101
|
Simpson RML, Hong X, Wong MM, Karamariti E, Bhaloo SI, Warren D, Kong W, Hu Y, Xu Q. Hyaluronan Is Crucial for Stem Cell Differentiation into Smooth Muscle Lineage. Stem Cells 2016; 34:1225-38. [PMID: 26867148 PMCID: PMC4864761 DOI: 10.1002/stem.2328] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/09/2015] [Accepted: 12/09/2015] [Indexed: 01/16/2023]
Abstract
Deciphering the extracellular signals that regulate SMC differentiation from stem cells is vital to further our understanding of the pathogenesis of vascular disease and for development of cell-based therapies and tissue engineering. Hyaluronan (HA) has emerged as an important component of the stem cell niche, however its role during stem cell differentiation is a complicated and inadequately defined process. This study aimed to investigate the role of HA in embryonic stem cell (ESC) differentiation toward a SMC lineage. ESCs were seeded on collagen-IV in differentiation medium to generate ESC-derived SMCs (esSMCs). Differentiation coincided with increased HA synthase (HAS) 2 expression, accumulation of extracellular HA and its assembly into pericellular matrices. Inhibition of HA synthesis by 4-methylumbelliferone (4MU), removal of the HA coat by hyaluronidase (HYAL) or HAS2 knockdown led to abrogation of SMC gene expression. HA activates ERK1/2 and suppresses EGFR signaling pathways via its principle receptor, CD44. EGFR inactivation coincided with increased binding to CD44, which was further augmented by addition of high molecular weight (HMW)-HA either exogenously or via HAS2 overexpression through adenoviral gene transfer. HMW-HA-stimulated esSMCs displayed a functional role in vascular tissue engineering ex vivo, vasculogenesis in a matrigel plug model and SMC accumulation in neointimal lesions of vein grafts in mice. These findings demonstrate that HAS2-induced HA synthesis and organization drives ESC-SMC differentiation. Thus, remodeling of the HA microenvironment is a critical step in directing stem cell differentiation toward a vascular lineage, highlighting HA as a potential target for treatment of vascular diseases. Stem Cells 2016;34:1225-1238.
Collapse
Affiliation(s)
- Russell M L Simpson
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Xuechong Hong
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Mei Mei Wong
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Eirini Karamariti
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Shirin Issa Bhaloo
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Derek Warren
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Yanhua Hu
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Qingbo Xu
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| |
Collapse
|
102
|
Comprehensive Identification of Krüppel-Like Factor Family Members Contributing to the Self-Renewal of Mouse Embryonic Stem Cells and Cellular Reprogramming. PLoS One 2016; 11:e0150715. [PMID: 26943822 PMCID: PMC4778944 DOI: 10.1371/journal.pone.0150715] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/18/2016] [Indexed: 12/27/2022] Open
Abstract
Pluripotency is maintained in mouse embryonic stem (ES) cells and is induced from somatic cells by the activation of appropriate transcriptional regulatory networks. Krüppel-like factor gene family members, such as Klf2, Klf4 and Klf5, have important roles in maintaining the undifferentiated state of mouse ES cells as well as in cellular reprogramming, yet it is not known whether other Klf family members exert self-renewal and reprogramming functions when overexpressed. In this study, we examined whether overexpression of any representative Klf family member, such as Klf1–Klf10, would be sufficient for the self-renewal of mouse ES cells. We found that only Klf2, Klf4, and Klf5 produced leukemia inhibitory factor (LIF)-independent self-renewal, although most KLF proteins, if not all, have the ability to occupy the regulatory regions of Nanog, a critical Klf target gene. We also examined whether overexpression of any of Klf1-Klf10 would be sufficient to convert epiblast stem cells into a naïve pluripotent state and found that Klf5 had such reprogramming ability, in addition to Klf2 and Klf4. We also delineated the functional domains of the Klf2 protein for LIF-independent self-renewal and reprogramming. Interestingly, we found that both the N-terminal transcriptional activation and C-terminal zinc finger domains were indispensable for this activity. Taken together, our comprehensive analysis provides new insight into the contribution of Klf family members to mouse ES self-renewal and cellular reprogramming.
Collapse
|
103
|
Abstract
The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced pluripotent stem cells (iPSCs). This process proved to be remarkably simple from a technical perspective, only needing the host cell and a defined cocktail of transcription factors, with four factors - octamer-binding protein 3/4 (OCT3/4), SOX2, Krüppel-like factor 4 (KLF4) and MYC (collectively referred to as OSKM) - initially used. The mechanisms underlying transcription factor-mediated reprogramming are still poorly understood; however, several mechanistic insights have recently been obtained. Recent years have also brought significant progress in increasing the efficiency of this technique, making it more amenable to applications in the fields of regenerative medicine, disease modelling and drug discovery.
Collapse
|
104
|
Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 2016; 17:155-69. [PMID: 26860365 DOI: 10.1038/nrm.2015.28] [Citation(s) in RCA: 440] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular mechanisms and signalling pathways that regulate the in vitro preservation of distinct pluripotent stem cell configurations, and their induction in somatic cells by direct reprogramming, constitute a highly exciting area of research. In this Review, we integrate recent discoveries related to isolating unique naive and primed pluripotent stem cell states with altered functional and molecular characteristics, and from different species. We provide an overview of the pathways underlying pluripotent state transitions and interconversion in vitro and in vivo. We conclude by highlighting unresolved key questions, future directions and potential novel applications of such dynamic pluripotent cell states.
Collapse
|
105
|
Dehdilani N, Shamsasenjan K, Movassaghpour A, Akbarzadehlaleh P, Amoughli Tabrizi B, Parsa H, Sabagi F. Improved Survival and Hematopoietic Differentiation of Murine Embryonic Stem Cells on Electrospun Polycaprolactone Nanofiber. CELL JOURNAL 2016; 17:629-38. [PMID: 26862522 PMCID: PMC4746413 DOI: 10.22074/cellj.2016.3835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 11/13/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Three-dimensional (3D) biomimetic nanofiber scaffolds have widespread ap- plications in biomedical tissue engineering. They provide a suitable environment for cel- lular adhesion, survival, proliferation and differentiation, guide new tissue formation and development, and are one of the outstanding goals of tissue engineering. Electrospinning has recently emerged as a leading technique for producing biomimetic scaffolds with mi- cro to nanoscale topography and a high porosity similar to the natural extracellular matrix (ECM). These scaffolds are comprised of synthetic and natural polymers for tissue engi- neering applications. Several kinds of cells such as human embryonic stem cells (hESCs) and mouse ESCs (mESCs) have been cultured and differentiated on nanofiber scaffolds. mESCs can be induced to differentiate into a particular cell lineage when cultured as em- bryoid bodies (EBs) on nano-sized scaffolds. MATERIALS AND METHODS We cultured mESCs (2500 cells/100 µl) in 96-well plates with knockout Dulbecco's modified eagle medium (DMEM-KO) and Roswell Park Memorial Institute-1640 (RPMI-1640), both supplemented with 20% ESC grade fetal bovine serum (FBS) and essential factors in the presence of leukemia inhibitory factor (LIF). mESCs were seeded at a density of 2500 cells/100 µl onto electrospun polycaprolactone (PCL) nanofibers in 96-well plates. The control group comprised mESCs grown on tissue cul- ture plates (TCP) at a density of 2500 cells/100 µl. Differentiation of mESCs into mouse hematopoietic stem cells (mHSCs) was performed by stem cell factor (SCF), interleukin-3 (IL-3), IL-6 and Fms-related tyrosine kinase ligand (Flt3-L) cytokines for both the PCL and TCP groups. We performed an experimental study of mESCs differentiation. RESULTS PCL was compared to conventional TCP for survival and differentiation of mESCs to mHSCs. There were significantly more mESCs in the PCL group. Flowcyto- metric analysis revealed differences in hematopoietic differentiation between the PCL and TCP culture systems. There were more CD34+(Sca1+) and CD133+cells subpopulations in the PCL group compared to the conventional TCP culture system. CONCLUSION The nanofiber scaffold, as an effective surface, improves survival and differentiation of mESCs into mHSCs compared to gelatin coated TCP. More studies are necessary to understand how the topographical features of electrospun fibers af- fect cell growth and behavior. This can be achieved by designing biomimetic scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Nima Dehdilani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Iran Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahram Amoughli Tabrizi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamed Parsa
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sabagi
- Iran Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
106
|
Ma X, Chen H, Chen L. A dual role of Erk signaling in embryonic stem cells. Exp Hematol 2016; 44:151-6. [PMID: 26751246 DOI: 10.1016/j.exphem.2015.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/25/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
Abstract
Erk signaling plays a critical role in maintaining the pluripotency of mouse embryonic stem cells (ESCs). Inhibition of Mek/Erk signaling by pharmacologic Mek inhibitor promotes self-renewal and pluripotency of mouse ESCs. However, knockout of Erk1/2 genes compromises the self-renewal and genomic stability of mouse ESCs. In this review, we summarize recent progress in understanding the role of Erk signaling in pluripotency maintenance, discuss the dual role of Erk in mouse ESCs, and provide explanations for the conflicting data regarding Mek inhibition and Erk knockout. Remaining questions and the prospects of Erk signaling in pluripotency maintenance are also discussed.
Collapse
Affiliation(s)
- Xinwei Ma
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences and College of Life Sciences, Nankai University, Tianjin, China
| | - Haixia Chen
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences and College of Life Sciences, Nankai University, Tianjin, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences and College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
107
|
Sladitschek HL, Neveu PA. The bimodally expressed microRNA miR-142 gates exit from pluripotency. Mol Syst Biol 2015; 11:850. [PMID: 26690966 PMCID: PMC4704488 DOI: 10.15252/msb.20156525] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A stem cell's decision to self‐renew or differentiate is thought to critically depend on signaling cues provided by its environment. It is unclear whether stem cells have the intrinsic capacity to control their responsiveness to environmental signals that can be fluctuating and noisy. Using a novel single‐cell microRNA activity reporter, we show that miR‐142 is bimodally expressed in embryonic stem cells, creating two states indistinguishable by pluripotency markers. A combination of modeling and quantitative experimental data revealed that mESCs switch stochastically between the two miR‐142 states. We find that cells with high miR‐142 expression are irresponsive to differentiation signals while cells with low miR‐142 expression can respond to differentiation cues. We elucidate the molecular mechanism underpinning the bimodal regulation of miR‐142 as a double‐negative feedback loop between miR‐142 and KRAS/ERK signaling and derive a quantitative description of this bistable system. miR‐142 switches the activation status of key intracellular signaling pathways thereby locking cells in an undifferentiated state. This reveals a novel mechanism to maintain a stem cell reservoir buffered against fluctuating signaling environments.
