101
|
Abstract
"Germ granules" are cytoplasmic, nonmembrane-bound organelles unique to germline. Germ granules share components with the P bodies and stress granules of somatic cells, but also contain proteins and RNAs uniquely required for germ cell development. In this review, we focus on recent advances in our understanding of germ granule assembly, dynamics, and function. One hypothesis is that germ granules operate as hubs for the posttranscriptional control of gene expression, a function at the core of the germ cell differentiation program.
Collapse
Affiliation(s)
- Ekaterina Voronina
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
102
|
Huang HY, Houwing S, Kaaij LJT, Meppelink A, Redl S, Gauci S, Vos H, Draper BW, Moens CB, Burgering BM, Ladurner P, Krijgsveld J, Berezikov E, Ketting RF. Tdrd1 acts as a molecular scaffold for Piwi proteins and piRNA targets in zebrafish. EMBO J 2011; 30:3298-308. [PMID: 21743441 PMCID: PMC3160653 DOI: 10.1038/emboj.2011.228] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/10/2011] [Indexed: 12/31/2022] Open
Abstract
Piwi proteins function in an RNAi-like pathway that silences transposons. Piwi-associated RNAs, also known as piRNAs, act as a guide to identify Piwi targets. The tudor domain-containing protein Tdrd1 has been linked to this pathway but its function has thus far remained unclear. We show that zebrafish Tdrd1 is required for efficient Piwi-pathway activity and proper nuage formation. Furthermore, we find that Tdrd1 binds both zebrafish Piwi proteins, Ziwi and Zili, and reveals sequence specificity in the interaction between Tdrd1 tudor domains and symmetrically dimethylated arginines (sDMAs) in Zili. Finally, we show that Tdrd1 complexes contain piRNAs and RNA molecules that are longer than piRNAs. We name these longer transcripts Tdrd1-associated transcripts (TATs). TATs likely represent cleaved Piwi pathway targets and may serve as piRNA biogenesis intermediates. Altogether, our data suggest that Tdrd1 acts as a molecular scaffold for Piwi proteins, bound through specific tudor domain-sDMA interactions, piRNAs and piRNA targets.
Collapse
Affiliation(s)
- Hsin-Yi Huang
- Hubrecht Institute-KNAW, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Saskia Houwing
- Hubrecht Institute-KNAW, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Lucas J T Kaaij
- Hubrecht Institute-KNAW, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Amanda Meppelink
- Hubrecht Institute-KNAW, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Stefan Redl
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Sharon Gauci
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Centre for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and Netherlands Proteomics Center, Utrecht University, Utrecht, The Netherlands
| | - Harmjan Vos
- Department of Physiological Chemistry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bruce W Draper
- Molecular and Cellular Biology, University of California Davis, Davis, CA, USA
| | - Cecilia B Moens
- Howard Hughes Medical Institute and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Boudewijn M Burgering
- Department of Physiological Chemistry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter Ladurner
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Jeroen Krijgsveld
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Centre for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and Netherlands Proteomics Center, Utrecht University, Utrecht, The Netherlands
| | - Eugene Berezikov
- Hubrecht Institute-KNAW, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - René F Ketting
- Hubrecht Institute-KNAW, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
103
|
Patterson JR, Wood MP, Schisa J. Assembly of RNP granules in stressed and aging oocytes requires nucleoporins and is coordinated with nuclear membrane blebbing. Dev Biol 2011; 353:173-85. [PMID: 21382369 PMCID: PMC3096477 DOI: 10.1016/j.ydbio.2011.02.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/02/2011] [Accepted: 02/02/2011] [Indexed: 01/19/2023]
Abstract
Protective cellular responses to stress and aging in the germline are essential for perpetuation of a species; however, relatively few studies have focused on how germ cells respond to stress and aging. We have previously shown that large ribonucleoprotein (RNP) complexes assemble in oocytes of Caenorhabditis during extended meiotic arrest or after environmental stress. Here we explore the regulation of these dynamic RNPs and demonstrate their assembly is coordinated with dramatic, nuclear membrane blebbing in oocytes. Our ultrastructural analyses reveal distinct changes in the endoplasmic reticulum, and the first evidence for the assembly of stacked annulate lamellae in Caenorhabditis. We further show several nucleoporins are required for the complete assembly of RNP granules, and a disruption in RNP granule assembly coupled with a low frequency of nuclear blebbing in arrested oocytes negatively impacts embryonic viability. Our observations support a model where nuclear membrane blebbing is required to increase the trafficking of nucleoporins to the cell cortex in stressed or meiotically arrested cells and to facilitate the recruitment of RNA and protein components of RNPs into large complexes. These new insights may have general implications for better understanding how germ cells preserve their integrity when fertilization is delayed and how cells respond to stress.
Collapse
Affiliation(s)
- Joseph R. Patterson
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Megan P. Wood
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Jennifer Schisa
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| |
Collapse
|
104
|
Kapelle WS, Reinke V. C. elegans meg-1 and meg-2 differentially interact with nanos family members to either promote or inhibit germ cell proliferation and survival. Genesis 2011; 49:380-91. [PMID: 21305687 DOI: 10.1002/dvg.20726] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The closely related C. elegans MEG-1 and MEG-2 proteins localize to P granules during a brief period of embryogenesis when the germ lineage is being separated from the soma. Embryonic primordial germ cells still develop in the absence of MEG activity, but major defects emerge during larval stages when germ cells fail to proliferate or differentiate normally, resulting in sterility. To investigate meg-1 function, we conducted a targeted RNAi screen for enhancers and suppressors of meg-1 sterility. Here, we show that meg-1 interacts with multiple pathways that promote germ cell proliferation and survival. Surprisingly, we found that two nanos family members had opposing effects on the meg-1 phenotype. Loss of nos-3 suppressed the meg-1 phenotype, restoring fertility, while loss of nos-2 enhanced the meg-1 phenotype, abolishing proliferation and causing early and pronounced germ cell degeneration. Together, our analyses suggest that, under circumstances that favor proliferation, MEG function is not essential for germ cells to proliferate, although it is important for optimal proliferation. Additionally, MEG activity is likely more directly involved in germ cell survival than previously thought. genesis 49:380-391, 2011.
Collapse
Affiliation(s)
- William S Kapelle
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
105
|
Updike DL, Hachey SJ, Kreher J, Strome S. P granules extend the nuclear pore complex environment in the C. elegans germ line. J Cell Biol 2011; 192:939-48. [PMID: 21402789 PMCID: PMC3063144 DOI: 10.1083/jcb.201010104] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 02/15/2011] [Indexed: 11/23/2022] Open
Abstract
The immortal and totipotent properties of the germ line depend on determinants within the germ plasm. A common characteristic of germ plasm across phyla is the presence of germ granules, including P granules in Caenorhabditis elegans, which are typically associated with the nuclear periphery. In C. elegans, nuclear pore complex (NPC)-like FG repeat domains are found in the VASA-related P-granule proteins GLH-1, GLH-2, and GLH-4 and other P-granule components. We demonstrate that P granules, like NPCs, are held together by weak hydrophobic interactions and establish a size-exclusion barrier. Our analysis of intestine-expressed proteins revealed that GLH-1 and its FG domain are not sufficient to form granules, but require factors like PGL-1 to nucleate the localized concentration of GLH proteins. GLH-1 is necessary but not sufficient for the perinuclear location of granules in the intestine. Our results suggest that P granules extend the NPC environment in the germ line and provide insights into the roles of the PGL and GLH family proteins.
Collapse
Affiliation(s)
- Dustin L Updike
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
106
|
Abstract
Sexually reproducing metazoans establish a cell lineage during development that is ultimately dedicated to gamete production. Work in a variety of animals suggests that a group of conserved molecular determinants act in this germ line maintenance and function. The most universal of these genes are Vasa and Vasa-like DEAD-box RNA helicase genes. However, recent evidence indicates that Vasa genes also function in other cell types, distinct from the germ line. Here we evaluate our current understanding of Vasa function and its regulation during development, addressing Vasa's emerging role in multipotent cells. We also explore the evolutionary diversification of the N-terminal domain of this gene and how this impacts the association of Vasa with nuage-like perinuclear structures.
