; 10:e0138458. [PMID: 26397953 PMCID: PMC4580568 DOI: 10.1371/journal.pone.0138458] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022] Open
Abstract
The use of whole viruses as antigen scaffolds is a recent development in vaccination that improves immunogenicity without the need for additional adjuvants. Previous studies highlighted the potential of foamy viruses (FVs) in prophylactic vaccination and gene therapy. Replication-competent FVs can trigger immune signaling and integrate into the host genome, resulting in persistent antigen expression and a robust immune response. Here, we explored feline foamy virus (FFV) proteins as scaffolds for therapeutic B and T cell epitope delivery in vitro. Infection- and cancer-related B and T cell epitopes were grafted into FFV Gag, Env, or Bet by residue replacement, either at sites of high local sequence homology between the epitope and the host protein or in regions known to tolerate sequence alterations. Modified proviruses were evaluated in vitro for protein steady state levels, particle release, and virus titer in permissive cells. Modification of Gag and Env was mostly detrimental to their function. As anticipated, modification of Bet had no impact on virion release and affected virus titers of only some recombinants. Further evaluation of Bet as an epitope carrier was performed using T cell epitopes from the model antigen chicken ovalbumin (OVA), human tyrosinase-related protein 2 (TRP-2), and oncoprotein E7 of human papillomavirus type 16 (HPV16E7). Transfection of murine cells with constructs encoding Bet-epitope chimeric proteins led to efficient MHC-I-restricted epitope presentation as confirmed by interferon-gamma enzyme-linked immunospot assays using epitope-specific cytotoxic T lymphocyte (CTL) lines. FFV infection-mediated transduction of cells with epitope-carrying Bet also induced T-cell responses, albeit with reduced efficacy, in a process independent from the presence of free peptides. We show that primate FV Bet is also a promising T cell epitope carrier for clinical translation. The data demonstrate the utility of replication-competent and -attenuated FVs as antigen carriers in immunotherapy.
Collapse
Affiliation(s)
- Janet Lei
- Division of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfram Osen
- Division of Translational Immunology, Research Program Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adriane Gardyan
- Division of Translational Immunology, Research Program Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Bioinformatics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guochao Wei
- Division of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lutz Gissmann
- Division of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Eichmüller
- Division of Translational Immunology, Research Program Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Löchelt
- Division of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
111
|
de Oliveira LMF, Morale MG, Chaves AAM, Cavalher AM, Lopes AS, Diniz MDO, Schanoski AS, de Melo RL, Ferreira LCDS, de Oliveira MLS, Demasi M, Ho PL. Design, Immune Responses and Anti-Tumor Potential of an HPV16 E6E7 Multi-Epitope Vaccine. PLoS One 2015; 10:e0138686. [PMID: 26390407 PMCID: PMC4577214 DOI: 10.1371/journal.pone.0138686] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 09/02/2015] [Indexed: 11/18/2022] Open
Abstract
Cervical cancer is a common type of cancer among women worldwide and infection with high-risk human papillomavirus (HPVs) types represents the major risk factor for the etiopathogenesis of the disease. HPV-16 is the most frequently identified HPV type in cervical lesions and expression of E6 and E7 oncoproteins is required for the uncontrolled cellular proliferation. In the present study we report the design and experimental testing of a recombinant multi-epitope protein containing immunogenic epitopes of HPV-16 E6 and E7. Tumor preventive assays, based on the engraftment of TC-1 cells in mice, showed that the E6E7 multi-epitope protein induced a full preventive anti-tumor protection in wild-type mice, as well as in mice deficient in expression of CD4+ T cells and TLR4 receptor. Nonetheless, no anti-tumor protection was observed in mice deficient in CD8+ T cells. Also, the vaccine promoted high activation of E6/E7-specific T cells and in a therapeutic-approach, E6E7 protein conferred full anti-tumor protection in mice. These results show a potential use of this E6E7 multi-epitope antigen as a new and promising antigen for the development of a therapeutic vaccine against tumors induced by HPV.
Collapse
Affiliation(s)
| | - Mirian Galliote Morale
- Laboratório de Biotecnologia Molecular I, Instituto Butantan, Av. Vital Brasil 1500, São Paulo-SP, Brazil
| | - Agatha A. Muniz Chaves
- Laboratório de Biotecnologia Molecular I, Instituto Butantan, Av. Vital Brasil 1500, São Paulo-SP, Brazil
| | - Aline Marques Cavalher
- Laboratório de Biotecnologia Molecular I, Instituto Butantan, Av. Vital Brasil 1500, São Paulo-SP, Brazil
| | - Aline Soriano Lopes
- Laboratório Especial de Toxinologia Aplicada-CeTICS, Instituto Butantan, Av. Vital Brasil 1500, São Paulo-SP, Brazil
| | - Mariana de Oliveira Diniz
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo-SP, Brazil
| | | | - Robson Lopes de Melo
- Laboratório Especial de Toxinologia Aplicada-CeTICS, Instituto Butantan, Av. Vital Brasil 1500, São Paulo-SP, Brazil
| | | | | | - Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, Av. Vital Brasil 1500, São Paulo-SP, Brazil
| | - Paulo Lee Ho
- Laboratório de Biotecnologia Molecular I, Instituto Butantan, Av. Vital Brasil 1500, São Paulo-SP, Brazil
- * E-mail:
| |
Collapse
|
112
|
Jindra C, Huber B, Shafti-Keramat S, Wolschek M, Ferko B, Muster T, Brandt S, Kirnbauer R. Attenuated Recombinant Influenza A Virus Expressing HPV16 E6 and E7 as a Novel Therapeutic Vaccine Approach. PLoS One 2015; 10:e0138722. [PMID: 26381401 PMCID: PMC4575162 DOI: 10.1371/journal.pone.0138722] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/02/2015] [Indexed: 11/19/2022] Open
Abstract
Persistent infection with high-risk human papillomavirus (HPV) types, most often HPV16 and HPV18, causes all cervical and most anal cancers, and a subset of vulvar, vaginal, penile and oropharyngeal carcinomas. Two prophylactic virus-like particle (VLPs)-based vaccines, are available that protect against vaccine type-associated persistent infection and associated disease, yet have no therapeutic effect on existing lesions or infections. We have generated recombinant live-attenuated influenza A viruses expressing the HPV16 oncogenes E6 and E7 as experimental immunotherapeutic vaccine candidates. The influenza A virus life cycle lacks DNA intermediates as important safety feature. Different serotypes were generated to ensure efficient prime and boost immunizations. The immune response to vaccination in C57BL/6 mice was characterized by peptide ELISA and IFN-γ ELISpot, demonstrating induction of cell-mediated immunity to HPV16 E6 and E7 oncoproteins. Prophylactic and therapeutic vaccine efficacy was analyzed in the murine HPV16-positive TC-1 tumor challenge model. Subcutaneous (s.c.) prime and boost vaccinations of mice with recombinant influenza A serotypes H1N1 and H3N2, followed by challenge with TC-1 cells resulted in complete protection or significantly reduced tumor growth as compared to control animals. In a therapeutic setting, s.c. vaccination of mice with established TC-1 tumors decelerated tumor growth and significantly prolonged survival. Importantly, intralesional vaccine administration induced complete tumor regression in 25% of animals, and significantly reduced tumor growth in 50% of mice. These results suggest recombinant E6E7 influenza viruses as a promising new approach for the development of a therapeutic vaccine against HPV-induced disease.
Collapse
Affiliation(s)
- Christoph Jindra
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bettina Huber
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Saeed Shafti-Keramat
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Markus Wolschek
- Research Group Oncology (RGO), Equine Clinic, Veterinary University of Vienna, Vienna, Austria
- Bluesky Vaccines, Vienna, Austria
| | | | | | - Sabine Brandt
- Research Group Oncology (RGO), Equine Clinic, Veterinary University of Vienna, Vienna, Austria
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
113
|
Venuti A, Curzio G, Mariani L, Paolini F. Immunotherapy of HPV-associated cancer: DNA/plant-derived vaccines and new orthotopic mouse models. Cancer Immunol Immunother 2015; 64:1329-38. [PMID: 26138695 PMCID: PMC4554738 DOI: 10.1007/s00262-015-1734-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/06/2015] [Indexed: 12/19/2022]
Abstract
Under the optimistic assumption of high-prophylactic HPV vaccine coverage, a significant reduction of cancer incidence can only be expected after decades. Thus, immune therapeutic strategies are needed for persistently infected individuals who do not benefit from the prophylactic vaccines. However, the therapeutic strategies inducing immunity to the E6 and/or E7 oncoprotein of HPV16 are more effective for curing HPV-expressing tumours in animal models than for treating human cancers. New strategies/technologies have been developed to improve these therapeutic vaccines. Our studies focussed on preparing therapeutic vaccines with low-cost technologies by DNA preparation fused to either plant-virus or plant-toxin genes, such as saporin, and by plant-produced antigens. In particular, plant-derived antigens possess an intrinsic adjuvant activity that makes these preparations especially attractive for future development. Additionally, discrepancy in vaccine effectiveness between animals and humans may be due to non-orthotopic localization of animal models. Orthotopic transplantation leads to tumours giving a more accurate representation of the parent tumour. Since HPV can cause cancer in two main localizations, anogenital and oropharynx area, we developed two orthotopic tumour mouse models in these two sites. Both models are bioluminescent in order to follow up the tumour growth by imaging and are induced by cell injection without the need to intervene surgically. These models were utilized for immunotherapies with genetic or plant-derived therapeutic vaccines. In particular, the head/neck orthotopic model appears to be very promising for studies combining chemo-radio-immune therapy that seems to be very effective in patients.