Collapse
Affiliation(s)
- Hanna L Sladitschek
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pierre A Neveu
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
108
|
Apocynin and Diphenyleneiodonium Induce Oxidative Stress and Modulate PI3K/Akt and MAPK/Erk Activity in Mouse Embryonic Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7409196. [PMID: 26788250 PMCID: PMC4691611 DOI: 10.1155/2016/7409196] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/13/2015] [Indexed: 01/06/2023]
Abstract
Reactive oxygen species (ROS) are important regulators of cellular functions. In embryonic stem cells, ROS are suggested to influence differentiation status. Regulated ROS formation is catalyzed primarily by NADPH-dependent oxidases (NOXs). Apocynin and diphenyleneiodonium are frequently used inhibitors of NOXs; however, both exhibit uncharacterized effects not related to NOXs inhibition. Interestingly, in our model of mouse embryonic stem cells we demonstrate low expression of NOXs. Therefore we aimed to clarify potential side effects of these drugs. Both apocynin and diphenyleneiodonium impaired proliferation of cells. Surprisingly, we observed prooxidant activity of these drugs determined by hydroethidine. Further, we revealed that apocynin inhibits PI3K/Akt pathway with its downstream transcriptional factor Nanog. Opposite to this, apocynin augmented activity of canonical Wnt signaling. On the contrary, diphenyleneiodonium activated both PI3K/Akt and Erk signaling pathways without affecting Wnt. Our data indicates limits and possible unexpected interactions of NOXs inhibitors with intracellular signaling pathways.
Collapse
|
109
|
Dolatshad NF, Hellen N, Jabbour RJ, Harding SE, Földes G. G-protein Coupled Receptor Signaling in Pluripotent Stem Cell-derived Cardiovascular Cells: Implications for Disease Modeling. Front Cell Dev Biol 2015; 3:76. [PMID: 26697426 PMCID: PMC4673467 DOI: 10.3389/fcell.2015.00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
Human pluripotent stem cell derivatives show promise as an in vitro platform to study a range of human cardiovascular diseases. A better understanding of the biology of stem cells and their cardiovascular derivatives will help to understand the strengths and limitations of this new model system. G-protein coupled receptors (GPCRs) are key regulators of stem cell maintenance and differentiation and have an important role in cardiovascular cell signaling. In this review, we will therefore describe the state of knowledge concerning the regulatory role of GPCRs in both the generation and function of pluripotent stem cell derived-cardiomyocytes, -endothelial, and -vascular smooth muscle cells. We will consider how far the in vitro disease models recapitulate authentic GPCR signaling and provide a useful basis for discovery of disease mechanisms or design of therapeutic strategies.
Collapse
Affiliation(s)
- Nazanin F Dolatshad
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Nicola Hellen
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Richard J Jabbour
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Sian E Harding
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Gabor Földes
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK ; The Heart and Vascular Center of Semmelweis University, Semmelweis University Budapest, Hungary
| |
Collapse
|
110
|
Mah IK, Soloff R, Hedrick SM, Mariani FV. Atypical PKC-iota Controls Stem Cell Expansion via Regulation of the Notch Pathway. Stem Cell Reports 2015; 5:866-880. [PMID: 26527382 PMCID: PMC4649379 DOI: 10.1016/j.stemcr.2015.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
The number of stem/progenitor cells available can profoundly impact tissue homeostasis and the response to injury or disease. Here, we propose that an atypical PKC, Prkci, is a key player in regulating the switch from an expansion to a differentiation/maintenance phase via regulation of Notch, thus linking the polarity pathway with the control of stem cell self-renewal. Prkci is known to influence symmetric cell division in invertebrates; however a definitive role in mammals has not yet emerged. Using a genetic approach, we find that loss of Prkci results in a marked increase in the number of various stem/progenitor cells. The mechanism used likely involves inactivation and symmetric localization of NUMB, leading to the activation of NOTCH1 and its downstream effectors. Inhibition of atypical PKCs may be useful for boosting the production of pluripotent stem cells, multipotent stem cells, or possibly even primordial germ cells by promoting the stem cell/progenitor fate. PRKCi, a polarity protein, regulates expansion of various stem/progenitor cells PRKCi acts in this capacity via a Notch-dependent pathway Thus, PRKCi acts as a link between polarity and stem cell self-renewal Inhibition of aPKCs may be generally useful for expanding progenitor populations
Collapse
Affiliation(s)
- In Kyoung Mah
- Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo St., Los Angeles, CA 90033, USA
| | - Rachel Soloff
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen M Hedrick
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Francesca V Mariani
- Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo St., Los Angeles, CA 90033, USA.
| |
Collapse
|
111
|
Erk signaling is indispensable for genomic stability and self-renewal of mouse embryonic stem cells. Proc Natl Acad Sci U S A 2015; 112:E5936-43. [PMID: 26483458 DOI: 10.1073/pnas.1516319112] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inhibition of Mek/Erk signaling by pharmacological Mek inhibitors promotes self-renewal and pluripotency of mouse embryonic stem cells (ESCs). Intriguingly, Erk signaling is essential for human ESC self-renewal. Here we demonstrate that Erk signaling is critical for mouse ESC self-renewal and genomic stability. Erk-depleted ESCs cannot be maintained. Lack of Erk leads to rapid telomere shortening and genomic instability, in association with misregulated expression of pluripotency genes, reduced cell proliferation, G1 cell-cycle arrest, and increased apoptosis. Erk signaling is also required for the activation of differentiation genes but not for the repression of pluripotency genes during ESC differentiation. Furthermore, we find an Erk-independent function of Mek, which may explain the diverse effects of Mek inhibition and Erk knockout on ESC self-renewal. Together, in contrast to the prevailing view, Erk signaling is required for telomere maintenance, genomic stability, and self-renewal of mouse ESCs.
Collapse
|
112
|
Abstract
Leukemia inhibitory factor (LIF) is the most pleiotropic member of the interleukin-6 family of cytokines. It utilises a receptor that consists of the LIF receptor β and gp130 and this receptor complex is also used by ciliary neurotrophic growth factor (CNTF), oncostatin M, cardiotrophin1 (CT1) and cardiotrophin-like cytokine (CLC). Despite common signal transduction mechanisms (JAK/STAT, MAPK and PI3K) LIF can have paradoxically opposite effects in different cell types including stimulating or inhibiting each of cell proliferation, differentiation and survival. While LIF can act on a wide range of cell types, LIF knockout mice have revealed that many of these actions are not apparent during ordinary development and that they may be the result of induced LIF expression during tissue damage or injury. Nevertheless LIF does appear to have non-redundant actions in maternal receptivity to blastocyst implantation, placental formation and in the development of the nervous system. LIF has also found practical use in the maintenance of self-renewal and totipotency of embryonic stem cells and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Royal Pde, Melbourne 3050, VIC, Australia.
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Royal Pde, Melbourne 3050, VIC, Australia
| |
Collapse
|
113
|
Kolodziejczyk AA, Kim JK, Tsang JCH, Ilicic T, Henriksson J, Natarajan KN, Tuck AC, Gao X, Bühler M, Liu P, Marioni JC, Teichmann SA. Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular Transcriptional Variation. Cell Stem Cell 2015; 17:471-85. [PMID: 26431182 PMCID: PMC4595712 DOI: 10.1016/j.stem.2015.09.011] [Citation(s) in RCA: 361] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 03/07/2015] [Accepted: 09/15/2015] [Indexed: 01/27/2023]
Abstract
Embryonic stem cell (ESC) culture conditions are important for maintaining long-term self-renewal, and they influence cellular pluripotency state. Here, we report single cell RNA-sequencing of mESCs cultured in three different conditions: serum, 2i, and the alternative ground state a2i. We find that the cellular transcriptomes of cells grown in these conditions are distinct, with 2i being the most similar to blastocyst cells and including a subpopulation resembling the two-cell embryo state. Overall levels of intercellular gene expression heterogeneity are comparable across the three conditions. However, this masks variable expression of pluripotency genes in serum cells and homogeneous expression in 2i and a2i cells. Additionally, genes related to the cell cycle are more variably expressed in the 2i and a2i conditions. Mining of our dataset for correlations in gene expression allowed us to identify additional components of the pluripotency network, including Ptma and Zfp640, illustrating its value as a resource for future discovery.
Collapse
Affiliation(s)
- Aleksandra A Kolodziejczyk
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jong Kyoung Kim
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jason C H Tsang
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Tomislav Ilicic
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Johan Henriksson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Kedar N Natarajan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Alex C Tuck
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Xuefei Gao
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK; University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Sarah A Teichmann
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
114
|
Li W, Chen S, Li JY. Human induced pluripotent stem cells in Parkinson's disease: A novel cell source of cell therapy and disease modeling. Prog Neurobiol 2015; 134:161-77. [PMID: 26408505 DOI: 10.1016/j.pneurobio.2015.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) are two novel cell sources for studying neurodegenerative diseases. Dopaminergic neurons derived from hiPSCs/hESCs have been implicated to be very useful in Parkinson's disease (PD) research, including cell replacement therapy, disease modeling and drug screening. Recently, great efforts have been made to improve the application of hiPSCs/hESCs in PD research. Considerable advances have been made in recent years, including advanced reprogramming strategies without the use of viruses or using fewer transcriptional factors, optimized methods for generating highly homogeneous neural progenitors with a larger proportion of mature dopaminergic neurons and better survival and integration after transplantation. Here we outline the progress that has been made in these aspects in recent years, particularly during the last year, and also discuss existing issues that need to be addressed.
Collapse
Affiliation(s)
- Wen Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 221 84 Lund, Sweden
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China.
| | - Jia-Yi Li
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 221 84 Lund, Sweden.
| |
Collapse
|
115
|
Abstract
Leukemia inhibitory factor (LIF) is a member of the interleukin-6 (IL-6) cytokine family. All members of this family activate signal transducer and activator of transcription 3 (STAT3), a transcription factor that influences stem and progenitor cell identity, proliferation and cytoprotection. The role of LIF in development was first identified when LIF was demonstrated to support the propagation of mouse embryonic stem cells. Subsequent studies of mice deficient for components of the LIF pathway have revealed important roles for LIF signaling during development and homeostasis. Here and in the accompanying poster, we provide a broad overview of JAK-STAT signaling during development, with a specific focus on LIF-mediated JAK-STAT3 activation.