Collapse
Affiliation(s)
- Eric A. Gustafson
- Providence Institute of Molecular Oogenesis, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912
| | - Gary M. Wessel
- Providence Institute of Molecular Oogenesis, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912
| |
Collapse
|
107
|
Bezares-Calderón LA, Becerra A, Salinas LS, Maldonado E, Navarro RE. Bioinformatic analysis of P granule-related proteins: insights into germ granule evolution in nematodes. Dev Genes Evol 2010; 220:41-52. [PMID: 20532558 DOI: 10.1007/s00427-010-0327-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/13/2010] [Indexed: 11/29/2022]
Abstract
Germ cells in many animals possess a specialized cytoplasm in the form of granules that contain RNA and protein complexes essential for the function and preservation of the germline. The mechanism for the formation of these granules is still poorly understood; however, the lack of conservation in their components across different species suggests evolutionary convergence in the assembly process. Germ granules are assumed to be present in all nematodes with a preformed germline. However, few studies have clearly identified these structures in species other than Caenorhabditis elegans and even less have carried functional analysis to provide a broader panorama of the granules composition in the phylum. We adopted a bioinformatics approach to investigate the extension of conservation in nematodes of some known C. elegans germ granule components, as a proxy to understand germ granules evolution in this phylum. Unexpectedly, we found that, in nematodes, the DEAD box RNA helicase Vasa, a conserved protein among different phyla, shows a complex history of clade-specific duplications and sequence divergence. Our analyses suggest that, in nematodes, Vasa's function might be shared among proteins like LAF-1, VBH-1, and GLH-1/-2/-3 and GLH-4. Key components of P granules assembly in C. elegans, like the PGL protein family, are only preserved in Caenorhabditis species. Our analysis suggests that germ granules assembly may not be conserved in nematodes. Studies on these species could bring insight into the basic components required for this pathway.
Collapse
Affiliation(s)
- Luis A Bezares-Calderón
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México 04510
| | | | | | | | | |
Collapse
|
108
|
Sheth U, Pitt J, Dennis S, Priess JR. Perinuclear P granules are the principal sites of mRNA export in adult C. elegans germ cells. Development 2010; 137:1305-14. [PMID: 20223759 PMCID: PMC2847466 DOI: 10.1242/dev.044255] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2010] [Indexed: 12/24/2022]
Abstract
Germline-specific granules of unknown function are found in a wide variety of organisms, including C. elegans, where they are called P granules. P granules are cytoplasmic bodies in oocytes and early embryos. Throughout most of the C. elegans life cycle, however, P granules are associated with clusters of nuclear pore complexes (NPCs) on germ cell nuclei. We show that perinuclear P granules differ from cytoplasmic P granules in many respects, including structure, stability and response to metabolic changes. Our results suggest that nuclear-associated P granules provide a perinuclear compartment where newly exported mRNAs are collected prior to their release to the general cytoplasm. First, we show that mRNA export factors are highly enriched at the NPCs associated with P granules. Second, we discovered that the expression of high-copy transgenes could be induced in a subset of germ cells, and used this system to demonstrate that nascent mRNA traffics directly to P granules. P granules appear to sequester large amounts of mRNA in quiescent germ cells, presumably preventing translation of that mRNA. However, we did not find evidence that P granules normally sequester aberrant mRNAs, or mRNAs targeted for destruction by the RNAi pathway.
Collapse
Affiliation(s)
- Ujwal Sheth
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Jason Pitt
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Shannon Dennis
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - James R. Priess
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
109
|
Voronina E, Seydoux G. The C. elegans homolog of nucleoporin Nup98 is required for the integrity and function of germline P granules. Development 2010; 137:1441-50. [PMID: 20335358 DOI: 10.1242/dev.047654] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
C. elegans P granules are conserved cytoplasmic ribonucleoprotein complexes that are unique to the germline and essential for fertility. During most of germline development, P granules are perinuclear and associate with clusters of nuclear pores. In an RNAi screen against nucleoporins, we have identified a specific nucleoporin essential for P granule integrity and function. The C. elegans homolog of vertebrate Nup98 (CeNup98) is enriched in P granules and associates with the translationally repressed, P granule-enriched mRNA nos-2 (nanos homolog). Loss of CeNup98 causes P granules to disperse in the cytoplasm and to release nos-2 mRNA. Embryos depleted for CeNup98 express a nos-2 3'UTR reporter prematurely. In the mouse, Nup98 immunoprecipitates with the germ granule component MVH. Our findings suggest that, in germ cells, the function of Nup98 extends beyond transport at the nuclear pore to include mRNA regulation in the cytoplasm.
Collapse
Affiliation(s)
- Ekaterina Voronina
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
110
|
Hajeri VA, Little BA, Ladage ML, Padilla PA. NPP-16/Nup50 function and CDK-1 inactivation are associated with anoxia-induced prophase arrest in Caenorhabditis elegans. Mol Biol Cell 2010; 21:712-24. [PMID: 20053678 PMCID: PMC2828959 DOI: 10.1091/mbc.e09-09-0787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cellular and genetic analysis supports the notion that NPP-16/NUP50 and CDK-1 function to reversibly arrest prophase blastomeres in Caenorhabditis elegans embryos exposed to anoxia. The anoxia-induced shift of cells from an actively dividing state to an arrested state reveals a previously uncharacterized prophase checkpoint in the C. elegans embryo. Oxygen, an essential nutrient, is sensed by a multiple of cellular pathways that facilitate the responses to and survival of oxygen deprivation. The Caenorhabditis elegans embryo exposed to severe oxygen deprivation (anoxia) enters a state of suspended animation in which cell cycle progression reversibly arrests at specific stages. The mechanisms regulating interphase, prophase, or metaphase arrest in response to anoxia are not completely understood. Characteristics of arrested prophase blastomeres and oocytes are the alignment of condensed chromosomes at the nuclear periphery and an arrest of nuclear envelope breakdown. Notably, anoxia-induced prophase arrest is suppressed in mutant embryos lacking nucleoporin NPP-16/NUP50 function, indicating that this nucleoporin plays an important role in prophase arrest in wild-type embryos. Although the inactive form of cyclin-dependent kinase (CDK-1) is detected in wild-type–arrested prophase blastomeres, the inactive state is not detected in the anoxia exposed npp-16 mutant. Furthermore, we found that CDK-1 localizes near chromosomes in anoxia-exposed embryos. These data support the notion that NPP-16 and CDK-1 function to arrest prophase blastomeres in C. elegans embryos. The anoxia-induced shift of cells from an actively dividing state to an arrested state reveals a previously uncharacterized prophase checkpoint in the C. elegans embryo.
Collapse
Affiliation(s)
- Vinita A Hajeri
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | | | | | | |
Collapse
|
111
|
Updike D, Strome S. P granule assembly and function in Caenorhabditis elegans germ cells. ACTA ACUST UNITED AC 2009; 31:53-60. [PMID: 19875490 DOI: 10.2164/jandrol.109.008292] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Germ granules are large, non-membrane-bound, ribonucleoprotein (RNP) organelles found in the germ line cytoplasm of most, if not all, animals. The term germ granule is synonymous with the perinuclear nuage in mouse and human germ cells. These large RNPs are complexed with germ line-specific cytoplasmic structures such as the mitochondrial cloud, intermitochondrial cement, and chromatoid bodies. The widespread presence of germ granules across species and the associated germ line defects when germ granules are compromised suggest that germ granules are key determinants of the identity and special properties of germ cells. The nematode Caenorhabditis elegans has been a very fruitful model system for the study of germ granules, wherein they are referred to as P granules. P granules contain a heterogeneous mixture of RNAs and proteins. To date, most of the known germ granule proteins across species, and all of the known P granule components in C elegans, are associated with RNA metabolism, which suggests that a main function of germ granules is posttranscriptional regulation. Here we review P granule structure and localization, P granule composition, the genetic pathway of P granule assembly, and the consequences in the germ line when P granule components are lost. The findings in C elegans have important implications for the germ granule function during postnatal germ cell differentiation in mammals.
Collapse
Affiliation(s)
- Dustin Updike
- Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
112
|
Claycomb JM, Batista PJ, Pang KM, Gu W, Vasale JJ, van Wolfswinkel JC, Chaves DA, Shirayama M, Mitani S, Ketting RF, Conte D, Mello CC. The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 2009; 139:123-34. [PMID: 19804758 DOI: 10.1016/j.cell.2009.09.014] [Citation(s) in RCA: 346] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 07/01/2009] [Accepted: 09/11/2009] [Indexed: 12/11/2022]
Abstract
RNAi-related pathways regulate diverse processes, from developmental timing to transposon silencing. Here, we show that in C. elegans the Argonaute CSR-1, the RNA-dependent RNA polymerase EGO-1, the Dicer-related helicase DRH-3, and the Tudor-domain protein EKL-1 localize to chromosomes and are required for proper chromosome segregation. In the absence of these factors chromosomes fail to align at the metaphase plate and kinetochores do not orient to opposing spindle poles. Surprisingly, the CSR-1-interacting small RNAs (22G-RNAs) are antisense to thousands of germline-expressed protein-coding genes. Nematodes assemble holocentric chromosomes in which continuous kinetochores must span the expressed domains of the genome. We show that CSR-1 interacts with chromatin at target loci but does not downregulate target mRNA or protein levels. Instead, our findings support a model in which CSR-1 complexes target protein-coding domains to promote their proper organization within the holocentric chromosomes of C. elegans.