Collapse
Affiliation(s)
- Aldo Venuti
- HPV-UNIT, Laboratory of Virology, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy,
| | | | | | | |
Collapse
|
114
|
Chaoul N, Fayolle C, Desrues B, Oberkampf M, Tang A, Ladant D, Leclerc C. Rapamycin Impairs Antitumor CD8+ T-cell Responses and Vaccine-Induced Tumor Eradication. Cancer Res 2015; 75:3279-91. [DOI: 10.1158/0008-5472.can-15-0454] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/14/2015] [Indexed: 11/16/2022]
|
115
|
van der Sluis TC, Sluijter M, van Duikeren S, West BL, Melief CJM, Arens R, van der Burg SH, van Hall T. Therapeutic Peptide Vaccine-Induced CD8 T Cells Strongly Modulate Intratumoral Macrophages Required for Tumor Regression. Cancer Immunol Res 2015; 3:1042-51. [PMID: 25888578 DOI: 10.1158/2326-6066.cir-15-0052] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/06/2015] [Indexed: 11/16/2022]
Abstract
Abundant macrophage infiltration of solid cancers commonly correlates with poor prognosis. Tumor-promoting functions of macrophages include angiogenesis, metastasis formation, and suppression of Th1-type immune responses. Here, we show that successful treatment of cervical carcinoma in mouse models with synthetic long peptide (SLP) vaccines induced influx of cytokine-producing CD8 T cells that strongly altered the numbers and phenotype of intratumoral macrophages. On the basis of the expression of CD11b, CD11c, F4/80, Ly6C, Ly6G, and MHC II, we identified four myeloid subpopulations that increased in numbers from 2.0-fold to 8.7-fold in regressing tumors. These changes of the intratumoral myeloid composition coincided with macrophage recruitment by chemokines, including CCL2 and CCL5, and were completely dependent on a vaccine-induced influx of tumor-specific CD8 T cells. CD4 T cells were dispensable. Incubation of tumor cells with T cell-derived IFNγ and TNFα recapitulated the chemokine profile observed in vivo, confirming the capacity of antitumor CD8 T cells to mediate macrophage infiltration of tumors. Strikingly, complete regressions of large established tumors depended on the tumor-infiltrating macrophages that were induced by this immunotherapy, because a small-molecule drug inhibitor targeting CSF-1R diminished the number of intratumoral macrophages and abrogated the complete remissions. Survival rates after therapeutic SLP vaccination deteriorated in the presence of CSF-1R blockers. Together, these results show that therapeutic peptide vaccination could induce cytokine-producing T cells with strong macrophage-skewing capacity necessary for tumor shrinkage, and suggest that the development of macrophage-polarizing, rather than macrophage-depleting, agents is warranted.
Collapse
Affiliation(s)
- Tetje C van der Sluis
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Marjolein Sluijter
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Suzanne van Duikeren
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands. ISA Pharmaceuticals, Leiden, the Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Sjoerd H van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Thorbald van Hall
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
116
|
Aps LRMM, Diniz MO, Porchia BFMM, Sales NS, Moreno ACR, Ferreira LCS. Bacillus subtilis spores as adjuvants for DNA vaccines. Vaccine 2015; 33:2328-34. [PMID: 25819710 DOI: 10.1016/j.vaccine.2015.03.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 12/14/2022]
Abstract
Recently, Bacillus subtilis spores were shown to be endowed with strong adjuvant capacity when co-administered with purified antigenic proteins. In the present study we assessed whether spores possess adjuvant properties when combined with DNA vaccines. We showed that B. subtilis spores promoted the activation of dendritic cells in vitro and induced migration of pro-inflammatory cells after parenteral administration to mice. Likewise, co-administration of spores with a DNA vaccine encoding the human papillomavirus type 16 (HPV-16) E7 protein enhanced the activation of antigen-specific CD8(+) T cell responses in vivo. Mice immunized with the DNA vaccine admixed with spores presented a protective immunity increase to previously implanted tumor cells, capable of expressing HPV-16 oncoproteins. Finally, we observed that the adjuvant effect can vary accordingly to the number of co-administered spores which may be ascribed with the ability to induce. Collectively, the present results demonstrate for the first time that B. subtilis spores can also confer adjuvant effects to DNA vaccines.
Collapse
Affiliation(s)
- Luana R M M Aps
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana O Diniz
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna F M M Porchia
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natiely S Sales
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Carolina R Moreno
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luís C S Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
117
|
Immunotherapy: An Evolving Paradigm in the Treatment of Advanced Cervical Cancer. Clin Ther 2015; 37:20-38. [DOI: 10.1016/j.clinthera.2014.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 11/23/2022]
|
118
|
van der Sluis TC, van Duikeren S, Huppelschoten S, Jordanova ES, Beyranvand Nejad E, Sloots A, Boon L, Smit VTHBM, Welters MJP, Ossendorp F, van de Water B, Arens R, van der Burg SH, Melief CJM. Vaccine-induced tumor necrosis factor-producing T cells synergize with cisplatin to promote tumor cell death. Clin Cancer Res 2014; 21:781-94. [PMID: 25501579 DOI: 10.1158/1078-0432.ccr-14-2142] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer immunotherapy, such as vaccination, is an increasingly successful treatment modality, but its interaction with chemotherapy remains largely undefined. Therefore, we explored the mechanism of synergy between vaccination with synthetic long peptides (SLP) of human papillomavirus type 16 (HPV16) and cisplatin in a preclinical tumor model for HPV16. EXPERIMENTAL DESIGN SLP vaccination in this preclinical tumor model allowed the elucidation of novel mechanisms of synergy between chemo- and immunotherapy. By analyzing the tumor immune infiltrate, we focused on the local intratumoral effects of chemotherapy, vaccination, or the combination. RESULTS Of several chemotherapeutic agents, cisplatin synergized best with SLP vaccination in tumor eradication, without requirement for the maximum-tolerated dose (MTD). Upon SLP vaccination, tumors were highly infiltrated with HPV-specific, tumor necrosis factor-α (TNFα)- and interferon-γ (IFNγ)-producing T cells. Upon combined treatment, tumor cell proliferation was significantly decreased compared with single treated and untreated tumors. Furthermore, we showed that TNFα strongly enhanced cisplatin-induced apoptotic tumor cell death in a JNK-dependent manner. This is consistent with upregulation of proapoptotic molecules and with enhanced cell death in vivo upon combined SLP vaccination and cisplatin treatment. In vivo neutralization of TNFα significantly reduced the antitumor responses induced by the combined treatment. CONCLUSION Taken together, our data show that peptide vaccination with cisplatin treatment leads to decreased tumor cell proliferation and TNFα-induced enhanced cisplatin-mediated killing of tumor cells, together resulting in superior tumor eradication.
Collapse
Affiliation(s)
- Tetje C van der Sluis
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Suzanne van Duikeren
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Suzanna Huppelschoten
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Ekaterina S Jordanova
- Center for Gynaecological Oncology Amsterdam, Free University Amsterdam, the Netherlands
| | - Elham Beyranvand Nejad
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Arjen Sloots
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Louis Boon
- Department of Cell Biology, Bioceros, Utrecht, the Netherlands
| | | | - Marij J P Welters
- Clinical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, the Netherlands. ISA Pharmaceuticals, Leiden, the Netherlands.
| |
Collapse
|
119
|
Almajhdi FN, Senger T, Amer HM, Gissmann L, Öhlschläger P. Design of a highly effective therapeutic HPV16 E6/E7-specific DNA vaccine: optimization by different ways of sequence rearrangements (shuffling). PLoS One 2014; 9:e113461. [PMID: 25422946 PMCID: PMC4244082 DOI: 10.1371/journal.pone.0113461] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/28/2014] [Indexed: 01/22/2023] Open
Abstract
Persistent infection with the high-risk Human Papillomavirus type 16 (HPV 16) is the causative event for the development of cervical cancer and other malignant tumors of the anogenital tract and of the head and neck. Despite many attempts to develop therapeutic vaccines no candidate has entered late clinical trials. An interesting approach is a DNA based vaccine encompassing the nucleotide sequence of the E6 and E7 viral oncoproteins. Because both proteins are consistently expressed in HPV infected cells they represent excellent targets for immune therapy. Here we report the development of 8 DNA vaccine candidates consisting of differently rearranged HPV-16 E6 and E7 sequences within one molecule providing all naturally occurring epitopes but supposedly lacking transforming activity. The HPV sequences were fused to the J-domain and the SV40 enhancer in order to increase immune responses. We demonstrate that one out of the 8 vaccine candidates induces very strong cellular E6- and E7- specific cellular immune responses in mice and, as shown in regression experiments, efficiently controls growth of HPV 16 positive syngeneic tumors. This data demonstrates the potential of this vaccine candidate to control persistent HPV 16 infection that may lead to malignant disease. It also suggests that different sequence rearrangements influence the immunogenecity by an as yet unknown mechanism.
