101
|
A new era of disease modeling and drug discovery using induced pluripotent stem cells. Arch Pharm Res 2016; 40:1-12. [DOI: 10.1007/s12272-016-0871-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/27/2016] [Indexed: 12/21/2022]
|
102
|
Chaudhari P, Prasad N, Tian L, Jang YY. Determination of Functional Activity of Human iPSC-Derived Hepatocytes by Measurement of CYP Metabolism. Methods Mol Biol 2016; 1357:383-94. [PMID: 25410290 DOI: 10.1007/7651_2014_145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The advent of induced pluripotent stem cell (iPSC) technology has enabled the modeling of an array of specific human disease phenotypes, aiding in the increasingly important and indispensable understanding of disease progression and pathogenesis. Pluripotent stem cell-derived hepatocytes present a new avenue for drug screening and personalized drug testing toward precision medicine. CYP450 microsomal enzymes play a critical role in drug metabolism. Hence, CYP activity measurement of iPSC-derived hepatocytes is a vital prerequisite, to ensure metabolic functionality before proceeding to drug testing. Herein, we describe the protocol for measurement of different CYP450 enzyme activities in human iPSC-derived hepatocytes.
Collapse
Affiliation(s)
- Pooja Chaudhari
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Neha Prasad
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lipeng Tian
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yoon-Young Jang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
103
|
Mallanna SK, Cayo MA, Twaroski K, Gundry RL, Duncan SA. Mapping the Cell-Surface N-Glycoproteome of Human Hepatocytes Reveals Markers for Selecting a Homogeneous Population of iPSC-Derived Hepatocytes. Stem Cell Reports 2016; 7:543-556. [PMID: 27569060 PMCID: PMC5032032 DOI: 10.1016/j.stemcr.2016.07.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
When comparing hepatic phenotypes between iPSC-derived hepatocyte-like cells from different liver disease patients, cell heterogeneity can confound interpretation. We proposed that homogeneous cell populations could be generated by fluorescence-activated cell sorting (FACS). Using cell-surface capture proteomics, we identified a total of 300 glycoproteins on hepatocytes. Analyses of the expression profiles during the differentiation of iPSCs revealed that SLC10A1, CLRN3, and AADAC were highly enriched during the final stages of hepatocyte differentiation. FACS purification of hepatocyte-like cells expressing SLC10A1, CLRN3, or AADAC demonstrated enrichment of cells with hepatocyte characteristics. Moreover, transcriptome analyses revealed that cells expressing the liver gene regulatory network were enriched while cells expressing a pluripotent stem cell network were depleted. In conclusion, we report an extensive catalog of cell-surface N-linked glycoproteins expressed in primary hepatocytes and identify cell-surface proteins that facilitate the purification of homogeneous populations of iPSC-derived hepatocyte-like cells. Identified N-linked glycoproteins occupying surface of primary human hepatocytes SLC10A1, CLRN3, and AADAC are expressed on ∼25% of iPSC-derived hepatocytes FACS with these markers enriches hepatic character in iPSC-derived hepatocytes SLC10A1 sorted cells provide homogeneous populations of hepatocyte-like cells
Collapse
Affiliation(s)
- Sunil K Mallanna
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Max A Cayo
- Department of Cell Biology, Neurobiology and Anatomy, Program in Regenerative Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kirk Twaroski
- Department of Cell Biology, Neurobiology and Anatomy, Program in Regenerative Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA
| | - Rebekah L Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
104
|
Hepatocyte-like cells derived from induced pluripotent stem cells. Hepatol Int 2016; 11:54-69. [PMID: 27530815 DOI: 10.1007/s12072-016-9757-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022]
Abstract
The discovery that coordinated expression of a limited number of genes can reprogram differentiated somatic cells to induced pluripotent stem cells (iPSC) has opened novel possibilities for developing cell-based models of diseases and regenerative medicine utilizing cell reprogramming or cell transplantation. Directed differentiation of iPSCs can potentially generate differentiated cells belonging to any germ layer, including cells with hepatocyte-like morphology and function. Such cells, termed iHeps, can be derived by sequential cell signaling using available information on embryological development or by forced expression of hepatocyte-enriched transcription factors. In addition to the translational aspects of iHeps, the experimental findings have provided insights into the mechanisms of cell plasticity that permit one cell type to transition to another. However, iHeps generated by current methods do not fully exhibit all characteristics of mature hepatocytes, highlighting the need for additional research in this area. Here we summarize the current approaches and achievements in this field and discuss some existing hurdles and emerging approaches for improving iPSC differentiation, as well as maintaining such cells in culture for increasing their utility in disease modeling and drug development.
Collapse
|
105
|
Tian L, Deshmukh A, Prasad N, Jang YY. Alcohol Increases Liver Progenitor Populations and Induces Disease Phenotypes in Human IPSC-Derived Mature Stage Hepatic Cells. Int J Biol Sci 2016; 12:1052-62. [PMID: 27570479 PMCID: PMC4997049 DOI: 10.7150/ijbs.15811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022] Open
Abstract
Alcohol consumption has long been a global problem affecting human health, and has been found to influence both fetal and adult liver functions. However, how alcohol affects human liver development and liver progenitor cells remains largely unknown. Here, we used human induced pluripotent stem cells (iPSCs) as a model to examine the effects of alcohol, on multi-stage hepatic cells including hepatic progenitors, early and mature hepatocyte-like cells derived from human iPSCs. While alcohol has little effect on endoderm development from iPSCs, it reduces formation of hepatic progenitor cells during early hepatic specification. The proliferative activities of early and mature hepatocyte-like cells are significantly decreased after alcohol exposure. Importantly, at a mature stage of hepatocyte-like cells, alcohol treatment increases two liver progenitor subsets, causes oxidative mitochondrial injury and results in liver disease phenotypes (i.e., steatosis and hepatocellular carcinoma associated markers) in a dose dependent manner. Some of the phenotypes were significantly improved by antioxidant treatment. This report suggests that fetal alcohol exposure may impair generation of hepatic progenitors at early stage of hepatic specification and decrease proliferation of fetal hepatocytes; meanwhile alcohol injury in post-natal or mature stage human liver may contribute to disease phenotypes. This human iPSC model of alcohol-induced liver injury can be highly valuable for investigating alcoholic injury in the fetus as well as understanding the pathogenesis and ultimately developing effective treatment for alcoholic liver disease in adults.
Collapse
Affiliation(s)
- Lipeng Tian
- 1 Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center
| | - Abhijeet Deshmukh
- 1 Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center
| | - Neha Prasad
- 1 Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center
| | - Yoon-Young Jang
- 1 Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center; 2 Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
106
|
Chaudhari P, Tian L, Deshmukh A, Jang YY. Expression kinetics of hepatic progenitor markers in cellular models of human liver development recapitulating hepatocyte and biliary cell fate commitment. Exp Biol Med (Maywood) 2016; 241:1653-62. [PMID: 27390263 DOI: 10.1177/1535370216657901] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Due to the limitations of research using human embryos and the lack of a biological model of human liver development, the roles of the various markers associated with liver stem or progenitor cell potential in humans are largely speculative, and based on studies utilizing animal models and certain patient tissues. Human pluripotent stem cell-based in vitro multistage hepatic differentiation systems may serve as good surrogate models for mimicking normal human liver development, pathogenesis and injury/regeneration studies. Here, we describe the implications of various liver stem or progenitor cell markers and their bipotency (i.e. hepatocytic- and biliary-epithelial cell differentiation), based on the pluripotent stem cell-derived model of human liver development. Future studies using the human cellular model(s) of liver and biliary development will provide more human relevant biological and/or pathological roles of distinct markers expressed in heterogeneous liver stem/progenitor cell populations.
Collapse
Affiliation(s)
- Pooja Chaudhari
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21205, USA Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore 21205, USA Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205, USA
| | - Lipeng Tian
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21205, USA
| | - Abhijeet Deshmukh
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21205, USA
| | - Yoon-Young Jang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21205, USA Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore 21205, USA Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205, USA
| |
Collapse
|
107
|
Affiliation(s)
- Yu Wang
- a MRC Centre for Regenerative Medicine, University of Edinburgh , Edinburgh , UK
| | - David C Hay
- a MRC Centre for Regenerative Medicine, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
108
|
Hannoun Z, Steichen C, Dianat N, Weber A, Dubart-Kupperschmitt A. The potential of induced pluripotent stem cell derived hepatocytes. J Hepatol 2016; 65:182-199. [PMID: 26916529 DOI: 10.1016/j.jhep.2016.02.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/12/2016] [Accepted: 02/09/2016] [Indexed: 12/21/2022]
Abstract
Orthotopic liver transplantation remains the only curative treatment for liver disease. However, the number of patients who die while on the waiting list (15%) has increased in recent years as a result of severe organ shortages; furthermore the incidence of liver disease is increasing worldwide. Clinical trials involving hepatocyte transplantation have provided encouraging results. However, transplanted cell function appears to often decline after several months, necessitating liver transplantation. The precise aetiology of the loss of cell function is not clear, but poor engraftment and immune-mediated loss appear to be important factors. Also, primary human hepatocytes (PHH) are not readily available, de-differentiate, and die rapidly in culture. Hepatocytes are available from other sources, such as tumour-derived human hepatocyte cell lines and immortalised human hepatocyte cell lines or porcine hepatocytes. However, all these cells suffer from various limitations such as reduced or differences in functions or risk of zoonotic infections. Due to their significant potential, one possible inexhaustible source of hepatocytes is through the directed differentiation of human induced pluripotent stem cells (hiPSCs). This review will discuss the potential applications and existing limitations of hiPSC-derived hepatocytes in regenerative medicine, drug screening, in vitro disease modelling and bioartificial livers.
