101
|
Risnes S, Peterkova R, Lesot H. Distribution and structure of dental enamel in incisors of Tabby mice. Arch Oral Biol 2005; 50:181-4. [PMID: 15721148 DOI: 10.1016/j.archoralbio.2004.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2004] [Accepted: 11/02/2004] [Indexed: 01/04/2023]
Abstract
OBJECTIVE In Tabby mice, the Ta (EDA) gene is mutated. The resulting syndrome is homologous to hypohidrotic ectodermal dysplasia in humans. The Tabby phenotype is characterized by developmental defects of ectodermally derived structures. The teeth show aberrations in number, size and morphology. Dental enamel is a product of specialized epithelial cells, the ameloblasts. It was the aim of the present study to investigate the dental enamel phenotype in Tabby incisors, with emphasis on its distribution and structure. DESIGN The incisors from five female Tabby and three female wild-type mice were sectioned and ground transversely, etched for 45s with 0.1% nitric acid, sputter-coated with gold-palladium, and observed in SEM. RESULTS All measured dimensions were more variable in Tabby mice, as was the outline of the enamel-dentin junction. Maxillary incisors were wider in Tabby mice, while mandibular incisors were wider in wild-type mice. No significant difference in enamel thickness was observed. The enamel on the mesial aspect tended to extend further lingually in Tabby incisors in both jaws. On the lateral aspect, this tendency was only significant in mandibular incisors. The enamel-dentin junction often lacked the mesial concavity. Instances of hypoplastic enamel were observed. The complex mouse enamel structure was generally well preserved in Tabby mice, only few instances of aberrant structure were observed. CONCLUSIONS It is suggested that the reciprocal expression pattern of Ta and Edar (the Ta ligand receptor gene) in outer and inner enamel epithelium, respectively, may influence the position of the enamel-cementum junction.
Collapse
Affiliation(s)
- Steinar Risnes
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, P.O. Box 1052 Blindern, 0316 Oslo, Norway.
| | | | | |
Collapse
|
102
|
Miletich I, Sharpe PT. Neural crest contribution to mammalian tooth formation. ACTA ACUST UNITED AC 2005; 72:200-12. [PMID: 15269893 DOI: 10.1002/bdrc.20012] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cranial neural crest cells, which are specialized cells of neural origin, are central to the process of mammalian tooth development. They are the only source of mesenchyme able to sustain tooth development, and give rise not only to most of the dental tissues, but also to the periodontium, the surrounding tissues that hold teeth in position. Tooth organogenesis is regulated by a series of interactions between cranial neural crest cells and the oral epithelium. In the development of a tooth, the epithelium covering the inside of the developing oral cavity provides the first instructive signals. Signaling molecules secreted by the oral epithelium 1) establish large cellular fields competent to form a specific tooth shape (mono- or multicuspid) along a proximodistal axis; 2) define an oral (capable of forming teeth) and non-oral mesenchyme along a rostrocaudal axis; and 3) position the sites of future tooth development. The critical information to model tooth shape resides later in the neural crest-derived mesenchyme. Cranial neural crest cells ultimately differentiate into highly specialized cell types to produce mature dental organs. Some cranial neural crest cells located in the dental pulp, however, maintain plasticity in their developmental potential up to postnatal life, offering new prospects for regeneration of dental tissues.
Collapse
Affiliation(s)
- Isabelle Miletich
- Department of Craniofacial Development, Dental Institute, King's College London, United Kingdom.
| | | |
Collapse
|
103
|
Rawlins EL, Hogan BLM. Intercellular growth factor signaling and the development of mouse tracheal submucosal glands. Dev Dyn 2005; 233:1378-85. [PMID: 15973734 DOI: 10.1002/dvdy.20461] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To provide a genetic framework for investigating changes in airway submucosal gland function in human respiratory disease, we have investigated their counterparts in normal and mutant mice. We describe their morphogenesis in relation to the expression of genes encoding conserved intercellular signaling pathways. Submucosal glands are severely reduced in number and size in mice heterozygous for Fgf10. Glands are completely absent in mice lacking Ectodysplasin (Eda) and Edaradd (Eda receptor adaptor protein), members of the tumor necrosis (TNF) superfamily of signaling factors. Furthermore, components of the Eda and closely related pathways are transcribed throughout the respiratory system in the adult mouse. Finally, the temporal and spatial pattern of Bmp4 expression suggests that it may control submucosal gland development and homeostasis. Taken together, our observations have important implications for the better understanding of the submucosal gland remodeling that occurs in human respiratory disease.
Collapse
Affiliation(s)
- Emma L Rawlins
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
104
|
Kangas AT, Evans AR, Thesleff I, Jernvall J. Nonindependence of mammalian dental characters. Nature 2004; 432:211-4. [PMID: 15538367 DOI: 10.1038/nature02927] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Accepted: 08/12/2004] [Indexed: 11/08/2022]
Abstract
Studies of mammalian evolution frequently use data derived from the dentition. Dental characters are particularly central for inferring phylogenetic relationships of fossil taxa, of which teeth are often the only recovered part. The use of different aspects of dental morphology as phylogenetic signals implies the independence of dental characters from each other. Here we report, however, that, at least developmentally, most dental characters may be nonindependent. We investigated how three different levels of the cell signalling protein ectodysplasin (Eda) changed dental characters in mouse. We found that with increasing expression levels of this one gene, the number of cusps increases, cusp shapes and positions change, longitudinal crests form, and number of teeth increases. The consistent modification of characters related to lateral placement of cusps can be traced to a small difference in the formation of an early signalling centre at the onset of tooth crown formation. Our results suggest that most aspects of tooth shape have the developmental potential for correlated changes during evolution which may, if not taken into account, obscure phylogenetic history.
Collapse
Affiliation(s)
- Aapo T Kangas
- Developmental Biology Program, Institute of Biotechnology, PO Box 56, FIN-00014, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
105
|
Mustonen T, Ilmonen M, Pummila M, Kangas AT, Laurikkala J, Jaatinen R, Pispa J, Gaide O, Schneider P, Thesleff I, Mikkola ML. Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages. Development 2004; 131:4907-19. [PMID: 15371307 DOI: 10.1242/dev.01377] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Organs developing as appendages of the ectoderm are initiated from epithelial thickenings called placodes. Their formation is regulated by interactions between the ectoderm and underlying mesenchyme, and several signalling molecules have been implicated as activators or inhibitors of placode formation. Ectodysplasin (Eda) is a unique signalling molecule in the tumour necrosis factor family that, together with its receptor Edar, is necessary for normal development of ectodermal organs both in humans and mice. We have shown previously that overexpression of the Eda-A1 isoform in transgenic mice stimulates the formation of several ectodermal organs. In the present study, we have analysed the formation and morphology of placodes using in vivo and in vitro models in which both the timing and amount of Eda-A1 applied could be varied. The hair and tooth placodes of K14-Eda-A1transgenic embryos were enlarged, and extra placodes developed from the dental lamina and mammary line. Exposure of embryonic skin to Eda-A1 recombinant protein in vitro stimulated the growth and fusion of placodes. However, it did not accelerate the initiation of the first wave of hair follicles giving rise to the guard hairs. Hence, the function of Eda-A1 appears to be downstream of the primary inductive signal required for placode initiation during skin patterning. Analysis of BrdU incorporation indicated that the formation of the epithelial thickening in early placodes does not involve increased cell proliferation and also that the positive effect of Eda-A1 on placode expansion is not a result of increased cell proliferation. Taken together, our results suggest that Eda-A1 signalling promotes placodal cell fate during early development of ectodermal organs.