Collapse
MESH Headings
- Alphapapillomavirus/immunology
- Animals
- Antibodies, Viral/biosynthesis
- Cell Line, Tumor
- Female
- Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18
- Humans
- Mice
- Mice, Inbred C57BL
- Neoplasms, Experimental/pathology
- Oncogene Proteins, Viral/immunology
- Papillomavirus E7 Proteins/immunology
- Papillomavirus Vaccines/genetics
- Repressor Proteins/immunology
- Vaccines, DNA/genetics
Collapse
Affiliation(s)
- Fahad N. Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| | - Tilo Senger
- German Cancer Research Center, Heidelberg, Germany
| | - Haitham M. Amer
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lutz Gissmann
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- German Cancer Research Center, Heidelberg, Germany
| | - Peter Öhlschläger
- Department of Chemistry and Biotechnology, Aachen University of Applied Sciences, Jülich, Germany
| |
Collapse
|
120
|
Weir GM, Hrytsenko O, Stanford MM, Berinstein NL, Karkada M, Liwski RS, Mansour M. Metronomic cyclophosphamide enhances HPV16E7 peptide vaccine induced antigen-specific and cytotoxic T-cell mediated antitumor immune response. Oncoimmunology 2014; 3:e953407. [PMID: 25960932 PMCID: PMC4368141 DOI: 10.4161/21624011.2014.953407] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 06/24/2014] [Indexed: 12/22/2022] Open
Abstract
In clinical trials, metronomic cyclophosphamide (CPA) is increasingly being combined with vaccines to reduce tumor-induced immune suppression. Previous strategies to modulate the immune system during vaccination have involved continuous administration of low dose chemotherapy, studies that have posed unique considerations for clinical trial design. Here, we evaluated metronomic CPA in combination with a peptide vaccine targeting HPV16E7 in an HPV16-induced tumor model, focusing on the cytotoxic T-cell response and timing of low dose metronomic CPA (mCPA) treatment relative to vaccination. Mice bearing C3 tumors were given metronomic CPA on alternating weeks in combination with immunization with a DepoVax vaccine containing HPV16E749-57 peptide antigen every 3 weeks. Only the combination therapy provided significant long-term control of tumor growth. The efficacy of the vaccine was uncompromised if given at the beginning or end of a cycle of metronomic CPA. Metronomic CPA had a pronounced lymphodepletive effect on the vaccine draining lymph node, yet did not reduce the development of antigen-specific CD8+ T cells induced by vaccination. This enrichment correlated with increased cytotoxic activity in the spleen and increased expression of cytotoxic gene signatures in the tumor. Immunity could be passively transferred through CD8+ T cells isolated from tumor-bearing mice treated with the combinatorial treatment regimen. A comprehensive survey of splenocytes indicated that metronomic CPA, in the absence of vaccination, induced transient lymphodepletion marked by a selective expansion of myeloid-derived suppressor cells. These results provide important insights into the multiple mechanisms of metronomic CPA induced immune modulation in the context of a peptide cancer vaccine that may be translated into more effective clinical trial designs.
Collapse
Key Words
- CPA, cyclophosphamide
- CTL, cytotoxic T lymphocyte
- CTLA-4, cytotoxic T lymphocyte-associated protein 4
- DPX, DepoVax
- HPV, human papilloma virus
- HPV16
- IFNγ, interferon γ
- MDSC, myeloid-derived suppressor cells
- PD-1/PDCD1, programmed cell death 1
- PO, per os (oral)
- Treg, regulatory T cell
- cancer
- checkpoint inhibitors
- mCPA, metronomic low dose CPA
- metronomic cyclophosphamide
- sbCPA, single bolus low dose CPA
- translational
- vaccine
Collapse
Affiliation(s)
- Genevieve M Weir
- Immunovaccine Inc. ; Halifax; Nova Scotia, Canada ; Department of Microbiology & Immunology; Dalhousie University ; Halifax; Nova Scotia, Canada
| | - Olga Hrytsenko
- Immunovaccine Inc. ; Halifax; Nova Scotia, Canada ; Department of Biology; Dalhousie University ; Halifax; Nova Scotia, Cananda
| | - Marianne M Stanford
- Immunovaccine Inc. ; Halifax; Nova Scotia, Canada ; Department of Microbiology & Immunology; Dalhousie University ; Halifax; Nova Scotia, Canada
| | | | - Mohan Karkada
- Immunovaccine Inc. ; Halifax; Nova Scotia, Canada ; Department of Microbiology & Immunology; Dalhousie University ; Halifax; Nova Scotia, Canada
| | - Robert S Liwski
- Department of Microbiology & Immunology; Dalhousie University ; Halifax; Nova Scotia, Canada ; Division of Hematopathology; Queen Elizabeth II Health Sciences Centre ; Nova Scotia, Canada
| | - Marc Mansour
- Immunovaccine Inc. ; Halifax; Nova Scotia, Canada
| |
Collapse
|
121
|
Brewer KD, Lake K, Pelot N, Stanford MM, DeBay DR, Penwell A, Weir GM, Karkada M, Mansour M, Bowen CV. Clearance of depot vaccine SPIO-labeled antigen and substrate visualized using MRI. Vaccine 2014; 32:6956-6962. [PMID: 25444822 DOI: 10.1016/j.vaccine.2014.10.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/16/2014] [Accepted: 10/20/2014] [Indexed: 01/26/2023]
Abstract
Immunotherapies, including peptide-based vaccines, are a growing area of cancer research, and understanding their mechanism of action is crucial for their continued development and clinical application. Exploring the biodistribution of vaccine components may be key to understanding this action. This work used magnetic resonance imaging (MRI) to characterize the in vivo biodistribution of the antigen and oil substrate of the vaccine delivery system known as DepoVax(TM). DepoVax uses a novel adjuvanted lipid-in-oil based formulation to solubilise antigens and promote a depot effect. In this study, antigen or oil were tagged with superparamagnetic iron oxide (SPIO), making them visible on MR images. This enables tracking of individual vaccine components to determine changes in biodistribution. Mice were injected with SPIO-labeled antigen or SPIO-labeled oil, and imaged to examine clearance of labeled components from the vaccine site. The SPIO-antigen was steadily cleared, with nearly half cleared within two months post-vaccination. In contrast, the SPIO-oil remained relatively unchanged. The biodistribution of the SPIO-antigen component within the vaccine site was heterogeneous, indicating the presence of active clearance mechanisms, rather than passive diffusion or drainage. Mice injected with SPIO-antigen also showed MRI contrast for several weeks post-vaccination in the draining inguinal lymph node. These results indicate that MRI can visualize the in vivo longitudinal biodistribution of vaccine components. The sustained clearance is consistent with antigen up-take and trafficking by immune cells, leading to accumulation in the draining lymph node, which corresponds to the sustained immune responses and reduced tumor burden observed in vaccinated mice.
Collapse
Affiliation(s)
- Kimberly D Brewer
- Immunovaccine Inc., Halifax, NS, Canada; School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - Kerry Lake
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, NS, Canada
| | - Nicole Pelot
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, NS, Canada
| | - Marianne M Stanford
- Immunovaccine Inc., Halifax, NS, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Drew R DeBay
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, NS, Canada
| | | | - Genevieve M Weir
- Immunovaccine Inc., Halifax, NS, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Mohan Karkada
- Immunovaccine Inc., Halifax, NS, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | | | - Chris V Bowen
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada; Biomedical Translational Imaging Centre (BIOTIC), Halifax, NS, Canada; Departments of Radiology and Physics, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
122
|
Cordeiro MN, Paolini F, Massa S, Curzio G, Illiano E, Duarte Silva AJ, Franconi R, Bissa M, Morghen CDG, de Freitas AC, Venuti A. Anti-tumor effects of genetic vaccines against HPV major oncogenes. Hum Vaccin Immunother 2014; 11:45-52. [PMID: 25483514 PMCID: PMC4514265 DOI: 10.4161/hv.34303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Expression of HPV E5, E6 and E7 oncogenes are likely to overcome the regulation of cell proliferation and to escape immunological control, allowing uncontrolled growth and providing the potential for malignant transformation. Thus, their three oncogenic products may represent ideal target antigens for immunotherapeutic strategies. In previous attempts, we demonstrated that genetic vaccines against recombinant HPV16 E7 antigen were able to affect the tumor growth in a pre-clinical mouse model. To improve this anti-HPV strategy we developed a novel approach in which we explored the effects of E5-based genetic immunization. We designed novel HPV16 E5 genetic vaccines based on two different gene versions: whole E5 gene and E5Multi. The last one is a long multi epitope gene designed as a harmless E5 version. Both E5 genes were codon optimized for mammalian expression. In addition, we demonstrated that HPV 16 E5 oncogene is expressed in C3 mouse cell line making it an elective model for the study of E5 based vaccine. In this mouse model the immunological and biological activity of the E5 vaccines were assessed in parallel with the activity of anti-E7 and anti-E6 vaccines already reported to be effective in an immunotherapeutic setting. These E7 and E6 vaccines were made with mutated oncogenes, the E7GGG mutant that does not bind pRb and the E6F47R mutant that is less effective in inhibiting p53, respectively. Results confirmed the immunological activity of genetic formulations based on attenuated HPV16 oncogenes and showed that E5-based genetic immunization provided notable anti-tumor effects.
Collapse
Affiliation(s)
- Marcelo Nazário Cordeiro
- a Federal University of Pernambuco; Department of Genetics; Laboratory of Molecular Studies and Experimental Therapy (LEMTE); Pernambuco, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Melief CJM, Scheper RJ, de Vries IJM. Scientific contributions toward successful cancer immunotherapy in The Netherlands. Immunol Lett 2014; 162:121-6. [PMID: 25455598 DOI: 10.1016/j.imlet.2014.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This historical overview shows that immunologists and clinicians from The Netherlands have contributed in a major way to better insights in the nature of cancer immunity. This work involved elucidation of the nature of cancer-associated antigens in autologous and allogeneic settings in addition to understanding of the cellular basis of natural immune responses against cancers and of important immune evasion mechanisms. Insight into such basic immunological mechanisms has contributed to the development of innovating therapies.