Collapse
Affiliation(s)
- Zara Hannoun
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Clara Steichen
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Noushin Dianat
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Anne Weber
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Anne Dubart-Kupperschmitt
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France.
| |
Collapse
|
109
|
Saberi B, Dadabhai AS, Jang YY, Gurakar A, Mezey E. Current Management of Alcoholic Hepatitis and Future Therapies. J Clin Transl Hepatol 2016; 4:113-22. [PMID: 27350941 PMCID: PMC4913072 DOI: 10.14218/jcth.2016.00006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 03/27/2016] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
Alcohol is one of the most common etiologies of liver disease, and alcoholic liver disease overall is the second most common indication for liver transplantation in the United States. It encompasses a spectrum of disease, including fatty liver disease, alcoholic hepatitis (AH), and alcoholic cirrhosis. AH can range from mild to severe disease, with severe disease being defined as: Discriminant Function (DF) ≥ 32, or Model for End-stage Liver Disease (MELD) ≥ 21, or presence of hepatic encephalopathy. Management of the mild disease consists mainly of abstinence and supportive care. Severe AH is associated with significant mortality. Currently, there is no ideal medical treatment for this condition. Besides alcohol cessation, corticosteroids have been used with conflicting results and are associated with an inherent risk of infection. Overall steroids have shown short term benefit when compared to placebo, but they have no obvious long term benefits. Pentoxifylline does not improve survival in patients with severe AH and is no longer recommended based on the results of the STOPAH (Steroid Or Pentoxifylline for Alcoholic Hepatitis) trial. Anti-tumor necrosis factor (TNF) agents are associated with increased risk of life threatening infections and death. Currently, early stage trials are underway, mainly targeting novel pathways based on disease pathogenesis, including modulation of innate immune system, inhibition of gut-liver axis and cell death pathways, and activation of transcription factor farnesyl X receptor (FXR). Future treatment may lie in human induced pluripotent stem cell (iPSC) technology, which is currently under investigation for the study of pathogenesis, drug discovery, and stem cell transplantation. Liver transplantation has been reported with good results in highly selected patients but is controversial due to limited organ supply.
Collapse
Affiliation(s)
- Behnam Saberi
- Division of Gastroenterology and Hepatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- *Correspondence to: Behnam Saberi, Division of Gastroenterology and Hepatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. Tel: +1-410-614-2543, Fax: +1-410-614-7340, E-mail:
| | - Alia S. Dadabhai
- Division of Gastroenterology and Hepatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yoon-Young Jang
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ahmet Gurakar
- Division of Gastroenterology and Hepatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Esteban Mezey
- Division of Gastroenterology and Hepatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
110
|
Shinozawa T, Yoshikawa HY, Takebe T. Reverse engineering liver buds through self-driven condensation and organization towards medical application. Dev Biol 2016; 420:221-229. [PMID: 27364470 DOI: 10.1016/j.ydbio.2016.06.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/24/2016] [Accepted: 06/25/2016] [Indexed: 12/15/2022]
Abstract
The self-organizing tissue-based approach coupled with induced pluripotent stem (iPS) cell technology is evolving as a promising field for designing organoids in culture and is expected to achieve valuable practical outcomes in regenerative medicine and drug development. Organoids show properties of functional organs and represent an alternative to cell models in conventional two-dimensional differentiation platforms; moreover, organoids can be used to investigate mechanisms of development and disease, drug discovery and toxicity assessment. Towards a more complex and advanced organoid model, it is essential to incorporate multiple cell lineages including developing vessels. Using a self-condensation method, we recently demonstrated self-organizing "organ buds" of diverse systems together with human mesenchymal and endothelial progenitors, proposing a new reverse engineering method to generate a more complex organoid structure. In this section, we review characters of organ bud technology based on two important principles: self-condensation and self-organization focusing on liver bud as an example, and discuss their practicality in regenerative medicine and potential as research tools for developmental biology and drug discovery.
Collapse
Affiliation(s)
- Tadahiro Shinozawa
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Hiroshi Y Yoshikawa
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan.
| | - Takanori Takebe
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
111
|
Site-Specific Genome Engineering in Human Pluripotent Stem Cells. Int J Mol Sci 2016; 17:ijms17071000. [PMID: 27347935 PMCID: PMC4964376 DOI: 10.3390/ijms17071000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies.
Collapse
|
112
|
Singeç I, Simeonov A. Translating Stem Cell Biology Into Drug Discovery. DRUG TARGET REVIEW 2016; 3:34-38. [PMID: 27774310 PMCID: PMC5073788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pluripotent stem cell research has made extraordinary progress over the last decade. The robustness of nuclear reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) has created entirely novel opportunities for drug discovery and personalized regenerative medicine. Patient- and disease-specific iPSCs can be expanded indefinitely and differentiated into relevant cell types of different organ systems. As the utilization of iPSCs is becoming a key enabling technology across various scientific disciplines, there are still important challenges that need to be addressed. Here we review the current state and reflect on the issues that the stem cell and translational communities are facing in bringing iPSCs closer to clinical application.
Collapse
Affiliation(s)
- Ilyas Singeç
- National Institutes of Health (NIH). National Center for Advancing Translational Sciences (NCATS). Division of Pre-Clinical Innovation (DPI)
| | - Anton Simeonov
- National Institutes of Health (NIH). National Center for Advancing Translational Sciences (NCATS). Division of Pre-Clinical Innovation (DPI)
| |
Collapse
|
113
|
Gene correction in patient-specific iPSCs for therapy development and disease modeling. Hum Genet 2016; 135:1041-58. [PMID: 27256364 DOI: 10.1007/s00439-016-1691-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022]
Abstract
The discovery that mature cells can be reprogrammed to become pluripotent and the development of engineered endonucleases for enhancing genome editing are two of the most exciting and impactful technology advances in modern medicine and science. Human pluripotent stem cells have the potential to establish new model systems for studying human developmental biology and disease mechanisms. Gene correction in patient-specific iPSCs can also provide a novel source for autologous cell therapy. Although historically challenging, precise genome editing in human iPSCs is becoming more feasible with the development of new genome-editing tools, including ZFNs, TALENs, and CRISPR. iPSCs derived from patients of a variety of diseases have been edited to correct disease-associated mutations and to generate isogenic cell lines. After directed differentiation, many of the corrected iPSCs showed restored functionality and demonstrated their potential in cell replacement therapy. Genome-wide analyses of gene-corrected iPSCs have collectively demonstrated a high fidelity of the engineered endonucleases. Remaining challenges in clinical translation of these technologies include maintaining genome integrity of the iPSC clones and the differentiated cells. Given the rapid advances in genome-editing technologies, gene correction is no longer the bottleneck in developing iPSC-based gene and cell therapies; generating functional and transplantable cell types from iPSCs remains the biggest challenge needing to be addressed by the research field.
Collapse
|
114
|
Yu H, Cowan CA. Minireview: Genome Editing of Human Pluripotent Stem Cells for Modeling Metabolic Disease. Mol Endocrinol 2016; 30:575-86. [PMID: 27075706 DOI: 10.1210/me.2015-1290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pathophysiology of metabolic diseases such as coronary artery disease, diabetes, and obesity is complex and multifactorial. Developing new strategies to prevent or treat these diseases requires in vitro models with which researchers can extensively study the molecular mechanisms that lead to disease. Human pluripotent stem cells and their differentiated derivatives have the potential to provide an unlimited source of disease-relevant cell types and, when combined with recent advances in genome editing, make the goal of generating functional metabolic disease models, for the first time, consistently attainable. However, this approach still has certain limitations including lack of robust differentiation methods and potential off-target effects. This review describes the current progress in human pluripotent stem cell-based metabolic disease research using genome-editing technology.