Collapse
Affiliation(s)
- Tuija Mustonen
- Developmental Biology Program, Institute of Biotechnology, PO Box 56 (Viikinkaari 9), University of Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Aberg T, Wang XP, Kim JH, Yamashiro T, Bei M, Rice R, Ryoo HM, Thesleff I. Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis. Dev Biol 2004; 270:76-93. [PMID: 15136142 DOI: 10.1016/j.ydbio.2004.02.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 12/16/2003] [Accepted: 02/02/2004] [Indexed: 01/11/2023]
Abstract
Runx2 (Cbfa1) is a runt domain transcription factor that is essential for bone development and tooth morphogenesis. Teeth form as ectodermal appendages and their development is regulated by interactions between the epithelium and mesenchyme. We have shown previously that Runx2 is expressed in the dental mesenchyme and regulated by FGF signals from the epithelium, and that tooth development arrests at late bud stage in Runx2 knockout mice [Development 126 (1999) 2911]. In the present study, we have continued to clarify the role of Runx2 in tooth development and searched for downstream targets of Runx2 by extensive in situ hybridization analysis. The expression of Fgf3 was downregulated in the mesenchyme of Runx2 mutant teeth. FGF-soaked beads failed to induce Fgf3 expression in Runx2 mutant dental mesenchyme whereas in wild-type mesenchyme they induced Fgf3 in all explants indicating a requirement of Runx2 for transduction of FGF signals. Fgf3 was absent also in cultured Runx2-/- calvarial cells and it was induced by overexpression of Runx2. Furthermore, Runx2 was downregulated in Msx1 mutant tooth germs, indicating that it functions in the dental mesenchyme between Msx1 and Fgf3. Shh expression was absent from the epithelial enamel knot in lower molars of Runx2 mutant and reduced in upper molars. However, other enamel knot marker genes were expressed normally in mutant upper molars, while reduced or missing in lower molars. These differences between mutant upper and lower molars may be explained by the substitution of Runx2 function by Runx3, another member of the runt gene family that was upregulated in upper but not lower molars of Runx2 mutants. Shh expression in mutant enamel knots was not rescued by FGFs in vitro, indicating that in addition to Fgf3, Runx2 regulates other mesenchymal genes required for early tooth morphogenesis. Also, exogenous FGF and SHH did not rescue the morphogenesis of Runx2 mutant molars. We conclude that Runx2 mediates the functions of epithelial FGF signals regulating Fgf3 expression in the dental mesenchyme and that Fgf3 may be a direct target gene of Runx2.
Collapse
Affiliation(s)
- Thomas Aberg
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Tucker AS, Headon DJ, Courtney JM, Overbeek P, Sharpe PT. The activation level of the TNF family receptor, Edar, determines cusp number and tooth number during tooth development. Dev Biol 2004; 268:185-94. [PMID: 15031115 DOI: 10.1016/j.ydbio.2003.12.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Revised: 11/21/2003] [Accepted: 12/15/2003] [Indexed: 01/02/2023]
Abstract
Mutations in members of the ectodysplasin (TNF-related) signalling pathway, EDA, EDAR, and EDARADD in mice and humans produce an ectodermal dysplasia phenotype that includes missing teeth and smaller teeth with reduced cusps. Using the keratin 14 promoter to target expression of an activated form of Edar in transgenic mice, we show that expression of this transgene is able to rescue the tooth phenotype in Tabby (Eda) and Sleek (Edar) mutant mice. High levels of expression of the transgene in wild-type mice result in molar teeth with extra cusps, and in some cases supernumerary teeth, the opposite of the mutant phenotype. The level of activation of Edar thus determines cusp number and tooth number during tooth development.
Collapse
Affiliation(s)
- A S Tucker
- Craniofacial Development, Dental Institute, Guy's Hospital, King's College London, London SE1 9RT, UK
| | | | | | | | | |
Collapse
|
108
|
Ohazama A, Hu Y, Schmidt-Ullrich R, Cao Y, Scheidereit C, Karin M, Sharpe PT. A dual role for Ikk alpha in tooth development. Dev Cell 2004; 6:219-27. [PMID: 14960276 DOI: 10.1016/s1534-5807(04)00024-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 11/26/2003] [Accepted: 12/01/2003] [Indexed: 12/20/2022]
Abstract
IKK alpha is a component of the I kappa B kinase (IKK) complex that plays a key role in the activation of NF-kappa B. In Ikk alpha mutant mice and mice expressing a transdominant negative mutant of I kappa B alpha (cI kappa B alpha Delta N), molars have abnormal cusps, indicating that Ikk alpha is involved in cusp formation through the NF-kappa B pathway. However, Ikk alpha mutant incisors also have an earlier phenotype where epithelium evaginates outward into the developing oral cavity rather than invaginating into the underlying mesenchyme. A similar evagination of epithelium was also observed in whisker development, suggesting that Ikk alpha contributes to the direction of epithelial growth during the early stages of development in many ectodermal appendages. Since cI kappa B alpha Delta N mice have normal incisor epithelial invagination, Ikk alpha's role appears to be NF-kappa B independent. Changes in Notch1, Notch2, Wnt7b, and Shh expression found in incisor epithelium of Ikk alpha mutants suggest that this NF-kappa B-independent function is mediated by Notch/Wnt/Shh signaling pathways.