Collapse
Affiliation(s)
- Cornelis J M Melief
- Leiden University Medical Center, The Netherlands; ISA Pharmaceuticals, The Netherlands.
| | - Rik J Scheper
- Department of Pathology, Free University Hospital, Amsterdam, The Netherlands
| | | |
Collapse
|
124
|
A synthetic chimeric peptide harboring human papillomavirus 16 cytotoxic T lymphocyte epitopes shows therapeutic potential in a murine model of cervical cancer. Immunol Res 2014; 58:132-8. [PMID: 24174302 DOI: 10.1007/s12026-013-8447-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Infection with human papillomavirus (HPV) such as HPV16 is known to be associated with cervical cancer. The E6 and E7 oncoproteins of this virus are attractive targets for T-cell-based immunotherapy to cervical cancer. In our study, software predicted, multiple H-2D(b) restricted HPV16 cytotoxic T lymphocytes (CTL) epitopes on a synthetic chimeric peptide, was used along with different immunopotentiating adjuvants such as alum, heat-killed Mycobacterium w (Mw) cells, and poly D,L-lactic-co-glycolide (PLGA) microspheres. We have shown that subcutaneous immunization with H-2D(b)-restricted HPV16 peptide was able to generate CTL-mediated cytolysis of HPV16 E6- and E7-expressing TC-1 tumor cells in vitro, as well as protect against in vivo challenge with TC-1 cells in C57BL/6 mice. In vitro, this chimeric peptide showed best efficacy with PLGA microspheres, moderate with alum, and least with Mw as adjuvant. This approach may thus provide a potential peptide-based therapeutic candidate vaccine for the control of HPV infection and hence cervical cancer.
Collapse
|
125
|
Srivastava AK, Dinc G, Sharma RK, Yolcu ES, Zhao H, Shirwan H. SA-4-1BBL and monophosphoryl lipid A constitute an efficacious combination adjuvant for cancer vaccines. Cancer Res 2014; 74:6441-51. [PMID: 25252915 DOI: 10.1158/0008-5472.can-14-1768-a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vaccines based on tumor-associated antigens (TAA) have limited therapeutic efficacy due to their weak immunogenic nature and the various immune evasion mechanisms active in advanced tumors. In an effort to overcome these limitations, we evaluated a combination of the T-cell costimulatory molecule SA-4-1BBL with the TLR4 agonist monophosphoryl lipid A (MPL) as a novel vaccine adjuvant system. In the TC-1 mouse allograft model of human papilloma virus (HPV)-induced cancer, a single administration of this combination adjuvant with HPV E7 protein caused tumor rejection in all tumor-bearing mice. On its own, SA-4-1BBL outperformed MPL in this setting. Against established tumors, two vaccinations were sufficient to elicit rejection in the majority of mice. In the metastatic model of Lewis lung carcinoma, vaccination of the TAA survivin with SA-4-1BBL/MPL yielded superior efficacy against pulmonary metastases. Therapeutic efficacy of SA-4-1BBL/MPL was achieved in the absence of detectable toxicity, correlating with enhanced dendritic cell activation, CD8(+) T-cell function, and an increased intratumoral ratio of CD8(+) T effector cells to CD4(+)FoxP3(+) T regulatory cells. Unexpectedly, use of MPL on its own was associated with unfavorable intratumoral ratios of these T-cell populations, resulting in suboptimal efficacy. The efficacy of MPL monotherapy was restored by depletion of T regulatory cells, whereas eliminating CD8(+) T cells abolished the efficacy of its combination with SA-4-1BBL. Mechanistic investigations showed that IFNγ played a critical role in supporting the therapeutic effect of SA-4-1BBL/MPL. Taken together, our results offer a preclinical proof of concept for the use of a powerful new adjuvant system for TAA-based cancer vaccines.
Collapse
Affiliation(s)
- Abhishek K Srivastava
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Gunes Dinc
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Rajesh K Sharma
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Esma S Yolcu
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Hong Zhao
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Haval Shirwan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
126
|
Whitehead M, Ohlschläger P, Almajhdi FN, Alloza L, Marzábal P, Meyers AE, Hitzeroth II, Rybicki EP. Human papillomavirus (HPV) type 16 E7 protein bodies cause tumour regression in mice. BMC Cancer 2014; 14:367. [PMID: 24885328 PMCID: PMC4041048 DOI: 10.1186/1471-2407-14-367] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 05/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human papillomaviruses (HPV) are the causative agents of cervical cancer in women, which results in over 250 000 deaths per year. Presently there are two prophylactic vaccines on the market, protecting against the two most common high-risk HPV types 16 and 18. These vaccines remain very expensive and are not generally affordable in developing countries where they are needed most. Additionally, there remains a need to treat women that are already infected with HPV, and who have high-grade lesions or cervical cancer. METHODS In this paper, we characterize the immunogenicity of a therapeutic vaccine that targets the E7 protein of the most prevalent high-risk HPV - type 16 - the gene which has previously been shown to be effective in DNA vaccine trials in mice. The synthetic shuffled HPV-16 E7 (16E7SH) has lost its transforming properties but retains all naturally-occurring CTL epitopes. This was genetically fused to Zera®, a self-assembly domain of the maize γ-zein able to induce the accumulation of recombinant proteins into protein bodies (PBs), within the endoplasmic reticulum in a number of expression systems. RESULTS High-level expression of the HPV 16E7SH protein fused to Zera® in plants was achieved, and the protein bodies could be easily and cost-effectively purified. Immune responses comparable to the 16E7SH DNA vaccine were demonstrated in the murine model, with the protein vaccine successfully inducing a specific humoral as well as cell mediated immune response, and mediating tumour regression. CONCLUSIONS The fusion of 16E7SH to the Zera® peptide was found to enhance the immune responses, presumably by means of a more efficient antigen presentation via the protein bodies. Interestingly, simply mixing the free PBs and 16E7SH also enhanced immune responses, indicating an adjuvant activity for the Zera® PBs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Inga I Hitzeroth
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Cape Town, Rondebosch 7700, South Africa.
| | | |
Collapse
|
127
|
Diniz MO, Cariri FAMO, Aps LRMM, Ferreira LCS. Enhanced therapeutic effects conferred by an experimental DNA vaccine targeting human papillomavirus-induced tumors. Hum Gene Ther 2014; 24:861-70. [PMID: 24007495 DOI: 10.1089/hum.2013.102] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human papillomavirus (HPV) infection is responsible for all cervical cancer cases, other anogenital cancers, and head and neck tumors. The epidemiological relevance of HPV-induced tumors reinforces the need for the development of therapeutic antitumor vaccines. Clinical trials with different vaccine formulations, particularly DNA vaccines, have provided promising results but have still been unable to achieve the immunogenicity required for use in infected patients. In experimental conditions, anticancer HPV-specific vaccines induced E7-specific CD8(+) T-cell responses but did not confer full therapeutic antitumor protection in mice with transplanted HPV-expressing TC-1 cells, which are the most frequently used nonclinical protection correlate for antitumor effects. Our group has developed a DNA vaccine strategy based on the fusion of HPV oncoproteins to the herpes virus gD protein. This vaccine promoted the induction of antigen-specific cytotoxic CD8(+) T-cell responses and partial antitumor therapeutic effects based on the blockade of coinhibitory signals and the enhancement of coactivation mechanisms. In the present study, we report conditions leading to full therapeutic antitumor effects using the TC-1 cell murine model after a single vaccine dose. The combination of a coadministered plasmid encoding IL-2, optimization of the coding sequence for mammalian cells, and the use of different delivery routes resulted in enhancements of the E7-specific cytotoxic CD8(+) T-cell responses and full therapeutic protection under experimental conditions. The combination of these strategies augmented the potency of the DNA vaccine formulation to levels not previously achieved by other therapeutic antitumor vaccines under similar experimental conditions, including some that have been taken to clinical trials.
Collapse
Affiliation(s)
- Mariana O Diniz
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo , São Paulo, SP, 05508-900 Brazil
| | | | | | | |
Collapse
|
128
|
Bell MP, Renner DN, Johnson AJ, Pavelko KD. An elite controller of picornavirus infection targets an epitope that is resistant to immune escape. PLoS One 2014; 9:e94332. [PMID: 24710606 PMCID: PMC3978045 DOI: 10.1371/journal.pone.0094332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/13/2014] [Indexed: 11/22/2022] Open
Abstract
The emergence of novel viral pathogens can lead to devastating consequences in the infected population. However, on occasion, rare hyper-responsive elite controllers are able to mount a protective primary response to infection and clear the new pathogen. Factors distinguishing elite controllers from other members of the population are not completely understood. We have been using Theiler's murine encephalomyelitis as a model of primary infection in mice and clearance of the virus is limited to one MHC genotype capable of generating a protective response to a single viral peptide VP2121-130. The genetics of host susceptibility to TMEV, a natural mouse pathogen, has been studied extensively and non-protective CD8 responses to other peptides have been documented, however, little is known why the protective response to infection focuses on the VP2121-130 peptide. To study this question, we have generated TMEV mutants that encode for mutations within the VP2121-130 peptide. We find that very few of mutants are able to assemble and infect in vitro. These mutations are not related to virus RNA structure since non-coding mutations do not interfere with assembly. In the rare event when functional VP2121-130 mutant viruses did emerge, they were attenuated to some level or retained the ability to develop an immune response to the wild-type VP2121-130 sequence, demonstrating that the virus is incapable of escaping the protective response. These findings advance our understanding of how characteristics of the host immune response and an infectious agent can interact to lead to the appearance of rare super controllers in a population. Furthermore, the immutable nature of the viral antigen highlights the importance of choosing appropriate vaccine antigens and has implications for the development of agents that are able to generate protective CD8 T-cell responses.