Collapse
Affiliation(s)
- Haojie Yu
- Department of Stem Cell and Regenerative Biology (H.Y., C.A.C.), Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138; and Center for Regenerative Medicine (C.A.C.), Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Chad A Cowan
- Department of Stem Cell and Regenerative Biology (H.Y., C.A.C.), Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138; and Center for Regenerative Medicine (C.A.C.), Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|
115
|
Thorne N, Malik N, Shah S, Zhao J, Class B, Aguisanda F, Southall N, Xia M, McKew JC, Rao M, Zheng W. High-Throughput Phenotypic Screening of Human Astrocytes to Identify Compounds That Protect Against Oxidative Stress. Stem Cells Transl Med 2016; 5:613-27. [PMID: 27034412 PMCID: PMC4835244 DOI: 10.5966/sctm.2015-0170] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/14/2016] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Astrocytes are the predominant cell type in the nervous system and play a significant role in maintaining neuronal health and homeostasis. Recently, astrocyte dysfunction has been implicated in the pathogenesis of many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Astrocytes are thus an attractive new target for drug discovery for neurological disorders. Using astrocytes differentiated from human embryonic stem cells, we have developed an assay to identify compounds that protect against oxidative stress, a condition associated with many neurodegenerative diseases. This phenotypic oxidative stress assay has been optimized for high-throughput screening in a 1,536-well plate format. From a screen of approximately 4,100 bioactive tool compounds and approved drugs, we identified a set of 22 that acutely protect human astrocytes from the consequences of hydrogen peroxide-induced oxidative stress. Nine of these compounds were also found to be protective of induced pluripotent stem cell-differentiated astrocytes in a related assay. These compounds are thought to confer protection through hormesis, activating stress-response pathways and preconditioning astrocytes to handle subsequent exposure to hydrogen peroxide. In fact, four of these compounds were found to activate the antioxidant response element/nuclear factor-E2-related factor 2 pathway, a protective pathway induced by toxic insults. Our results demonstrate the relevancy and utility of using astrocytes differentiated from human stem cells as a disease model for drug discovery and development. SIGNIFICANCE Astrocytes play a key role in neurological diseases. Drug discovery efforts that target astrocytes can identify novel therapeutics. Human astrocytes are difficult to obtain and thus are challenging to use for high-throughput screening, which requires large numbers of cells. Using human embryonic stem cell-derived astrocytes and an optimized astrocyte differentiation protocol, it was possible to screen approximately 4,100 compounds in titration to identify 22 that are cytoprotective of astrocytes. This study is the largest-scale high-throughput screen conducted using human astrocytes, with a total of 17,536 data points collected in the primary screen. The results demonstrate the relevancy and utility of using astrocytes differentiated from human stem cells as a disease model for drug discovery and development.
Collapse
Affiliation(s)
- Natasha Thorne
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Nasir Malik
- Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sonia Shah
- Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jean Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Bradley Class
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Francis Aguisanda
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - John C McKew
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Mahendra Rao
- NIH Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
116
|
Govindan G, Ramalingam S. Programmable Site-Specific Nucleases for Targeted Genome Engineering in Higher Eukaryotes. J Cell Physiol 2016; 231:2380-92. [PMID: 26945523 DOI: 10.1002/jcp.25367] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 01/12/2023]
Abstract
Recent advances in the targeted genome engineering enable molecular biologists to generate sequence specific modifications with greater efficiency and higher specificity in complex eukaryotic genomes. Programmable site-specific DNA cleavage reagents and cellular DNA repair mechanisms have made this possible. These reagents have become powerful tools for delivering a site-specific genomic double-strand break (DSB) at the desired chromosomal locus, which produces sequence alterations through error-prone non-homologous end joining (NHEJ) resulting in gene inactivations/knockouts. Alternatively, the DSB can be repaired through homology-directed repair (HDR) using a donor DNA template, which leads to the introduction of desired sequence modifications at the predetermined site. Here, we summarize the role of three classes of nucleases; zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system in achieving targeted genome modifications. Further, we discuss the progress towards the applications of programmable site-specific nucleases (SSNs) in treating human diseases and other biological applications in economically important higher eukaryotic organisms such as plants and livestock. J. Cell. Physiol. 231: 2380-2392, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ganesan Govindan
- Department of Biotechnology, Molecular Biology Laboratory, MS Swaminathan Research Foundation, Taramani, Chennai, India
| | - Sivaprakash Ramalingam
- Department of Biotechnology, Molecular Biology Laboratory, MS Swaminathan Research Foundation, Taramani, Chennai, India
| |
Collapse
|
117
|
Abstract
Cardiovascular and neurodegenerative diseases are major health threats in many
developed countries. Recently, target tissues derived from human embryonic stem
(hES) cells and induced pluripotent stem cells (iPSCs), such as cardiomyocytes
(CMs) or neurons, have been actively mobilized for drug screening. Knowledge of
drug toxicity and efficacy obtained using stem cell-derived tissues could
parallel that obtained from human trials. Furthermore, iPSC disease models could
be advantageous in the development of personalized medicine in various parts of
disease sectors. To obtain the maximum benefit from iPSCs in disease modeling,
researchers are now focusing on aging, maturation, and metabolism to
recapitulate the pathological features seen in patients. Compared to pediatric
disease modeling, adult-onset disease modeling with iPSCs requires proper
maturation for full manifestation of pathological features. Herein, the success
of iPSC technology, focusing on patient-specific drug treatment,
maturation-based disease modeling, and alternative approaches to compensate for
the current limitations of patient iPSC modeling, will be further discussed.
[BMB Reports 2015; 48(5): 256-265]
Collapse
Affiliation(s)
- Changsung Kim
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea
| |
Collapse
|
118
|
Camarasa MV, Gálvez VM. Robust method for TALEN-edited correction of pF508del in patient-specific induced pluripotent stem cells. Stem Cell Res Ther 2016; 7:26. [PMID: 26861665 PMCID: PMC4748475 DOI: 10.1186/s13287-016-0275-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/14/2015] [Accepted: 01/06/2016] [Indexed: 01/11/2023] Open
Abstract
Cystic fibrosis is one of the most frequent inherited rare diseases, caused by mutations in the cystic fibrosis transmembrane conductance regulator gene. Apart from symptomatic treatments, therapeutic protocols for curing the disease have not yet been established. The regeneration of genetically corrected, disease-free epithelia in cystic fibrosis patients is envisioned by designing a stem cell/genetic therapy in which patient-derived pluripotent stem cells are genetically corrected, from which target tissues are derived. In this framework, we present an efficient method for seamless correction of pF508del mutation in patient-specific induced pluripotent stem cells by gene edited homologous recombination. Gene edition has been performed by transcription activator-like effector nucleases and a homologous recombination donor vector which contains a PiggyBac transposon-based double selectable marker cassette. This new method has been designed to partially avoid xenobiotics from the culture system, improve cell culture efficiency and genome stability by using a robust culture system method, and optimize timings. Overall, once the pluripotent cells have been amplified for the first nucleofection, the procedure can be completed in 69 days, and can be easily adapted to edit and change any gene of interest.
Collapse
Affiliation(s)
- María Vicenta Camarasa
- Caubet-Cimera Foundation, Hospital Joan March, Ctra Soller Km 12, 07110, Bunyola, Mallorca, Spain.
| | - Víctor Miguel Gálvez
- Caubet-Cimera Foundation, Hospital Joan March, Ctra Soller Km 12, 07110, Bunyola, Mallorca, Spain
| |
Collapse
|
119
|
Csöbönyeiová M, Polák Š, Danišovič L. Toxicity testing and drug screening using iPSC-derived hepatocytes, cardiomyocytes, and neural cells. Can J Physiol Pharmacol 2016; 94:687-94. [PMID: 27128322 DOI: 10.1139/cjpp-2015-0459] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Unexpected toxicity in areas such as cardiotoxicity, hepatotoxicity, and neurotoxicity is a serious complication of clinical therapy and one of the key causes for failure of promising drug candidates in development. Animal studies have been widely used for toxicology research to provide preclinical security evaluation of various therapeutic agents under development. Species differences in drug penetration of the blood-brain barrier, drug metabolism, and related toxicity contribute to failure of drug trials from animal models to human. The existing system for drug discovery has relied on immortalized cell lines, animal models of human disease, and clinical trials in humans. Moreover, drug candidates that are passed as being safe in the preclinical stage often show toxic effects during the clinical stage. Only around 16% drugs are approved for human use. Research on induced pluripotent stem cells (iPSCs) promises to enhance drug discovery and development by providing simple, reproducible, and economically effective tools for drug toxicity screening under development and, on the other hand, for studying the disease mechanism and pathways. In this review, we provide an overview of basic information about iPSCs, and discuss efforts aimed at the use of iPSC-derived hepatocytes, cardiomyocytes, and neural cells in drug discovery and toxicity testing.