Collapse
Affiliation(s)
- Atsushi Ohazama
- Department of Craniofacial Development, GKT Dental Institute, King's College, Guy's Hospital, London Bridge, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
109
|
Robinson GW. Identification of signaling pathways in early mammary gland development by mouse genetics. Breast Cancer Res 2004; 6:105-8. [PMID: 15084230 PMCID: PMC400673 DOI: 10.1186/bcr776] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 02/18/2004] [Indexed: 12/01/2022] Open
Abstract
The mammary gland develops as an appendage of the ectoderm. The prenatal stage of mammary development is hormone independent and is regulated by sequential and reciprocal signaling between the epithelium and the mesenchyme. A number of recent studies using human and mouse genetics, in particular targeted gene deletion and transgenic expression, have identified some of the signals that control specific steps in development. This process involves cell specification and proliferation, reciprocal tissue interactions and cell migration. Since some of these events are recapitulated during tumorigenesis, an understanding of these signaling pathways may contribute to the development of targeted therapies and novel drugs.
Collapse
Affiliation(s)
- Gertraud W Robinson
- Laboratory of Genetics and Physiology, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
110
|
Vandevska-Radunovic V, Fristad I, Wimalawansa SJ, Kvinnsland IH. CGRP1 and NK1 receptors in postnatal, developing rat dental tissues. Eur J Oral Sci 2003; 111:497-502. [PMID: 14632686 DOI: 10.1111/j.0909-8836.2003.00086.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is little evidence that neuropeptides such as substance P (SP) and calcitonin gene-related peptide (CGRP) participate in the regulation of tooth development. The aim of this study was to analyse the expression of their respective receptors, neurokinin (NK) 1 and CGRP1 receptor, in postnatal developing rat molars and supporting tissues, thereby localizing the target areas for neuropeptide activity. Mol:WIST rats were killed at 7, 14 and 21 d after birth and upper and lower jaws were processed for immunohistochemistry. At early crown stage (P7), only a few individual cells in the dental follicle were receptor positive. At the onset of root formation (P14), post-secretory ameloblasts, cells in the stratum intermedium, the reduced enamel epithelium and the developing alveolar bone demonstrated both NK1 and CGRP1 receptor immunoreactivity. The CGRP1 receptor sites were occasionally evident on cells in the odontoblast layer. At advanced root development (P21), neuropeptide receptor expression was evident on cells close to the developing dentin, cementum and alveolar bone. These data demonstrate dynamic changes in the localization of NK1 and CGRP1 receptors in developing rat dental tissues and indicate an active role for their ligands in the regulation of crown and root development.
Collapse
|
111
|
Laurikkala J, Kassai Y, Pakkasjärvi L, Thesleff I, Itoh N. Identification of a secreted BMP antagonist, ectodin, integrating BMP, FGF, and SHH signals from the tooth enamel knot. Dev Biol 2003; 264:91-105. [PMID: 14623234 DOI: 10.1016/j.ydbio.2003.08.011] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have identified mouse and human cDNAs encoding a novel secreted BMP inhibitor, which we have named ectodin. It is most homologous (approximately 37% amino acid identity) to sclerostin that is a secreted BMP antagonist. Recombinant ectodin protein produced in cultured cells was efficiently secreted as a antagonist. Ectodin inhibited the activity of BMP2, BMP4, BMP6, and BMP7 for mouse preosteoblastic MC3T3-E1 cells, and bound to these BMPs with high affinity. Ectodin is intensely expressed in developing ectodermal organs, including teeth, vibrissae, and hair follicles. However, it is absent from the hair placodes and from the enamel knot signaling centers in teeth. In addition, several cell layers surrounding the enamel knots were completely devoid of ectodin transcripts. We analyzed the regulation and function of ectodin in tooth germs. Recombinant ectodin protein antagonized the BMP-mediated induction of Msx2 expression in cultured tooth explants, indicating that ectodin is a secreted BMP inhibitor. BMP2 and BMP7 stimulated ectodin expression in tooth explants, showing that it is part of a feedback mechanism controlling the activity of BMPs. The stimulation of ectodin expression by BMP was prevented by SHH and FGF4 but not by Wnt6. Hence, the feedback mechanism whereby BMPs upregulate their own inhibitor is counteracted by signals coexpressed with BMPs in the enamel knot. We conclude that ectodin is a novel BMP inhibitor which integrates BMP signaling with the SHH and FGF signal pathways and contributes in defining the exact spatiotemporal domain of BMP target field around the ectodermal signaling centers.
Collapse
Affiliation(s)
- Johanna Laurikkala
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
112
|
Pispa J, Mikkola ML, Mustonen T, Thesleff I. Ectodysplasin, Edar and TNFRSF19 are expressed in complementary and overlapping patterns during mouse embryogenesis. Gene Expr Patterns 2003; 3:675-9. [PMID: 12972005 DOI: 10.1016/s1567-133x(03)00092-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ectodysplasin (Eda), a member of the tumor necrosis factor (TNF) superfamily, and its receptor Edar are necessary components of ectodermal organ development. Analysis of their expression patterns and mutant phenotypes has shown that during mouse hair and tooth development they may be involved in signalling between separate epithelial compartments. Here we have analysed ectodysplasin and Edar expression in other embryonic mouse tissues, and show that Edar mRNA is confined to the epithelium. Ectodysplasin and Edar are expressed in separate epithelial compartments in the developing brain and the lacrimal gland. In the salivary gland ectodysplasin is expressed in the mesenchyme and Edar in the epithelium. This is the first indication of ectodysplasin-Edar signalling between the epithelium and the mesenchyme. We also studied the expression pattern of a related TNF receptor, TNFRSF19, and show that it is expressed in an overlapping domain with Edar in the tooth, mammary gland, whiskers, and limb bud suggesting a potentially redundant role.
Collapse
Affiliation(s)
- Johanna Pispa
- Developmental Biology Programme, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, 00014, Helsinki, Finland.
| | | | | | | |
Collapse
|
113
|
Abstract
All ectodermal organs, e.g. hair, teeth, and many exocrine glands, originate from two adjacent tissue layers: the epithelium and the mesenchyme. Similar sequential and reciprocal interactions between the epithelium and mesenchyme regulate the early steps of development in all ectodermal organs. Generally, the mesenchyme provides the first instructive signal, which is followed by the formation of the epithelial placode, an early signaling center. The placode buds into or out of the mesenchyme, and subsequent proliferation, cell movements, and differentiation of the epithelium and mesenchyme contribute to morphogenesis. The molecular signals regulating organogenesis, such as molecules in the FGF, TGFbeta, Wnt, and hedgehog families, regulate the development of all ectodermal appendages repeatedly during advancing morphogenesis and differentiation. In addition, signaling by ectodysplasin, a recently identified member of the TNF family, and its receptor Edar is required for ectodermal organ development across vertebrate species. Here the current knowledge on the molecular regulation of the initiation, placode formation, and morphogenesis of ectodermal organs is discussed with emphasis on feathers, hair, and teeth.