Collapse
Affiliation(s)
- Kento Onishi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9 Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5 The Donnelly Centre, University of Toronto, 160 College St., Toronto, Ontario, Canada M5S 3E1 McEwen Centre for Regenerative Medicine, University Health Network, 101 College St., Toronto, Ontario, Canada M5G 1L7
| |
Collapse
|
116
|
Ohtsuka S, Nakai-Futatsugi Y, Niwa H. LIF signal in mouse embryonic stem cells. JAKSTAT 2015; 4:e1086520. [PMID: 27127728 PMCID: PMC4802755 DOI: 10.1080/21623996.2015.1086520] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/18/2015] [Indexed: 12/22/2022] Open
Abstract
Since the establishment of mouse embryonic stem cells (mESCs) in the 1980s, a number of important notions on the self-renewal of pluripotent stem cells in vitro have been found. In serum containing conventional culture, an exogenous cytokine, leukemia inhibitory factor (LIF), is absolutely essential for the maintenance of pluripotency. In contrast, in serum-free culture with simultaneous inhibition of Map-kinase and Gsk3 (so called 2i-culture), LIF is no longer required. However, recent findings also suggest that LIF may have a role not covered by the 2i for the maintenance of naïve pluripotency. These suggest that LIF functions for the maintenance of naïve pluripotency in a context dependent manner. We summarize how LIF-signal pathway is converged to maintain the naïve state of pluripotency.
Collapse
Affiliation(s)
- Satoshi Ohtsuka
- Laboratory for Pluripotent Stem Cell Studies; Center for Developmental Biology (CDB) RIKEN ; Kobe, Japan
| | - Yoko Nakai-Futatsugi
- Laboratory for Pluripotent Stem Cell Studies; Center for Developmental Biology (CDB) RIKEN ; Kobe, Japan
| | - Hitoshi Niwa
- Laboratory for Pluripotent Stem Cell Studies; Center for Developmental Biology (CDB) RIKEN; Kobe, Japan; Department of Pluripotent Stem Cell Biology; Institute of Molecular Embryology and Genetics (IMEG); Kumamoto University; Kumamoto, Japan
| |
Collapse
|
117
|
Han T, Xiang DM, Sun W, Liu N, Sun HL, Wen W, Shen WF, Wang RY, Chen C, Wang X, Cheng Z, Li HY, Wu MC, Cong WM, Feng GS, Ding J, Wang HY. PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. J Hepatol 2015; 63:651-60. [PMID: 25865556 DOI: 10.1016/j.jhep.2015.03.036] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 03/04/2015] [Accepted: 03/31/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS We have previously reported that Shp2, a tyrosine phosphatase previously known as a pro-leukemogenic molecule, suppresses the initiation of hepatocellular carcinoma (HCC). However, the role of Shp2 in HCC progression remains obscure. METHODS Shp2 expression was determined in human HCC using real-time PCR, immunoblotting and immunohistochemistry. Clinical significance of Shp2 expression was analyzed in 301 HCC tissues with clinico-pathological characteristics and follow-up information. Short hairpin RNA was utilized to investigate the function of Shp2 in hepatoma cell behavior. Role of Shp2 in HCC progression was monitored through nude mice xenograft assay. Kinase activity assay and co-immunoprecipitation were used for mechanism analysis. RESULTS Elevated expression of Shp2 was detected in 65.9% (394/598) of human HCCs, and its levels were even higher in metastasized foci. Overexpression of Shp2 correlated well with the malignant clinico-pathological characteristics of HCC and predicted the poor prognosis of patients. Interference of Shp2 expression suppressed the proliferation of hepatoma cells in vitro and inhibited the growth of HCC xenografts in vivo. Down-regulation of Shp2 attenuated the adhesion and migration of hepatoma cells and diminished metastasized HCC formation in mice. Our data demonstrated that Shp2 promotes HCC growth and metastasis by coordinately activating Ras/Raf/Erk pathway and PI3-K/Akt/mTOR cascade. Moreover, down-regulation of Shp2 enhanced the sensitivity of hepatoma cells upon sorafenib treatment, and patients with low Shp2 expression exhibited superior prognosis to sorafenib. CONCLUSIONS Shp2 promotes the progression of HCC and may serve as a prognostic biomarker for patients.
Collapse
Affiliation(s)
- Tao Han
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Dai-Min Xiang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wen Sun
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Na Liu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Huan-Lin Sun
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wen Wen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wei-Feng Shen
- The Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Ruo-Yu Wang
- The Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Cheng Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xue Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhuo Cheng
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Heng-Yu Li
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Meng-Chao Wu
- The Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Wen-Ming Cong
- The Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Gen-Sheng Feng
- Department of Pathology, and Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jin Ding
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China; National Center for Liver Cancer, Shanghai 200433, China.
| | - Hong-Yang Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China; National Center for Liver Cancer, Shanghai 200433, China.
| |
Collapse
|
118
|
Manganelli G, Masullo U, Filosa S. HTS/HCS to screen molecules able to maintain embryonic stem cell self-renewal or to induce differentiation: overview of protocols. Stem Cell Rev Rep 2015; 10:802-19. [PMID: 25007774 DOI: 10.1007/s12015-014-9528-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Embryonic stem (ES) cells, combining self-renewal ability with wide range tissue-specific cell differentiation, represent one of the most powerful model systems in basic research, drug discovery and biomedical applications. In the field of drug development, ES cells are instrumental in high-throughput/content screening (HTS/HCS) for the evaluation of large compound libraries to test biological activity and toxic properties. Since it is a high priority to test new compounds in vitro, before starting animal and human treatments, there is an increasing demand for new in vitro models that can be used in HTS/HCS to facilitate drug development. In order to achieve this objective, several methods for ES cell self-renewal or differentiation have been evaluated to assess their compatibility with HTS/HCS. This review describes protocols used to screen molecules able to maintain self-renewal or to induce differentiation in ectodermal, mesodermal, endodermal, and their derivative cell lines.
Collapse
Affiliation(s)
- Genesia Manganelli
- Istituto di Bioscienze e BioRisorse , UOS Napoli -CNR, Via Pietro Castellino 111, 80131, Naples, Italy,
| | | | | |
Collapse
|
119
|
Wu Y, Zhu R, Zhou Y, Zhang J, Wang W, Sun X, Wu X, Cheng L, Zhang J, Wang S. Layered double hydroxide nanoparticles promote self-renewal of mouse embryonic stem cells through the PI3K signaling pathway. NANOSCALE 2015; 7:11102-11114. [PMID: 26060037 DOI: 10.1039/c5nr02339d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Embryonic stem cells (ESCs) hold great potential for regenerative medicine due to their two unique characteristics: self-renewal and pluripotency. Several groups of nanoparticles have shown promising applications in directing the stem cell fate. Herein, we investigated the cellular effects of layered double hydroxide nanoparticles (LDH NPs) on mouse ESCs (mESCs) and the associated molecular mechanisms. Mg-Al-LDH NPs with an average diameter of ∼100 nm were prepared by hydrothermal methods. To determine the influences of LDH NPs on mESCs, cellular cytotoxicity, self-renewal, differentiation potential, and the possible signaling pathways were explored. Evaluation of cell viability, lactate dehydrogenase release, ROS generation and apoptosis demonstrated the low cytotoxicity of LDH NPs. The alkaline phosphatase activity and the expression of pluripotency genes in mESCs were examined, which indicated that exposure to LDH NPs could support self-renewal and inhibit spontaneous differentiation of mESCs under feeder-free culture conditions. The self-renewal promotion was further proved to be independent of the leukemia inhibitory factor (LIF). Furthermore, cells treated with LDH NPs maintained the potential to differentiate into all three germ layers both in vitro and in vivo through formation of embryoid bodies and teratomas. In addition, we observed that LDH NPs initiated the activation of the PI3K/Akt pathway, while treatment with the PI3K inhibitor LY294002 could block the effects of LDH NPs on mESCs. The results confirmed that the promotion of self-renewal by LDH NPs was associated with activation of the PI3K/Akt signaling pathway. Altogether, our studies identified a new role of LDH NPs in maintaining self-renewal of mouse ES cells which could potentially be applied in stem cell research.
Collapse
Affiliation(s)
- Youjun Wu
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
Formation of a eutherian mammal requires concurrent establishment of embryonic and extraembryonic lineages. The functions of the trophectoderm and primitive endoderm are to enable implantation in the maternal uterus, axis specification and delivery of nutrients. The pluripotent epiblast represents the founding cell population of the embryo proper, which is protected from ectopic and premature differentiation until it is required to respond to inductive cues to form the fetus. While positional information plays a major role in specifying the trophoblast lineage, segregation of primitive endoderm from epiblast depends upon gradual acquisition of transcriptional identity, directed but not initiated by fibroblast growth factor (FGF) signalling. Following early cleavage divisions and formation of the blastocyst, cells of the inner cell mass lose totipotency. Developing epiblast cells transiently attain the state of naive pluripotency and competence to self-renew in vitro as embryonic stem cells and in vivo by means of diapause. This property is lost after implantation as the epiblast epithelializes and becomes primed in preparation for gastrulation and subsequent organogenesis.
Collapse
Affiliation(s)
- Thorsten Boroviak
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jennifer Nichols
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
121
|
Abstract
Mouse embryonic stem (ES) cells perpetuate in vitro the broad developmental potential of naïve founder cells in the preimplantation embryo. ES cells self-renew relentlessly in culture but can reenter embryonic development seamlessly, differentiating on schedule to form all elements of the fetus. Here we review the properties of these remarkable cells. Arising from the stability, homogeneity, and equipotency of ES cells, we consider the concept of a pluripotent ground state. We evaluate the authenticity of ES cells in relation to cells in the embryo and examine their utility for dissecting mechanisms that confer pluripotency and that execute fate choice. We summarize current knowledge of the transcription factor circuitry that governs the ES cell state and discuss the opportunity to expose molecular logic further through iterative computational modeling and experimentation. Finally, we present a perspective on unresolved questions, including the challenge of deriving ground state pluripotent stem cells from non-rodent species.
Collapse
|
122
|
Pluripotency and Epigenetic Factors in Mouse Embryonic Stem Cell Fate Regulation. Mol Cell Biol 2015; 35:2716-28. [PMID: 26031336 DOI: 10.1128/mcb.00266-15] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Embryonic stem cells (ESCs) are characterized by their ability to self-renew and to differentiate into all cell types of a given organism. Understanding the molecular mechanisms that govern the ESC state is of great interest not only for basic research-for instance, ESCs represent a perfect system to study cellular differentiation in vitro-but also for their potential implications in human health, as these mechanisms are likewise involved in cancer progression and could be exploited in regenerative medicine. In this minireview, we focus on the latest insights into the molecular mechanisms mediated by the pluripotency factors as well as their roles during differentiation. We also discuss recent advances in understanding the function of the epigenetic regulators, Polycomb and MLL complexes, in ESC biology.