Collapse
Affiliation(s)
- Julie M Claycomb
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01606, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
A genomewide RNAi screen for genes that affect the stability, distribution and function of P granules in Caenorhabditis elegans. Genetics 2009; 183:1397-419. [PMID: 19805813 DOI: 10.1534/genetics.109.110171] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
P granules are non-membrane-bound organelles found in the germ-line cytoplasm throughout Caenorhabditis elegans development. Like their "germ granule" counterparts in other animals, P granules are thought to act as determinants of the identity and special properties of germ cells, properties that include the unique ability to give rise to all tissues of future generations of an organism. Therefore, understanding how P granules work is critical to understanding how cellular immortality and totipotency are retained, gained, and lost. Here we report on a genomewide RNAi screen in C. elegans, which identified 173 genes that affect the stability, localization, and function of P granules. Many of these genes fall into specific classes with shared P-granule phenotypes, allowing us to better understand how cellular processes such as protein degradation, translation, splicing, nuclear transport, and mRNA homeostasis converge on P-granule assembly and function. One of the more striking phenotypes is caused by the depletion of CSR-1, an Argonaute associated with an endogenous siRNA pathway that functions in the germ line. We show that CSR-1 and two other endo-siRNA pathway members, the RNA-dependent RNA polymerase EGO-1 and the helicase DRH-3, act to antagonize RNA and P-granule accumulation in the germ line. Our findings strengthen the emerging view that germ granules are involved in numerous aspects of RNA metabolism, including an endo-siRNA pathway in germ cells.
Collapse
|
114
|
Minasaki R, Puoti A, Streit A. The DEAD-box protein MEL-46 is required in the germ line of the nematode Caenorhabditis elegans. BMC DEVELOPMENTAL BIOLOGY 2009; 9:35. [PMID: 19534797 PMCID: PMC2711086 DOI: 10.1186/1471-213x-9-35] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 06/17/2009] [Indexed: 01/09/2023]
Abstract
Background In the hermaphrodite of the nematode Caenorhabditis elegans, the first germ cells differentiate as sperm. Later the germ line switches to the production of oocytes. This process requires the activity of a genetic regulatory network that includes among others the fem, fog and mog genes. The function of some of these genes is germline specific while others also act in somatic tissues. DEAD box proteins have been shown to be involved in the control of gene expression at different steps such as transcription and pre-mRNA processing. Results We show that the Caenorhabditis elegans gene mel-46 (maternal effect lethal) encodes a DEAD box protein that is related to the mammalian DDX20/Gemin3/DP103 genes. mel-46 is expressed throughout development and mutations in mel-46 display defects at multiple developmental stages. Here we focus on the role of mel-46 in the hermaphrodite germ line. mel-46(yt5) mutant hermaphrodites are partially penetrant sterile and fully penetrant maternal effect lethal. The germ line of mutants shows variable defects in oogenesis. Further, mel-46(yt5) suppresses the complete feminization caused by mutations in fog-2 and fem-3, two genes that are at the top and the center, respectively, of the genetic germline sex determining cascade, but not fog-1 that is at the bottom of this cascade. Conclusion The C. elegans gene mel-46 encodes a DEAD box protein that is required maternally for early embryogenesis and zygotically for postembryonic development. In the germ line, it is required for proper oogenesis. Although it interacts genetically with genes of the germline sex determination machinery its primary function appears to be in oocyte differentiation rather than sex determination.
Collapse
Affiliation(s)
- Ryuji Minasaki
- Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | | | | |
Collapse
|
115
|
Henderson MA, Cronland E, Dunkelbarger S, Contreras V, Strome S, Keiper BD. A germline-specific isoform of eIF4E (IFE-1) is required for efficient translation of stored mRNAs and maturation of both oocytes and sperm. J Cell Sci 2009; 122:1529-39. [PMID: 19383718 DOI: 10.1242/jcs.046771] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fertility and embryonic viability are measures of efficient germ cell growth and development. During oogenesis and spermatogenesis, new proteins are required for both mitotic expansion and differentiation. Qualitative and quantitative changes in protein synthesis occur by translational control of mRNAs, mediated in part by eIF4E, which binds the mRNAs 5' cap. IFE-1 is one of five eIF4E isoforms identified in C. elegans. IFE-1 is expressed primarily in the germ line and associates with P granules, large mRNPs that store mRNAs. We isolated a strain that lacks IFE-1 [ife-1(bn127)] and demonstrated that the translation of several maternal mRNAs (pos-1, pal-1, mex-1 and oma-1) was inefficient relative to that in wild-type worms. At 25 degrees C, ife-1(bn127) spermatocytes failed in cytokinesis, prematurely expressed the pro-apoptotic protein CED-4/Apaf-1, and accumulated as multinucleate cells unable to mature to spermatids. A modest defect in oocyte development was also observed. Oocytes progressed normally through mitosis and meiosis, but subsequent production of competent oocytes became limiting, even in the presence of wild-type sperm. Combined gametogenesis defects decreased worm fertility by 80% at 20 degrees C; ife-1 worms were completely sterile at 25 degrees C. Thus, IFE-1 plays independent roles in late oogenesis and spermatogenesis through selective translation of germline-specific mRNAs.
Collapse
Affiliation(s)
- Melissa A Henderson
- Department of Biochemistry, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | | | | | | | | | | |
Collapse
|
116
|
Actin microfilaments guide the polarized transport of nuclear pore complexes and the cytoplasmic dispersal of Vasa mRNA during GVBD in the ascidian Halocynthia roretzi. Dev Biol 2009; 330:377-88. [PMID: 19362546 DOI: 10.1016/j.ydbio.2009.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/30/2009] [Accepted: 04/03/2009] [Indexed: 12/16/2022]
Abstract
Meiosis reinitiation starts with the germinal vesicle breakdown (GVBD) within the gonad before spawning. Here, we have extended our previous observations and identified the formation of conspicuous actin bundles emanating from the germinal vesicle (GV) during its breakdown in the ascidian Halocynthia roretzi. Time-lapse video recordings and fluorescent labelling of microfilaments (MFs) indicate that these microfilamentous structures invariantly elongate towards the vegetal hemisphere at the estimated speed of 20 mum/min. Interestingly, the nuclear pore complex protein Nup153 accumulates at the vegetal tip of actin bundles. To determine if these structures play a role in the formation of the germ plasm, we have analyzed the localization pattern of Vasa transcript in maturing oocytes and early embryos. We found that Hr-Vasa mRNA, one of Type II postplasmic/PEM mRNAs, changes from a granular and perinuclear localization to an apparent uniform cytoplasmic distribution during oocyte maturation, and then concentrate in the centrosome-attracting body (CAB) by the eight-cell stage. In addition, treatments with Latrunculin B, but not with Nocodazole, blocked the redistribution of Nup153 and Hr-Vasa mRNA, suggesting that these mechanisms are both actin-dependant. We discuss the pleiotropic role played by MFs, and the relationship between nuclear pores, maternal Vasa mRNA and germ plasm in maturing ascidian oocytes.
Collapse
|
117
|
Nakamura A, Seydoux G. Less is more: specification of the germline by transcriptional repression. Development 2009; 135:3817-27. [PMID: 18997110 DOI: 10.1242/dev.022434] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In animals, the germline is the only lineage that transmits genetic information to the next generation. Although the founder cells of this lineage are specified differently in invertebrates and vertebrates, recent studies have shown that germline specification in C. elegans, Drosophila and mouse depends on the global inhibition of mRNA transcription. Different strategies are used in each organism, but remarkably most target the same two processes: transcriptional elongation and chromatin remodeling. This convergence suggests that a repressed genome is essential to preserve the unique developmental potential of the germline.
Collapse
Affiliation(s)
- Akira Nakamura
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.
| | | |
Collapse
|
118
|
Three distinct RNA localization mechanisms contribute to oocyte polarity establishment in the cnidarian Clytia hemisphaerica. Dev Biol 2008; 327:191-203. [PMID: 19121303 DOI: 10.1016/j.ydbio.2008.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 11/10/2008] [Accepted: 12/09/2008] [Indexed: 11/23/2022]
Abstract
Egg animal-vegetal polarity in cnidarians is less pronounced than in most bilaterian species, and its normal alignment with the future embryonic axis can be disturbed by low-speed centrifugation. We have analyzed the development of oocyte polarity within the transparent and autonomously functioning gonads of Clytia medusae, focusing on the localization of three recently identified maternal mRNAs coding for axis-directing Wnt pathway regulators. Animal-vegetal polarity was first detectable in oocytes committed to their final growth phase, as the oocyte nucleus (GV) became positioned at the future animal pole. In situ hybridization analyses showed that during this first, microtubule-dependent polarization event, CheFz1 RNA adopts a graded cytoplasmic distribution, most concentrated around the GV. CheFz3 and CheWnt3 RNAs adopt their polarized cortical localizations later, during meiotic maturation. Vegetal localization of CheFz3 RNA was found to require both microtubules and an intact gonad structure, while animal localization of CheWnt3 RNA was microtubule independent and oocyte autonomous. The cortical distribution of both these RNAs was sensitive to microfilament-disrupting drugs. Thus, three temporally and mechanistically distinct RNA localization pathways contribute to oocyte polarity in Clytia. Unlike the two cortical RNAs, CheFz1 RNA was displaced in fertilized eggs upon centrifugation, potentially explaining how this treatment re-specifies the embryonic axis.