Collapse
Affiliation(s)
- Mária Csöbönyeiová
- a Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovak Republic
| | - Štefan Polák
- a Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovak Republic
| | - L'uboš Danišovič
- b Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovak Republic
| |
Collapse
|
120
|
Hansel MC, Davila JC, Vosough M, Gramignoli R, Skvorak KJ, Dorko K, Marongiu F, Blake W, Strom SC. The Use of Induced Pluripotent Stem Cells for the Study and Treatment of Liver Diseases. ACTA ACUST UNITED AC 2016; 67:14.13.1-14.13.27. [PMID: 26828329 DOI: 10.1002/0471140856.tx1413s67] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liver disease is a major global health concern. Liver cirrhosis is one of the leading causes of death in the world and currently the only therapeutic option for end-stage liver disease (e.g., acute liver failure, cirrhosis, chronic hepatitis, cholestatic diseases, metabolic diseases, and malignant neoplasms) is orthotropic liver transplantation. Transplantation of hepatocytes has been proposed and used as an alternative to whole organ transplant to stabilize and prolong the lives of patients in some clinical cases. Although these experimental therapies have demonstrated promising and beneficial results, their routine use remains a challenge due to the shortage of donor livers available for cell isolation, variable quality of those tissues, the potential need for lifelong immunosuppression in the transplant recipient, and high costs. Therefore, new therapeutic strategies and more reliable clinical treatments are urgently needed. Recent and continuous technological advances in the development of stem cells suggest they may be beneficial in this respect. In this review, we summarize the history of stem cell and induced pluripotent stem cell (iPSC) technology in the context of hepatic differentiation and discuss the potential applications the technology may offer for human liver disease modeling and treatment. This includes developing safer drugs and cell-based therapies to improve the outcomes of patients with currently incurable health illnesses. We also review promising advances in other disease areas to highlight how the stem cell technology could be applied to liver diseases in the future. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marc C Hansel
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Julio C Davila
- Department of Biochemistry, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, Puerto Rico
| | - Massoud Vosough
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kristen J Skvorak
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas
| | - Fabio Marongiu
- Department of Biomedical Sciences, Section of Experimental Pathology, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - William Blake
- Genetically Modified Models Center of Emphasis, Pfizer, Groton, Connecticut
| | - Stephen C Strom
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
121
|
Cantz T, Sharma AD, Ott M. Concise review: cell therapies for hereditary metabolic liver diseases-concepts, clinical results, and future developments. Stem Cells 2016; 33:1055-62. [PMID: 25524146 DOI: 10.1002/stem.1920] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/23/2014] [Accepted: 11/07/2014] [Indexed: 12/11/2022]
Abstract
The concept of cell-based therapies for inherited metabolic liver diseases has been introduced for now more than 40 years in animal experiments, but controlled clinical data in humans are still not available. In the era of dynamic developments in stem cell science, the "right" cell for transplantation is considered as an important key for successful treatment. Do we aim to transplant mature hepatocytes or do we consider the liver as a stem/progenitor-driven organ and replenish the diseased liver with genetically normal stem/progenitor cells? Although conflicting results from cell tracing and transplantation experiments have recently emerged about the existence and role of stem/progenitor cells in the liver, their overall contribution to parenchymal cell homeostasis and tissue repair is limited. Accordingly, engraftment and repopulation efficacies of extrahepatic and liver-derived stem/progenitor cell types are considered to be lower compared to mature hepatocytes. On the basis of these results, we will discuss the current clinical cell transplantation programs for inherited metabolic liver diseases and future developments in liver cell therapy.
Collapse
Affiliation(s)
- Tobias Cantz
- Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
122
|
Stem Cell Therapies for Treatment of Liver Disease. Biomedicines 2016; 4:biomedicines4010002. [PMID: 28536370 PMCID: PMC5344247 DOI: 10.3390/biomedicines4010002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022] Open
Abstract
Cell therapy is an emerging form of treatment for several liver diseases, but is limited by the availability of donor livers. Stem cells hold promise as an alternative to the use of primary hepatocytes. We performed an exhaustive review of the literature, with a focus on the latest studies involving the use of stem cells for the treatment of liver disease. Stem cells can be harvested from a number of sources, or can be generated from somatic cells to create induced pluripotent stem cells (iPSCs). Different cell lines have been used experimentally to support liver function and treat inherited metabolic disorders, acute liver failure, cirrhosis, liver cancer, and small-for-size liver transplantations. Cell-based therapeutics may involve gene therapy, cell transplantation, bioartificial liver devices, or bioengineered organs. Research in this field is still very active. Stem cell therapy may, in the future, be used as a bridge to either liver transplantation or endogenous liver regeneration, but efficient differentiation and production protocols must be developed and safety must be demonstrated before it can be applied to clinical practice.
Collapse
|
123
|
Cellular Engineering and Disease Modeling with Gene-Editing Nucleases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
124
|
Egashira T, Yuasa S, Tohyama S, Kuroda Y, Suzuki T, Seki T, Fukuda K. Patient-Specific Induced Pluripotent Stem Cell Models: Characterization of iPS Cell-Derived Cardiomyocytes. Methods Mol Biol 2016; 1353:343-353. [PMID: 25520287 DOI: 10.1007/7651_2014_165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Despite significant advances in medical treatment, cardiovascular disease is still a major cause of morbidity and mortality in advanced countries. To improve the outcome, the further promotion of basic cardiovascular science has a pivotal role for the developing novel therapeutic approach. However, due to the inaccessibility of human heart tissue, we couldn't obtain the sufficient amount of patient's heart tissues. The discovery of human-induced pluripotent stem cells (iPSCs) is highly expected to provide the breakthrough to this obstruction. Through the patient-specific iPSCs-derived cardiomyocytes, we could analyze the patient-specific heart diseases directly and repetitively. Herein we introduce the outline of creation for cardiac disease modeling using patient-specific iPSCs. Within several topics, we present the actual representative methodologies throughout the process from the derivation of cardiomyocytes to those of functional analysis.
Collapse
Affiliation(s)
- Toru Egashira
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yusuke Kuroda
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Tomoyuki Suzuki
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Tomohisa Seki
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
125
|
RUSU E, NECULA LG, NEAGU AI, ALECU M, STAN C, ALBULESCU R, TANASE CP. Current status of stem cell therapy: opportunities and limitations. Turk J Biol 2016; 40:955-967. [DOI: 10.3906/biy-1506-95] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
126
|
Abstract
The development of a facile genome engineering technology based on transcription activator-like effector nucleases (TALENs) has led to significant advances in diverse areas of science and medicine. In this review, we provide a broad overview of the development of TALENs and the use of this technology in basic science, biotechnology, and biomedical applications. This includes the discovery of DNA recognition by TALEs, engineering new TALE proteins to diverse targets, general advances in nuclease-based editing strategies, and challenges that are specific to various applications of the TALEN technology. We review examples of applying TALENs for studying gene function and regulation, generating disease models, and developing gene therapies. The current status of genome editing and future directions for other uses of these technologies are also discussed.
Collapse
Affiliation(s)
- David G Ousterout
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Room 136 Hudson Hall, Box 90281, Durham, NC, 27708-0281, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA. .,Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
127
|
Tian L, Prasad N, Jang YY. In Vitro Modeling of Alcohol-Induced Liver Injury Using Human-Induced Pluripotent Stem Cells. Methods Mol Biol 2016; 1353:271-83. [PMID: 25520290 PMCID: PMC5881111 DOI: 10.1007/7651_2014_168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alcohol consumption has long been associated with a majority of liver diseases and has been found to influence both fetal and adult liver functions. In spite of being one of the major causes of morbidity and mortality in the world, currently, there are no effective strategies that can prevent or treat alcoholic liver disease (ALD), due to a lack of human-relevant research models. Recent success in generation of functionally active mature hepatocyte-like cells from human-induced pluripotent cells (iPSCs) enables us to better understand the effects of alcohol on liver functions. Here, we describe the method and effect of alcohol exposure on multistage hepatic cell types derived from human iPSCs, in an attempt to recapitulate the early stages of liver tissue injury associated with ALD. We exposed different stages of iPSC-induced hepatic cells to ethanol at a pathophysiological concentration. In addition to stage-specific molecular markers, we measured several key cellular parameters of hepatocyte injury, including apoptosis, proliferation, and lipid accumulation.
Collapse
Affiliation(s)
- Lipeng Tian
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Neha Prasad
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yoon-Young Jang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB2 Rm552, Baltimore, MD, 21231, USA.
| |
Collapse
|
128
|
Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges. Int J Mol Sci 2015; 16:28614-34. [PMID: 26633382 PMCID: PMC4691066 DOI: 10.3390/ijms161226119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/13/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023] Open
Abstract
Embryonic stem cells (ESCs) are chiefly characterized by their ability to self-renew and to differentiate into any cell type derived from the three main germ layers. It was demonstrated that somatic cells could be reprogrammed to form induced pluripotent stem cells (iPSCs) via various strategies. Gene editing is a technique that can be used to make targeted changes in the genome, and the efficiency of this process has been significantly enhanced by recent advancements. The use of engineered endonucleases, such as homing endonucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and Cas9 of the CRISPR system, has significantly enhanced the efficiency of gene editing. The combination of somatic cell reprogramming with gene editing enables us to model human diseases in vitro, in a manner considered superior to animal disease models. In this review, we discuss the various strategies of reprogramming and gene targeting with an emphasis on the current advancements and challenges of using these techniques to model human diseases.
Collapse
|
129
|
Song W, Lu YC, Frankel AS, An D, Schwartz RE, Ma M. Engraftment of human induced pluripotent stem cell-derived hepatocytes in immunocompetent mice via 3D co-aggregation and encapsulation. Sci Rep 2015; 5:16884. [PMID: 26592180 PMCID: PMC4655358 DOI: 10.1038/srep16884] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/01/2015] [Indexed: 12/17/2022] Open
Abstract
Cellular therapies for liver diseases and in vitro models for drug testing both require functional human hepatocytes (Hum-H), which have unfortunately been limited due to the paucity of donor liver tissues. Human pluripotent stem cells (hPSCs) represent a promising and potentially unlimited cell source to derive Hum-H. However, the hepatic functions of these hPSC-derived cells to date are not fully comparable to adult Hum-H and are more similar to fetal ones. In addition, it has been challenging to obtain functional hepatic engraftment of these cells with prior studies having been done in immunocompromised animals. In this report, we demonstrated successful engraftment of human induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iPS-H) in immunocompetent mice by pre-engineering 3D cell co-aggregates with stromal cells (SCs) followed by encapsulation in recently developed biocompatible hydrogel capsules. Notably, upon transplantation, human albumin and α1-antitrypsin (A1AT) in mouse sera secreted by encapsulated iPS-H/SCs aggregates reached a level comparable to the primary Hum-H/SCs control. Further immunohistochemistry of human albumin in retrieved cell aggregates confirmed the survival and function of iPS-H. This proof-of-concept study provides a simple yet robust approach to improve the engraftment of iPS-H, and may be applicable to many stem cell-based therapies.