Collapse
|
123
|
Kim D, Park S, Jung YG, Roh S. In vitro culture of stem-like cells derived from somatic cell nuclear transfer bovine embryos of the Korean beef cattle species, HanWoo. Reprod Fertil Dev 2015; 28:RD14071. [PMID: 25966803 DOI: 10.1071/rd14071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/12/2015] [Indexed: 12/27/2022] Open
Abstract
We established and maintained somatic cell nuclear transfer embryo-derived stem-like cells (SCNT-eSLCs) from the traditional Korean beef cattle species, HanWoo (Bos taurus coreanae). Each SCNT blastocyst was placed individually on a feeder layer with culture medium containing three inhibitors of differentiation (3i). Primary colonies formed after 2-3 days of culture and the intact colonies were passaged every 5-6 days. The cells in each colony showed embryonic stem cell-like morphologies with a distinct boundary and were positive to alkaline phosphatase staining. Immunofluorescence and reverse transcription-polymerase chain reaction analyses also confirmed that these colonies expressed pluripotent markers. The colonies were maintained over 50 passages for more than 270 days. The cells showed normal karyotypes consisting of 60 chromosomes at Passage 50. Embryoid bodies were formed by suspension culture to analyse in vitro differentiation capability. Marker genes representing the differentiation into three germ layers were expressed. Typical embryonal carcinoma was generated after injecting cells under the testis capsule of nude mice, suggesting that the cultured cells may also have the potential of in vivo differentiation. In conclusion, we generated eSLCs from SCNT bovine embryos, using a 3i system that sustained stemness, normal karyotype and pluripotency, which was confirmed by in vitro and in vivo differentiation.
Collapse
|
124
|
Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nat Commun 2015; 6:7095. [PMID: 25968054 PMCID: PMC4479042 DOI: 10.1038/ncomms8095] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 04/02/2015] [Indexed: 12/19/2022] Open
Abstract
Leukemia inhibitory factor (LIF)/STAT3 signalling is a hallmark of naive pluripotency in rodent pluripotent stem cells (PSCs), whereas fibroblast growth factor (FGF)-2 and activin/nodal signalling is required to sustain self-renewal of human PSCs in a condition referred to as the primed state. It is unknown why LIF/STAT3 signalling alone fails to sustain pluripotency in human PSCs. Here we show that the forced expression of the hormone-dependent STAT3-ER (ER, ligand-binding domain of the human oestrogen receptor) in combination with 2i/LIF and tamoxifen allows human PSCs to escape from the primed state and enter a state characterized by the activation of STAT3 target genes and long-term self-renewal in FGF2- and feeder-free conditions. These cells acquire growth properties, a gene expression profile and an epigenetic landscape closer to those described in mouse naive PSCs. Together, these results show that temporarily increasing STAT3 activity is sufficient to reprogramme human PSCs to naive-like pluripotent cells. LIF/STAT3 signalling characterizes naive pluripotency in mouse embryonic stem cells (ESCs), but whether this pathway can sustain a similar state in human cells is not completely understood. Here the authors show that LIF stimulation and enhancement of STAT3 activity allow human ESCs to escape from FGF2 dependency and facilitates their entry into a naive-like state of pluripotency.
Collapse
|
125
|
Targeted Knockdown of RNA-Binding Protein TIAR for Promoting Self-Renewal and Attenuating Differentiation of Mouse Embryonic Stem Cells. Stem Cells Int 2015; 2015:657325. [PMID: 25918534 PMCID: PMC4396887 DOI: 10.1155/2015/657325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/12/2015] [Accepted: 03/06/2015] [Indexed: 11/17/2022] Open
Abstract
RNA-binding protein TIAR has been suggested to mediate the translational silencing of ARE-containing mRNAs. To analyze the functions of TIAR, we established RNAi and genetic rescue assays. We evaluated the expression of neuroectoderm markers Pax6 and nestin, mesoderm markers brachyury and Flk1, and hypoblast and definitive endoderm markers Sox17 and Gata6 during EB differentiation and found that knockdown TIAR expression restrained the differentiation of E14 cells. We assessed gene expression levels of Flk-1 and VE-cadherin and observed attenuated differentiation of E14 cells into endothelial cells upon downregulation of TIAR gene expression. As such, we hypothesized an essential role of TIAR related to EB differentiation. As TIAR inhibits the translation of c-myc, we proposed that downregulation of TIAR results in restrained differentiation of E14 cells, due in part to the function of c-myc. We found that TIAR inhibited c-myc expression at the translational level in E14 cells; accordingly, a reduction of TIAR expression promoted self-renewal of pluripotent cells and attenuated differentiation. Additionally, we established that TIAR inhibited TIA-1 expression at the translational level in E14 cells. Taken together, we have contributed to the understanding of the regulatory relationships between TIAR and both c-myc and TIA-1.
Collapse
|
126
|
Shoni M, Lui KO, Vavvas DG, Muto MG, Berkowitz RS, Vlahos N, Ng SW. Protein kinases and associated pathways in pluripotent state and lineage differentiation. Curr Stem Cell Res Ther 2015; 9:366-87. [PMID: 24998240 DOI: 10.2174/1574888x09666140616130217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023]
Abstract
Protein kinases (PKs) mediate the reversible conversion of substrate proteins to phosphorylated forms, a key process in controlling intracellular signaling transduction cascades. Pluripotency is, among others, characterized by specifically expressed PKs forming a highly interconnected regulatory network that culminates in a finely-balanced molecular switch. Current high-throughput phosphoproteomic approaches have shed light on the specific regulatory PKs and their function in controlling pluripotent states. Pluripotent cell-derived endothelial and hematopoietic developments represent an example of the importance of pluripotency in cancer therapeutics and organ regeneration. This review attempts to provide the hitherto known kinome profile and the individual characterization of PK-related pathways that regulate pluripotency. Elucidating the underlying intrinsic and extrinsic signals may improve our understanding of the different pluripotent states, the maintenance or induction of pluripotency, and the ability to tailor lineage differentiation, with a particular focus on endothelial cell differentiation for anti-cancer treatment, cell-based tissue engineering, and regenerative medicine strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shu-Wing Ng
- 221 Longwood Avenue, BLI- 449A, Boston MA 02115, USA.
| |
Collapse
|
127
|
Mühl B, Hägele J, Tasdogan A, Loula P, Schuh K, Bundschu K. SPREDs (Sprouty related proteins with EVH1 domain) promote self-renewal and inhibit mesodermal differentiation in murine embryonic stem cells. Dev Dyn 2015; 244:591-606. [PMID: 25690936 DOI: 10.1002/dvdy.24261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/11/2015] [Accepted: 01/23/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Pluripotency, self-renewal, and differentiation are special features of embryonic stem (ES) cells, thereby providing valuable perspectives in regenerative medicine. Developmental processes require a fine-tuned organization, mainly regulated by the well-known JAK/STAT, PI3K/AKT, and ERK/MAPK pathways. SPREDs (Sprouty related proteins with EVH1 domain) were discovered as inhibitors of the ERK/MAPK signaling pathway, whereas nothing was known about their functions in ES cells and during early differentiation, so far. RESULTS We generated SPRED1 and SPRED2 overexpressing and SPRED2 knockout murine ES cells to analyze the functions of SPRED proteins in ES cells and during early differentiation. Overexpression of SPREDs increases significantly the self-renewal and clonogenicity of murine ES cells, whereas lack of SPRED2 reduces proliferation and increases apoptosis. During early differentiation in embryoid bodies, SPREDs promote the pluripotent state and inhibit differentiation whereby mesodermal differentiation into cardiomyocytes is considerably delayed and inhibited. LIF- and growth factor-stimulation revealed that SPREDs inhibit ERK/MAPK activation in murine ES cells. However, no effects were detectable on LIF-induced activation of the JAK/STAT3, or PI3K/AKT signaling pathway by SPRED proteins. CONCLUSIONS We show that SPREDs promote self-renewal and inhibit mesodermal differentiation of murine ES cells by selective suppression of the ERK/MAPK signaling pathway in pluripotent cells.
Collapse
Affiliation(s)
- Bastian Mühl
- Institute for Biochemistry and Molecular Biology, Ulm University, Ulm, Germany; Laboratory for Human Genetics, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
128
|
Drasin DJ, Guarnieri AL, Neelakantan D, Kim J, Cabrera JH, Wang CA, Zaberezhnyy V, Gasparini P, Cascione L, Huebner K, Tan AC, Ford HL. TWIST1-Induced miR-424 Reversibly Drives Mesenchymal Programming while Inhibiting Tumor Initiation. Cancer Res 2015; 75:1908-21. [PMID: 25716682 DOI: 10.1158/0008-5472.can-14-2394] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a dynamic process that relies on cellular plasticity. Recently, the process of an oncogenic EMT, followed by a reverse mesenchymal-to-epithelial transition (MET), has been implicated as critical in the metastatic colonization of carcinomas. Unlike governance of epithelial programming, regulation of mesenchymal programming is not well understood in EMT. Here, we describe and characterize the first microRNA that enhances exclusively mesenchymal programming. We demonstrate that miR-424 is upregulated early during a TWIST1 or SNAI1-induced EMT, and that it causes cells to express mesenchymal genes without affecting epithelial genes, resulting in a mixed/intermediate EMT. Furthermore, miR-424 increases motility, decreases adhesion, and induces a growth arrest, changes associated with a complete EMT that can be reversed when miR-424 expression is lowered, concomitant with an MET-like process. Breast cancer patient miR-424 levels positively associate with TWIST1/2 and EMT-like gene signatures, and miR-424 is increased in primary tumors versus matched normal breast. However, miR-424 is downregulated in patient metastases versus matched primary tumors. Correspondingly, miR-424 decreases tumor initiation and is posttranscriptionally downregulated in macrometastases in mice, suggesting the need for biphasic expression of miR-424 to transit the EMT-MET axis. Next-generation RNA sequencing revealed miR-424 regulates numerous EMT and cancer stemness-associated genes, including TGFBR3, whose downregulation promotes mesenchymal phenotypes, but not tumor-initiating phenotypes. Instead, we demonstrate that increased MAPK-ERK signaling is critical for miR-424-mediated decreases in tumor-initiating phenotypes. These findings suggest miR-424 plays distinct roles in tumor progression, potentially facilitating earlier, but repressing later, stages of metastasis by regulating an EMT-MET axis.