Collapse
|
119
|
Boag PR, Atalay A, Robida S, Reinke V, Blackwell TK. Protection of specific maternal messenger RNAs by the P body protein CGH-1 (Dhh1/RCK) during Caenorhabditis elegans oogenesis. J Cell Biol 2008; 182:543-57. [PMID: 18695045 PMCID: PMC2500139 DOI: 10.1083/jcb.200801183] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 07/15/2008] [Indexed: 12/14/2022] Open
Abstract
During oogenesis, numerous messenger RNAs (mRNAs) are maintained in a translationally silenced state. In eukaryotic cells, various translation inhibition and mRNA degradation mechanisms congregate in cytoplasmic processing bodies (P bodies). The P body protein Dhh1 inhibits translation and promotes decapping-mediated mRNA decay together with Pat1 in yeast, and has been implicated in mRNA storage in metazoan oocytes. Here, we have investigated in Caenorhabditis elegans whether Dhh1 and Pat1 generally function together, and how they influence mRNA sequestration during oogenesis. We show that in somatic tissues, the Dhh1 orthologue (CGH-1) forms Pat1 (patr-1)-dependent P bodies that are involved in mRNA decapping. In contrast, during oogenesis, CGH-1 forms patr-1-independent mRNA storage bodies. CGH-1 then associates with translational regulators and a specific set of maternal mRNAs, and prevents those mRNAs from being degraded. Our results identify somatic and germ cell CGH-1 functions that are distinguished by the involvement of PATR-1, and reveal that during oogenesis, numerous translationally regulated mRNAs are specifically protected by a CGH-1-dependent mechanism.
Collapse
Affiliation(s)
- Peter R Boag
- Joslin Diabetes Center, Harvard Stem Cell Institute, and 2Department of Pathology, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
120
|
Batista PJ, Ruby G, Claycomb JM, Chiang R, Fahlgren N, Kasschau KD, Chaves DA, Gu W, Vasale JJ, Duan S, Conte D, Luo S, Scroth GP, Carrington JC, Bartel DP, Mello CC. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol Cell 2008; 31:67-78. [PMID: 18571452 PMCID: PMC2570341 DOI: 10.1016/j.molcel.2008.06.002] [Citation(s) in RCA: 434] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 06/03/2008] [Accepted: 06/09/2008] [Indexed: 11/25/2022]
Abstract
In metazoans, Piwi-related Argonaute proteins have been linked to germline maintenance, and to a class of germline-enriched small RNAs termed piRNAs. Here we show that an abundant class of 21 nucleotide small RNAs (21U-RNAs) are expressed in the C. elegans germline, interact with the C. elegans Piwi family member PRG-1, and depend on PRG-1 activity for their accumulation. The PRG-1 protein is expressed throughout development and localizes to nuage-like structures called P granules. Although 21U-RNA loci share a conserved upstream sequence motif, the mature 21U-RNAs are not conserved and, with few exceptions, fail to exhibit complementarity or evidence for direct regulation of other expressed sequences. Our findings demonstrate that 21U-RNAs are the piRNAs of C. elegans and link this class of small RNAs and their associated Piwi Argonaute to the maintenance of temperature-dependent fertility.
Collapse
Affiliation(s)
- Pedro J. Batista
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA 01605, USA
- Gulbenkian PhD Programme in Biomedicine, Rua da Quinta Grande, 6, 2780−156, Oeiras, Portugal
| | - Graham Ruby
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Julie M. Claycomb
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosaria Chiang
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Noah Fahlgren
- Center for Gene Research and Biotechnology, Oregon State University Corvallis, Oregon 97331
- Department of Botany and Plant Pathology Oregon State University Corvallis, Oregon 97331
| | - Kristin D. Kasschau
- Center for Gene Research and Biotechnology, Oregon State University Corvallis, Oregon 97331
- Department of Botany and Plant Pathology Oregon State University Corvallis, Oregon 97331
| | - Daniel A. Chaves
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Weifung Gu
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jessica J. Vasale
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shenghua Duan
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Darryl Conte
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | - James C. Carrington
- Center for Gene Research and Biotechnology, Oregon State University Corvallis, Oregon 97331
- Department of Botany and Plant Pathology Oregon State University Corvallis, Oregon 97331
| | - David P. Bartel
- Howard Hughes Medical Institute
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Craig C. Mello
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA 01605, USA
- Howard Hughes Medical Institute
| |
Collapse
|
121
|
Abstract
The Vasa DEAD-box helicases are widespread markers of germ cells across species, and in some organisms have been shown to be essential for germ-cell formation and development. In contrast to the single Vasa gene in most systems analyzed, Caenorhabditis elegans has four Vasa family members, the germline helicases GLH-1, GLH-2, GLH-3, and GLH-4. Our analysis of deletion alleles of each glh gene demonstrates that GLH-1 is the key member of the family: loss of GLH-1 function causes sterility that is mainly maternal effect, is manifested predominantly at elevated temperature, and is due to reduced germ-cell proliferation and impaired formation of both sperm and oocytes. The other GLHs are not essential. However, GLH-4 serves redundant roles with GLH-1: loss of both genes' function causes glh-1-like sterility at all temperatures. Molecular epistasis analysis demonstrates that GLH-1 and GLH-4 are required for proper association of the PGL family of proteins with P granules, suggesting a pathway of P-granule assembly in which the GLHs are upstream of the PGL proteins and the mRNA cap-binding protein IFE-1. While loss of some P-granule components causes worms to be defective in RNA interference, loss of GLH-1 and GLH-4 does not compromise RNAi. Thus, RNAi likely does not require intact P granules but instead relies on particular P-granule factors. We discuss the evolution of the Vasa/GLH genes and current views of their functions and the assembly and roles of germ granules among species.
Collapse
|
122
|
Jud MC, Czerwinski MJ, Wood MP, Young RA, Gallo CM, Bickel JS, Petty EL, Mason JM, Little BA, Padilla PA, Schisa JA. Large P body-like RNPs form in C. elegans oocytes in response to arrested ovulation, heat shock, osmotic stress, and anoxia and are regulated by the major sperm protein pathway. Dev Biol 2008; 318:38-51. [PMID: 18439994 PMCID: PMC2442018 DOI: 10.1016/j.ydbio.2008.02.059] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 02/16/2008] [Accepted: 02/29/2008] [Indexed: 11/29/2022]
Abstract
As Caenorhabditis elegans hermaphrodites age, sperm become depleted, ovulation arrests, and oocytes accumulate in the gonad arm. Large ribonucleoprotein (RNP) foci form in these arrested oocytes that contain RNA-binding proteins and translationally masked maternal mRNAs. Within 65 min of mating, the RNP foci dissociate and fertilization proceeds. The majority of arrested oocytes with foci result in viable embryos upon fertilization, suggesting that foci are not deleterious to oocyte function. We have determined that foci formation is not strictly a function of aging, and the somatic, ceh-18, branch of the major sperm protein pathway regulates the formation and dissociation of oocyte foci. Our hypothesis for the function of oocyte RNP foci is similar to the RNA-related functions of processing bodies (P bodies) and stress granules; here, we show three orthologs of P body proteins, DCP-2, CAR-1 and CGH-1, and two markers of stress granules, poly (A) binding protein (PABP) and TIA-1, appear to be present in the oocyte RNP foci. Our results are the first in vivo demonstration linking components of P bodies and stress granules in the germ line of a metazoan. Furthermore, our data demonstrate that formation of oocyte RNP foci is inducible in non-arrested oocytes by heat shock, osmotic stress, or anoxia, similar to the induction of stress granules in mammalian cells and P bodies in yeast. These data suggest commonalities between oocytes undergoing delayed fertilization and cells that are stressed environmentally, as to how they modulate mRNAs and regulate translation.
Collapse
Affiliation(s)
- Molly C. Jud
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | | | - Megan P. Wood
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Rachel A. Young
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | | | - Jeremy S. Bickel
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Emily L. Petty
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Jennifer M. Mason
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Brent A. Little
- University of North Texas, Department of Biological Sciences, P.O. Box 305220, Denton TX, 76203
| | - Pamela A. Padilla
- University of North Texas, Department of Biological Sciences, P.O. Box 305220, Denton TX, 76203
| | - Jennifer A. Schisa
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| |
Collapse
|
123
|
MEG-1 and MEG-2 are embryo-specific P-granule components required for germline development in Caenorhabditis elegans. Genetics 2008; 178:295-306. [PMID: 18202375 DOI: 10.1534/genetics.107.080218] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Caenorhabditis elegans, germ granules called P granules are directly inherited from mother to daughter and segregate with the germ lineage as it separates from the soma during initial embryonic cell divisions. Here we define meg-1 and meg-2 (maternal-effect germ-cell defective), which are expressed in the maternal germline and encode proteins that localize exclusively to P granules during embryonic germline segregation. Localization of MEG-1 to P granules depends upon the membrane-bound protein MES-1. meg-1 mutants exhibit multiple germline defects: P-granule mis-segregation in embryos, underproliferation and aberrant P-granule morphology in larval germ cells, and ultimately, sterility as adults. The penetrance of meg-1 phenotypes increases when meg-2 is also absent. Loss of the P-granule component pgl-1 in meg-1 mutants increases germ-cell proliferation, while loss of glh-1 decreases proliferation. Because meg-1 is provided maternally but its action is required in the embryonic germ lineage during segregation from somatic lineages, it provides a critical link for ensuring the continuity of germline development from one generation to the next.