Collapse
Affiliation(s)
- Johanna Pispa
- Developmental Biology Programme, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, 00014, Helsinki, Finland
| | | |
Collapse
|
114
|
Visinoni AF, de Souza RLR, Freire-Maia N, Gollop TR, Chautard-Freire-Maia EA. X-linked hypohidrotic ectodermal dysplasia mutations in Brazilian families. Am J Med Genet A 2003; 122A:51-5. [PMID: 12949972 DOI: 10.1002/ajmg.a.20276] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
X-linked hypohidrotic ectodermal dysplasia (XLHED) is characterized by severe hypohidrosis, hypotrichosis, and hypodontia. The gene responsible for this pleiotropic syndrome (ED1) consists of 12 exons, 8 of them coding for a transmembrane protein (ectodysplasin-A; EDA-A) involved in the developmental process of epithelial-mesenchymal interaction. ED1 mutations that cause alterations in this protein lead to the XLHED phenotype. The major objective of the present study was to detect ED1 mutations in four Brazilian families with the XLHED phenotype and to compare them to the more than 60 different mutations already reported. DNA of the EDA-A coding exons was amplified by PCR, and single strand conformation analysis (SSCA) of the electrophoretic bands was carried out in polyacrylamide gel stained with silver nitrate. Two of these four families showed altered DNA band patterns. Subsequent DNA sequencing of the two mutated exons showed: (1) a 36 nucleotide deletion at exon 5 responsible for the loss of four Gly-X-Y repeats of the collagen subdomain of EDA-A; (2) a guanine deletion at exon 6 (966 or 967 sites) that alters EDA-A after amino acid 241 and leads to a premature ending at amino acid 279. This mutation at exon 6 seems not to have been reported previously and determines a truncated EDA-A without a part of its extracellular domain that contains the whole TNF homologue subdomain. These two DNA mutations are compatible with the XLHED phenotype. In the other two families the PCR-SSCA methodology was unable to detect any mutation responsible for the XLHED phenotype.
Collapse
Affiliation(s)
- Atila F Visinoni
- Department of Genetics, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | |
Collapse
|
115
|
Mustonen T, Pispa J, Mikkola ML, Pummila M, Kangas AT, Pakkasjärvi L, Jaatinen R, Thesleff I. Stimulation of ectodermal organ development by Ectodysplasin-A1. Dev Biol 2003; 259:123-36. [PMID: 12812793 DOI: 10.1016/s0012-1606(03)00157-x] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Organs developing as ectodermal appendages share similar early morphogenesis and molecular mechanisms. Ectodysplasin, a signaling molecule belonging to the tumor necrosis factor family, and its receptor Edar are required for normal development of several ectodermal organs in humans and mice. We have overexpressed two splice forms of ectodysplasin, Eda-A1 and Eda-A2, binding to Edar and another TNF receptor, Xedar, respectively, under the keratin 14 (K14) promoter in the ectoderm of transgenic mice. Eda-A2 overexpression did not cause a detectable phenotype. On the contrary, overexpression of Eda-A1 resulted in alterations in a variety of ectodermal organs, most notably in extra organs. Hair development was initiated continuously from E14 until birth, and in addition, the transgenic mice had supernumerary teeth and mammary glands, phenotypes not reported previously in transgenic mice. Also, hair composition and structure was abnormal, and the cycling of hairs was altered so that the growth phase (anagen) was prolonged. Both hairs and nails grew longer than normal. Molar teeth were of abnormal shape, and enamel formation was severely disturbed in incisors. Furthermore, sweat gland function was stimulated and sebaceous glands were enlarged. We conclude that ectodysplasin-Edar signaling has several roles in ectodermal organ development controlling their initiation, as well as morphogenesis and differentiation.
Collapse
Affiliation(s)
- Tuija Mustonen
- Developmental Biology Program, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Ectodysplasin (Eda), a signaling molecule belonging to the tumor necrosis factor family, is required for normal development of several ectodermally derived organs in humans and mice. Two closely related isoforms of ectodysplasin, Eda-A1 and Eda-A2, have been described which bind to and activate two different receptors, Edar and X-linked Eda-A2 receptor (Xedar), respectively. Mutations in Eda, Edar or other molecules of this signaling pathway cause ectodermal dysplasias characterized by defective development of teeth, hairs, and several exocrine glands such as sweat glands presumably due to impaired NF-kappaB response. Studies with mice either lacking the functional proteins of Edar pathway or overexpressing the ligand or receptor suggest that Eda-A1-Edar signaling has multiple roles in ectodermal organ development regulating their initiation, morphogenesis, and differentiation.
Collapse
Affiliation(s)
- Marja L Mikkola
- Developmental Biology Program, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 56, Helsinki 00014, Finland.
| | | |
Collapse
|
117
|
Ruiz S, Segrelles C, Bravo A, Santos M, Perez P, Leis H, Jorcano JL, Paramio JM. Abnormal epidermal differentiation and impaired epithelial-mesenchymal tissue interactions in mice lacking the retinoblastoma relatives p107 and p130. Development 2003; 130:2341-53. [PMID: 12702649 DOI: 10.1242/dev.00453] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The functions of p107 and p130, members of the retinoblastoma family, include the control of cell cycle progression and differentiation in several tissues. Our previous studies suggested a role for p107 and p130 in keratinocyte differentiation in vitro. We now extend these data using knockout animal models. We found impaired terminal differentiation in the interfollicular keratinocytes of p107/p130-double-null mice epidermis. In addition, we observed a decreased number of hair follicles and a clear developmental delay in hair, whiskers and tooth germs. Skin grafts of p107/p130-deficient epidermis onto NOD/scid mice showed altered differentiation and hyperproliferation of the interfollicular keratinocytes, thus demonstrating that the absence of p107 and p130 results in the deficient control of differentiation in keratinocytes in a cell-autonomous manner. Besides normal hair formation, follicular cysts, misoriented and dysplastic follicles, together with aberrant hair cycling, were also observed in the p107/p130 skin transplants. Finally, the hair abnormalities in p107/p130-null skin were associated with altered Bmp4-dependent signaling including decreased DeltaNp63 expression. These results indicate an essential role for p107 and p130 in the epithelial-mesenchimal interactions.