Collapse
Affiliation(s)
- Michael P. Bell
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Danielle N. Renner
- Neurobiology of Disease Program, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Neurology, Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
129
|
Facciponte JG, Ugel S, De Sanctis F, Li C, Wang L, Nair G, Sehgal S, Raj A, Matthaiou E, Coukos G, Facciabene A. Tumor endothelial marker 1-specific DNA vaccination targets tumor vasculature. J Clin Invest 2014; 124:1497-511. [PMID: 24642465 DOI: 10.1172/jci67382] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/16/2014] [Indexed: 12/11/2022] Open
Abstract
Tumor endothelial marker 1 (TEM1; also known as endosialin or CD248) is a protein found on tumor vasculature and in tumor stroma. Here, we tested whether TEM1 has potential as a therapeutic target for cancer immunotherapy by immunizing immunocompetent mice with Tem1 cDNA fused to the minimal domain of the C fragment of tetanus toxoid (referred to herein as Tem1-TT vaccine). Tem1-TT vaccination elicited CD8+ and/or CD4+ T cell responses against immunodominant TEM1 protein sequences. Prophylactic immunization of animals with Tem1-TT prevented or delayed tumor formation in several murine tumor models. Therapeutic vaccination of tumor-bearing mice reduced tumor vascularity, increased infiltration of CD3+ T cells into the tumor, and controlled progression of established tumors. Tem1-TT vaccination also elicited CD8+ cytotoxic T cell responses against murine tumor-specific antigens. Effective Tem1-TT vaccination did not affect angiogenesis-dependent physiological processes, including wound healing and reproduction. Based on these data and the widespread expression of TEM1 on the vasculature of different tumor types, we conclude that targeting TEM1 has therapeutic potential in cancer immunotherapy.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Cell Line, Tumor
- Female
- Humans
- Immune Tolerance
- Immunodominant Epitopes
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Microvessels/immunology
- Microvessels/pathology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- Pregnancy
- Tetanus Toxoid/genetics
- Tetanus Toxoid/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
Collapse
|
130
|
Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B, Van Egeren DS, Park C, Irvine DJ. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 2014; 507:519-22. [PMID: 24531764 DOI: 10.1038/nature12978] [Citation(s) in RCA: 733] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 12/30/2013] [Indexed: 01/09/2023]
Abstract
In cancer patients, visual identification of sentinel lymph nodes (LNs) is achieved by the injection of dyes that bind avidly to endogenous albumin, targeting these compounds to LNs, where they are efficiently filtered by resident phagocytes. Here we translate this 'albumin hitchhiking' approach to molecular vaccines, through the synthesis of amphiphiles (amph-vaccines) comprising an antigen or adjuvant cargo linked to a lipophilic albumin-binding tail by a solubility-promoting polar polymer chain. Administration of structurally optimized CpG-DNA/peptide amph-vaccines in mice resulted in marked increases in LN accumulation and decreased systemic dissemination relative to their parent compounds, leading to 30-fold increases in T-cell priming and enhanced anti-tumour efficacy while greatly reducing systemic toxicity. Amph-vaccines provide a simple, broadly applicable strategy to simultaneously increase the potency and safety of subunit vaccines.
Collapse
Affiliation(s)
- Haipeng Liu
- 1] Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Kelly D Moynihan
- 1] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yiran Zheng
- 1] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Gregory L Szeto
- 1] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Adrienne V Li
- 1] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bonnie Huang
- 1] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Debra S Van Egeren
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Clara Park
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Darrell J Irvine
- 1] Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [4] Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02139, USA [5] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
131
|
Bellone S, Pecorelli S, Cannon MJ, Santin AD. Advances in dendritic cell-based therapeutic vaccines for cervical cancer. Expert Rev Anticancer Ther 2014; 7:1473-86. [DOI: 10.1586/14737140.7.10.1473] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
132
|
Psyrri A, Burtness B. Viruses in head and neck cancers: prevention and therapy. Expert Rev Anticancer Ther 2014; 8:1365-71. [DOI: 10.1586/14737140.8.9.1365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
133
|
Abstract
Human papillomavirus (HPV) infection is a major cause of cervical cancer, the second most common cancer in women worldwide. Currently, a HPV L1-based virus-like particle has been approved as a prophylactic vaccine against HPV infection, which will probably lead to a reduction in cervical cancer incidence within a few decades. Therapeutic vaccines, however, are expected to have an impact on cervical cancer or its precursor lesions, by taking advantage of the fact that the regulatory proteins (E6 and E7) of HPV are expressed constantly in HPV-associated cervical cancer cells. Vaccine types targeting these regulatory proteins include the recombinant protein and DNA vaccines, peptide vaccines, dendritic-cell vaccines, and viral and bacterial vector deliveries of vaccines, and these may provide an opportunity to control cervical cancer. Further approaches incorporating these vaccine types with either conventional therapy modalities or the modulation of CD4(+) regulatory T cells appear to be more promising in achieving increased therapeutic efficacy. In this review, we summarize current and future therapeutic vaccine strategies against HPV-associated malignancies at the animal and clinical levels.
Collapse
Affiliation(s)
- Jeong-Im Sin
- Catholic University of Daegu, Department of Microbiology, School of Medicine, 3056-6, Daemyung-4-Dong, Namgu, Daegu, 705-718, Korea.
| |
Collapse
|
134
|
Giorgi C, Franconi R, Rybicki EP. Human papillomavirus vaccines in plants. Expert Rev Vaccines 2014; 9:913-24. [DOI: 10.1586/erv.10.84] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
135
|
Llopiz D, Huarte E, Ruiz M, Bezunartea J, Belsúe V, Zabaleta A, Lasarte JJ, Prieto J, Borrás-Cuesta F, Sarobe P. Helper cell-independent antitumor activity of potent CD8 + T cell epitope peptide vaccines is dependent upon CD40L. Oncoimmunology 2013; 2:e27009. [PMID: 24498563 PMCID: PMC3897504 DOI: 10.4161/onci.27009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/30/2013] [Accepted: 10/30/2013] [Indexed: 01/29/2023] Open
Abstract
Peptide vaccines derived from CD8+ T-cell epitopes have shown variable efficacy in cancer patients. Thus, some peptide vaccines are capable of activating CD8+ T-cell responses, even in the absence of CD4+ T-cell epitopes or dendritic cell (DC)-activating adjuvants. However, the mechanisms underlying the clinical activity of these potent peptides are poorly understood. Using CT26 and ovalbumin-expressing B16 murine allograft tumor models, we found that the antitumor effect of helper cell-independent CD8 T-cell peptide vaccines is inhibited by the blockade of CD40 ligand (CD40L) in vivo. Furthermore, in vitro stimulation with antigenic peptides of cells derived from immunized mice induced the expression of CD40L on the surface of CD8+ T cells and fostered DC maturation, an effect that was partially inhibited by CD40L-blocking antibodies. Interestingly, CD40L blockade also inhibited CD8+ T-cell responses, even in the presence of fully mature DCs, suggesting a role for CD40L not only in promoting DC maturation but also in mediating CD8+ T-cell co-stimulation. Importantly, these potent peptides share features with bona fide CD4 epitopes, since they foster responses against less immunogenic CD8+ T-cell epitopes in a CD40L-dependent manner. The analysis of peptides used for the vaccination of cancer patients in clinical trials showed that these peptides also induce the expression of CD40L on the surface of CD8+ T cells. Taken together, these results suggest that CD40L expression induced by potent CD8+ T-cell epitopes can activate antitumor CD8+ T-cell responses, potentially amplifying the immunological responses to less immunogenic CD8+ T-cell epitopes and bypassing the requirement for CD4+ helper T cells in vaccination protocols.