Collapse
Affiliation(s)
- David J Drasin
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anna L Guarnieri
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Deepika Neelakantan
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jihye Kim
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Joshua H Cabrera
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Chu-An Wang
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vadym Zaberezhnyy
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Pierluigi Gasparini
- Department of Molecular Virology, Immunology and Molecular Genetics, Ohio State University, Columbus, Ohio
| | - Luciano Cascione
- Department of Molecular Virology, Immunology and Molecular Genetics, Ohio State University, Columbus, Ohio
| | - Kay Huebner
- Department of Molecular Virology, Immunology and Molecular Genetics, Ohio State University, Columbus, Ohio
| | - Aik-Choon Tan
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Heide L Ford
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
129
|
Herberg M, Zerjatke T, de Back W, Glauche I, Roeder I. Image-based quantification and mathematical modeling of spatial heterogeneity in ESC colonies. Cytometry A 2015; 87:481-90. [DOI: 10.1002/cyto.a.22598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/11/2014] [Accepted: 11/06/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Maria Herberg
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Thomas Zerjatke
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Walter de Back
- Center for Information Services and High Performance Computing, Technische Universität Dresden; Dresden Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| |
Collapse
|
130
|
Huang G, Ye S, Zhou X, Liu D, Ying QL. Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cell Mol Life Sci 2015; 72:1741-57. [PMID: 25595304 DOI: 10.1007/s00018-015-1833-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/17/2014] [Accepted: 01/08/2015] [Indexed: 12/18/2022]
Abstract
Embryonic stem cells (ESCs) can be maintained in culture indefinitely while retaining the capacity to generate any type of cell in the body, and therefore not only hold great promise for tissue repair and regeneration, but also provide a powerful tool for modeling human disease and understanding biological development. In order to fulfill the full potential of ESCs, it is critical to understand how ESC fate, whether to self-renew or to differentiate into specialized cells, is regulated. On the molecular level, ESC fate is controlled by the intracellular transcriptional regulatory networks that respond to various extrinsic signaling stimuli. In this review, we discuss and compare important signaling pathways in the self-renewal and differentiation of mouse, rat, and human ESCs with an emphasis on how these pathways integrate into ESC-specific transcription circuitries. This will be beneficial for understanding the common and conserved mechanisms that govern self-renewal, and for developing novel culture conditions that support ESC derivation and maintenance.
Collapse
Affiliation(s)
- Guanyi Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, PR China
| | | | | | | | | |
Collapse
|
131
|
Ohtsuka S, Niwa H. The differential activation of intracellular signaling pathways confers the permissiveness of embryonic stem cell derivation from different mouse strains. Development 2015; 142:431-7. [PMID: 25564647 PMCID: PMC4302992 DOI: 10.1242/dev.112375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The requirement of leukemia inhibitory factor (LIF) for the establishment and maintenance of mouse embryonic stem cells (ESCs) depends on the genetic background of the ESC origin. To reveal the molecular basis of the strain-dependent function of LIF, we compared the activation of the intracellular signaling pathways downstream of LIF in ESCs with different genetic backgrounds. We found that the JAK-Stat3 pathway was dominantly activated in ESCs derived from 'permissive' mouse strains (129Sv and C57BL6), whereas the MAP kinase pathway was hyperactivated in ESCs from 'non-permissive' strains (NOD, CBA and FVB). Artificial activation of Stat3 supported stable self-renewal of ESCs from non-permissive strains. These data suggest that the difference in the balance between the two intracellular signaling pathways underlies the differential response to LIF.
Collapse
Affiliation(s)
- Satoshi Ohtsuka
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology (CDB), Minatojima-minamimachi 2-2-3, Chuo-Ku, Kobe 650-0047, Japan
| | - Hitoshi Niwa
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology (CDB), Minatojima-minamimachi 2-2-3, Chuo-Ku, Kobe 650-0047, Japan CREST (Core Research for Evolutional Science and Technology), Japan Science Technology Agency, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan Laboratory for Development and Regenerative Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe 6500017, Japan
| |
Collapse
|
132
|
Abstract
Pluripotent cells in embryos are situated near the apex of the hierarchy of developmental potential. They are capable of generating all cell types of the mammalian body proper. Therefore, they are the exemplar of stem cells. In vivo, pluripotent cells exist transiently and become expended within a few days of their establishment. Yet, when explanted into artificial culture conditions, they can be indefinitely propagated in vitro as pluripotent stem cell lines. A host of transcription factors and regulatory genes are now known to underpin the pluripotent state. Nonetheless, how pluripotent cells are equipped with their vast multilineage differentiation potential remains elusive. Consensus holds that pluripotency transcription factors prevent differentiation by inhibiting the expression of differentiation genes. However, this does not explain the developmental potential of pluripotent cells. We have presented another emergent perspective, namely, that pluripotency factors function as lineage specifiers that enable pluripotent cells to differentiate into specific lineages, therefore endowing pluripotent cells with their multilineage potential. Here we provide a comprehensive overview of the developmental biology, transcription factors, and extrinsic signaling associated with pluripotent cells, and their accompanying subtypes, in vitro heterogeneity and chromatin states. Although much has been learned since the appreciation of mammalian pluripotency in the 1950s and the derivation of embryonic stem cell lines in 1981, we will specifically emphasize what currently remains unclear. However, the view that pluripotency factors capacitate differentiation, recently corroborated by experimental evidence, might perhaps address the long-standing question of how pluripotent cells are endowed with their multilineage differentiation potential.
Collapse
Affiliation(s)
- Kyle M. Loh
- Department of Developmental Biology and the Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Genome Institute of Singapore, Stem Cell & Regenerative Biology Group, Agency for Science, Technology & Research, Singapore; and Department of Medicine and the Beth Israel Deaconess Medical Center, Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts
| | - Bing Lim
- Department of Developmental Biology and the Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Genome Institute of Singapore, Stem Cell & Regenerative Biology Group, Agency for Science, Technology & Research, Singapore; and Department of Medicine and the Beth Israel Deaconess Medical Center, Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts
| | - Lay Teng Ang
- Department of Developmental Biology and the Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Genome Institute of Singapore, Stem Cell & Regenerative Biology Group, Agency for Science, Technology & Research, Singapore; and Department of Medicine and the Beth Israel Deaconess Medical Center, Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
133
|
Huang G, Yan H, Ye S, Tong C, Ying QL. STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates mouse ESC fates. Stem Cells 2014; 32:1149-60. [PMID: 24302476 DOI: 10.1002/stem.1609] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/16/2013] [Accepted: 10/30/2013] [Indexed: 12/22/2022]
Abstract
STAT3 can be transcriptionally activated by phosphorylation of its tyrosine 705 or serine 727 residue. In mouse embryonic stem cells (mESCs), leukemia inhibitory factor (LIF) signaling maintains pluripotency by inducing JAK-mediated phosphorylation of STAT3 Y705 (pY705). However, the function of phosphorylated S727 (pS727) in mESCs remains unclear. In this study, we examined the roles of STAT3 pY705 and pS727 in regulating mESC identities, using a small molecule-based system to post-translationally modulate the quantity of transgenic STAT3 in STAT3(-/-) mESCs. We demonstrated that pY705 is absolutely required for STAT3-mediated mESC self-renewal, while pS727 is dispensable, serving only to promote proliferation and optimal pluripotency. S727 phosphorylation is regulated directly by fibroblast growth factor/Erk signaling and crucial in the transition of mESCs from pluripotency to neuronal commitment. Loss of S727 phosphorylation resulted in significantly reduced neuronal differentiation potential, which could be recovered by a S727 phosphorylation mimic. Moreover, loss of pS727 sufficed LIF to reprogram epiblast stem cells to naïve pluripotency, suggesting a dynamic equilibrium of STAT3 pY705 and pS727 in the control of mESC fate.
Collapse
Affiliation(s)
- Guanyi Huang
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
134
|
Sakurai K, Talukdar I, Patil VS, Dang J, Li Z, Chang KY, Lu CC, Delorme-Walker V, Dermardirossian C, Anderson K, Hanein D, Yang CS, Wu D, Liu Y, Rana TM. Kinome-wide functional analysis highlights the role of cytoskeletal remodeling in somatic cell reprogramming. Cell Stem Cell 2014; 14:523-34. [PMID: 24702998 DOI: 10.1016/j.stem.2014.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/02/2013] [Accepted: 03/04/2014] [Indexed: 01/31/2023]
Abstract
The creation of induced pluripotent stem cells (iPSCs) from somatic cells by ectopic expression of transcription factors has galvanized the fields of regenerative medicine and developmental biology. Here, we report a kinome-wide RNAi-based analysis to identify kinases that regulate somatic cell reprogramming to iPSCs. We prepared 3,686 small hairpin RNA (shRNA) lentiviruses targeting 734 kinase genes covering the entire mouse kinome and individually examined their effects on iPSC generation. We identified 59 kinases as barriers to iPSC generation and characterized seven of them further. We found that shRNA-mediated knockdown of the serine/threonine kinases TESK1 or LIMK2 promoted mesenchymal-to-epithelial transition, decreased COFILIN phosphorylation, and disrupted Actin filament structures during reprogramming of mouse embryonic fibroblasts. Similarly, knockdown of TESK1 in human fibroblasts also promoted reprogramming to iPSCs. Our study reveals the breadth of kinase networks regulating pluripotency and identifies a role for cytoskeletal remodeling in modulating the somatic cell reprogramming process.
Collapse
Affiliation(s)
- Kumi Sakurai
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Indrani Talukdar
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Veena S Patil
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jason Dang
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhonghan Li
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kung-Yen Chang
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chih-Chung Lu
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Violaine Delorme-Walker
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Celine Dermardirossian
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Karen Anderson
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dorit Hanein
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chao-Shun Yang
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dongmei Wu
- CIRM Stem Cell and iPSC Core Facility, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yang Liu
- CIRM Stem Cell and iPSC Core Facility, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tariq M Rana
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Pediatrics, Rady Children's Hospital San Diego and University of California San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
135
|
Iovino S, Burkart AM, Kriauciunas K, Warren L, Hughes KJ, Molla M, Lee YK, Patti ME, Kahn CR. Genetic insulin resistance is a potent regulator of gene expression and proliferation in human iPS cells. Diabetes 2014; 63:4130-42. [PMID: 25059784 PMCID: PMC4238001 DOI: 10.2337/db14-0109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin resistance is central to diabetes and metabolic syndrome. To define the consequences of genetic insulin resistance distinct from those secondary to cellular differentiation or in vivo regulation, we generated induced pluripotent stem cells (iPSCs) from individuals with insulin receptor mutations and age-appropriate control subjects and studied insulin signaling and gene expression compared with the fibroblasts from which they were derived. iPSCs from patients with genetic insulin resistance exhibited altered insulin signaling, paralleling that seen in the original fibroblasts. Insulin-stimulated expression of immediate early genes and proliferation were also potently reduced in insulin resistant iPSCs. Global gene expression analysis revealed marked differences in both insulin-resistant iPSCs and corresponding fibroblasts compared with control iPSCs and fibroblasts. Patterns of gene expression in patients with genetic insulin resistance were particularly distinct in the two cell types, indicating dependence on not only receptor activity but also the cellular context of the mutant insulin receptor. Thus, iPSCs provide a novel approach to define effects of genetically determined insulin resistance. This study demonstrates that effects of insulin resistance on gene expression are modified by cellular context and differentiation state. Moreover, altered insulin receptor signaling and insulin resistance can modify proliferation and function of pluripotent stem cell populations.