Collapse
Affiliation(s)
- Sergio Ruiz
- Program on Cell and Molecular Biology and Gene Therapy. CIEMAT, Avenue Complutense 22, E28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Ohazama A, Courtney JM, Sharpe PT. Expression of TNF-receptor-associated factor genes in murine tooth development. Gene Expr Patterns 2003; 3:127-9. [PMID: 12711536 DOI: 10.1016/s1567-133x(03)00028-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tumor necrosis factor receptor-associated factors (TRAFs) belong to a family of intracellular adaptor proteins that mediate signaling downstream of various cell surface receptors. We carried out comparative in situ hybridization analysis of five Traf genes Traf1, Traf2, Traf3, Traf4 and Traf6 during murine odontogenesis from the formation of the epithelial thickening to the early bell stage. Traf2, Traf3 and Traf6 showed weak expression in the thickened epithelium. Expression of Traf1, Traf2 and Traf6 were observed in the outer edges of the bud epithelium whereas Traf3 was strongly expressed at the tip of the bud epithelium. Expression of Traf1, Traf4 and Traf6 were detected in the dental papilla mesenchyme. Traf2 showed restricted expression in the internal enamel epithelium of the bell stage while expression of Traf1, Traf3, Traf4 and Traf6 were observed in both the internal and the external enamel epithelium. During early odontogenesis, all five genes show dynamic spatiotemporal expression patterns.
Collapse
Affiliation(s)
- Atsushi Ohazama
- Department of Craniofacial Development, GKT Dental Institute, King's College London, Guy's Hospital, Floor 28, Guy's Tower, London Bridge, London SE1 9RT, UK
| | | | | |
Collapse
|
119
|
Jaskoll T, Zhou YM, Trump G, Melnick M. Ectodysplasin receptor-mediated signaling is essential for embryonic submandibular salivary gland development. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 271:322-31. [PMID: 12629675 DOI: 10.1002/ar.a.10045] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hypohidrotic (anhidrotic) ectodermal dysplasia (HED), the most common of the approximately 150 described ectodermal dysplasias, is a disorder characterized by abnormal hair, teeth, sweat glands, and salivary glands. Mutations in the EDA (ectodysplasin-A) and EDAR (ectodysplasin-A receptor) genes are responsible for X-linked and autosomal HED, respectively. Abnormal phenotypes similar to HED are seen in Tabby (Eda(Ta)) and downless (Edar(dl)) mutant mice. Although recent studies have focused on the role of Eda/Edar signaling during hair and tooth development, very little is known about its role during embryonic submandibular salivary gland (SMG) development. To this end, we analyzed the SMG phenotypes in Tabby (Ta) and downless (dl) mutant mice and determined that Ta SMGs are hypoplastic, whereas dl SMGs are severely dysplastic. The absence of SMG ducts and acini in dl SMGs suggests that Eda/Edar signaling is essential for lumina formation and glandular histodifferentiation. Our localization of Eda and Edar proteins at sites of lumen and acini formation supports this conclusion. Moreover, the presence of SMGs in both Ta and dl mutant mice, as well as the absence of immunodetectable Eda and Edar protein in Initial Bud and Early Pseudoglandular stage SMGs, indicate that Eda/Edar-mediated signaling is important for branching morphogenesis and histodifferentiation, but not for initial gland formation. To initially delineate the morphoregulatory role of Eda/Edar-mediated signaling during embryonic SMG development, we cultured embryonic day 14 SMGs with enhanced or abrogated Eda/Edar signaling. Eda supplementation induced a significant increase in SMG branching, and enhanced activation of NF-kappaB. Abrogating Eda/Edar signaling by adding the soluble form of Edar to bind endogenous ligand in embryonic SMGs results in a significant dose-dependent decrease in branching morphogenesis. Taken together, our results suggest that the Eda/Edar/NF-kappaB pathway exerts its effect on SMG epithelial cell proliferation, lumina formation, and histodifferentiation.
Collapse
Affiliation(s)
- Tina Jaskoll
- Laboratory for Developmental Genetics, University of Southern California-Los Angeles, Los Angeles, California 90089-0641, USA.
| | | | | | | |
Collapse
|
120
|
Luukko K, Løes S, Furmanek T, Fjeld K, Kvinnsland IH, Kettunen P. Identification of a novel putative signaling center, the tertiary enamel knot in the postnatal mouse molar tooth. Mech Dev 2003; 120:270-6. [PMID: 12591596 DOI: 10.1016/s0925-4773(02)00458-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The final shape of the molar tooth crown is thought to be regulated by the transient epithelial signaling centers in the cusp tips, the secondary enamel knots (SEKs), which are believed to disappear after initiation of the cusp growth. We investigated the developmental fate of the signaling center using the recently characterized Slit1 enamel knot marker as a lineage tracer during morphogenesis of the first molar and crown calcification in the mouse. In situ hybridization analysis showed that after Fgf4 downregulation in the SEK, Slit1 expression persisted in the deep compartment of the knot. After the histological disappearance of the SEK, Slit1 expression was evident in a novel epithelial cell cluster, which we call the tertiary enamel knot (TEK) next to the enamel-free area (EFA)-epithelium at the cusp tips. In embryonic tooth, Slit1 was also observed in the stratum intermedium (SI) and stellate reticulum cells between the parallel SEKs correlating to the area where the inner enamel epithelium cells do not proliferate. After birth, the expression of Slit1 persisted in the SI cells of the transverse connecting lophs of the parallel cusps above the EFA-cells. These results demonstrate the presence of a novel putative signaling center, the TEK, in the calcifying tooth. Moreover, our results suggest that Slit1 signaling may be involved in the regulation of molar tooth shape by regulating epithelial cell proliferation and formation of EFA of the crown.
Collapse
Affiliation(s)
- Keijo Luukko
- Department of Anatomy and Cell Biology, University of Bergen, Arstadveien 19, N-5009, Bergen, Norway.
| | | | | | | | | | | |
Collapse
|
121
|
Ohazama A, Courtney JM, Tucker AS, Naito A, Tanaka S, Inoue JI, Sharpe PT. Traf6 is essential for murine tooth cusp morphogenesis. Dev Dyn 2003; 229:131-5. [PMID: 14699584 DOI: 10.1002/dvdy.10400] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ectodermal appendages such as skin, hair, teeth, and sweat glands are affected in patients with hypohidrotic (anhydrotic) ectodermal dysplasia (HED). It has been established that mutations in the tumor necrosis factor (TNF) superfamily of molecules, i.e., ectodysplasin (EDA), EDA receptor (EDAR), and EDAR-associated death domain (EDARADD; the intracellular adaptor for EDAR), are responsible for several forms of HED in humans and mice. We show here by in situ hybridisation that another TNF family (orphan) receptor, TROY (also known TAJ, TAJ-alpha, TRADE, and TNFRSF19), is strongly coexpressed with Edar in the epithelial enamel knot signalling centres that are believe to regulate cuspal morphogenesis during murine tooth development. Traf6 is known to function as an intracellular adaptor protein for Troy and examination of Traf6 mutant mice revealed abnormalities in molar teeth that are similar but more severe than those produced by mutations in Eda signalling molecules. This finding suggests that, in additional to ectodysplasin, another TNF pathway involving Troy/Traf6 is involved in molar tooth cusp formation and identifies an essential role for a Traf in tooth development. Developmental Dynamics 229:131-135, 2004.