Collapse
|
124
|
Spike CA, Bader J, Reinke V, Strome S. DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells. Development 2008; 135:983-93. [PMID: 18234720 PMCID: PMC2435365 DOI: 10.1242/dev.015552] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
P granules are germ-cell-specific cytoplasmic structures containing RNA and protein, and required for proper germ cell development in C. elegans. PGL-1 and GLH-1 were previously identified as critical components of P granules. We have identified a new P-granule-associated protein, DEPS-1, the loss of which disrupts P-granule structure and function. DEPS-1 is required for the proper localization of PGL-1 to P granules, the accumulation of glh-1 mRNA and protein, and germ cell proliferation and fertility at elevated temperatures. In addition, DEPS-1 is required for RNA interference (RNAi) of germline-expressed genes, possibly because DEPS-1 promotes the accumulation of RDE-4, a dsRNA-binding protein required for RNAi. A genome wide analysis of gene expression in deps-1 mutant germ lines identified additional targets of DEPS-1 regulation, many of which are also regulated by the RNAi factor RDE-3. Our studies suggest that DEPS-1 is a key component of the P-granule assembly pathway and that its roles include promoting accumulation of some mRNAs, such as glh-1 and rde-4, and reducing accumulation of other mRNAs, perhaps by collaborating with RDE-3 to generate endogenous short interfering RNAs (endo-siRNAs).
Collapse
Affiliation(s)
- Caroline A. Spike
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jason Bader
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Susan Strome
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
125
|
ZOGRAF JULIAK, YUSHIN VLADIMIRV. Genital primordium of the free-living marine nematode Halichoanolaimus sonorus(Chromadoria, Chromadorida). INVERTEBR REPROD DEV 2008. [DOI: 10.1080/07924259.2008.9652271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
126
|
Orsborn AM, Li W, McEwen TJ, Mizuno T, Kuzmin E, Matsumoto K, Bennett KL. GLH-1, the C. elegans P granule protein, is controlled by the JNK KGB-1 and by the COP9 subunit CSN-5. Development 2007; 134:3383-92. [PMID: 17699606 DOI: 10.1242/dev.005181] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The GLHs (germline RNA helicases) are constitutive components of the germline-specific P granules in the nematode Caenorhabditis elegans and are essential for fertility, yet how GLH proteins are regulated remains unknown. KGB-1 and CSN-5 are both GLH binding partners, previously identified by two-hybrid interactions. KGB-1 is a MAP kinase in the Jun N-terminal kinase (JNK) subfamily, whereas CSN-5 is a subunit of the COP9 signalosome. Intriguingly, although loss of either KGB-1 or CSN-5 results in sterility, their phenotypes are strikingly different. Whereas csn-5 RNA interference (RNAi) results in under-proliferated germlines, similar to glh-1/glh-4(RNAi), the kgb-1(um3) loss-of-function mutant exhibits germline over-proliferation. When kgb-1(um3) mutants are compared with wild-type C. elegans, GLH-1 protein levels are as much as 6-fold elevated and the organization of GLH-1 in P granules is grossly disrupted. A series of additional in vivo and in vitro tests indicates that KGB-1 and CSN-5 regulate GLH-1 levels, with GLH-1 targeted for proteosomal degradation by KGB-1 and stabilized by CSN-5. We propose the ;good cop: bad cop' team of CSN-5 and KGB-1 imposes a balance on GLH-1 levels, resulting in germline homeostasis. In addition, both KGB-1 and CSN-5 bind Vasa, a Drosophila germ granule component; therefore, similar regulatory mechanisms might be conserved from worms to flies.
Collapse
Affiliation(s)
- April M Orsborn
- Molecular Microbiology and Immunology Department, University of Missouri, Columbia, MO 65212, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
Oocytes in the C. elegans gonad enlarge rapidly. During the stage of enlargement, they are transcriptionally quiescent, and it is not understood how they acquire large quantities of materials such as mRNA and protein. Enlarging oocytes are connected via cytoplasmic bridges to a large, younger population of transcriptionally active germ cells at various stages of mitosis and meiosis. We show here that there is a general streaming of gonad cytoplasm towards and into the enlarging oocytes, originating primarily from pachytene-stage germ cells. Because previous studies suggested that most or all of the pachytene germ cells have the potential to differentiate into oocytes, the pachytene cells appear to function transiently as nurse cells. Somatic gonadal cells that surround the germ cells do not appear essential for streaming. Instead, materials appear to be pulled into oocytes by forces generated either in, or adjacent to, the enlarging oocytes themselves. Streaming appears to be driven by the actomyosin cytoskeleton, although we show that populations of both microfilaments and microtubules are oriented in the direction of flow. Our study shows that oocyte enlargement in C. elegans differs significantly from that in Drosophila, where a small number of specialized nurse cells expel their contents into the enlarging oocyte.
Collapse
Affiliation(s)
- Uta Wolke
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
128
|
Abstract
The early embryo is formed by the fusion of two germ cells that must generate not only all of the nonreproductive somatic cell types of its body but also the germ cells for the next generation. Therefore, embryo cells face a crucial decision: whether to develop as germ or soma. How is this fundamental decision made and germ cell fate maintained during development? Studies in the nematode worm Caenorhabditis elegans and fruit fly Drosophila identify some of the decision-making strategies, including segregation of a specialized germ plasm and global transcriptional regulation.
Collapse
Affiliation(s)
- Susan Strome
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
129
|
Klenov MS, Stolyarenko AD, Ryazansky SS, Sokolova OA, Konstantinov IN, Gvozdev VA. Role of short RNAs in regulating the expression of genes and mobile elements in germ cells. Russ J Dev Biol 2007. [DOI: 10.1134/s1062360407030058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
130
|
Jud M, Razelun J, Bickel J, Czerwinski M, Schisa JA. Conservation of large foci formation in arrested oocytes of Caenorhabditis nematodes. Dev Genes Evol 2007; 217:221-6. [PMID: 17216268 DOI: 10.1007/s00427-006-0130-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
Within the rhabditid phylogeny of nematodes, the great majority of species are gonochoristic, having evolved as obligate male/female species. In contrast, the well-studied nematode model system, Caenorhabditis elegans, is androdioecious, utilizing a hermaphroditic/male reproductive system. We have previously determined that in the arrested oocytes of old-aged C. elegans hermaphrodites with depleted sperm, large cytoplasmic ribonucleoprotein foci form. The formation of these foci is reversible, as they dissociate within 3 h after a male mates with the hermaphrodite, resupplying it with sperm. The functional significance of these oocyte foci is not known and previously has not been clear for a hermaphroditic species in which oocytes of young adults wait only approximately 23 min to be fertilized. One hypothesis is that the foci function to maintain maternal mRNAs in oocytes while fertilization is delayed. In this paper, we examine four gonochoristic rhabditid species: Caenorhabditis remanei, Caenorhabditis sp. CB5161, Caenorhabditis sp. PS1010, and Rhabditella axei DF5006. We demonstrate that in three of these four species, ovulation arrests in unmated females until mating occurs and large cytoplasmic foci develop in arrested oocytes. The oocyte foci contain nuclear pore proteins and, in C. remanei at least, the RNA-binding protein MEX-3 as well as RNA. We speculate that these foci maintain the integrity of ooctyes, possibly maintaining the stability or translational repression of maternal mRNAs in unmated females. We further speculate that their presence in oocytes of old-aged C. elegans hermaphrodites is due to conservation from an ancestral gonochoristic state.
Collapse
Affiliation(s)
- Molly Jud
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | | | | | | | | |
Collapse
|
131
|
Pagano JM, Farley BM, McCoig LM, Ryder SP. Molecular basis of RNA recognition by the embryonic polarity determinant MEX-5. J Biol Chem 2007; 282:8883-94. [PMID: 17264081 DOI: 10.1074/jbc.m700079200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Embryonic development requires maternal proteins and RNA. In Caenorhabditis elegans, a gradient of CCCH tandem zinc finger (TZF) proteins coordinates axis polarization and germline differentiation. These proteins govern expression from maternal mRNAs by an unknown mechanism. Here we show that the TZF protein MEX-5, a primary anterior determinant, is an RNA-binding protein that recognizes linear RNA sequences with high affinity but low specificity. The minimal binding site is a tract of six or more uridines within a 9-13-nucleotide window. This sequence is remarkably abundant in the 3'-untranslated region of C. elegans transcripts, demonstrating that MEX-5 alone cannot specify mRNA target selection. In contrast, human TZF homologs tristetraprolin and ERF-2 bind with high specificity to UUAUUUAUU elements. We show that mutation of a single amino acid in each MEX-5 zinc finger confers tristetraprolin-like specificity to this protein. We propose that divergence of this discriminator residue modulates the RNA-binding specificity in this protein class. This residue is variable in nematode TZF proteins, but is invariant in other metazoans. Therefore, the divergence of TZF proteins and their critical role in early development is likely a nematode-specific adaptation.