Collapse
Affiliation(s)
- Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Yen-Chun Lu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Angela S. Frankel
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Duo An
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Robert E. Schwartz
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
130
|
Im I, Jang MJ, Park SJ, Lee SH, Choi JH, Yoo HW, Kim S, Han YM. Mitochondrial Respiratory Defect Causes Dysfunctional Lactate Turnover via AMP-activated Protein Kinase Activation in Human-induced Pluripotent Stem Cell-derived Hepatocytes. J Biol Chem 2015; 290:29493-505. [PMID: 26491018 DOI: 10.1074/jbc.m115.670364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 01/19/2023] Open
Abstract
A defective mitochondrial respiratory chain complex (DMRC) causes various metabolic disorders in humans. However, the pathophysiology of DMRC in the liver remains unclear. To understand DMRC pathophysiology in vitro, DMRC-induced pluripotent stem cells were generated from dermal fibroblasts of a DMRC patient who had a homoplasmic mutation (m.3398T→C) in the mitochondrion-encoded NADH dehydrogenase 1 (MTND1) gene and that differentiated into hepatocytes (DMRC hepatocytes) in vitro. DMRC hepatocytes showed abnormalities in mitochondrial characteristics, the NAD(+)/NADH ratio, the glycogen storage level, the lactate turnover rate, and AMPK activity. Intriguingly, low glycogen storage and transcription of lactate turnover-related genes in DMRC hepatocytes were recovered by inhibition of AMPK activity. Thus, AMPK activation led to metabolic changes in terms of glycogen storage and lactate turnover in DMRC hepatocytes. These data demonstrate for the first time that energy depletion may lead to lactic acidosis in the DMRC patient by reduction of lactate uptake via AMPK in liver.
Collapse
Affiliation(s)
- Ilkyun Im
- From the Department of Biological Sciences, Center for Stem Cell Differentiation, and
| | - Mi-Jin Jang
- From the Department of Biological Sciences, Center for Stem Cell Differentiation, and
| | | | - Sang-Hee Lee
- BioMedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon 34141 and
| | - Jin-Ho Choi
- the Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Han-Wook Yoo
- the Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seyun Kim
- From the Department of Biological Sciences
| | - Yong-Mahn Han
- From the Department of Biological Sciences, Center for Stem Cell Differentiation, and
| |
Collapse
|
131
|
Nestor MW, Phillips AW, Artimovich E, Nestor JE, Hussman JP, Blatt GJ. Human Inducible Pluripotent Stem Cells and Autism Spectrum Disorder: Emerging Technologies. Autism Res 2015; 9:513-35. [DOI: 10.1002/aur.1570] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael W. Nestor
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Andre W. Phillips
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Elena Artimovich
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Jonathan E. Nestor
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - John P. Hussman
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Gene J. Blatt
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| |
Collapse
|
132
|
Hotta A, Yamanaka S. From Genomics to Gene Therapy: Induced Pluripotent Stem Cells Meet Genome Editing. Annu Rev Genet 2015; 49:47-70. [PMID: 26407033 DOI: 10.1146/annurev-genet-112414-054926] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The advent of induced pluripotent stem (iPS) cells has opened up numerous avenues of opportunity for cell therapy, including the initiation in September 2014 of the first human clinical trial to treat dry age-related macular degeneration. In parallel, advances in genome-editing technologies by site-specific nucleases have dramatically improved our ability to edit endogenous genomic sequences at targeted sites of interest. In fact, clinical trials have already begun to implement this technology to control HIV infection. Genome editing in iPS cells is a powerful tool and enables researchers to investigate the intricacies of the human genome in a dish. In the near future, the groundwork laid by such an approach may expand the possibilities of gene therapy for treating congenital disorders. In this review, we summarize the exciting progress being made in the utilization of genomic editing technologies in pluripotent stem cells and discuss remaining challenges toward gene therapy applications.
Collapse
Affiliation(s)
- Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8501, Japan; .,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8501, Japan; .,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan.,Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158
| |
Collapse
|
133
|
Vignaud H, Cullin C, Bouchecareilh M. [Alpha-1 antitrypsin deficiency: A model of alteration of protein homeostasis or proteostasis]. Rev Mal Respir 2015; 32:1059-71. [PMID: 26386628 DOI: 10.1016/j.rmr.2015.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is currently the ninth leading cause of death in France and is predicted to become the third leading cause of worldwide morbidity and mortality by 2020. Risk factors for COPD include exposure to tobacco, dusts and chemicals, asthma and alpha-1 antitrypsin deficiency. This genetic disease, significantly under-diagnosed and under-recognized, affects 1 in 2500 live births and is an important cause of lung and, occasionally, liver disease. Alpha-1 antitrypsin deficiency is a pathology of proteostasis-mediated protein folding and trafficking pathways. To date, there are only palliative therapeutic approaches for the symptoms associated with this hereditary disorder. Therefore, a more detailed understanding is required of the folding and trafficking biology governing alpha-1 antitrypsin biogenesis and its response to drugs. Here, we review the cell biological, biochemical and biophysical properties of alpha-1 antitrypsin and its variants, and we suggest that alpha-1 antitrypsin deficiency is an example of cell autonomous and non-autonomous challenges to proteostasis. Finally, we review emerging strategies that may be used to enhance the proteostasis system and protect the lung from alpha-1 antitrypsin deficiency.
Collapse
Affiliation(s)
- H Vignaud
- Institut de biochimie et génétique cellulaires, CNRS UMR 5095, université de Bordeaux, 1, rue Camille-Saint-Saëns, 33077 Bordeaux cedex, France
| | - C Cullin
- Institut de biochimie et génétique cellulaires, CNRS UMR 5095, université de Bordeaux, 1, rue Camille-Saint-Saëns, 33077 Bordeaux cedex, France
| | - M Bouchecareilh
- Institut de biochimie et génétique cellulaires, CNRS UMR 5095, université de Bordeaux, 1, rue Camille-Saint-Saëns, 33077 Bordeaux cedex, France.
| |
Collapse
|
134
|
Tang S, Xie M, Cao N, Ding S. Patient-Specific Induced Pluripotent Stem Cells for Disease Modeling and Phenotypic Drug Discovery. J Med Chem 2015; 59:2-15. [PMID: 26322868 DOI: 10.1021/acs.jmedchem.5b00789] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In vitro cell models are invaluable tools for studying diseases and discovering drugs. Human induced pluripotent stem cells, particularly derived from patients, are an advantageous resource for generating ample supplies of cells to create unique platforms that model disease. This manuscript will review recent developments in modeling a variety of diseases (including their cellular phenotypes) with induced pluripotent stem cells derived from patients. It will also describe how researchers have exploited these models to validate drugs as potential therapeutics for these devastating diseases.
Collapse
Affiliation(s)
- Shibing Tang
- Gladstone Institutes , 1650 Owens Street, San Francisco, California 94158, United States
| | - Min Xie
- Gladstone Institutes , 1650 Owens Street, San Francisco, California 94158, United States
| | - Nan Cao
- Gladstone Institutes , 1650 Owens Street, San Francisco, California 94158, United States
| | - Sheng Ding
- Gladstone Institutes , 1650 Owens Street, San Francisco, California 94158, United States
| |
Collapse
|
135
|
Two Effective Routes for Removing Lineage Restriction Roadblocks: From Somatic Cells to Hepatocytes. Int J Mol Sci 2015; 16:20873-95. [PMID: 26340624 PMCID: PMC4613233 DOI: 10.3390/ijms160920873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
The conversion of somatic cells to hepatocytes has fundamentally re-shaped traditional concepts regarding the limited resources for hepatocyte therapy. With the various induced pluripotent stem cell (iPSC) generation routes, most somatic cells can be effectively directed to functional stem cells, and this strategy will supply enough pluripotent material to generate promising functional hepatocytes. However, the major challenges and potential applications of reprogrammed hepatocytes remain under investigation. In this review, we provide a summary of two effective routes including direct reprogramming and indirect reprogramming from somatic cells to hepatocytes and the general potential applications of the resulting hepatocytes. Through these approaches, we are striving toward the goal of achieving a robust, mature source of clinically relevant lineages.
Collapse
|
136
|
Sampaziotis F, Segeritz CP, Vallier L. Potential of human induced pluripotent stem cells in studies of liver disease. Hepatology 2015; 62:303-11. [PMID: 25502113 DOI: 10.1002/hep.27651] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 12/17/2022]
Abstract
Liver disease is a leading cause of death in the Western world. However, our insight into the underlying disease mechanisms and the development of novel therapeutic agents has been hindered by limited availability of primary tissue, intraspecies variability associated with the use of animal models, and reduced long-term viability of isolated and diseased liver cells. The emergence of human induced pluripotent stem cells and differentiation protocols to generate hepatocyte-like cells has opened the possibility of addressing these issues. Here, we discuss the recent progress and potential in the production of various cell types constituting the liver and their applications to model liver diseases and test drug toxicity in vitro.