Collapse
Affiliation(s)
- Atsushi Ohazama
- Department of Craniofacial Development, GKT Dental Institute, King's College, Guy's Hospital, London Bridge, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
122
|
Thesleff I, Mikkola M. The role of growth factors in tooth development. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 217:93-135. [PMID: 12019566 DOI: 10.1016/s0074-7696(02)17013-6] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Growth factors and other paracrine signal molecules regulate communication between cells in all developing organs. During tooth morphogenesis, molecules in several conserved signal families mediate interactions both between and within the epithelial and mesenchymal tissue layers. The same molecules are used repeatedly during advancing development, and several growth factors are coexpressed in epithelial signaling centers. The enamel knots are signaling centers that regulate the patterning of teeth and are associated with foldings of the epithelial sheet. Different signaling pathways form networks and are integrated at many levels. Many targets of the growth factors have been identified, and mutations in several genes within the signaling networks cause defective tooth formation in both humans and mice.
Collapse
Affiliation(s)
- Irma Thesleff
- Developmental Biology Research Program, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland
| | | |
Collapse
|
123
|
Mustonen T, Tümmers M, Mikami T, Itoh N, Zhang N, Gridley T, Thesleff I. Lunatic fringe, FGF, and BMP regulate the Notch pathway during epithelial morphogenesis of teeth. Dev Biol 2002; 248:281-93. [PMID: 12167404 DOI: 10.1006/dbio.2002.0734] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Teeth develop as epithelial appendages, and their morphogenesis is regulated by epithelial-mesenchymal interactions and conserved signaling pathways common to many developmental processes. A key event during tooth morphogenesis is the transition from bud to cap stage when the epithelial bud is divided into specific compartments distinguished by morphology as well as gene expression patterns. The enamel knot, a signaling center, forms and regulates the shape and size of the tooth. Mesenchymal signals are necessary for epithelial patterning and for the formation and maintenance of the epithelial compartments. We studied the expression of Notch pathway molecules during the bud-to-cap stage transition of the developing mouse tooth. Lunatic fringe expression was restricted to the epithelium, where it formed a boundary flanking the enamel knot. The Lunatic fringe expression domains overlapped only partly with the expression of Notch1 and Notch2, which were coexpressed with Hes1. We examined the regulation of Lunatic fringe and Hes1 in cultured explants of dental epithelium. The expression of Lunatic fringe and Hes1 depended on mesenchymal signals and both were positively regulated by FGF-10. BMP-4 antagonized the stimulatory effect of FGF-10 on Lunatic fringe expression but had a synergistic effect with FGF-10 on Hes1 expression. Recombinant Lunatic fringe protein induced Hes1 expression in the dental epithelium, suggesting that Lunatic fringe can act also extracellularly. Lunatic fringe mutant mice did not reveal tooth abnormalities, and no changes were observed in the expression patterns of other Fringe genes. We conclude that Lunatic fringe may play a role in boundary formation of the enamel knot and that Notch-signaling in the dental epithelium is regulated by mesenchymal FGFs and BMP.
Collapse
Affiliation(s)
- Tuija Mustonen
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki FIN-00014, Finland
| | | | | | | | | | | | | |
Collapse
|
124
|
Heikinheimo K, Jee KJ, Niini T, Aalto Y, Happonen RP, Leivo I, Knuutila S. Gene expression profiling of ameloblastoma and human tooth germ by means of a cDNA microarray. J Dent Res 2002; 81:525-30. [PMID: 12147741 DOI: 10.1177/154405910208100805] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The molecular and genetic characteristics of ameloblastoma are still poorly understood. We analyzed gene expression in fresh-frozen ameloblastomas and human fetal tooth germs, using a cDNA microarray. Thirty-four genes exhibited significant changes in expression levels in the ameloblastoma. Eleven genes were overexpressed more than three-fold, and 23 genes were underexpressed to below 0.4 of the control level. The oncogene FOS was the most overexpressed gene (from eight- to 14-fold), followed by tumor-necrosis-factor-receptor 1 (TNFRSF1A). Genes for sonic hedgehog (SHH), TNF-receptor-associated-factor 3 (TRAF3), rhoGTP-ase-activating protein 4 (ARHGAP4), deleted in colorectal carcinoma (DCC), cadherins 12 and 13 (CDH12 and 13), teratocarcinoma-derived growth-factor-1 (TDGF1), and transforming growth-factor-beta1 (TGFB1) were underexpressed in all tumors. In selected genes, a comparison between cDNA microarray and real-time RT-PCR confirmed similar relative gene expression changes. The gene expression profile identifies candidate genes that may be involved in the origination of ameloblastoma and several genes previously unidentified in relation to human tooth development.
Collapse
Affiliation(s)
- K Heikinheimo
- Department of Oral and Maxillofacial Surgery, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, FIN-20520 Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
125
|
Laurikkala J, Pispa J, Jung HS, Nieminen P, Mikkola M, Wang X, Saarialho-Kere U, Galceran J, Grosschedl R, Thesleff I. Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar. Development 2002; 129:2541-53. [PMID: 11973284 DOI: 10.1242/dev.129.10.2541] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
X-linked and autosomal forms of anhidrotic ectodermal dysplasia syndromes (HED) are characterized by deficient development of several ectodermal organs, including hair, teeth and exocrine glands. The recent cloning of the genes that underlie these syndromes, ectodysplasin (ED1) and the ectodysplasin A receptor (EDAR), and their identification as a novel TNF ligand-receptor pair suggested a role for TNF signaling in embryonic morphogenesis. In the mouse, the genes of the spontaneous mutations Tabby (Ta) and downless (dl) were identified as homologs of ED1 and EDAR, respectively. To gain insight into the function of this signaling pathway in development of skin and hair follicles, we analyzed the expression and regulation of Eda and Edar in wild type as well as Tabby and Lef1 mutant mouse embryos. We show that Eda and Edar expression is confined to the ectoderm and occurs in a pattern that suggests a role of ectodysplasin/Edar signaling in the interactions between the ectodermal compartments and the formation and function of hair placodes. By using skin explant cultures, we further show that this signaling pathway is intimately associated with interactions between the epithelial and mesenchymal tissues. We also find that Ta mutants lack completely the placodes of the first developing tylotrich hairs, and that they do not show patterned expression of placodal genes, including Bmp4, Lef1, Shh, Ptch and Edar, and the genes for β-catenin and activin A. Finally, we identified activin as a mesenchymal signal that stimulates Edar expression and WNT as a signal that induces Eda expression, suggesting a hierarchy of distinct signaling pathways in the development of skin and hair follicles. In conclusion, we suggest that Eda and Edar are associated with the onset of ectodermal patterning and that ectodysplasin/edar signaling also regulates the morphogenesis of hair follicles.