Collapse
Affiliation(s)
- John M Pagano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
132
|
Abstract
Oocytes and sperm are some of the most differentiated cells in our bodies, yet they generate all cell types after fertilization. Accumulating evidence suggests that this extraordinary potential is conferred to germ cells from the time of their formation during embryogenesis. In this Review, we describe common themes emerging from the study of germ cells in vertebrates and invertebrates. Transcriptional repression, chromatin remodeling, and an emphasis on posttranscriptional gene regulation preserve the totipotent genome of germ cells through generations.
Collapse
Affiliation(s)
- Geraldine Seydoux
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| | | |
Collapse
|
133
|
Lublin AL, Evans TC. The RNA-binding proteins PUF-5, PUF-6, and PUF-7 reveal multiple systems for maternal mRNA regulation during C. elegans oogenesis. Dev Biol 2006; 303:635-49. [PMID: 17234175 DOI: 10.1016/j.ydbio.2006.12.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 11/25/2006] [Accepted: 12/02/2006] [Indexed: 02/04/2023]
Abstract
In metazoans, many mRNAs needed for embryogenesis are produced during oogenesis and must be tightly regulated during the complex events of oocyte development. In C. elegans, translation of the Notch receptor GLP-1 is repressed during oogenesis and is then activated specifically in anterior cells of the early embryo. The KH domain protein GLD-1 represses glp-1 translation during early stages of meiosis, but the factors that repress glp-1 during late oogenesis are not known. Here, we provide evidence that the PUF domain protein PUF-5 and two nearly identical PUF proteins PUF-6 and PUF-7 function during a specific period of oocyte differentiation to repress glp-1 and other maternal mRNAs. Depletion of PUF-5 and PUF-6/7 together caused defects in oocyte formation and early embryonic cell divisions. Loss of PUF-5 and PUF-6/7 also caused inappropriate expression of GLP-1 protein in oocytes, but GLP-1 remained repressed in meiotic germ cells. PUF-5 and PUF-6/7 function was required directly or indirectly for translational repression through elements of the glp-1 3' untranslated region. Oogenesis and embryonic defects could not be rescued by loss of GLP-1 activity, suggesting that PUF-5 and PUF-6/7 regulate other mRNAs in addition to glp-1. PUF-5 and PUF-6/7 depletion, however, did not perturb repression of the maternal factors GLD-1 and POS-1, suggesting that subsets of maternal gene products may be regulated by distinct pathways. Interestingly, PUF-5 protein was detected exclusively during mid to late oogenesis but became undetectable prior to completion of oocyte differentiation. These results reveal a previously unknown maternal mRNA control system that is specific to late stages of oogenesis and suggest new functions for PUF family proteins in post-mitotic differentiation. Multiple sets of RNA-binding complexes function in different domains of the C. elegans germ line to maintain silencing of Notch/glp-1 and other mRNAs.
Collapse
Affiliation(s)
- Alex L Lublin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Mail Stop 8108, P.O. Box 6511, Aurora, CO 80045, USA
| | | |
Collapse
|
134
|
Lall S, Piano F, Davis RE. Caenorhabditis elegans decapping proteins: localization and functional analysis of Dcp1, Dcp2, and DcpS during embryogenesis. Mol Biol Cell 2005; 16:5880-90. [PMID: 16207815 PMCID: PMC1289429 DOI: 10.1091/mbc.e05-07-0622] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/20/2005] [Accepted: 09/26/2005] [Indexed: 02/06/2023] Open
Abstract
Though posttranscriptional regulation is important for early embryogenesis, little is understood regarding control of mRNA decay during development. Previous work defined two major pathways by which normal transcripts are degraded in eukaryotes. However it is not known which pathways are key in mRNA decay during early patterning or whether developmental transcripts are turned over via specific pathways. Here we show that Caenorhabditis elegans Dcp2 is localized to distinct foci during embryogenesis, reminiscent of P-bodies, the sites of mRNA degradation in yeast and mammals. However the decapping enzyme of the 3' to 5' transcript decay system (DcpS) localizes throughout the cytoplasm, suggesting this degradation pathway is not highly organized. In addition we find that Dcp2 is localized to P-granules, showing that Dcp2 is stored and/or active in these structures. However RNAi of these decapping enzymes has no obvious effect on embryogenesis. In contrast we find that nuclear cap binding proteins (CBP-20 and 80), eIF4G, and PAB-1 are absolutely required for development. Together our data provides further evidence that pathways of general mRNA metabolism can be remarkably organized during development, with two different decapping enzymes localized in distinct cytoplasmic domains.
Collapse
Affiliation(s)
- Sabbi Lall
- Department of Biology, City University of New York Graduate Center, College of Staten Island, Staten Island CUNY, New York, NY 10314, USA
| | | | | |
Collapse
|
135
|
Squirrell JM, Eggers ZT, Luedke N, Saari B, Grimson A, Lyons GE, Anderson P, White JG. CAR-1, a protein that localizes with the mRNA decapping component DCAP-1, is required for cytokinesis and ER organization in Caenorhabditis elegans embryos. Mol Biol Cell 2005; 17:336-44. [PMID: 16267265 PMCID: PMC1345671 DOI: 10.1091/mbc.e05-09-0874] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The division of one cell into two requires the coordination of multiple components. We describe a gene, car-1, whose product may provide a link between disparate cellular processes. Inhibition of car-1 expression in Caenorhabditis elegans embryos causes late cytokinesis failures: cleavage furrows ingress but subsequently regress and the spindle midzone fails to form, even though midzone components are present. The localized accumulation of membrane that normally develops at the apex of the cleavage furrow during the final phase of cytokinesis does not occur and organization of the endoplasmic reticulum is aberrant, indicative of a disruption in membrane trafficking. The car-1 gene has homologues in a number of species, including proteins that associate with RNA binding proteins. CAR-1 localizes to P-granules (germ-line specific ribonucleoprotein particles) and discrete, developmentally regulated cytoplasmic foci. These foci also contain DCAP-1, a protein involved in decapping mRNAs. Thus, CAR-1, a protein likely to be associated with RNA metabolism, plays an essential role in the late stage of cytokinesis, suggesting a novel link between RNA, membrane trafficking and cytokinesis in the C. elegans embryo.
Collapse
Affiliation(s)
- Jayne M Squirrell
- Laboratory for Molecular Biology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Boag PR, Nakamura A, Blackwell TK. A conserved RNA-protein complex component involved in physiological germline apoptosis regulation in C. elegans. Development 2005; 132:4975-86. [PMID: 16221731 DOI: 10.1242/dev.02060] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two conserved features of oogenesis are the accumulation of translationally quiescent mRNA, and a high rate of stage-specific apoptosis. Little is understood about the function of this cell death. In C. elegans, apoptosis occurring through a specific ;physiological' pathway normally claims about half of all developing oocytes. The frequency of this germ cell death is dramatically increased by a lack of the RNA helicase CGH-1, orthologs of which are involved in translational control in oocytes and decapping-dependent mRNA degradation in yeast processing (P) bodies. Here, we describe a predicted RNA-binding protein, CAR-1, that associates with CGH-1 and Y-box proteins within a conserved germline RNA-protein (RNP) complex, and in cytoplasmic particles in the gonad and early embryo. The CGH-1/CAR-1 interaction is conserved in Drosophila oocytes. When car-1 expression is depleted by RNA interference (RNAi), physiological apoptosis is increased, brood size is modestly reduced, and early embryonic cytokinesis is abnormal. Surprisingly, if apoptosis is prevented car-1(RNAi) animals are characterized by a progressive oogenesis defect that leads rapidly to gonad failure. Elevated germ cell death similarly compensates for lack of the translational regulator CPB-3 (CPEB), orthologs of which function together with CGH-1 in diverse organisms. We conclude that CAR-1 is of critical importance for oogenesis, that the association between CAR-1 and CGH-1 has been conserved, and that the regulation of physiological germ cell apoptosis is specifically influenced by certain functions of the CGH-1/CAR-1 RNP complex. We propose that this cell death pathway facilitates the formation of functional oocytes, possibly by monitoring specific cytoplasmic events during oogenesis.