Collapse
Affiliation(s)
- Diana Llopiz
- Division of Hepatology and Gene Therapy; Center for Applied Medical Research (CIMA); University of Navarra; Pamplona, Spain
| | - Eduardo Huarte
- Division of Hepatology and Gene Therapy; Center for Applied Medical Research (CIMA); University of Navarra; Pamplona, Spain
| | - Marta Ruiz
- Division of Hepatology and Gene Therapy; Center for Applied Medical Research (CIMA); University of Navarra; Pamplona, Spain
| | - Jaione Bezunartea
- Division of Hepatology and Gene Therapy; Center for Applied Medical Research (CIMA); University of Navarra; Pamplona, Spain
| | - Virginia Belsúe
- Division of Hepatology and Gene Therapy; Center for Applied Medical Research (CIMA); University of Navarra; Pamplona, Spain
| | - Aintzane Zabaleta
- Division of Hepatology and Gene Therapy; Center for Applied Medical Research (CIMA); University of Navarra; Pamplona, Spain
| | - Juan J Lasarte
- Division of Hepatology and Gene Therapy; Center for Applied Medical Research (CIMA); University of Navarra; Pamplona, Spain
| | - Jesús Prieto
- Division of Hepatology and Gene Therapy; Center for Applied Medical Research (CIMA); University of Navarra; Pamplona, Spain
| | - Francisco Borrás-Cuesta
- Division of Hepatology and Gene Therapy; Center for Applied Medical Research (CIMA); University of Navarra; Pamplona, Spain
| | - Pablo Sarobe
- Division of Hepatology and Gene Therapy; Center for Applied Medical Research (CIMA); University of Navarra; Pamplona, Spain
| |
Collapse
|
136
|
Accardi L, Paolini F, Mandarino A, Percario Z, Di Bonito P, Di Carlo V, Affabris E, Giorgi C, Amici C, Venuti A. In vivo antitumor effect of an intracellular single-chain antibody fragment against the E7 oncoprotein of human papillomavirus 16. Int J Cancer 2013; 134:2742-7. [PMID: 24226851 DOI: 10.1002/ijc.28604] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/24/2013] [Accepted: 11/07/2013] [Indexed: 11/08/2022]
Abstract
Human papillomavirus (HPV)-associated tumors still represent an urgent problem of public health in spite of the efficacy of the prophylactic HPV vaccines. Specific antibodies in single-chain format expressed as intracellular antibodies (intrabodies) are valid tools to counteract the activity of target proteins. We previously showed that the M2SD intrabody, specific for the E7 oncoprotein of HPV16 and expressed in the endoplasmic reticulum of the HPV16-positive SiHa cells, was able to inhibit cell proliferation. Here, we showed by confocal microscopy that M2SD and E7 colocalize in the endoplasmic reticulum of SiHa cells, suggesting that the E7 delocalization mediated by M2SD could account for the anti-proliferative activity of the intrabody. We then tested the M2SD antitumor activity in two mouse models for HPV tumors based respectively on TC-1 and C3 cells. The M2SD intrabody was delivered by retroviral vector to tumor cells before cell injection into C57BL/6 mice. In both models, a marked delay of tumor onset with respect to the controls was observed in all the mice injected with the M2SD-expressing tumor cells and, importantly, a significant percentage of mice remained tumor-free permanently. This is the first in vivo demonstration of the antitumor activity of an intrabody directed towards an HPV oncoprotein. We consider that these results could contribute to the development of new therapeutic molecules based on antibodies in single-chain format, to be employed against the HPV-associated lesions even in combination with other drugs.
Collapse
Affiliation(s)
- Luisa Accardi
- Department of Infectious Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, viale Regina Elena, 299, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Disintegration and cancer immunotherapy efficacy of a squalane-in-water delivery system emulsified by bioresorbable poly(ethylene glycol)-block-polylactide. Biomaterials 2013; 35:1686-95. [PMID: 24268203 DOI: 10.1016/j.biomaterials.2013.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/01/2013] [Indexed: 11/23/2022]
Abstract
Vaccine adjuvant is conferred on the substance that helps to enhance antigen-specific immune response. Here we investigated the disintegration characteristics and immunotherapy potency of an emulsified delivery system comprising bioresorbable polymer poly(ethylene glycol)-polylactide (PEG-PLA), phosphate buffer saline (PBS), and metabolizable oil squalane. PEG-PLA-stabilized oil-in-water emulsions show good stability at 4 °C and at room temperature. At 37 °C, squalane/PEG-PLA/PBS emulsion with oil/aqueous weight ratio of 7/3 (denominated PELA73) was stable for 6 weeks without phase separation. As PEG-PLA being degraded, 30% of free oil at the surface layer and 10% of water at the bottom disassociated from the PELA73 emulsion were found after 3 months. A MALDI-TOF MS study directly on the DIOS plate enables us to identify low molecular weight components released during degradation. Our results confirm the loss of PLA moiety of the emulsifier PEG-PLA directly affected the stability of PEG-PLA-stabilized emulsion, leading to emulsion disintegration and squalane/water phase separation. As adjuvant for cancer immunotherapeutic use, an HPV16 E7 peptide antigen formulated with PELA73 plus immunostimulatory CpG molecules could strongly enhance antigen-specific T-cell responses as well as anti-tumor ability with respected to non-formulated or Alum-formulated peptide. Accordingly, these advances may be a potential immunoregulatory strategy in manipulating the immune responses induced by tumor-associated antigens.
Collapse
|
138
|
Khairuddin N, Blake SJ, Firdaus F, Steptoe RJ, Behlke MA, Hertzog PJ, McMillan NAJ. In vivo comparison of local versus systemic delivery of immunostimulating siRNA in HPV-driven tumours. Immunol Cell Biol 2013; 92:156-63. [PMID: 24217808 DOI: 10.1038/icb.2013.75] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/16/2013] [Accepted: 10/16/2013] [Indexed: 12/12/2022]
Abstract
Small interfering RNAs (siRNAs) to inhibit oncogene expression and also to activate innate immune responses via Toll-like receptor (TLR) recognition have been shown to be beneficial as anti-cancer therapy in certain cancer models. In this study, we investigated the effects of local versus systemic delivery of such immune-stimulating Dicer-substrate siRNAs (IS-DsiRNAs) on a human papillomavirus (HPV)-driven tumour model. Localized siRNA delivery using intratumour injection of siRNA was able to increase siRNA delivery to the tumour compared with intravenous (IV) delivery and potently activated innate immune responses. However, IV injection remained the more effective delivery route for reducing tumour growth. Although IS-DsiRNAs activated innate immune cells and required interferon-α (IFNα) for full effect on tumour growth, we found that potent silencing siRNA acting independently of IFNα were overall more effective at inhibiting TC-1 tumour growth. Other published work utilising IS-siRNAs have been carried out on tumour models with low levels of major histocompatibility complex (MHC)-class 1, a target of natural killer cells that are potently activated by IS-siRNA. As TC-1 cells used in our study express high levels of MHC-class I, the addition of the immunostimulatory motifs may not be as beneficial in this particular tumour model. Our data suggest that selection of siRNA profile and delivery method based on tumour environment is crucial to developing siRNA-based therapies.
Collapse
Affiliation(s)
- Norliana Khairuddin
- 1] The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia [2] Immunotherapeutics Laboratory (ITL) and Centre of Excellence for Research in AIDS (CERiA), Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Stephen J Blake
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Farah Firdaus
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Mark A Behlke
- Integrated DNA Technologies (IDT), Coralville, IA, USA
| | - Paul J Hertzog
- Monash Institute of Medical Research (MIMR), Clayton, Victoria, Australia
| | - Nigel A J McMillan
- 1] The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia [2] School of Medical Science and Griffith Health Institute, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
139
|
Abstract
Tumor cells frequently exhibit widespread epigenetic aberrations that significantly alter the repertoire of expressed proteins. In particular, it has been known for nearly 25 years that tumors frequently reactivate genes whose expression is typically restricted to germ cells. These gene products are classified as cancer/testis antigens (CTAs) owing to their biased expression pattern and their immunogenicity in cancer patients. While these genes have been pursued as targets for anticancer vaccines, whether these reactivated testis proteins have roles in supporting tumorigenic features is less studied. Recent evidence now indicates that these proteins can be directly employed by the tumor cell regulatory environment to support cell-autonomous behaviors. Here, we review the history of the CTA field and present recent findings indicating that CTAs can play functional roles in supporting tumorigenesis.
Collapse
|
140
|
Lee SY, Huang Z, Kang TH, Soong RS, Knoff J, Axenfeld E, Wang C, Alvarez RD, Chen CS, Hung CF, Wu TC. Histone deacetylase inhibitor AR-42 enhances E7-specific CD8⁺ T cell-mediated antitumor immunity induced by therapeutic HPV DNA vaccination. J Mol Med (Berl) 2013; 91:1221-31. [PMID: 23715898 PMCID: PMC3783646 DOI: 10.1007/s00109-013-1054-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED We have previously created a potent DNA vaccine encoding calreticulin linked to the human papillomavirus (HPV) oncogenic protein E7 (CRT/E7). While treatment with the CRT/E7 DNA vaccine generates significant tumor-specific immune responses in vaccinated mice, the potency with the DNA vaccine could potentially be improved by co-administration of a histone deacetylase inhibitor (HDACi) as HDACi has been shown to increase the expression of MHC class I and II molecules. Thus, we aimed to determine whether co-administration of a novel HDACi, AR-42, with therapeutic HPV DNA vaccines could improve the activation of HPV antigen-specific CD8(+) T cells, resulting in potent therapeutic antitumor effects. To do so, HPV-16 E7-expressing murine TC-1 tumor-bearing mice were treated orally with AR-42 and/or CRT/E7 DNA vaccine via gene gun. Mice were monitored for E7-specific CD8(+) T cell immune responses and antitumor effects. TC-1 tumor-bearing mice treated with AR-42 and CRT/E7 DNA vaccine experienced longer survival, decreased tumor growth, and enhanced E7-specific immune response compared to mice treated with AR-42 or CRT/E7 DNA vaccine alone. Additionally, treatment of TC-1 cells with AR-42 increased the surface expression of MHC class I molecules and increased the susceptibility of tumor cells to the cytotoxicity of E7-specific T cells. This study indicates the ability of AR-42 to significantly enhance the potency of the CRT/E7 DNA vaccine by improving tumor-specific immune responses and antitumor effects. Both AR-42 and CRT/E7 DNA vaccines have been used in independent clinical trials; the current study serves as foundation for future clinical trials combining both treatments in cervical cancer therapy. KEY MESSAGE AR-42, a novel HDAC inhibitor, enhances potency of therapeutic HPV DNA vaccines AR-42 treatment leads to strong E7-specific CD8+ T cell immune responses AR-42 improves tumor-specific immunity and antitumor effects elicited by HPV DNA vaccine AR-42 is more potent than clinically available HDACi in combination with HPV DNA vaccine.