Collapse
Affiliation(s)
- Johanna Laurikkala
- Institute of Biotechnology, Viikki Biocenter, 00014 University of Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
|
127
|
Thesleff I, Mikkola ML. Death receptor signaling giving life to ectodermal organs. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:pe22. [PMID: 11997580 DOI: 10.1126/stke.2002.131.pe22] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A new tumor necrosis factor (TNF) pathway has been identified that has an important function in the regulation of embryonic development. Three key components of this pathway are previously unknown proteins: the TNF ligand ectodysplasin (also known as EDA), its death domain-containing receptor EDAR, and the death domain adapter molecule EDARADD. This pathway was discovered and delineated through the cloning of genes that cause human hypohidrotic ectodermal dysplasia (HED) syndromes and by analysis of the corresponding mouse mutants (Tabby, downless, and crinkled) showing defects in hair, teeth, and several exocrine glands. EDAR signaling is mediated by the activation of nuclear factor kappa B, but other downstream targets are not known. Ectodysplasin-EDAR signaling mediates cell interactions within the ectoderm and regulates the initiation and morphogenesis of hair and teeth. It is also necessary for the development of fish scales, indicating that this pathway and its function have been conserved during the evolution of ectodermal organs.
Collapse
Affiliation(s)
- Irma Thesleff
- Developmental Biology Program, Insitute of Biotechnology, Viikki Biocenter, PO Box 56, University of Helsinki, 00014 Helsinki, Finland.
| | | |
Collapse
|
128
|
Abstract
Ectodermal dysplasias are a large group of rare genetic disorders with developmental abnormalities in skin, teeth, hair and nails. Many of them are clinically serious and impair the life of patients. The cloning of the gene for the most common of them, X-linked anhidrotic ectodermal dysplasia, in 1996 opened the door to dissect novel developmental pathways at the molecular level. Since then, several new genes and proteins with novel functions have been identified.
Collapse
Affiliation(s)
- Juha Kere
- Dept of Biosciences at Novum and Clinical Research Centre, Karolinska Institute, 14157 Huddinge, Sweden.
| | | |
Collapse
|
129
|
Abstract
Lesions in the anhidrotic ectodermal dysplasia (EDA) gene cause the recessive human genetic disorder X-linked anhidrotic ectodermal dysplasia, which is characterized by the poor development of ectoderm-derived structures. Ectodysplasin-A, the protein encoded by the EDA gene, is a member of the tumor necrosis factor ligand superfamily that forms a collagen triple helix, suggesting functions in signal transduction and cell adhesion. In an effort to elucidate the function of EDA in pathways regulating ectodermal development, we have analyzed promoter elements of the gene. We show here that a binding site for the lymphocyte enhancer factor 1 (Lef-1) transcription factor is active. In electrophoretic mobility shift assays, Lef-1 specifically bound to its site in the EDA promoter. Over-expression of both Lef-1 and beta-catenin significantly increased EDA transcription in co-transfection studies. In addition, indirect stabilization of endogenous beta-catenin stimulated EDA transcription 4- to 13-fold. This is the first direct evidence of a relationship between EDA and the Wnt pathway. We have also investigated whether EDA might function in a feedback loop to modulate Wnt signaling. Over-expression of EDA neither stimulated basal transcription of Wnt-dependent genes, nor inhibited Wnt-dependent activation of transcription. Taken together, our results demonstrate that Wnt signaling does control EDA gene expression, but ectodysplasin-A does not feedback on the Wnt pathway.
Collapse
Affiliation(s)
- Meredith C Durmowicz
- Laboratory of Genetics, National Institute on Aging, Triad Technology Center, Suite 4000, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
130
|
Botchkarev VA, Botchkareva NV, Sharov AA, Funa K, Huber O, Gilchrest BA. Modulation of BMP signaling by noggin is required for induction of the secondary (nontylotrich) hair follicles. J Invest Dermatol 2002; 118:3-10. [PMID: 11851869 DOI: 10.1046/j.1523-1747.2002.01645.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Increasing evidence suggests that morphogenesis of the distinct developmental structures derived from the same organ-committed epithelium is controlled by differential mechanisms. As was recently shown in mice with mutations in the downless (dL) gene, induction of primary or tylotrich hair follicles is strikingly dependent of signaling through the Tnf receptor homologue, Edar. Here, we show that dorsal skin of murine embryos with constitutive deletion of the BMP2/4 antagonist noggin, after transplantation into SCID mice, is characterized by the lack of induction of secondary hair follicles, and by the arrest of primary hair follicle development prior to hair shaft formation. The loss of noggin activity was associated with failure to express genes that specify hair follicle cell fates in the epidermis (Lef-1, beta-catenin, Shh) and dermal papilla (p75 kDa neurotrophin receptor, alkaline phosphatase). This suggests that regulation of BMP2/4 signaling by noggin is essential for the induction of secondary hair follicles, as well as for advanced stages of development in primary hair follicles.
Collapse
Affiliation(s)
- Vladimir A Botchkarev
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | |
Collapse
|
131
|
Ito Y, Zhao J, Mogharei A, Shuler CF, Weinstein M, Deng C, Chai Y. Antagonistic effects of Smad2 versus Smad7 are sensitive to their expression level during tooth development. J Biol Chem 2001; 276:44163-72. [PMID: 11557747 DOI: 10.1074/jbc.m011424200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily regulate cell proliferation, differentiation, and apoptosis, controlling the development and maintenance of most tissues. TGF-beta signal is transmitted through the phosphorylation of Smad proteins by TGF-beta receptor serine/threonine kinase. During early tooth development, TGF-beta inhibits proliferation of enamel organ epithelial cells but the underlying molecular mechanisms are largely unknown. Here we tested the hypothesis that antagonistic effects between Smad2 and Smad7 regulate TGF-beta signaling during tooth development. Attenuation of Smad2 gene expression resulted in significant advancement of embryonic tooth development with increased proliferation of enamel organ epithelial cells, while attenuation of Smad7 resulted in significant inhibition of embryonic tooth development with increased apoptotic activity within enamel organ epithelium. These findings suggest that different Smads may have differential activities in regulating TGF-beta-mediated cell proliferation and death. Furthermore, functional haploinsufficiency of Smad2, but not Smad3, altered TGF-beta-mediated tooth development. The results indicate that Smads are critical factors in orchestrating TGF-beta-mediated gene regulation during embryonic tooth development. The effectiveness of TGF-beta signaling is highly sensitive to the level of Smad gene expression.