Collapse
Affiliation(s)
- Peter R Boag
- Joslin Diabetes Center and Department of Pathology, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | | | | |
Collapse
|
137
|
Wang D, Kennedy S, Conte D, Kim JK, Gabel HW, Kamath RS, Mello CC, Ruvkun G. Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature 2005; 436:593-7. [PMID: 16049496 DOI: 10.1038/nature04010] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2004] [Accepted: 06/24/2005] [Indexed: 11/08/2022]
Abstract
Caenorhabditis elegans homologues of the retinoblastoma (Rb) tumour suppressor complex specify cell lineage during development. Here we show that mutations in Rb pathway components enhance RNA interference (RNAi) and cause somatic cells to express genes and elaborate perinuclear structures normally limited to germline-specific P granules. Furthermore, particular gene inactivations that disrupt RNAi reverse the cell lineage transformations of Rb pathway mutants. These findings suggest that mutations in Rb pathway components cause cells to revert to patterns of gene expression normally restricted to germ cells. Rb may act by a similar mechanism to transform mammalian cells.
Collapse
Affiliation(s)
- Duo Wang
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
Over the past two decades a variety of mechanisms regulating cellular differentiation have been uncovered. These include signaling by morphogens or membrane-associated ligands and asymmetric segregation of cytoplasmic components. Most of these processes are driven by protein coding genes. Here I describe another possible cellular differentiation mechanism that involves asymmetric segregation of microRNAs, a group of recently discovered non-protein coding genes that have been shown to be involved in differentiation.
Collapse
Affiliation(s)
- Isaac Bentwich
- Rosetta Genomics, 10 Plaut Street, Rehovot 76706, Israel.
| |
Collapse
|
139
|
Vought VE, Ohmachi M, Lee MH, Maine EM. EGO-1, a putative RNA-directed RNA polymerase, promotes germline proliferation in parallel with GLP-1/notch signaling and regulates the spatial organization of nuclear pore complexes and germline P granules in Caenorhabditis elegans. Genetics 2005; 170:1121-32. [PMID: 15911573 PMCID: PMC1451164 DOI: 10.1534/genetics.105.042135] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Caenorhabditis elegans EGO-1, a putative cellular RNA-directed RNA polymerase, promotes several aspects of germline development, including proliferation, meiosis, and gametogenesis, and ensures a robust response to RNA interference. In C. elegans, GLP-1/Notch signaling from the somatic gonad maintains a population of proliferating germ cells, while entry of germ cells into meiosis is triggered by the GLD-1 and GLD-2 pathways. GLP-1 signaling prevents germ cells from entering meiosis by inhibiting GLD-1 and GLD-2 activity. We originally identified the ego-1 gene on the basis of a genetic interaction with glp-1. Here, we investigate the role of ego-1 in germline proliferation. Our data indicate that EGO-1 does not positively regulate GLP-1 protein levels or GLP-1 signaling activity. Moreover, GLP-1 signaling does not positively regulate EGO-1 activity. EGO-1 does not inhibit expression of GLD-1 protein in the distal germline. Instead, EGO-1 acts in parallel with GLP-1 signaling to influence the proliferation vs. meiosis fate choice. Moreover, EGO-1 and GLD-1 act in parallel to ensure germline health. Finally, the size and distribution of nuclear pore complexes and perinuclear P granules are altered in the absence of EGO-1, effects that disrupt germ cell biology per se and probably limit germline growth.
Collapse
Affiliation(s)
- Valarie E. Vought
- Department of Biology, Syracuse University, Syracuse, New York 13244
| | - Mitsue Ohmachi
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Min-Ho Lee
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Eleanor M. Maine
- Department of Biology, Syracuse University, Syracuse, New York 13244
- Corresponding author: Department of Biology, Syracuse University, 108 College Pl., Syracuse, NY 13244. E-mail:
| |
Collapse
|
140
|
Kawasaki I, Amiri A, Fan Y, Meyer N, Dunkelbarger S, Motohashi T, Karashima T, Bossinger O, Strome S. The PGL family proteins associate with germ granules and function redundantly in Caenorhabditis elegans germline development. Genetics 2005; 167:645-61. [PMID: 15238518 PMCID: PMC1470885 DOI: 10.1534/genetics.103.023093] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PGL-1 is a constitutive protein component of C. elegans germ granules, also known as P granules. Maternally supplied PGL-1 is essential for germline development but only at elevated temperature, raising the possibility that redundant factors provide sufficient function at lower temperatures. We have identified two PGL-1-related proteins, PGL-2 and PGL-3, by sequence analysis of the C. elegans genome and by a yeast two-hybrid screen for proteins that interact with PGL-1. PGL-3 is associated with P granules at all stages of development, while PGL-2 is associated with P granules only during postembryonic development. All three PGL proteins interact with each other in vitro. Furthermore, PGL-1 and PGL-3 are co-immunoprecipitated from embryo extracts, indicating that they are indeed in the same protein complex in vivo. Nevertheless, each PGL protein localizes to P granules independently of the other two. pgl-2 or pgl-3 single-mutant worms do not show obvious defects in germline development. However, pgl-1; pgl-3 (but not pgl-2; pgl-1) double-mutant hermaphrodites and males show significantly enhanced sterility at all temperatures, compared to pgl-1 alone. Mutant hermaphrodites show defects in germline proliferation and in production of healthy gametes and viable embryos. Our findings demonstrate that both PGL-2 and PGL-3 are components of P granules, both interact with PGL-1, and at least PGL-3 functions redundantly with PGL-1 to ensure fertility in both sexes of C. elegans.
Collapse
Affiliation(s)
- Ichiro Kawasaki
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Bilinski SM, Jaglarz MK, Szymanska B, Etkin LD, Kloc M. Sm proteins, the constituents of the spliceosome, are components of nuage and mitochondrial cement in Xenopus oocytes. Exp Cell Res 2004; 299:171-8. [PMID: 15302584 DOI: 10.1016/j.yexcr.2004.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 05/20/2004] [Indexed: 10/26/2022]
Abstract
A conserved feature of germ cells in many animal species is the presence of perinuclear electron-dense material called the "nuage" that is believed to be a precursor of germinal (or polar or P) granules. In Xenopus oogenesis the nuage is first observed near the nuclear envelope and subsequently in close contact with mitochondria, at which stage it is called the mitochondrial cement. In this study, we found that, in Xenopus pre-stage I and stage I oocytes, nuage and mitochondrial cement contain the spliceosomal Sm proteins, Xcat2 mRNA, and DEAD-box RNA helicase XVLG1. Other components of Cajal bodies or splicing machinery such as coilin, SMN protein, and snRNAs are absent from the nuage and mitochondrial cement. We suggest that Xenopus Sm proteins have adapted to a role independent of pre-mRNA splicing and that instead of binding to their traditional spliceosomal partner such as snRNA, they bind mRNAs that are the components of germinal granules (i.e., Xcat2 mRNA) and facilitate the transport of these mRNAs from the nucleus to the nuage that is a precursor of germinal granules. In addition, the presence of Vasa-like DEAD-box helicase in Xenopus nuage suggests involvement of nuage in the microRNA and/or RNAi pathway, similar to the role of nuage in Drosophila.
Collapse
|
142
|
Hanazawa M, Kawasaki I, Kunitomo H, Gengyo-Ando K, Bennett KL, Mitani S, Iino Y. The Caenorhabditis elegans eukaryotic initiation factor 5A homologue, IFF-1, is required for germ cell proliferation, gametogenesis and localization of the P-granule component PGL-1. Mech Dev 2004; 121:213-24. [PMID: 15003625 DOI: 10.1016/j.mod.2004.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 12/22/2003] [Accepted: 02/02/2004] [Indexed: 11/22/2022]
Abstract
Eukaryotic initiation factor 5A (eIF-5A) was originally isolated as a translation initiation factor. However, this function has since been reconsidered, with recent studies pointing to roles for eIF-5A in mRNA metabolism and trafficking [Microbiol. Mol. Biol. Rev. 66 (2002) 460; Eur. Mol. Biol. Org. J. 17 (1998) 2914]. The Caenorhabditis elegans genome contains two eIF-5A homologues, iff-1 and iff-2, whose functions in vivo were examined in this study. The iff-2 mutation causes somatic defects that include slow larval growth and disorganized somatic gonadal structures in hermaphrodites. iff-2 males show disorganized tail sensory rays and spicules. On the other hand, iff-1 mRNA is expressed in the gonad, and the lack of iff-1 activity causes sterility with an underproliferated germline resulting from impaired mitotic proliferation in both hermaphrodites and males. In spite of underproliferation, meiotic nuclei are observed, as revealed by presence of immunoreactivity to the anti-HIM-3 antibody; however, no gametogenesis occurs in the iff-1 gonads. These phenotypes are in part similar to the mutants affected in the components of P granules, which are the C. elegans counterparts of germ granules [Curr. Top Dev. Biol. 50 (2000) 155]. We found that localization of the P-granule component PGL-1 to P granules is disrupted in the iff-1 mutant. In summary, the two C. elegans homologues of eIF-5A act in different tissues: IFF-2 is required in the soma, and IFF-1 is required in the germline for germ cell proliferation, for gametogenesis after entry into meiosis, and for proper PGL-1 localization on P granules.