Collapse
Affiliation(s)
- Fotios Sampaziotis
- Wellcome Trust Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| | - Charis-Patricia Segeritz
- Wellcome Trust Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| | - Ludovic Vallier
- Wellcome Trust Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, United Kingdom.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
137
|
Tafaleng EN, Chakraborty S, Han B, Hale P, Wu W, Soto-Gutierrez A, Feghali-Bostwick CA, Wilson AA, Kotton DN, Nagaya M, Strom SC, Chowdhury JR, Stolz DB, Perlmutter DH, Fox IJ. Induced pluripotent stem cells model personalized variations in liver disease resulting from α1-antitrypsin deficiency. Hepatology 2015; 62:147-157. [PMID: 25690322 PMCID: PMC4482790 DOI: 10.1002/hep.27753] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/13/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED In the classical form of α1-antitrypsin deficiency (ATD), aberrant intracellular accumulation of misfolded mutant α1-antitrypsin Z (ATZ) in hepatocytes causes hepatic damage by a gain-of-function, "proteotoxic" mechanism. Whereas some ATD patients develop severe liver disease (SLD) that necessitates liver transplantation, others with the same genetic defect completely escape this clinical phenotype. We investigated whether induced pluripotent stem cells (iPSCs) from ATD individuals with or without SLD could model these personalized variations in hepatic disease phenotypes. Patient-specific iPSCs were generated from ATD patients and a control and differentiated into hepatocyte-like cells (iHeps) having many characteristics of hepatocytes. Pulse-chase and endoglycosidase H analysis demonstrate that the iHeps recapitulate the abnormal accumulation and processing of the ATZ molecule, compared to the wild-type AT molecule. Measurements of the fate of intracellular ATZ show a marked delay in the rate of ATZ degradation in iHeps from SLD patients, compared to those from no liver disease patients. Transmission electron microscopy showed dilated rough endoplasmic reticulum in iHeps from all individuals with ATD, not in controls, but globular inclusions that are partially covered with ribosomes were observed only in iHeps from individuals with SLD. CONCLUSION iHeps model the individual disease phenotypes of ATD patients with more rapid degradation of misfolded ATZ and lack of globular inclusions in cells from patients who have escaped liver disease. The results support the concept that "proteostasis" mechanisms, such as intracellular degradation pathways, play a role in observed variations in clinical phenotype and show that iPSCs can potentially be used to facilitate predictions of disease susceptibility for more precise and timely application of therapeutic strategies.
Collapse
Affiliation(s)
- Edgar N. Tafaleng
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA
| | - Souvik Chakraborty
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Bing Han
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA
| | - Pamela Hale
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Wanquan Wu
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA
| | - Alejandro Soto-Gutierrez
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Andrew A. Wilson
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Darrell N. Kotton
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Masaki Nagaya
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Stephen C. Strom
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Donna B. Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - David H. Perlmutter
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ira J. Fox
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
138
|
Teo AKK, Gupta MK, Doria A, Kulkarni RN. Dissecting diabetes/metabolic disease mechanisms using pluripotent stem cells and genome editing tools. Mol Metab 2015; 4:593-604. [PMID: 26413465 PMCID: PMC4563028 DOI: 10.1016/j.molmet.2015.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Diabetes and metabolic syndromes are chronic, devastating diseases with increasing prevalence. Human pluripotent stem cells are gaining popularity in their usage for human in vitro disease modeling. With recent rapid advances in genome editing tools, these cells can now be genetically manipulated with relative ease to study how genes and gene variants contribute to diabetes and metabolic syndromes. SCOPE OF REVIEW We highlight the diabetes and metabolic genes and gene variants, which could potentially be studied, using two powerful technologies - human pluripotent stem cells (hPSCs) and genome editing tools - to aid the elucidation of yet elusive mechanisms underlying these complex diseases. MAJOR CONCLUSIONS hPSCs and the advancing genome editing tools appear to be a timely and potent combination for probing molecular mechanism(s) underlying diseases such as diabetes and metabolic syndromes. The knowledge gained from these hiPSC-based disease modeling studies can potentially be translated into the clinics by guiding clinicians on the appropriate type of medication to use for each condition based on the mechanism of action of the disease.
Collapse
Affiliation(s)
- Adrian Kee Keong Teo
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215, USA ; Discovery Research Division, Institute of Molecular and Cell Biology, Proteos, Singapore 138673, Singapore ; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore ; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Manoj K Gupta
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215, USA
| | - Alessandro Doria
- Section of Epidemiology and Genetics, Joslin Diabetes Center, Department of Epidemiology, Harvard School of Public Health, Boston, MA 02215, USA
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
139
|
Lu J, Einhorn S, Venkatarangan L, Miller M, Mann DA, Watkins PB, LeCluyse E. Morphological and Functional Characterization and Assessment of iPSC-Derived Hepatocytes for In Vitro Toxicity Testing. Toxicol Sci 2015; 147:39-54. [PMID: 26092927 DOI: 10.1093/toxsci/kfv117] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a great challenge and a major concern during late-stage drug development. Induced pluripotent stem cells (iPSC) represent an exciting alternative in vitro model system to explore the role of genetic diversity in DILI, especially when derived from patients who have experienced drug-induced hepatotoxicity. The development and validation of the iPSC-derived hepatocytes as an in vitro cell-based model of DILI is an essential first step in creating more predictive tools for understanding patient-specific hepatotoxic responses to drug treatment. In this study, we performed extensive morphological and functional analyses on iPSC-derived hepatocytes from a commercial source. iPSC-derived hepatocytes exhibit many of the key morphological and functional features of primary hepatocytes, including membrane polarity and production of glycogen, lipids, and key hepatic proteins, such as albumin, asialoglycoprotein receptor and α1-antitrypsin. They maintain functional activity for many drug-metabolizing enzyme pathways and possess active efflux capacity of marker substrates into bile canalicular compartments. Whole genome-wide array analysis of multiple batches of iPSC-derived cells showed that their transcriptional profiles are more similar to those from neonatal and adult hepatocytes than those from fetal liver. Results from experiments using prototype DILI compounds, such as acetaminophen and trovafloxacin, indicate that these cells are able to reproduce key characteristic metabolic and adaptive responses attributed to the drug-induced hepatotoxic effects in vivo. Overall, this novel system represents a promising new tool for understanding the underlying mechanisms of idiosyncratic DILI and for screening new compounds for DILI-related liabilities.
Collapse
Affiliation(s)
- Jingtao Lu
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | | | - Lata Venkatarangan
- QPS Hepatic Biosciences, Research Triangle Park, North Carolina 27709; and
| | - Manda Miller
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - David A Mann
- QPS Hepatic Biosciences, Research Triangle Park, North Carolina 27709; and
| | - Paul B Watkins
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; Schools of Medicine, Pharmacy and Public Health, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599
| | - Edward LeCluyse
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709;
| |
Collapse
|
140
|
Wilson AA, Ying L, Liesa M, Segeritz CP, Mills JA, Shen SS, Jean J, Lonza GC, Liberti DC, Lang AH, Nazaire J, Gower AC, Müeller FJ, Mehta P, Ordóñez A, Lomas DA, Vallier L, Murphy GJ, Mostoslavsky G, Spira A, Shirihai OS, Ramirez MI, Gadue P, Kotton DN. Emergence of a stage-dependent human liver disease signature with directed differentiation of alpha-1 antitrypsin-deficient iPS cells. Stem Cell Reports 2015; 4:873-85. [PMID: 25843048 PMCID: PMC4437473 DOI: 10.1016/j.stemcr.2015.02.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) provide an inexhaustible source of cells for modeling disease and testing drugs. Here we develop a bioinformatic approach to detect differences between the genomic programs of iPSCs derived from diseased versus normal human cohorts as they emerge during in vitro directed differentiation. Using iPSCs generated from a cohort carrying mutations (PiZZ) in the gene responsible for alpha-1 antitrypsin (AAT) deficiency, we find that the global transcriptomes of PiZZ iPSCs diverge from normal controls upon differentiation to hepatic cells. Expression of 135 genes distinguishes PiZZ iPSC-hepatic cells, providing potential clues to liver disease pathogenesis. The disease-specific cells display intracellular accumulation of mutant AAT protein, resulting in increased autophagic flux. Furthermore, we detect beneficial responses to the drug carbamazepine, which further augments autophagic flux, but adverse responses to known hepatotoxic drugs. Our findings support the utility of iPSCs as tools for drug development or prediction of toxicity.