Collapse
Affiliation(s)
- Y Ito
- Center for Craniofacial Molecular Biology School of Dentistry, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Koppinen P, Pispa J, Laurikkala J, Thesleff I, Mikkola ML. Signaling and subcellular localization of the TNF receptor Edar. Exp Cell Res 2001; 269:180-92. [PMID: 11570810 DOI: 10.1006/excr.2001.5331] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tabby and downless mutant mice have identical phenotypes characterized by deficient development of several ectodermally derived organs such as teeth, hair, and sweat glands. Edar, encoded by the mouse downless gene and defective in human dominant and recessive forms of autosomal hypohidrotic ectodermal dysplasia (EDA) syndrome, is a new member of the tumor necrosis factor (TNF) receptor superfamily. The ligand of Edar is ectodysplasin, a TNF-like molecule mutated in the X-linked form of EDA and in the spontaneous mouse mutant Tabby. We have analyzed the response of Edar signaling in transfected cells and show that it activates nuclear factor-kappaB (NF-kappaB) in a dose-dependent manner. When Edar was expressed at low levels, the NF-kappaB response was enhanced by coexpression of ectodysplasin. The activation of NF-kappaB was greatly reduced in cells expressing mutant forms of Edar associated with the downless phenotype. Overexpression of Edar did not activate SAPK/JNK nor p38 kinase. Even though Edar harbors a death domain its overexpression did not induce apoptosis in any of the four cell lines analyzed, nor was there any difference in apoptosis in developing teeth of wild-type and Tabby mice. Additionally, we show that the subcellular localization of dominant negative alleles of downless is dramatically different from that of recessive or wild-type alleles. This together with differences in NF-kappaB responses suggests an explanation for the different mode of inheritance of the different downless alleles.
Collapse
Affiliation(s)
- P Koppinen
- Developmental Biology Program, University of Helsinki, Helsinki, 00014, Finland
| | | | | | | | | |
Collapse
|
133
|
|
134
|
Thesleff I, Keränen S, Jernvall J. Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res 2001; 15:14-8. [PMID: 12640732 DOI: 10.1177/08959374010150010401] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Odontoblasts differentiate from the cells of the dental papilla, and it has been well-established that their differentiation in developing teeth is induced by the dental epithelium. In experimental studies, no other mesenchymal cells have been shown to have the capacity to differentiate into odontoblasts, indicating that the dental papilla cells have been committed to odontoblast cell lineage during earlier developmental stages. We propose that the advancing differentiation within the odontoblast cell lineage is regulated by sequential epithelial signals. The first epithelial signals from the early oral ectoderm induce the odontogenic potential in the cranial neural crest cells. The next step in the determination of the odontogenic cell lineage is the development of the dental papilla from odontogenic mesenchyme. The formation of the dental papilla starts at the onset of the transition from the bud to the cap stage of tooth morphogenesis, and this is regulated by epithelial signals from the primary enamel knot. The primary enamel knot is a signaling center which forms at the tip of the epithelial tooth bud. It becomes fully developed and morphologically discernible in the cap-stage dental epithelium and expresses at least ten different signaling molecules belonging to the BMP, FGF, Hh, and Wnt families. In molar teeth, secondary enamel knots appear in the enamel epithelium at the sites of the future cusps. They also express several signaling molecules, and their formation precedes the folding and growth of the epithelium. The differentiation of odontoblasts always starts from the tips of the cusps, and therefore, it is conceivable that some of the signals expressed in the enamel knots may act as inducers of odontoblast differentiation. The functions of the different signals in enamel knots are not precisely known. We have shown that FGFs stimulate the proliferation of mesenchymal as well as epithelial cells, and they may also regulate the growth of the cusps. We have proposed that the enamel knot signals also have important roles, together with mesenchymal signals, in regulating the patterning of the cusps and hence the shape of the tooth crown. We suggest that the enamel knots are central regulators of tooth development, since they link cell differentiation to morphogenesis.
Collapse
Affiliation(s)
- I Thesleff
- Developmental Biology Program, Institute of Biotechnology, Vlikki Biocenter, 00014 University of Helsinki, Finland.
| | | | | |
Collapse
|
135
|
Abstract
Recent studies have yielded a number of important insights into the mechanisms of hair follicle development and cycling and have highlighted the particularly important roles played by stem cells and Wnt signaling pathways.
Collapse
Affiliation(s)
- E Fuchs
- Howard Hughes Medical Institute The University of Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
136
|
Chen Y, Molloy SS, Thomas L, Gambee J, Bächinger HP, Ferguson B, Zonana J, Thomas G, Morris NP. Mutations within a furin consensus sequence block proteolytic release of ectodysplasin-A and cause X-linked hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci U S A 2001; 98:7218-23. [PMID: 11416205 PMCID: PMC34649 DOI: 10.1073/pnas.131076098] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2001] [Indexed: 01/29/2023] Open
Abstract
X-linked hypohidrotic ectodermal dysplasia (XLHED) is a heritable disorder of the ED-1 gene disrupting the morphogenesis of ectodermal structures. The ED-1 gene product, ectodysplasin-A (EDA), is a tumor necrosis factor (TNF) family member and is synthesized as a membrane-anchored precursor protein with the TNF core motif located in the C-terminal domain. The stalk region of EDA contains the sequence -Arg-Val-Arg-Arg156-Asn-Lys-Arg159-, representing overlapping consensus cleavage sites (Arg-X-Lys/Arg-Arg( downward arrow)) for the proprotein convertase furin. Missense mutations in four of the five basic residues within this sequence account for approximately 20% of all known XLHED cases, with mutations occurring most frequently at Arg156, which is shared by the two consensus furin sites. These analyses suggest that cleavage at the furin site(s) in the stalk region is required for the EDA-mediated cell-to-cell signaling that regulates the morphogenesis of ectodermal appendages. Here we show that the 50-kDa EDA parent molecule is cleaved at -Arg156Asn-Lys-Arg(159 downward arrow)- to release the soluble C-terminal fragment containing the TNF core domain. This cleavage appears to be catalyzed by furin, as release of the TNF domain was blocked either by expression of the furin inhibitor alpha1-PDX or by expression of EDA in furin-deficient LoVo cells. These results demonstrate that mutation of a functional furin cleavage site in a developmental signaling molecule is a basis for human disease (XLHED) and raise the possibility that furin cleavage may regulate the ability of EDA to act as a juxtacrine or paracrine factor.
Collapse
Affiliation(s)
- Y Chen
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, 3160 Sam Jackson Park Road, Portland, OR 97260, USA
| | | | | | | | | | | | | | | | | |
Collapse
|