Collapse
Affiliation(s)
- Momoyo Hanazawa
- Molecular Genetics Research Laboratory, University of Tokyo, Science Building No 7, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
143
|
Kloc M, Bilinski S, Dougherty MT, Brey EM, Etkin LD. Formation, architecture and polarity of female germline cyst in Xenopus. Dev Biol 2004; 266:43-61. [PMID: 14729477 DOI: 10.1016/j.ydbio.2003.10.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Little is known about the formation of germline cyst and the differentiation of oocyte within the cyst in vertebrates. In the majority of invertebrates in the initial stages of gametogenesis, male and female germ cells develop in full synchrony as a syncytia of interconnected cells called germline cysts (clusters, nests). Using electron microscopy, immunostaining and three-dimensional reconstruction, we were able to elucidate the process of cyst formation in the developing ovary of the vertebrate Xenopus laevis. We found that the germline cyst in Xenopus contains 16 cells that are similar in general architecture and molecular composition to the cyst in Drosophila. Nest cells are connected by cytoplasmic bridges that contain ring canal-like structures. The nest cells contain a structure similar to the Drosophila fusome that that is probably involved in anchoring of the centrioles and organization of the primary mitochondrial cloud (PMC) around the centriole. We also find that in contrast to other organisms, in Xenopus, apoptosis is a rare event within the developing ovary. Our studies indicate that the processes responsible for the formation of female germline cysts and the establishment of germ cell polarity are highly conserved between invertebrates and vertebrates. The dissimilarities between Drosophila and Xenopus and the uniqueness of each system probably evolved through modifications of the same fundamental design of the germline cyst.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Department of Molecular Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
144
|
Affiliation(s)
- Malgorzata Kloc
- Department of Molecular Genetics, M. D. Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | | | | |
Collapse
|
145
|
Abstract
Development requires a precise program of gene expression to be carried out. Much work has focussed on the regulatory networks that control gene expression, for example in response to external cues. However, it is important to recognize that these regulatory events take place within the physical context of the nucleus, and that the physical position of a gene within the nuclear volume can have strong influences on its regulation and interactions. The first part of this review will summarize what is currently known about nuclear architecture, that is, the large-scale three-dimensional arrangement of chromosome loci within the nucleus. The remainder of the review will examine developmental processes from the point of view of the nucleus.
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
146
|
Abstract
Recent studies in Caenorhabditis elegans implicate PcG- and NuRD-like chromatin regulators in the establishment and maintenance of germline-soma distinctions. Somatic cells appear to utilize NuRD-related nucleosome-remodeling factors to overwrite germline-specific chromatin states that are specified through PcG-like activities. The germline, in turn, may rely on an asymmetrically inherited inhibitor to prevent chromatin reorganization that would otherwise erase pluripotency.
Collapse
Affiliation(s)
- Tae Ho Shin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
147
|
Weidinger G, Stebler J, Slanchev K, Dumstrei K, Wise C, Lovell-Badge R, Thisse C, Thisse B, Raz E. dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol 2003; 13:1429-34. [PMID: 12932328 DOI: 10.1016/s0960-9822(03)00537-2] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In most animals, primordial germ cell (PGC) specification and development depend on maternally provided cytoplasmic determinants that constitute the so-called germ plasm. Little is known about the role of germ plasm in vertebrate germ cell development, and its molecular mode of action remains elusive. While PGC specification in mammals occurs via different mechanisms, several germ plasm components required for early PGC development in lower organisms are expressed in mammalian germ cells after their migration to the gonad and are involved in gametogenesis. Here we show that the RNA of dead end, encoding a novel putative RNA binding protein, is a component of the germ plasm in zebrafish and is specifically expressed in PGCs throughout embryogenesis; Dead End protein is localized to perinuclear germ granules within PGCs. Knockdown of dead end blocks confinement of PGCs to the deep blastoderm shortly after their specification and results in failure of PGCs to exhibit motile behavior and to actively migrate thereafter. PGCs subsequently die, while somatic development is not effected. We have identified dead end orthologs in other vertebrates including Xenopus, mouse, and chick, where they are expressed in germ plasm and germ-line cells, suggesting a role in germ-line development in these organisms as well.
Collapse
Affiliation(s)
- Gilbert Weidinger
- Germ Cell Development, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37070 Goettingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Badrinath AS, White JG. Contrasting patterns of mitochondrial redistribution in the early lineages of Caenorhabditis elegans and Acrobeloides sp. PS1146. Dev Biol 2003; 258:70-5. [PMID: 12781683 DOI: 10.1016/s0012-1606(03)00102-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We compared the redistribution of mitochondria in the early embryos of Caenorhabditis elegans (C. elegans) and Acrobeloides sp. PS1146 (Acrobeloides)--two nematode species where the mechanisms for embryonic axis specification are different even though subsequent development is remarkably similar. During the first cell cycle of C. elegans, mitochondria move with the bulk cytoplasmic flows that are directed toward the sperm pronucleus and aggregate at the posterior cortex during the period known as "pseudocleavage." In contrast, in Acrobeloides embryos, where prominent cytoplasmic rearrangements are absent, mitochondria that are initially distributed loosely around the pronuclei and the cytoplasm are relocated around the mitotic spindle prior to cell division. Interestingly, this rearrangement is reiterated only in the germline and not the somatic lineage. In both species, the location of the mitochondria immediately prior to cell division correlates with the known location of the germline determinants, P granules, leading us to speculate that they may be associated.
Collapse
Affiliation(s)
- Ananth S Badrinath
- Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
149
|
Shimada M, Kawahara H, Doi H. Novel family of CCCH-type zinc-finger proteins, MOE-1, -2 and -3, participates in C. elegans oocyte maturation. Genes Cells 2003; 7:933-47. [PMID: 12296824 DOI: 10.1046/j.1365-2443.2002.00570.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Oocyte maturation is an important prerequisite for the production of progeny. Although several germ-line mutations have been reported, the precise mechanism by which the last step of oocyte maturation is controlled remains unclear. In Caenorhabditis elegans, CCCH-type zinc-finger proteins have been shown to be involved in germ cell formation, although their involvement in oocyte maturation has not been fully investigated. RESULTS Using a multiple RNAi technique, we have identified three novel redundant CCCH-type zinc-finger genes, named by us moe-1, -2 (oma-1, -2) and moe-3, as a group related by functions and nucleotide sequence. Although a single RNAi of each moe gene was not effective, double or triple RNAi induced defects in oocyte maturation. We found that each moe transcript was expressed from the distal to proximal region of the gonad, while their corresponding proteins are accumulated exclusively in proximal oocytes, with a close association to germ granules. Although MOE-2 protein is rapidly removed from germ granules after fertilization, we found that MOE-2 associates with the centrosome-peripheral structure in dividing blastomeres. CONCLUSIONS Our results suggest that moe gene products are unique multifunctional proteins in terms of their redundancy and characteristic behaviour during the course of oocyte maturation. These gene products participate in processes in the final step of the meiotic cell cycle control, a novel function for CCCH-type zinc-finger family proteins thus far discovered.
Collapse
Affiliation(s)
- Masumi Shimada
- ERATO Doi Bioasymmetry Project, Tsukuba 300-2635, Japan.
| | | | | |
Collapse
|
150
|
Beckhelling C, Chang P, Chevalier S, Ford C, Houliston E. Pre-M phase-promoting factor associates with annulate lamellae in Xenopus oocytes and egg extracts. Mol Biol Cell 2003; 14:1125-37. [PMID: 12631728 PMCID: PMC151584 DOI: 10.1091/mbc.e02-08-0511] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Revised: 10/21/2002] [Accepted: 11/18/2002] [Indexed: 11/11/2022] Open
Abstract
We have used complementary biochemical and in vivo approaches to study the compartmentalization of M phase-promoting factor (MPF) in prophase Xenopus eggs and oocytes. We first examined the distribution of MPF (Cdc2/CyclinB2) and membranous organelles in high-speed extracts of Xenopus eggs made during mitotic prophase. These extracts were found to lack mitochondria, Golgi membranes, and most endoplasmic reticulum (ER) but to contain the bulk of the pre-MPF pool. This pre-MPF could be pelleted by further centrifugation along with components necessary to activate it. On activation, Cdc2/CyclinB2 moved into the soluble fraction. Electron microscopy and Western blot analysis showed that the pre-MPF pellet contained a specific ER subdomain comprising "annulate lamellae" (AL): stacked ER membranes highly enriched in nuclear pores. Colocalization of pre-MPF with AL was demonstrated by anti-CyclinB2 immunofluorescence in prophase oocytes, in which AL are positioned close to the vegetal surface. Green fluorescent protein-CyclinB2 expressed in oocytes also localized at AL. These data suggest that inactive MPF associates with nuclear envelope components just before activation. This association may explain why nuclei and centrosomes stimulate MPF activation and provide a mechanism for targeting of MPF to some of its key substrates.
Collapse
Affiliation(s)
- Clare Beckhelling
- Unité Mixte Recherche 7009, Centre National de la Recherche Scientifique/Université Paris VI, Observatoire Oceanologique de Villefranche sur Mer, 06234, Villefranche sur Mer, France
| | | | | | | | | |
Collapse
|