Collapse
Affiliation(s)
- Andrew A Wilson
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Lei Ying
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Marc Liesa
- Evans Center for Interdisciplinary Research, Department of Medicine, Mitochondria ARC, Boston University School of Medicine, Boston, MA 02118, USA
| | - Charis-Patricia Segeritz
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Jason A Mills
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Steven S Shen
- Division of Computational Biomedicine and Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jyhchang Jean
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Geordie C Lonza
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Derek C Liberti
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Alex H Lang
- Physics Department, Boston University, Boston, MA 02215, USA
| | - Jean Nazaire
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Adam C Gower
- Division of Computational Biomedicine and Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Franz-Josef Müeller
- Zentrum für Integrative Psychiatrie, Universitätsklinikums Schleswig-Holstein, Kiel 24105, Germany
| | - Pankaj Mehta
- Physics Department, Boston University, Boston, MA 02215, USA
| | - Adriana Ordóñez
- Cambridge Institute for Medical Research, Cambridge CB0 2XY, UK
| | - David A Lomas
- Cambridge Institute for Medical Research, Cambridge CB0 2XY, UK
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - George J Murphy
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Avrum Spira
- Division of Computational Biomedicine and Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Orian S Shirihai
- Evans Center for Interdisciplinary Research, Department of Medicine, Mitochondria ARC, Boston University School of Medicine, Boston, MA 02118, USA
| | - Maria I Ramirez
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Paul Gadue
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
141
|
Pu J, Frescas D, Zhang B, Feng J. Utilization of TALEN and CRISPR/Cas9 technologies for gene targeting and modification. Exp Biol Med (Maywood) 2015; 240:1065-70. [PMID: 25956682 DOI: 10.1177/1535370215584932] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The capability to modify the genome precisely and efficiently offers an extremely useful tool for biomedical research. Recent developments in genome editing technologies such as transcription activator-like effector nuclease and the clustered regularly interspaced short palindromic repeats system have made genome modification available for a number of organisms with relative ease. Here, we introduce these genome editing techniques, compare and contrast each technical approach and discuss their potential to study the underlying mechanisms of human disease using patient-derived induced pluripotent stem cells.
Collapse
Affiliation(s)
- Jiali Pu
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - David Frescas
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jian Feng
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA Veterans Affairs Western New York Healthcare System, Buffalo, New York 14215, USA
| |
Collapse
|
142
|
Davidson MD, Ware BR, Khetani SR. Stem cell-derived liver cells for drug testing and disease modeling. DISCOVERY MEDICINE 2015; 19:349-58. [PMID: 26105698 PMCID: PMC5768200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Differences between animals and humans in liver pathways now necessitate the use of in vitro models of the human liver for several applications such as drug screening. However, isolated primary human hepatocytes (PHHs) are a limited resource for building such models given shortages of donor organs. In contrast, human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) can be propagated nearly indefinitely and differentiated into hepatocyte-like cells in vitro using soluble factors inspired from liver development. Additionally, iPSCs can be generated from patients with specific genetic backgrounds to study genotype-phenotype relationships. While current protocols to differentiate hESCs and iPSCs into human hepatocyte-like cells (hESC-HHs and iPSC-HHs) still need improvement to yield cells functionally similar to the adult liver, proof-of-concept studies have already shown utility of these cells in drug development and modeling liver diseases such as α1-antitrypsin deficiency, hepatitis B/C viral infections, and malaria. Here, we present an overview of hESC-HH and iPSC-HH culture platforms that have been utilized for the aforementioned applications. We also discuss the use of semiconductor-driven microfabrication tools to precisely control the microenvironment around these cells to enable higher and longer-term liver functions in vitro. Finally, we discuss areas for improvement in creating next generation stem cell-derived liver models. In the future, stem cell-derived hepatocyte-like cells could provide a sustainable cell source for high-throughput drug screening, enabling better mechanistic understanding of human liver diseases for the development of more efficacious and safer therapeutics, and personalized cell-based therapies in the clinic.
Collapse
Affiliation(s)
- Matthew D. Davidson
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523
| | - Brenton R. Ware
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523
| | - Salman R. Khetani
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
143
|
Li S, Guo J, Ying Z, Chen S, Yang L, Chen K, Long Q, Qin D, Pei D, Liu X. Valproic acid-induced hepatotoxicity in Alpers syndrome is associated with mitochondrial permeability transition pore opening-dependent apoptotic sensitivity in an induced pluripotent stem cell model. Hepatology 2015; 61:1730-9. [PMID: 25605636 DOI: 10.1002/hep.27712] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/13/2015] [Indexed: 12/29/2022]
Abstract
UNLABELLED Valproic acid (VPA) is widely used to treat epilepsy, migraine, chronic headache, bipolar disorder, and as adjuvant chemotherapy, but potentially causes idiosyncratic liver injury. Alpers-Huttenlocher syndrome (AHS), a neurometabolic disorder caused by mutations in mitochondrial DNA polymerase gamma (POLG), is associated with an increased risk of developing fatal VPA hepatotoxicity. However, the mechanistic link of this clinical mystery remains unknown. Here, fibroblasts from 2 AHS patients were reprogrammed to induced pluripotent stem cells (iPSCs) and then differentiated to hepatocyte-like cells (AHS iPSCs-Hep). Both AHS iPSCs-Hep are more sensitive to VPA-induced mitochondrial-dependent apoptosis than controls, showing more activated caspase-9 and cytochrome c release. Strikingly, levels of both soluble and oligomeric optic atrophy 1, which together keep cristae junctions tight, are reduced in AHS iPSCs-Hep. Furthermore, POLG mutation cells show reduced POLG expression, mitochondrial DNA (mtDNA) amount, mitochondrial adenosine triphosphate production, as well as abnormal mitochondrial ultrastructure after differentiation to hepatocyte-like cells. Superoxide flashes, spontaneous bursts of superoxide generation, caused by opening of the mitochondrial permeability transition pore (mPTP), occur more frequently in AHS iPSCs-Hep. Moreover, the mPTP inhibitor, cyclosporine A, rescues VPA-induced apoptotic sensitivity in AHS iPSCs-Hep. This result suggests that targeting mPTP opening could be an effective method to prevent hepatotoxicity by VPA in AHS patients. In addition, carnitine or N-acetylcysteine, which has been used in the treatment of VPA-induced hepatotoxicity, is able to rescue VPA-induced apoptotic sensitivity in AHS iPSCs-Hep. CONCLUSION AHS iPSCs-Hep are more sensitive to the VPA-induced mitochondrial-dependent apoptotic pathway, and this effect is mediated by mPTP opening. Toxicity models in genetic diseases using iPSCs enable the evaluation of drugs for therapeutic targets.
Collapse
Affiliation(s)
- Shengbiao Li
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Science and Technology of China, Hefei, Anhui, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Nicholson SA, Moyo B, Arbuthnot PB. Progress and prospects of engineered sequence-specific DNA modulating technologies for the management of liver diseases. World J Hepatol 2015; 7:859-873. [PMID: 25937863 PMCID: PMC4411528 DOI: 10.4254/wjh.v7.i6.859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/16/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are one of the leading causes of mortality in the world. The hepatic illnesses, which include inherited metabolic disorders, hemophilias and viral hepatitides, are complex and currently difficult to treat. The maturation of gene therapy has heralded new avenues for developing effective intervention for these diseases. DNA modification using gene therapy is now possible and available technology may be exploited to achieve long term therapeutic benefit. The ability to edit DNA sequences specifically is of paramount importance to advance gene therapy for application to liver diseases. Recent development of technologies that allow for this has resulted in rapid advancement of gene therapy to treat several chronic illnesses. Improvements in application of derivatives of zinc finger proteins (ZFPs), transcription activator-like effectors (TALEs), homing endonucleases (HEs) and clustered regularly interspaced palindromic repeats (CRISPR) and CRISPR associated (Cas) systems have been particularly important. These sequence-specific technologies may be used to modify genes permanently and also to alter gene transcription for therapeutic purposes. This review describes progress in development of ZFPs, TALEs, HEs and CRISPR/Cas for application to treating liver diseases.
Collapse
|
145
|
Ishikawa T, Kobayashi M, Yanagi S, Kato C, Takashima R, Kobayashi E, Hagiwara K, Ochiya T. Human induced hepatic lineage-oriented stem cells: autonomous specification of human iPS cells toward hepatocyte-like cells without any exogenous differentiation factors. PLoS One 2015; 10:e0123193. [PMID: 25875613 PMCID: PMC4395359 DOI: 10.1371/journal.pone.0123193] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/02/2015] [Indexed: 12/19/2022] Open
Abstract
Preparing targeted cells for medical applications from human induced pluripotent stem cells (hiPSCs) using growth factors, compounds, or gene transfer has been challenging. Here, we report that human induced hepatic lineage-oriented stem cells (hiHSCs) were generated and expanded as a new type of hiPSC under non-typical coculture with feeder cells in a chemically defined hiPSC medium at a very high density. Self-renewing hiHSCs expressed markers of both human embryonic stem cells (hESCs) and hepatocytes. Those cells were highly expandable, markedly enhancing gene expression of serum hepatic proteins and cytochrome P450 enzymes with the omission of FGF-2 from an undefined hiPSC medium. The hepatic specification of hiHSCs was not attributable to the genetic and epigenetic backgrounds of the starting cells, as they were established from distinct donors and different types of cells. Approximately 90% of hiHSCs autonomously differentiated to hepatocyte-like cells, even in a defined minimum medium without any of the exogenous growth factors necessary for hepatic specification. After 12 days of this culture, the differentiated cells significantly enhanced gene expression of serum hepatic proteins (ALB, SERPINA1, TTR, TF, FABP1, FGG, AGT, RBP4, and AHSG), conjugating enzymes (UGT2B4, UGT2B7, UGT2B10, GSTA2, and GSTA5), transporters (SULT2A1, SLC13A5, and SLCO2B1), and urea cycle-related enzymes (ARG1 and CPS1). In addition, the hepatocyte-like cells performed key functions of urea synthesis, albumin secretion, glycogen storage, indocyanine green uptake, and low-density lipoprotein uptake. The autonomous hepatic specification of hiHSCs was due to their culture conditions (coculture with feeder cells in a defined hiPSC medium at a very high density) in self-renewal rather than in differentiation. These results suggest the feasibility of preparing large quantities of hepatocytes as a convenient and inexpensive hiPSC differentiation. Our study also suggests the necessity of optimizing culture conditions to generate other specific lineage-oriented hiPSCs, allowing for a very simple differentiation.