Collapse
Affiliation(s)
- Salvatore Iovino
- Integrative Physiology and Metabolism Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Alison M Burkart
- Integrative Physiology and Metabolism Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Kristina Kriauciunas
- Integrative Physiology and Metabolism Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Laura Warren
- Integrative Physiology and Metabolism Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Katelyn J Hughes
- Integrative Physiology and Metabolism Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Michael Molla
- Integrative Physiology and Metabolism Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Youn-Kyoung Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Mary-Elizabeth Patti
- Integrative Physiology and Metabolism Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - C Ronald Kahn
- Integrative Physiology and Metabolism Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
136
|
Zhang J, Liu G, Ruan Y, Wang J, Zhao K, Wan Y, Liu B, Zheng H, Peng T, Wu W, He P, Hu FQ, Jian R. Dax1 and Nanog act in parallel to stabilize mouse embryonic stem cells and induced pluripotency. Nat Commun 2014; 5:5042. [PMID: 25284313 PMCID: PMC4205889 DOI: 10.1038/ncomms6042] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 08/20/2014] [Indexed: 12/20/2022] Open
Abstract
Nanog expression is heterogeneous and dynamic in embryonic stem cells (ESCs). However, the mechanism for stabilizing pluripotency during the transitions between Nanog(high) and Nanog(low) states is not well understood. Here we report that Dax1 acts in parallel with Nanog to regulate mouse ESC (mESCs) identity. Dax1 stable knockdown mESCs are predisposed towards differentiation but do not lose pluripotency, whereas Dax1 overexpression supports LIF-independent self-renewal. Although partially complementary, Dax1 and Nanog function independently and cannot replace one another. They are both required for full reprogramming to induce pluripotency. Importantly, Dax1 is indispensable for self-renewal of Nanog(low) mESCs. Moreover, we report that Dax1 prevents extra-embryonic endoderm (ExEn) commitment by directly repressing Gata6 transcription. Dax1 may also mediate inhibition of trophectoderm differentiation independent or as a downstream effector of Oct4. These findings establish a basal role of Dax1 in maintaining pluripotency during the state transition of mESCs and somatic cell reprogramming.
Collapse
Affiliation(s)
- Junlei Zhang
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China
| | - Gaoke Liu
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China
| | - Yan Ruan
- Department of Pathogenic Biology, Third Military Medical University, Chongqing 400038, China
| | - Jiali Wang
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Ke Zhao
- Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 400038, China
| | - Ying Wan
- 1] Biomedical Analysis Center, Third Military Medical University, Chongqing 100071, China [2] Department of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Bing Liu
- Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 400038, China
| | - Hongting Zheng
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Tao Peng
- Research Center of Laboratory Medicine, Chengdu Military General Hospital, Sichuan 610083, China
| | - Wei Wu
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ping He
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Fu-Quan Hu
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China
| | - Rui Jian
- Department of Pathogenic Biology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
137
|
Atkinson SP, Lako M, Armstrong L. Potential for pharmacological manipulation of human embryonic stem cells. Br J Pharmacol 2014; 169:269-89. [PMID: 22515554 DOI: 10.1111/j.1476-5381.2012.01978.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The therapeutic potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is vast, allowing disease modelling, drug discovery and testing and perhaps most importantly regenerative therapies. However, problems abound; techniques for cultivating self-renewing hESCs tend to give a heterogeneous population of self-renewing and partially differentiated cells and general include animal-derived products that can be cost-prohibitive for large-scale production, and effective lineage-specific differentiation protocols also still remain relatively undefined and are inefficient at producing large amounts of cells for therapeutic use. Furthermore, the mechanisms and signalling pathways that mediate pluripotency and differentiation are still to be fully appreciated. However, over the recent years, the development/discovery of a range of effective small molecule inhibitors/activators has had a huge impact in hESC biology. Large-scale screening techniques, coupled with greater knowledge of the pathways involved, have generated pharmacological agents that can boost hESC pluripotency/self-renewal and survival and has greatly increased the efficiency of various differentiation protocols, while also aiding the delineation of several important signalling pathways. Within this review, we hope to describe the current uses of small molecule inhibitors/activators in hESC biology and their potential uses in the future.
Collapse
|
138
|
Bessonnard S, De Mot L, Gonze D, Barriol M, Dennis C, Goldbeter A, Dupont G, Chazaud C. Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network. Development 2014; 141:3637-48. [DOI: 10.1242/dev.109678] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During blastocyst formation, inner cell mass (ICM) cells differentiate into either epiblast (Epi) or primitive endoderm (PrE) cells, labeled by Nanog and Gata6, respectively, and organized in a salt-and-pepper pattern. Previous work in the mouse has shown that, in absence of Nanog, all ICM cells adopt a PrE identity. Moreover, the activation or the blockade of the Fgf/RTK pathway biases cell fate specification towards either PrE or Epi, respectively. We show that, in absence of Gata6, all ICM cells adopt an Epi identity. Furthermore, the analysis of Gata6+/− embryos reveals a dose-sensitive phenotype, with fewer PrE-specified cells. These results and previous findings have enabled the development of a mathematical model for the dynamics of the regulatory network that controls ICM differentiation into Epi or PrE cells. The model describes the temporal dynamics of Erk signaling and of the concentrations of Nanog, Gata6, secreted Fgf4 and Fgf receptor 2. The model is able to recapitulate most of the cell behaviors observed in different experimental conditions and provides a unifying mechanism for the dynamics of these developmental transitions. The mechanism relies on the co-existence between three stable steady states (tristability), which correspond to ICM, Epi and PrE cells, respectively. Altogether, modeling and experimental results uncover novel features of ICM cell fate specification such as the role of the initial induction of a subset of cells into Epi in the initiation of the salt-and-pepper pattern, or the precocious Epi specification in Gata6+/− embryos.
Collapse
Affiliation(s)
- Sylvain Bessonnard
- Clermont Université, Université d'Auvergne, Laboratoire GReD, Clermont-Ferrand F-63000, France
- Inserm, UMR1103, Clermont-Ferrand F-63001, France
- CNRS, UMR6293, Clermont-Ferrand F-63001, France
| | - Laurane De Mot
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus Plaine, CP 231, Brussels B-1050, Belgium
| | - Didier Gonze
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus Plaine, CP 231, Brussels B-1050, Belgium
| | - Manon Barriol
- Clermont Université, Université d'Auvergne, Laboratoire GReD, Clermont-Ferrand F-63000, France
- Inserm, UMR1103, Clermont-Ferrand F-63001, France
- CNRS, UMR6293, Clermont-Ferrand F-63001, France
| | - Cynthia Dennis
- Clermont Université, Université d'Auvergne, Laboratoire GReD, Clermont-Ferrand F-63000, France
- Inserm, UMR1103, Clermont-Ferrand F-63001, France
- CNRS, UMR6293, Clermont-Ferrand F-63001, France
| | - Albert Goldbeter
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus Plaine, CP 231, Brussels B-1050, Belgium
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Center at Stellenbosch University, Stellenbosch 7600, South Africa
| | - Geneviève Dupont
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus Plaine, CP 231, Brussels B-1050, Belgium
| | - Claire Chazaud
- Clermont Université, Université d'Auvergne, Laboratoire GReD, Clermont-Ferrand F-63000, France
- Inserm, UMR1103, Clermont-Ferrand F-63001, France
- CNRS, UMR6293, Clermont-Ferrand F-63001, France
| |
Collapse
|
139
|
Tai CI, Schulze EN, Ying QL. Stat3 signaling regulates embryonic stem cell fate in a dose-dependent manner. Biol Open 2014; 3:958-65. [PMID: 25238758 PMCID: PMC4197444 DOI: 10.1242/bio.20149514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stat3 is essential for mouse embryonic stem cell (mESC) self-renewal mediated by LIF/gp130 receptor signaling. Current understanding of Stat3-mediated ESC self-renewal mechanisms is very limited, and has heretofore been dominated by the view that Stat3 signaling functions in a binary "on/off" manner. Here, in contrast to this binary viewpoint, we demonstrate a contextual, rheostat-like mechanism for Stat3's function in mESCs. Activation and expression levels determine whether Stat3 functions in a self-renewal or a differentiation role in mESCs. We also show that Stat3 induces rapid differentiation of mESCs toward the trophectoderm (TE) lineage when its activation level exceeds certain thresholds. Stat3 induces this differentiation phenotype via induction of Tfap2c and its downstream target Cdx2. Our findings provide a novel concept in the realm of Stat3, self-renewal signaling, and pluripotent stem cell biology. Ultimately, this finding may facilitate the development of conditions for the establishment of authentic non-rodent ESCs.
Collapse
Affiliation(s)
- Chih-I Tai
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA Present address: Animal Biotechnology Interdisciplinary Group, Center for Veterinary Medicine, United States Food and Drug Administration, 7500 Standish Place, Rockville, MD 20855, USA
| | - Eric N Schulze
- Present address: Animal Biotechnology Interdisciplinary Group, Center for Veterinary Medicine, United States Food and Drug Administration, 7500 Standish Place, Rockville, MD 20855, USA
| | - Qi-Long Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA Present address: Animal Biotechnology Interdisciplinary Group, Center for Veterinary Medicine, United States Food and Drug Administration, 7500 Standish Place, Rockville, MD 20855, USA.
| |
Collapse
|
140
|
PIWI proteins are dispensable for mouse somatic development and reprogramming of fibroblasts into pluripotent stem cells. PLoS One 2014; 9:e97821. [PMID: 25238487 PMCID: PMC4169525 DOI: 10.1371/journal.pone.0097821] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/23/2014] [Indexed: 11/19/2022] Open
Abstract
PIWI proteins play essential and conserved roles in germline development, including germline stem cell maintenance and meiosis. Because germline regulators such as OCT4, NANOG, and SOX2 are known to be potent factors that reprogram differentiated somatic cells into induced pluripotent stem cells (iPSCs), we investigated whether the PIWI protein family is involved in iPSC production. We find that all three mouse Piwi genes, Miwi, Mili, and Miwi2, are expressed in embryonic stem cells (ESCs) at higher levels than in fibroblasts, with Mili being the highest. However, mice lacking all three Piwi genes are viable and female fertile, and are only male sterile. Furthermore, embryonic fibroblasts derived from Miwi/Mili/Miwi2 triple knockout embryos can be efficiently reprogrammed into iPS cells. These iPS cells expressed pluripotency markers and were capable of differentiating into all three germ layers in teratoma assays. Genome-wide expression profiling reveals that the triple knockout iPS cells are very similar to littermate control iPS cells. These results indicate that PIWI proteins are dispensable for direct reprogramming of mouse fibroblasts.