Collapse
Affiliation(s)
- Sung Yong Lee
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Internal Medicine, Korea University Medical Center, Seoul, South Korea
| | - Zhuomin Huang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Gynecology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Tae Heung Kang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ruey-Shyang Soong
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of General Surgery, Chang Gung Memorial Hospital at Keelung, Taiwan
| | - Jayne Knoff
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ellen Axenfeld
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Chenguang Wang
- Department of Biostatistics and Bioinformatics, Sidney Kimmel Cancer Comprehensive Cancer Center Johns Hopkins University, Baltimore, MD, USA
| | - Ronald D. Alvarez
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham
| | - Ching-Shih Chen
- Division of Medical Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - T.-C. Wu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
141
|
Zong J, Wang C, Wang Q, Peng Q, Xu Y, Xie X, Xu X. HSP70 and modified HPV 16 E7 fusion gene without the addition of a signal peptide gene sequence as a candidate therapeutic tumor vaccine. Oncol Rep 2013; 30:3020-6. [PMID: 24065282 DOI: 10.3892/or.2013.2742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/06/2013] [Indexed: 11/06/2022] Open
Abstract
Millions of women are currently infected with high-risk human papillomavirus (HPV), which is considered to be a major risk factor for cervical cancer. Thus, it is urgent to develop therapeutic vaccines to eliminate the established infections or HPV-related diseases. In the present study, using the mycobacterium tuberculosis heat shock protein 70 (MtHSP70) gene linked to the modified HPV 16 E7 (mE7) gene, we generated two potential therapeutic HPV DNA vaccines, mE7/MtHSP70 and SigmE7/MtHSP70, the latter was linked to the signal peptide gene sequence of human CD33 at the upstream of the fusion gene. We found that vaccination with the mE7/MtHSP70 DNA vaccine induced a stronger E7-specific CD8+ T cell response and resulted in a more significant therapeutic effect against E7-expressing tumor cells in mice. Our results demonstrated that HSP70 can play a more important role in mE7 and MtHSP70 fusion DNA vaccine without the help of a signal peptide. This may facilitate the use of HSP70 and serve as a significant reference for future study.
Collapse
Affiliation(s)
- Jinbao Zong
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing 100005, P.R. China
| | | | | | | | | | | | | |
Collapse
|
142
|
Sharma RK, Yolcu ES, Srivastava AK, Shirwan H. CD4+ T cells play a critical role in the generation of primary and memory antitumor immune responses elicited by SA-4-1BBL and TAA-based vaccines in mouse tumor models. PLoS One 2013; 8:e73145. [PMID: 24066030 PMCID: PMC3774737 DOI: 10.1371/journal.pone.0073145] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/17/2013] [Indexed: 12/20/2022] Open
Abstract
The role of CD4+ T cells in the generation of therapeutic primary and memory immune responses in cancer diverse immunotherapy settings remains ambiguous. We herein investigated this issue using two vaccine formulations containing a novel costimulatory molecule, SA-4-1BBL, as adjuvant and HPV E7 or survivin (SVN) as tumor associated antigens (TAAs) in two mouse transplantable tumor models; the TC-1 cervical cancer expressing xenogeneic HPV E7 and 3LL lung carcinoma overexpressing autologous SVN. Single vaccination with optimized SA-4-1BBL/TAA formulations resulted in the eradication of 6-day established TC-1 and 3LL tumors in >70% of mice in both models. The in vivo depletion of CD4+ T cells one day before tumor challenge resulted in compromised vaccine efficacy in both TC-1 (25%) and 3LL (12.5%) tumor models. In marked contrast, depletion of CD4+ T cells 5 days post-tumor challenge and one day prior to vaccination did not significantly alter the therapeutic efficacy of these vaccines. However, long-term immunological memory was compromised in the 3LL, but not in TC-1 model as a significant number (85.7%) of tumor free-mice succumbed to tumor growth when rechallenged with 3LL cells 60 days after the initial tumor inoculation. Collectively, these results demonstrate the indispensable role CD4+ T cells play in the generation of therapeutic primary immune responses elicited by SA-4-1BBL/TAA-based vaccines irrespective of the nature of TAAs and establish the importance of CD4+ T cells for long-term immune memory against 3LL tumor expressing self-antigen SVN, but not TC-1 expressing xenogeneic viral antigen E7.
Collapse
Affiliation(s)
- Rajesh K. Sharma
- Institute for Cellular Therapeutics, Department of Microbiology and Immunology and James Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Esma S. Yolcu
- Institute for Cellular Therapeutics, Department of Microbiology and Immunology and James Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Abhishek K. Srivastava
- Institute for Cellular Therapeutics, Department of Microbiology and Immunology and James Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Haval Shirwan
- Institute for Cellular Therapeutics, Department of Microbiology and Immunology and James Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
143
|
Cheng WF, Chang MC, Sun WZ, Jen YW, Liao CW, Chen YY, Chen CA. Fusion protein vaccines targeting two tumor antigens generate synergistic anti-tumor effects. PLoS One 2013; 8:e71216. [PMID: 24058440 PMCID: PMC3772923 DOI: 10.1371/journal.pone.0071216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/27/2013] [Indexed: 11/26/2022] Open
Abstract
Introduction Human papillomavirus (HPV) has been consistently implicated in causing several kinds of malignancies, and two HPV oncogenes, E6 and E7, represent two potential target antigens for cancer vaccines. We developed two fusion protein vaccines, PE(ΔIII)/E6 and PE(ΔIII)/E7 by targeting these two tumor antigens to test whether a combination of two fusion proteins can generate more potent anti-tumor effects than a single fusion protein. Materials and Methods Invivo antitumor effects including preventive, therapeutic, and antibody depletion experiments were performed. Invitro assays including intracellular cytokine staining and ELISA for Ab responses were also performed. Results PE(ΔIII)/E6+PE(ΔIII)/E7 generated both stronger E6 and E7-specific immunity. Only 60% of the tumor protective effect was observed in the PE(ΔIII)/E6 group compared to 100% in the PE(ΔIII)/E7 and PE(ΔIII)/E6+PE(ΔIII)/E7 groups. Mice vaccinated with the PE(ΔIII)/E6+PE(ΔIII)/E7 fusion proteins had a smaller subcutaneous tumor size than those vaccinated with PE(ΔIII)/E6 or PE(ΔIII)/E7 fusion proteins alone. Conclusion Fusion protein vaccines targeting both E6 and E7 tumor antigens generated more potent immunotherapeutic effects than E6 or E7 tumor antigens alone. This novel strategy of targeting two tumor antigens together can promote the development of cancer vaccines and immunotherapy in HPV-related malignancies.
Collapse
Affiliation(s)
- Wen-Fang Cheng
- Departments of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Cheng Chang
- Departments of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Zen Sun
- Department of Anesthesiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Wei Jen
- Departments of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Yun-Yuan Chen
- Departments of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-An Chen
- Departments of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
144
|
Monroy-García A, Gómez-Lim MA, Weiss-Steider B, Hernández-Montes J, Huerta-Yepez S, Rangel-Santiago JF, Santiago-Osorio E, Mora García MDL. Immunization with an HPV-16 L1-based chimeric virus-like particle containing HPV-16 E6 and E7 epitopes elicits long-lasting prophylactic and therapeutic efficacy in an HPV-16 tumor mice model. Arch Virol 2013; 159:291-305. [DOI: 10.1007/s00705-013-1819-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 06/30/2013] [Indexed: 12/11/2022]
|
145
|
Rosalia RA, Quakkelaar ED, Redeker A, Khan S, Camps M, Drijfhout JW, Silva AL, Jiskoot W, van Hall T, van Veelen PA, Janssen G, Franken K, Cruz LJ, Tromp A, Oostendorp J, van der Burg SH, Ossendorp F, Melief CJM. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur J Immunol 2013; 43:2554-65. [PMID: 23836147 DOI: 10.1002/eji.201343324] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/26/2013] [Accepted: 07/05/2013] [Indexed: 12/19/2022]
Abstract
The efficiency of antigen (Ag) processing by dendritic cells (DCs) is vital for the strength of the ensuing T-cell responses. Previously, we and others have shown that in comparison to protein vaccines, vaccination with synthetic long peptides (SLPs) has shown more promising (pre-)clinical results. Here, we studied the unknown mechanisms underlying the observed vaccine efficacy of SLPs. We report an in vitro processing analysis of SLPs for MHC class I and class II presentation by murine DCs and human monocyte-derived DCs. Compared to protein, SLPs were rapidly and much more efficiently processed by DCs, resulting in an increased presentation to CD4⁺ and CD8⁺ T cells. The mechanism of access to MHC class I loading appeared to differ between the two forms of Ag. Whereas whole soluble protein Ag ended up largely in endolysosomes, SLPs were detected very rapidly outside the endolysosomes after internalization by DCs, followed by proteasome- and transporter associated with Ag processing-dependent MHC class I presentation. Compared to the slower processing route taken by whole protein Ags, our results indicate that the efficient internalization of SLPs, accomplished by DCs but not by B or T cells and characterized by a different and faster intracellular routing, leads to enhanced CD8⁺ T-cell activation.