Collapse
Affiliation(s)
- Tetsuya Ishikawa
- Core Facilities for Research and Innovative Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- * E-mail:
| | - Momoko Kobayashi
- Core Facilities for Research and Innovative Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | - Keitaro Hagiwara
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| |
Collapse
|
146
|
Smith C, Abalde-Atristain L, He C, Brodsky BR, Braunstein EM, Chaudhari P, Jang YY, Cheng L, Ye Z. Efficient and allele-specific genome editing of disease loci in human iPSCs. Mol Ther 2015; 23:570-7. [PMID: 25418680 PMCID: PMC4351458 DOI: 10.1038/mt.2014.226] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 11/17/2014] [Indexed: 12/26/2022] Open
Abstract
Efficient and precise genome editing is crucial for realizing the full research and therapeutic potential of human induced pluripotent stem cells (iPSCs). Engineered nucleases including CRISPR/Cas9 and transcription activator like effector nucleases (TALENs) provide powerful tools for enhancing gene-targeting efficiency. In this study, we investigated the relative efficiencies of CRISPR/Cas9 and TALENs in human iPSC lines for inducing both homologous donor-based precise genome editing and nonhomologous end joining (NHEJ)-mediated gene disruption. Significantly higher frequencies of NHEJ-mediated insertions/deletions were detected at several endogenous loci using CRISPR/Cas9 than using TALENs, especially at nonexpressed targets in iPSCs. In contrast, comparable efficiencies of inducing homologous donor-based genome editing were observed at disease-associated loci in iPSCs. In addition, we investigated the specificity of guide RNAs used in the CRISPR/Cas9 system in targeting disease-associated point mutations in patient-specific iPSCs. Using myeloproliferative neoplasm patient-derived iPSCs that carry an acquired JAK2-V617F point mutation and α1-antitrypsin (AAT) deficiency patient-derived iPSCs that carry an inherited Z-AAT point mutation, we demonstrate that Cas9 can specifically target either the mutant or the wild-type allele with little disruption at the other allele differing by a single nucleotide. Overall, our results demonstrate the advantages of the CRISPR/Cas9 system in allele-specific genome targeting and in NHEJ-mediated gene disruption.
Collapse
Affiliation(s)
- Cory Smith
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leire Abalde-Atristain
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chaoxia He
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brett R Brodsky
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Evan M Braunstein
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pooja Chaudhari
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yoon-Young Jang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Linzhao Cheng
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaohui Ye
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
147
|
Lee HB, Sebo ZL, Peng Y, Guo Y. An optimized TALEN application for mutagenesis and screening in Drosophila melanogaster. CELLULAR LOGISTICS 2015. [PMID: 26196022 PMCID: PMC4501208 DOI: 10.1080/21592799.2015.1023423] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transcription activator-like effector nucleases (TALENs) emerged as powerful tools for locus-specific genome engineering. Due to the ease of TALEN assembly, the key to streamlining TALEN-induced mutagenesis lies in identifying efficient TALEN pairs and optimizing TALEN mRNA injection concentrations to minimize the effort to screen for mutant offspring. Here we present a simple methodology to quantitatively assess bi-allelic TALEN cutting, as well as approaches that permit accurate measures of somatic and germline mutation rates in Drosophila melanogaster. We report that percent lethality from pilot injection of candidate TALEN mRNAs into Lig4 null embryos can be used to effectively gauge bi-allelic TALEN cutting efficiency and occurs in a dose-dependent manner. This timely Lig4-dependent embryonic survival assay also applies to CRISPR/Cas9-mediated targeting. Moreover, the somatic mutation rate of individual G0 flies can be rapidly quantitated using SURVEYOR nuclease and capillary electrophoresis, and germline transmission rate determined by scoring progeny of G0 outcrosses. Together, these optimized methods provide an effective step-wise guide for routine TALEN-mediated gene editing in the fly.
Collapse
Key Words
- TALEN
- TALENs, Transcription activator-like effector nucleases; TALEs, TAL effectors; ZFNs, Zinc Finger Nucleases; CRISPR, Clustered Regularly Interspersed Short Palindromic Repeats; Cas9, CRISPR-associated; RVDs, repeat-variable diresidues; DSBs, double-stranded breaks; NHEJ, non-homologous end joining; HR, homologous recombination; RFLP, restriction fragment length polymorphism; HRMA, high resolution melt analysis.
- engineered endonuclease
- genome engineering
- mutagenesis
- screening
Collapse
Affiliation(s)
- Han B Lee
- Graduate Program in Neurobiology of Disease; Mayo Graduate School; Mayo Clinic ; Rochester, MN, USA
| | | | - Ying Peng
- Department of Biochemistry and Molecular Biology; Mayo Clinic ; Rochester, MN, USA
| | - Yi Guo
- Department of Biochemistry and Molecular Biology; Mayo Clinic ; Rochester, MN, USA ; Division of Gastroenterology and Hepatology; Mayo Clinic ; Rochester, MN, USA
| |
Collapse
|
148
|
From Human-Induced Pluripotent Stem Cells to Liver Disease Modeling: A Focus on Dyslipidemia. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0067-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
149
|
Singh VK, Kalsan M, Kumar N, Saini A, Chandra R. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol 2015; 3:2. [PMID: 25699255 PMCID: PMC4313779 DOI: 10.3389/fcell.2015.00002] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/06/2015] [Indexed: 12/12/2022] Open
Abstract
Recent progresses in the field of Induced Pluripotent Stem Cells (iPSCs) have opened up many gateways for the research in therapeutics. iPSCs are the cells which are reprogrammed from somatic cells using different transcription factors. iPSCs possess unique properties of self renewal and differentiation to many types of cell lineage. Hence could replace the use of embryonic stem cells (ESC), and may overcome the various ethical issues regarding the use of embryos in research and clinics. Overwhelming responses prompted worldwide by a large number of researchers about the use of iPSCs evoked a large number of peple to establish more authentic methods for iPSC generation. This would require understanding the underlying mechanism in a detailed manner. There have been a large number of reports showing potential role of different molecules as putative regulators of iPSC generating methods. The molecular mechanisms that play role in reprogramming to generate iPSCs from different types of somatic cell sources involves a plethora of molecules including miRNAs, DNA modifying agents (viz. DNA methyl transferases), NANOG, etc. While promising a number of important roles in various clinical/research studies, iPSCs could also be of great use in studying molecular mechanism of many diseases. There are various diseases that have been modeled by uing iPSCs for better understanding of their etiology which maybe further utilized for developing putative treatments for these diseases. In addition, iPSCs are used for the production of patient-specific cells which can be transplanted to the site of injury or the site of tissue degeneration due to various disease conditions. The use of iPSCs may eliminate the chances of immune rejection as patient specific cells may be used for transplantation in various engraftment processes. Moreover, iPSC technology has been employed in various diseases for disease modeling and gene therapy. The technique offers benefits over other similar techniques such as animal models. Many toxic compounds (different chemical compounds, pharmaceutical drugs, other hazardous chemicals, or environmental conditions) which are encountered by humans and newly designed drugs may be evaluated for toxicity and effects by using iPSCs. Thus, the applications of iPSCs in regenerative medicine, disease modeling, and drug discovery are enormous and should be explored in a more comprehensive manner.
Collapse
Affiliation(s)
- Vimal K Singh
- INSPIRE Faculty, Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Manisha Kalsan
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Neeraj Kumar
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Abhishek Saini
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Ramesh Chandra
- B. R. Ambedkar Centre for Biomedical Research, University of Delhi Delhi, India
| |
Collapse
|
150
|
Path from schizophrenia genomics to biology: gene regulation and perturbation in neurons derived from induced pluripotent stem cells and genome editing. Neurosci Bull 2015; 31:113-27. [PMID: 25575480 DOI: 10.1007/s12264-014-1488-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 11/03/2014] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SZ) is a devastating mental disorder afflicting 1% of the population. Recent genome-wide association studies (GWASs) of SZ have identified >100 risk loci. However, the causal variants/genes and the causal mechanisms remain largely unknown, which hinders the translation of GWAS findings into disease biology and drug targets. Most risk variants are noncoding, thus likely regulate gene expression. A major mechanism of transcriptional regulation is chromatin remodeling, and open chromatin is a versatile predictor of regulatory sequences. MicroRNA-mediated post-transcriptional regulation plays an important role in SZ pathogenesis. Neurons differentiated from patient-specific induced pluripotent stem cells (iPSCs) provide an experimental model to characterize the genetic perturbation of regulatory variants that are often specific to cell type and/or developmental stage. The emerging genome-editing technology enables the creation of isogenic iPSCs and neurons to efficiently characterize the effects of SZ-associated regulatory variants on SZ-relevant molecular and cellular phenotypes involving dopaminergic, glutamatergic, and GABAergic neurotransmissions. SZ GWAS findings equipped with the emerging functional genomics approaches provide an unprecedented opportunity for understanding new disease biology and identifying novel drug targets.
Collapse
|