Collapse
|
141
|
Tang Y, Jiang Z, Luo Y, Zhao X, Wang L, Norris C, Tian XC. Differential effects of Akt isoforms on somatic cell reprogramming. J Cell Sci 2014; 127:3998-4008. [PMID: 25037569 DOI: 10.1242/jcs.150029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Akt plays an important role in cell growth, proliferation and survival. The specific roles of the three Akt isoforms in somatic cell reprogramming have not been investigated. Here we report that, during iPSC generation, enhanced Akt1 activity promotes complete reprogramming mainly through increased activation of Stat3 in concert with leukemia inhibitory factor (LIF) and, to a lesser extent, through promotion of colony formation. Akt1 augments Stat3 activity through activation of mTOR and upregulation of LIF receptor expression. Similarly, enhanced Akt2 or Akt3 activation also promotes reprogramming and coordinates with LIF to activate Stat3. Blocking Akt1 or Akt3 but not Akt2 expression prohibits cell proliferation and reprogramming. Furthermore, the halt in cell proliferation and reprogramming caused by mTOR and Akt inhibitors can be reversed by inhibition of GSK3. Finally, we found that expressing the GSK3β target Esrrb overrides inhibition of Akt and restores reprogramming. Our data demonstrated that during reprogramming, Akt promotes establishment of pluripotency through co-stimulation of Stat3 activity with LIF. Akt1 and Akt3 are essential for the proliferation of reprogrammed cells, and Esrrb supports cell proliferation and complete reprogramming during Akt signaling.
Collapse
Affiliation(s)
- Yong Tang
- Center for Regenerative Biology, Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Zongliang Jiang
- Center for Regenerative Biology, Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Yan Luo
- Center for Regenerative Biology, Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Xueming Zhao
- Center for Regenerative Biology, Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Ling Wang
- Center for Regenerative Biology, Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Carol Norris
- Department of Molecular and Cellular Biology/Biotechnology and Bioservices Center, University of Connecticut, Storrs, CT 06269, USA
| | - Xiuchun Cindy Tian
- Center for Regenerative Biology, Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
142
|
Voskas D, Ling LS, Woodgett JR. Signals controlling un-differentiated states in embryonic stem and cancer cells: role of the phosphatidylinositol 3' kinase pathway. J Cell Physiol 2014; 229:1312-22. [PMID: 24604594 PMCID: PMC4258093 DOI: 10.1002/jcp.24603] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 03/04/2014] [Indexed: 12/23/2022]
Abstract
The capacity of embryonic stem (ES) cells to differentiate into cell lineages comprising the three germ layers makes them powerful tools for studying mammalian early embryonic development in vitro. The human body consists of approximately 210 different somatic cell types, the majority of which have limited proliferative capacity. However, both stem cells and cancer cells bypass this replicative barrier and undergo symmetric division indefinitely when cultured under defined conditions. Several signal transduction pathways play important roles in regulating stem cell development, and aberrant expression of components of these pathways is linked to cancer. Among signaling systems, the critical role of leukemia inhibitory factor (LIF) coupled to the Jak/STAT3 (signal transduction and activation of transcription-3) pathway in maintaining stem cell self-renewal has been extensively reviewed. This pathway additionally plays multiple roles in tumorigenesis. Likewise, the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (PKB/Akt) pathway has been determined to play an important role in both stem cell maintenance and tumor development. This pathway is often induced in cancer with frequent mutational activation of the catalytic subunit of PI3K or loss of a primary PI3K antagonist, phosphatase and tensin homolog deleted on chromosome ten (PTEN). This review focusses on roles of the PI3K signal transduction pathway components, with emphasis on functions in stem cell maintenance and cancer. Since the PI3K pathway impinges on and collaborates with other signaling pathways in regulating stem cell development and/or cancer, aspects of the canonical Wnt, Ras/mitogen-activated protein kinase (MAPK), and TGF-β signaling pathways are also discussed.
Collapse
Affiliation(s)
- Daniel Voskas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
143
|
Ernst M, Putoczki TL. Molecular Pathways: IL11 as a Tumor-Promoting Cytokine—Translational Implications for Cancers. Clin Cancer Res 2014; 20:5579-88. [DOI: 10.1158/1078-0432.ccr-13-2492] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
144
|
Hatakeyama S. Ubiquitin-mediated regulation of JAK-STAT signaling in embryonic stem cells. JAKSTAT 2014; 1:168-75. [PMID: 24058766 PMCID: PMC3670240 DOI: 10.4161/jkst.21560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 12/12/2022] Open
Abstract
LIF activates several intracellular signaling pathways including JAK-STAT, PI3K/AKT and MAPK pathways. LIF is an important cytokine for maintenance of pluripotency and self-renewal of mouse ES cells. The JAK-STAT signal plays a key role in maintenance of the pluripotency of ESCs. Recent evidence shows that several post-translational modifications regulate activation or inhibition of intracellular signal transductions. The JAK-STAT signal is also modulated by several modifications including phosphorylation, acetylation and ubiquitination. In this review, we discuss regulation of the LIF-mediated-JAK-STAT signaling pathway that contributes to self-renewal of pluripotent ESCs.
Collapse
Affiliation(s)
- Shigetsugu Hatakeyama
- Department of Biochemistry; Hokkaido University Graduate School of Medicine; Sapporo, Hokkaido Japan
| |
Collapse
|
145
|
Wei J, Han J, Zhao Y, Cui Y, Wang B, Xiao Z, Chen B, Dai J. The importance of three-dimensional scaffold structure on stemness maintenance of mouse embryonic stem cells. Biomaterials 2014; 35:7724-33. [PMID: 24930853 DOI: 10.1016/j.biomaterials.2014.05.060] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/21/2014] [Indexed: 12/26/2022]
Abstract
Revealing the mechanisms of cell fate regulation is important for scientific research and stem cell-based therapy. The traditional two-dimensional (2D) cultured mES cells are in a very different 2D niche from the in vivo equivalent-inner cell mass (ICM). Because the cell fate decision could be regulated by many cues which could be impacted by geometry, the traditional 2D culture system would hamper us from understanding the in vivo situations correctly. Three-dimensional (3D) scaffold was believed to provide a 3D environment closed to the in vivo one. In this work, three different scaffolds were prepared for cell culture. Several characters of mES cells were changed under 3D scaffolds culture compared to 2D, and these changes were mainly due to the alteration in geometry but not the matrix. The self-renewal of mES cells was promoted by the introducing of dimensionality. The stemness maintenance of mES was supported by all three 3D scaffolds without feeder cells in the long-time culture. Our findings demonstrated that the stemness maintenance of mES cells was promoted by the 3D geometry of scaffolds and this would provide a promising platform for ES cell research.
Collapse
Affiliation(s)
- Jianshu Wei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School, ChineseAcademy of Sciences, Beijing 100190, China
| | - Jin Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Cui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
146
|
Meek S, Wei J, Sutherland L, Nilges B, Buehr M, Tomlinson SR, Thomson AJ, Burdon T. Tuning of β-catenin activity is required to stabilize self-renewal of rat embryonic stem cells. Stem Cells 2014; 31:2104-15. [PMID: 23843312 DOI: 10.1002/stem.1466] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 05/30/2013] [Indexed: 12/20/2022]
Abstract
Stabilization of β-catenin, through inhibition of glycogen synthase kinase 3 (GSK3) activity, in conjunction with inhibition of mitogen-activated protein kinase kinase 1/2 (MEK) promotes self-renewal of naïve-type mouse embryonic stem cells (ESC). In developmentally more advanced, primed-type, epiblast stem cells, however, β-catenin activity induces differentiation. We investigated the response of rat ESCs to β-catenin signaling and found that when maintained on feeder-support cells in the presence of a MEK inhibitor alone (1i culture), the derivation efficiency, growth, karyotypic stability, transcriptional profile, and differentiation potential of rat ESC cultures was similar to that of cell lines established using both MEK and GSK3 inhibitors (2i culture). Equivalent mouse ESCs, by comparison, differentiated in identical 1i conditions, consistent with insufficient β-catenin activity. This interspecies difference in reliance on GSK3 inhibition corresponded with higher overall levels of β-catenin activity in rat ESCs. Indeed, rat ESCs displayed widespread expression of the mesendoderm-associated β-catenin targets, Brachyury and Cdx2 in 2i medium, and overt differentiation upon further increases in β-catenin activity. In contrast, mouse ESCs were resistant to differentiation at similarly elevated doses of GSK3 inhibitor. Interestingly, without feeder support, moderate levels of GSK3 inhibition were necessary to support effective growth of rat ESC, confirming the conserved role for β-catenin in ESC self-renewal. This work identifies β-catenin signaling as a molecular rheostat in rat ESC, regulating self-renewal in a dose-dependent manner, and highlights the potential importance of controlling flux in this signaling pathway to achieve effective stabilization of naïve pluripotency.
Collapse
Affiliation(s)
- Stephen Meek
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Boroviak T, Loos R, Bertone P, Smith A, Nichols J. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat Cell Biol 2014; 16:516-28. [PMID: 24859004 PMCID: PMC4878656 DOI: 10.1038/ncb2965] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/11/2014] [Indexed: 12/14/2022]
Abstract
The precise relationship of embryonic stem cells (ESCs) to cells in the mouse embryo remains controversial. We present transcriptional and functional data to identify the embryonic counterpart of ESCs. Marker profiling shows that ESCs are distinct from early inner cell mass (ICM) and closely resemble pre-implantation epiblast. A characteristic feature of mouse ESCs is propagation without ERK signalling. Single-cell culture reveals that cell-autonomous capacity to thrive when the ERK pathway is inhibited arises late during blastocyst development and is lost after implantation. The frequency of deriving clonal ESC lines suggests that all E4.5 epiblast cells can become ESCs. We further show that ICM cells from early blastocysts can progress to ERK independence if provided with a specific laminin substrate. These findings suggest that formation of the epiblast coincides with competence for ERK-independent self-renewal in vitro and consequent propagation as ESC lines.