Collapse
Affiliation(s)
- Rodney A Rosalia
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Zhu Y, Zheng Y, Mei L, Liu M, Li S, Xiao H, Zhu H, Wu S, Chen H, Huang L. Enhanced immunotherapeutic effect of modified HPV16 E7-pulsed dendritic cell vaccine by an adeno-shRNA-SOCS1 virus. Int J Oncol 2013; 43:1151-9. [PMID: 23877655 DOI: 10.3892/ijo.2013.2027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 05/23/2013] [Indexed: 11/06/2022] Open
Abstract
Cervical cancer is the second most common cause of cancer-related deaths among women worldwide. However, no efficient therapy exists against cervical cancer and current treatments have several disadvantages. One possible novel approach is to develop immune-based strategies using tumor antigen-loaded dendritic cells (DCs) for the induction of cellular antitumor immunity. In this study, we created a modified HPV16 E7, HPV16mE7, to reduce its transformation activity and to enhance its antigenicity. The siRNA delivery technique was used to silence the suppressor of cytokine signaling 1 (SOCS1) gene in DCs. BM-derived DCs infected by ad-shRNA-SOCS1 were pulsed with the HPV16mE7 protein and then were transfused into mouse models bearing TC-1 tumor cells expressing HPV16 E6/E7. IFN-γ, cytokine (TNF-α, IL-12, IL-6) expression, anti-E7 antibody and cytotoxic T lymphocyte (CTL) levels were measured. The survival rate, survival days and the tumor volume of the mouse models from the different treatment groups were monitored. The data showed that the mE7-pulsed DC vaccine enhanced by adenovirus-mediated SOCS1 silencing exhibited better immunotherapeutic effect on the allografted tumor mouse models. The method by silencing SOCS1 in HPV16mE7 protein-pulsed DCs may provide a new strategy for the development of safe and effective immunotherapy for cervical cancer.
Collapse
Affiliation(s)
- Yongqiang Zhu
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Nguyen CT, Hong SH, Ung TT, Verma V, Kim SY, Rhee JH, Lee SE. Intranasal immunization with a flagellin-adjuvanted peptide anticancer vaccine prevents tumor development by enhancing specific cytotoxic T lymphocyte response in a mouse model. Clin Exp Vaccine Res 2013; 2:128-34. [PMID: 23858404 PMCID: PMC3710921 DOI: 10.7774/cevr.2013.2.2.128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/25/2013] [Accepted: 05/05/2013] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Human papillomavirus (HPV) is a significant cause of cervical cancer-related deaths worldwide. Because HPV is a sexually transmitted mucosal pathogen, enhancement of antigen-specific mucosal immune response likely serves good strategy for vaccination. However, mucosal vaccines generally do not induce strong enough immune responses. Previously we proved that a bacterial flagellin, Vibrio vulnificus FlaB, induce strong antigen-specific immune responses by stimulating the Toll-like receptor 5. In this study, we tested whether FlaB could serve as an effective mucosal adjuvant for a peptide-based HPV preventive cancer vaccine. MATERIALS AND METHODS Mice were intranasally administered with a mixture of FlaB and E6/E7 protective peptides in 5-day interval for a total of two times. Five-days after the last vaccination, cellular immune responses of the vaccinated mice were analyzed. Tumor growth was also observed after a subcutaneous implantation of TC-1 cells bearing E6/E7 antigens. RESULTS Intranasal administration of the E6/E7 peptide mixture with FlaB elicited a strong antigen-specific cytotoxic T lymphocyte activity and antigen-specific interferon-γ production from splenocytes and cervical lymph node cells. Furthermore, FlaB, as a mucosal adjuvant, conferred an excellent protection against TC-1 tumor challenge with high survival rates in E6/E7 immunized animals. CONCLUSION These results indicate that FlaB can be a promising mucosal adjuvant for nasal HPV vaccine development.
Collapse
|
148
|
Nguyen CT, Hong SH, Sin JI, Vu HVD, Jeong K, Cho KO, Uematsu S, Akira S, Lee SE, Rhee JH. Flagellin enhances tumor-specific CD8⁺ T cell immune responses through TLR5 stimulation in a therapeutic cancer vaccine model. Vaccine 2013; 31:3879-87. [PMID: 23831323 DOI: 10.1016/j.vaccine.2013.06.054] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/19/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
Abstract
Tumor antigen (TA)-specific immunotherapy is an emerging approach for cancer treatment. Potent adjuvants are prerequisites to the immunotherapy for overcoming the low immunogenicity of TAs. We previously demonstrated that a bacterial flagellin, Vibrio vulnificus FlaB, has potent adjuvant activity in various vaccination models. In this study, we investigated whether the FlaB protein could be a potent adjuvant for a human papillomavirus 16 E6 and E7 (E6/E7) peptide-based anticancer immunotherapy. We used an E6/E7-expressing TC-1 carcinoma implantation animal model and tested TA-specific immunomodulation by FlaB. We co-administered the E6/E7 peptide either with or without FlaB into TC-1 tumor-bearing mice and then analyzed the antitumor activity of the peptide. FlaB significantly potentiated specific antitumor immune responses elicited by the peptide immunization, as evidenced by retarded in vivo tumor growth and significantly prolonged survival. We noticed that TC-1 cells do not express Toll-like receptor 5 (TLR5) on their surface and the TLR5 signaling pathway in TC-1 cells was not responsible for the antitumor effect of FlaB. FlaB potentiated the CTL activity and Ag-specific IFN-γ production of CD8(+) T cells from the draining lymph node and spleen. In addition, this antitumor activity was abrogated following the in vivo depletion of CD8(+) T cells and in TLR5 knockout (KO) or MyD88 KO mice. These results suggest that flagellin could enhance TA-specific CD8(+) CTL immune responses through TLR5 stimulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Chung Truong Nguyen
- Clinical Vaccine R&D Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Cytolytic activity of the human papillomavirus type 16 E711-20 epitope-specific cytotoxic T lymphocyte is enhanced by heat shock protein 110 in HLA-A*0201 transgenic mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1027-33. [PMID: 23658393 DOI: 10.1128/cvi.00721-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heat shock proteins (HSPs) have been successfully applied to a broad range of vaccines as biological adjuvants to enhance the immune response. The recently defined HSP110, in particular, exhibits strong protein binding affinity and is capable of enhancing the immunogenicity of protein antigens remarkably more than other HSP family members. In our previous study, we verified that murine HSP110 (mHSP110) significantly enhanced the immune response of a C57BL/6 mouse model to the H-2(d)-restricted human papillomavirus (HPV) E749-57 epitope (short peptide spanning the 49th to 57th amino acid residues in the E7 protein). To determine whether HSP110 similarly enhances the immunogenicity of human epitope peptides, we used the HLA-A2 transgenic mouse model to investigate the efficacy of the mHSP110 chaperone molecule as an immunoadjuvant of the human HLA-A2-restricted HPV16 E711-20 epitope vaccine. Results showed that mHSP110 efficiently formed a noncovalently bound complex with the E711-20 epitope. The mHSP110-E711-20 complex induced epitope-specific splenocyte proliferation and E711-20-specific gamma interferon (IFN-γ) secretion. Importantly, cytotoxic T lymphocytes primed by the mHSP110-E711-20 complex exerted strong cytolytic effects on target T2 cells pulsed with the E711-20 peptide or TC-1 cells transfected with the HLA-A2 gene. In addition, the mHSP110-E711-20 complex elicited stronger ex vivo and in vivo antitumor responses than either emulsified complete Freund's adjuvant or HSP70-chaperoned E711-20 peptide. These collective data suggest that HSP110 is a promising immunomodulator candidate for peptide-based human cancer vaccines, such as for the HLA-A2-restricted E711-20 epitope.
Collapse
|
150
|
Demurtas OC, Massa S, Ferrante P, Venuti A, Franconi R, Giuliano G. A Chlamydomonas-derived Human Papillomavirus 16 E7 vaccine induces specific tumor protection. PLoS One 2013; 8:e61473. [PMID: 23626690 PMCID: PMC3634004 DOI: 10.1371/journal.pone.0061473] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/11/2013] [Indexed: 11/29/2022] Open
Abstract
Background The E7 protein of the Human Papillomavirus (HPV) type 16, being involved in malignant cellular transformation, represents a key antigen for developing therapeutic vaccines against HPV-related lesions and cancers. Recombinant production of this vaccine antigen in an active form and in compliance with good manufacturing practices (GMP) plays a crucial role for developing effective vaccines. E7-based therapeutic vaccines produced in plants have been shown to be active in tumor regression and protection in pre-clinical models. However, some drawbacks of in whole-plant vaccine production encouraged us to explore the production of the E7-based therapeutic vaccine in Chlamydomonas reinhardtii, an organism easy to grow and transform and fully amenable to GMP guidelines. Methodology/Principal Findings An expression cassette encoding E7GGG, a mutated, attenuated form of the E7 oncoprotein, alone or as a fusion with affinity tags (His6 or FLAG), under the control of the C. reinhardtii chloroplast psbD 5′ UTR and the psbA 3′ UTR, was introduced into the C. reinhardtii chloroplast genome by homologous recombination. The protein was mostly soluble and reached 0.12% of total soluble proteins. Affinity purification was optimized and performed for both tagged forms. Induction of specific anti-E7 IgGs and E7-specific T-cell proliferation were detected in C57BL/6 mice vaccinated with total Chlamydomonas extract and with affinity-purified protein. High levels of tumor protection were achieved after challenge with a tumor cell line expressing the E7 protein. Conclusions The C. reinhardtii chloroplast is a suitable expression system for the production of the E7GGG protein, in a soluble, immunogenic form. The production in contained and sterile conditions highlights the potential of microalgae as alternative platforms for the production of vaccines for human uses.
Collapse
Affiliation(s)
- Olivia C. Demurtas
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome, Italy
- Ylichron S.r.l., ENEA Casaccia Research Center, Rome, Italy
| | - Silvia Massa
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome, Italy
| | - Paola Ferrante
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome, Italy
| | - Aldo Venuti
- Laboratory of Virology, Regina Elena National Cancer Institute, Rome, Italy
| | - Rosella Franconi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome, Italy
- * E-mail: (RF); (GG)
| | - Giovanni Giuliano
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome, Italy
- * E-mail: (RF); (GG)
| |
Collapse
|