Collapse
Affiliation(s)
- Thorsten Boroviak
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,
| | - Remco Loos
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK,
| | - Paul Bertone
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK,
- Genome Biology and Developmental Biology Units, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany,
| | - Austin Smith
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,
- Department of Biochemistry, University of Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK,
| |
Collapse
|
148
|
Kong G, Wunderlich M, Yang D, Ranheim EA, Young KH, Wang J, Chang YI, Du J, Liu Y, Tey SR, Zhang X, Juckett M, Mattison R, Damnernsawad A, Zhang J, Mulloy JC, Zhang J. Combined MEK and JAK inhibition abrogates murine myeloproliferative neoplasm. J Clin Invest 2014; 124:2762-2773. [PMID: 24812670 PMCID: PMC4038579 DOI: 10.1172/jci74182] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Overactive RAS signaling is prevalent in juvenile myelomonocytic leukemia (JMML) and the myeloproliferative variant of chronic myelomonocytic leukemia (MP-CMML) in humans, and both are refractory to conventional chemotherapy. Conditional activation of a constitutively active oncogenic Nras (NrasG12D/G12D) in murine hematopoietic cells promotes an acute myeloproliferative neoplasm (MPN) that recapitulates many features of JMML and MP-CMML. We found that NrasG12D/G12D-expressing HSCs, which serve as JMML/MP-CMML-initiating cells, show strong hyperactivation of ERK1/2, promoting hyperproliferation and depletion of HSCs and expansion of downstream progenitors. Inhibition of the MEK pathway alone prolonged the presence of NrasG12D/G12D-expressing HSCs but failed to restore their proper function. Consequently, approximately 60% of NrasG12D/G12D mice treated with MEK inhibitor alone died within 20 weeks, and the remaining animals continued to display JMML/MP-CMML-like phenotypes. In contrast, combined inhibition of MEK and JAK/STAT signaling, which is commonly hyperactivated in human and mouse CMML, potently inhibited human and mouse CMML cell growth in vitro, rescued mutant NrasG12D/G12D-expressing HSC function in vivo, and promoted long-term survival without evident disease manifestation in NrasG12D/G12D animals. These results provide a strong rationale for further exploration of combined targeting of MEK/ERK and JAK/STAT in treating patients with JMML and MP-CMML.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Genes, ras
- Humans
- Janus Kinases/antagonists & inhibitors
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Leukemia, Myelomonocytic, Chronic/enzymology
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Juvenile/drug therapy
- Leukemia, Myelomonocytic, Juvenile/enzymology
- Leukemia, Myelomonocytic, Juvenile/genetics
- MAP Kinase Signaling System/drug effects
- Mice
- Mice, Mutant Strains
- Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors
- Myeloproliferative Disorders/drug therapy
- Myeloproliferative Disorders/enzymology
- Myeloproliferative Disorders/pathology
- Protein Kinase Inhibitors/administration & dosage
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Guangyao Kong
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA. Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA. Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center (UWCCC), Madison, Wisconsin, USA. Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA. BioInfoRx Inc., Madison, Wisconsin, USA. Department of Medicine, University of Wisconsin School of Medicine and Public Health, UWCCC, Madison, Wisconsin, USA
| | - Mark Wunderlich
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA. Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA. Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center (UWCCC), Madison, Wisconsin, USA. Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA. BioInfoRx Inc., Madison, Wisconsin, USA. Department of Medicine, University of Wisconsin School of Medicine and Public Health, UWCCC, Madison, Wisconsin, USA
| | - David Yang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA. Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA. Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center (UWCCC), Madison, Wisconsin, USA. Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA. BioInfoRx Inc., Madison, Wisconsin, USA. Department of Medicine, University of Wisconsin School of Medicine and Public Health, UWCCC, Madison, Wisconsin, USA
| | - Erik A. Ranheim
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA. Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA. Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center (UWCCC), Madison, Wisconsin, USA. Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA. BioInfoRx Inc., Madison, Wisconsin, USA. Department of Medicine, University of Wisconsin School of Medicine and Public Health, UWCCC, Madison, Wisconsin, USA
| | - Ken H. Young
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA. Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA. Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center (UWCCC), Madison, Wisconsin, USA. Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA. BioInfoRx Inc., Madison, Wisconsin, USA. Department of Medicine, University of Wisconsin School of Medicine and Public Health, UWCCC, Madison, Wisconsin, USA
| | - Jinyong Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA. Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA. Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center (UWCCC), Madison, Wisconsin, USA. Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA. BioInfoRx Inc., Madison, Wisconsin, USA. Department of Medicine, University of Wisconsin School of Medicine and Public Health, UWCCC, Madison, Wisconsin, USA
| | - Yuan-I Chang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA. Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA. Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center (UWCCC), Madison, Wisconsin, USA. Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA. BioInfoRx Inc., Madison, Wisconsin, USA. Department of Medicine, University of Wisconsin School of Medicine and Public Health, UWCCC, Madison, Wisconsin, USA
| | - Juan Du
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA. Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA. Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center (UWCCC), Madison, Wisconsin, USA. Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA. BioInfoRx Inc., Madison, Wisconsin, USA. Department of Medicine, University of Wisconsin School of Medicine and Public Health, UWCCC, Madison, Wisconsin, USA
| | - Yangang Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA. Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA. Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center (UWCCC), Madison, Wisconsin, USA. Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA. BioInfoRx Inc., Madison, Wisconsin, USA. Department of Medicine, University of Wisconsin School of Medicine and Public Health, UWCCC, Madison, Wisconsin, USA
| | - Sin Ruow Tey
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA. Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA. Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center (UWCCC), Madison, Wisconsin, USA. Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA. BioInfoRx Inc., Madison, Wisconsin, USA. Department of Medicine, University of Wisconsin School of Medicine and Public Health, UWCCC, Madison, Wisconsin, USA
| | - Xinmin Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA. Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA. Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center (UWCCC), Madison, Wisconsin, USA. Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA. BioInfoRx Inc., Madison, Wisconsin, USA. Department of Medicine, University of Wisconsin School of Medicine and Public Health, UWCCC, Madison, Wisconsin, USA
| | - Mark Juckett
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA. Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA. Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center (UWCCC), Madison, Wisconsin, USA. Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA. BioInfoRx Inc., Madison, Wisconsin, USA. Department of Medicine, University of Wisconsin School of Medicine and Public Health, UWCCC, Madison, Wisconsin, USA
| | - Ryan Mattison
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA. Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA. Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center (UWCCC), Madison, Wisconsin, USA. Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA. BioInfoRx Inc., Madison, Wisconsin, USA. Department of Medicine, University of Wisconsin School of Medicine and Public Health, UWCCC, Madison, Wisconsin, USA
| | - Alisa Damnernsawad
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA. Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA. Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center (UWCCC), Madison, Wisconsin, USA. Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA. BioInfoRx Inc., Madison, Wisconsin, USA. Department of Medicine, University of Wisconsin School of Medicine and Public Health, UWCCC, Madison, Wisconsin, USA
| | - Jingfang Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA. Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA. Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center (UWCCC), Madison, Wisconsin, USA. Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA. BioInfoRx Inc., Madison, Wisconsin, USA. Department of Medicine, University of Wisconsin School of Medicine and Public Health, UWCCC, Madison, Wisconsin, USA
| | - James C. Mulloy
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA. Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA. Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center (UWCCC), Madison, Wisconsin, USA. Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA. BioInfoRx Inc., Madison, Wisconsin, USA. Department of Medicine, University of Wisconsin School of Medicine and Public Health, UWCCC, Madison, Wisconsin, USA
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA. Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA. Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center (UWCCC), Madison, Wisconsin, USA. Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA. BioInfoRx Inc., Madison, Wisconsin, USA. Department of Medicine, University of Wisconsin School of Medicine and Public Health, UWCCC, Madison, Wisconsin, USA
| |
Collapse
|
149
|
Zhang YS, Sevilla A, Wan LQ, Lemischka IR, Vunjak-Novakovic G. Patterning pluripotency in embryonic stem cells. Stem Cells 2014; 31:1806-15. [PMID: 23843329 DOI: 10.1002/stem.1468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/27/2013] [Accepted: 05/14/2013] [Indexed: 12/22/2022]
Abstract
Developmental gradients of morphogens and the formation of boundaries guide the choices between self-renewal and differentiation in stem cells. Still, surprisingly little is known about gene expression signatures of differentiating stem cells at the boundaries between regions. We thus combined inducible gene expression with a microfluidic technology to pattern gene expression in murine embryonic stem cells. Regional depletion of the Nanog transcriptional regulator was achieved through the exposure of cells to microfluidic gradients of morphogens. In this way, we established pluripotency-differentiation boundaries between Nanog expressing cells (pluripotency zone) and Nanog suppressed cells (early differentiation zone) within the same cell population, with a gradient of Nanog expression across the individual cell colonies, to serve as a mimic of the developmental process. Using this system, we identified strong interactions between Nanog and its target genes by constructing a network with Nanog as the root and the measured levels of gene expression in each region. Gene expression patterns at the pluripotency-differentiation boundaries recreated in vitro were similar to those in the developing blastocyst. This approach to the study of cellular commitment at the boundaries between gene expression domains, a phenomenon critical for understanding of early development, has potential to benefit fundamental research of stem cells and their application in regenerative medicine.
Collapse
Affiliation(s)
- Yue Shelby Zhang
- Department for Biomedical Engineering, Columbia University, New York, USA
| | | | | | | | | |
Collapse
|
150
|
Kim SH, Kim MO, Cho YY, Yao K, Kim DJ, Jeong CH, Yu DH, Bae KB, Cho EJ, Jung SK, Lee MH, Chen H, Kim JY, Bode AM, Dong Z. ERK1 phosphorylates Nanog to regulate protein stability and stem cell self-renewal. Stem Cell Res 2014; 13:1-11. [PMID: 24793005 DOI: 10.1016/j.scr.2014.04.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022] Open
Abstract
Nanog regulates human and mouse embryonic stem (ES) cell self-renewal activity. Activation of ERKs signaling negatively regulates ES cell self-renewal and induces differentiation, but the mechanisms are not understood. We found that ERK1 binds and phosphorylates Nanog. Activation of MEK/ERKs signaling and phosphorylation of Nanog inhibit Nanog transactivation, inducing ES cell differentiation. Conversely, suppression of MEK/ERKs signaling enhances Nanog transactivation to inhibit ES cell differentiation. We observed that phosphorylation of Nanog by ERK1 decreases Nanog stability through ubiquitination-mediated protein degradation. Further, we found that this phosphorylation induces binding of FBXW8 with Nanog to reduce Nanog protein stability. Overall, our results demonstrated that ERKs-mediated Nanog phosphorylation plays an important role in self-renewal of ES cells through FBXW8-mediated Nanog protein stability.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA; Kyungpook National University, Center for Laboratory Animal Resources, School of Animal BT Science, Department of Biochemistry, School of Dentistry, Dae-gu, Republic of Korea
| | - Myoung Ok Kim
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA; Kyungpook National University, Center for Laboratory Animal Resources, School of Animal BT Science, Department of Biochemistry, School of Dentistry, Dae-gu, Republic of Korea
| | - Yong-Yeon Cho
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Ke Yao
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Dong Joon Kim
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Chul-Ho Jeong
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Dong Hoon Yu
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Ki Beom Bae
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Eun Jin Cho
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Sung Keun Jung
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Mee Hyun Lee
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Jae Young Kim
- Kyungpook National University, Center for Laboratory Animal Resources, School of Animal BT Science, Department of Biochemistry, School of Dentistry, Dae-gu, Republic of Korea
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA.
| |
Collapse
|